七年级数学期末复习3:图形的全等压轴题
- 格式:doc
- 大小:144.50 KB
- 文档页数:4
数学七年级上册数学压轴题期末复习试题及答案解答一、压轴题1.综合与探究问题背景数学活动课上,老师将一副三角尺按图(1)所示位置摆放,分别作出∠AOC,∠BOD的平分线OM、ON,然后提出如下问题:求出∠MON的度数.特例探究“兴趣小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,OM和ON仍然是∠AOC和∠BOD的角平分线.其中,按图2方式摆放时,可以看成是ON、OD、OB在同一直线上.按图3方式摆放时,∠AOC和∠BOD相等.(1)请你帮助“兴趣小组”进行计算:图2中∠MON的度数为°.图3中∠MON的度数为°.发现感悟解决完图2,图3所示问题后,“兴趣小组”又对图1所示问题进行了讨论:小明:由于图1中∠AOC和∠BOD的和为90°,所以我们容易得到∠MOC和∠NOD的和,这样就能求出∠MON的度数.小华:设∠BOD为x°,我们就能用含x的式子分别表示出∠NOD和∠MOC度数,这样也能求出∠MON的度数.(2)请你根据他们的谈话内容,求出图1中∠MON的度数.类比拓展受到“兴趣小组”的启发,“智慧小组”将三角尺按图4所示方式摆放,分别作出∠AOC、∠BOD的平分线OM、ON,他们认为也能求出∠MON的度数.(3)你同意“智慧小组”的看法吗?若同意,求出∠MON的度数;若不同意,请说明理由.2.如图1,已知面积为12的长方形ABCD,一边AB在数轴上。
点A表示的数为—2,点B 表示的数为1,动点P从点B出发,以每秒1个单位长度的速度沿数轴向左匀速运动,设点P运动时间为t(t>0)秒.(1)长方形的边AD 长为 单位长度;(2)当三角形ADP 面积为3时,求P 点在数轴上表示的数是多少;(3)如图2,若动点Q 以每秒3个单位长度的速度,从点A 沿数轴向右匀速运动,与P 点出发时间相同。
那么当三角形BDQ ,三角形BPC 两者面积之差为12时,直接写出运动时间t 的值.3.(1)探究:哪些特殊的角可以用一副三角板画出?在①135︒,②120︒,③75︒,④25︒中,小明同学利用一副三角板画不出来的特殊角是_________;(填序号)(2)在探究过程中,爱动脑筋的小明想起了图形的运动方式有多种.如图,他先用三角板画出了直线EF ,然后将一副三角板拼接在一起,其中45角(AOB ∠)的顶点与60角(COD ∠)的顶点互相重合,且边OA 、OC 都在直线EF 上.固定三角板COD 不动,将三角板AOB 绕点O 按顺时针方向旋转一个角度α,当边OB 与射线OF 第一次重合时停止.①当OB 平分EOD ∠时,求旋转角度α;②是否存在2BOC AOD ∠=∠?若存在,求旋转角度α;若不存在,请说明理由.4.如图,已知数轴上点A 表示的数为6,B 是数轴上在A 左侧的一点,且A ,B 两点间的距离为10.动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动.(1)设运动时间为t (t >0)秒,数轴上点B 表示的数是 ,点P 表示的数是 (用含t 的代数式表示);(2)若点P 、Q 同时出发,求:①当点P 运动多少秒时,点P 与点Q 相遇?②当点P 运动多少秒时,点P 与点Q 间的距离为8个单位长度?5.已知,如图,A 、B 、C 分别为数轴上的三点,A 点对应的数为60,B 点在A 点的左侧,并且与A 点的距离为30,C 点在B 点左侧,C 点到A 点距离是B 点到A 点距离的4倍.(1)求出数轴上B 点对应的数及AC 的距离.(2)点P 从A 点出发,以3单位/秒的速度向终点C 运动,运动时间为t 秒.①当P 点在AB 之间运动时,则BP = .(用含t 的代数式表示)②P 点自A 点向C 点运动过程中,何时P ,A ,B 三点中其中一个点是另外两个点的中点?求出相应的时间t .③当P 点运动到B 点时,另一点Q 以5单位/秒的速度从A 点出发,也向C 点运动,点Q 到达C 点后立即原速返回到A 点,那么Q 点在往返过程中与P 点相遇几次?直.接.写.出.相遇时P 点在数轴上对应的数6.已知∠AOB 和∠AOC 是同一个平面内的两个角,OD 是∠BOC 的平分线.(1)若∠AOB=50°,∠AOC=70°,如图(1),图(2),求∠AOD 的度数;(2)若∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,< 且m n <,求∠AOD 的度数(结果用含m n 、的代数式表示),请画出图形,直接写出答案.7.如图,在平面直角坐标系中,点M 的坐标为(2,8),点N 的坐标为(2,6),将线段MN 向右平移4个单位长度得到线段PQ (点P 和点Q 分别是点M 和点N 的对应点),连接MP 、NQ ,点K 是线段MP 的中点.(1)求点K 的坐标;(2)若长方形PMNQ 以每秒1个单位长度的速度向正下方运动,(点A 、B 、C 、D 、E 分别是点M 、N 、Q 、P 、K 的对应点),当BC 与x 轴重合时停止运动,连接OA 、OE ,设运动时间为t 秒,请用含t 的式子表示三角形OAE 的面积S (不要求写出t 的取值范围);(3)在(2)的条件下,连接OB 、OD ,问是否存在某一时刻t ,使三角形OBD 的面积等于三角形OAE 的面积?若存在,请求出t 值;若不存在,请说明理由.8.如图,以长方形OBCD的顶点O为坐标原点建立平面直角坐标系,B点坐标为(0,a),C点坐标为(c,b),且a、b、C满足6a +|2b+12|+(c﹣4)2=0.(1)求B、C两点的坐标;(2)动点P从点O出发,沿O→B→C的路线以每秒2个单位长度的速度匀速运动,设点P 的运动时间为t秒,DC上有一点M(4,﹣3),用含t的式子表示三角形OPM的面积;(3)当t为何值时,三角形OPM的面积是长方形OBCD面积的13?直接写出此时点P的坐标.9.我国著名数学家华罗庚曾经说过,“数形结合百般好,隔裂分家万事非.”数形结合的思想方法在数学中应用极为广泛.观察下列按照一定规律堆砌的钢管的横截面图:用含n的式子表示第n个图的钢管总数.(分析思路)图形规律中暗含数字规律,我们可以采用分步的方法,从图形排列中找规律;把图形看成几个部分的组合,并保持结构,找到每一部分对应的数字规律,进而找到整个图形对应的数字规律.如:要解决上面问题,我们不妨先从特例入手: (统一用S 表示钢管总数)(解决问题)(1)如图,如果把每个图形按照它的行来分割观察,你发现了这些钢管的堆砌规律了吗?像n=1、n=2的情形那样,在所给横线上,请用数学算式表达你发现的规律.S=1+2 S=2+3+4 _____________ ______________(2)其实,对同一个图形,我们的分析眼光可以是不同的.请你像(1)那样保持结构的、对每一个所给图形添加分割线,提供与(1)不同的分割方式;并在所给横线上,请用数学算式表达你发现的规律:_______ ____________ _______________ _______________(3)用含n 的式子列式,并计算第n 个图的钢管总数.10.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且AB=20,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.(1)写出数轴上点B 表示的数______;点P 表示的数______(用含t 的代数式表示) (2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问多少秒时P 、Q 之间的距离恰好等于2?(3)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速到家动,若点P 、Q 同时出发,问点P 运动多少秒时追上Q ?(4)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.11.从特殊到一般,类比等数学思想方法,在数学探究性学习中经常用到,如下是一个具体案例,请完善整个探究过程。
七年级下册数学期末压轴试题1、(1)如图1,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连结AC和BD,相交于点E,连结BC.求∠AEB的大小;(2)如图2,ΔOAB固定不动,保持ΔOCD的形状和大小不变,将ΔOCD绕着点O旋转(ΔOAB和ΔOCD不能重叠),求∠AEB的大小.(图1)(图2)2、已知:点C为线段AB上一点,△ACM,△CBN都是等边三角形,且AN、BM相交于O.①求证:AN=BM②求∠AOB的度数。
③若AN、MC相交于点P,BM、NC交于点Q,求证:PQ∥AB。
3、已知,如图1所示,在和中,,,,且点在一条直线上,连接分别为的中点.(1)求证:①;②AN AM =;(2)在图1的基础上,将绕点按顺时针方向旋转,其他条件不变,得到图2所示的图形.请直接写出(1)中的两个结论是否仍然成立.(图1)(图2)ABC △ADE △AB AC =AD AE =BAC DAE ∠=∠B A D ,,BE CD M N ,,,BE CD ,BE CD =ADE △A1804、如图,四边形ABCD和四边形AEFG均为正方形,连接BG与DE相交于点H.(1)证明:△ABG≌△ADE;(2)试猜想∠BHD的度数,并说明理由;(3)将图中正方形ABCD绕点A逆时针旋转(0°<∠BAE<180°),设△ABE的面积为S,△ADG的面积为2S,判断1S与2S的大小关系,并1给予证明。
5、已知:如图,ABC∥,交△是等边三角形,过AB边上的点D作DG BC,.AC于点G,在GD的延长线上取点E,使DE DB,连接AE CD(1)求证:AGE DAC△≌△;(2)过点E作EF DC△是怎∥,交BC于点F,请你连接AF,并判断AEF样的三角形,试证明你的结论.6、如图,△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,过C作CF⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D.求证:(1)AE=CD;(2)若AC=12cm,求BD的长.7、已知BE,CF是△ABC的高,且BP=AC,CQ=AB,试确定AP与AQ的数量关系和位置关系8、如图,在等腰Rt△ABC中,∠ACB=90°,D为BC的中点,DE⊥AB,垂足为E,过点B作BF∥AC交DE的延长线于点F,连接CF.(1)求证:CD=BF;(2)求证:AD⊥CF;(3)连接AF,试判断△ACF的形状.9、如图所示,△ABC是等腰直角三角形,∠ACB=90°,AD是BC边上的中线,过C作AD的垂线,交AB于点E,交AD于点F,求证:∠ADC=∠BDE.10、如图1,已知正方形ABCD的边CD在正方形DEFG的边DE上,连接AE,GC.(1)试猜想AE与GC有怎样的位置关系,并证明你的结论;(2)将正方形DEFG绕点D按顺时针方向旋转,使E点落在BC边上,如图2,连接AE和GC.你认为(1)中的结论是否还成立?若成立,给出证明;若不成立,请说明理由.11、如图1,ABC ∆的边BC 在直线l 上,,AC BC ⊥且,AC BC =EFP ∆的边FP 也 在直线l 上,边EF 与边AC 重合,且EF FP =(1)在图1中,请你通过观察、测量,猜想并写出AB 与AP 所满足的 数量关系和位置关系;(2)将EFP ∆沿直线l 向左平移到图2的位置时,EP 交AC 于点Q ,连接 ,AP BQ .猜想并写出BQ 与AP 所满足的数量关系和位置关系,请证明你的猜想; (3)将EFP ∆沿直线l 向左平移到图3的位置时,EP 的延长线交AC 的延长线于点Q,连结,AP BQ ,你认为(2)中所猜想的BQ 与AP 的数量关系和位置关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.12、如图,ABC ∆中,AB AC =,90BAC ∠=︒,D 是BC 中点,ED FD ⊥,ED 与AB 交于E ,FD 与AC 交于F .求证:BE=AF,AE=CF.13、两个全等的含30,60角的三角板ADE和三角板ABC,如图所示放置,E A C三点在一条直线上,连结BD,取BD的中点M,连结,ME MC.试判,,断EMC的形状,并说明理由.14、(1)已知Rt ABC ∆中,AC BC =,90C ∠=︒,D 为AB 边的中点,90EDF ∠=︒,EDF ∠绕D 点旋转,它的两边分别交AC 、CB (或它们的延长线)于E 、F . 当EDF ∠绕D 点旋转到DE AC ⊥于E 时(如图1),证明12DEFCEFABCS S S ∆∆∆+=.(2)当EDF ∠绕D 点旋转到DE 和AC 不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,DEFS ∆,CEFS∆,ABCS ∆又有怎样的数量关系?请写出你的猜想,不需证明.15、已知:如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连结DH与BE 相交于点G。
全等三角形压轴题组卷一.选择题(共5小题)1.如图所示,是瑞安部分街道示意图,AB=BC=AC,CD=CE=DE,A,B,C,D,E,F,G,H为“公交汽车”停靠点,甲公共汽车从A站出发,按照A,H,G,D,E,C,F的顺序到达F站,乙公共汽车从B 站出发,按照B,F,H,E,D,C,G的顺序到达G站,如果甲、乙两车分别从A、B两站同时出发,各站耽误的时间相同,两辆车速度也一样,则( )A.甲车先到达指定站B.乙车先到达指定站C.同时到达指定站D.无法确定2.如图,在△ABC中,∠A=52°,∠ABC与∠ACB的角平分线交于D1,∠ABD1与∠ACD1的角平分线交于点D2,依此类推,∠ABD4与∠ACD4的角平分线交于点D5,则∠BD5C的度数是( )A.56°B.60°C.68°D.94°3.如图在△ABD和△ACE都是等边三角形,则△ADC≌△ABE的根据是( )A.SSSB.SASC.ASAD.AAS4.如图1,已知AB=AC,D为∠BAC的角平分线上面一点,连接BD,CD;如图2,已知AB=AC,D、E为∠BAC的角平分线上面两点,连接BD,CD,BE,CE;如图3,已知AB=AC,D、E、F为∠BAC 的角平分线上面三点,连接BD,CD,BE,CE,BF,CF;…,依次规律,第n个图形中有全等三角形的对数是( )A.n B.2n-1 C.D.3(n+1)5.如图,D为∠BAC的外角平分线上一点并且满足BD=CD,∠DBC=∠DCB,过D作DE⊥AC于E,DF⊥AB交BA的延长线于F,则下列结论:①△CDE≌△BDF;②CE=AB+AE;③∠BDC=∠BAC;④∠DAF=∠CBD.其中正确的结论有( )A .1个B .2个C .3个D .4个二.填空题(共3小题)6.如图,AC=BC ,∠ACB=90°,AE 平分∠BAC ,BF ⊥AE ,交AC 延长线于F ,且垂足为E ,则下列结论:①AD=BF ; ②BF=AF ; ③AC+CD=AB ,④AB=BF ;⑤AD=2BE .其中正确的结论有 .第6题第7题第8题7.如图,已知△ABC 和△BDE 都是等边三角形.则下列结论:①AE=CD .②BF=BG .③HB ⊥FG .④∠AHC=60°.⑤△BFG 是等边三角形,其中正确的有 . 8.如图,∠AOB 内一点P ,P 1、P 2分别是点P 关于OA 、OB 的对称点,P 1P 2交OA 于M ,交OB 于N ,若P 1P 2=5cm ,则△PMN 的周长是 . 三.解答题(共22小题)9.已知:如图,△ABC 中,∠ABC=45°,DH 垂直平分BC 交AB 于点D ,BE 平分∠ABC ,且BE ⊥AC于E ,与CD 相交于点F ,试说明一下论断正确的理由: (1).∠BDC=90°; (2).BF=AC ; (3).CE=12BF .10.已知,D是△ABC中AB上一点,并且∠BDC=90°,DH垂直平分BC交BC于点H.(1).试说明:BD=DC;(2).如图2,若BE⊥AC于E,与CD相交于点F,试说明:△BDF≌△ACD;(3).在(1)、(2)条件下,若BE平分∠ABC,试说明:BF=2CE.11.数学问题:如图1,在△ABC中,∠A=α,∠ABC、∠ACB的n等分线分别交于点O1、O2、…、O n-1,求∠BO n-1C的度数?问题探究:我们从较为简单的情形入手.探究一:如图2,在△ABC中,∠A=α,∠ABC、∠ACB的角平分线分别交于点O1,求∠BO1C的度数?解:由题意可得∠O1BC=12∠ABC,∠O1CB=12∠ACB∴∠O1BC+∠O1CB=12(∠ABC+∠ACB)=12(180°-α)∴∠BO1C=180°-12(180°-α)=90°+12α.探究二:如图3,∠A=α,∠ABC、∠ACB三等分线分别交于点O1、O2,求∠BO2C的度数.解:由题意可得∠O2BC=23∠ABC,∠O2CB=23∠ACB22∴∠BO2C=180°-23(180°-α)=60°+23α.探究三:如图4,∠A=α,∠ABC、∠ACB四等分线分别交于点O1、O2、O3,求∠BO3C的度数.(仿照上述方法,写出探究过程)问题解决:如图1,在△ABC中,∠A=α,∠ABC、∠ACB的n等分线分别交于点O1、O2、…、O n-1,求∠BO n﹣1C的度数.问题拓广:如图2,在△ABC中,∠A=α,∠ABC、∠ACB的角平分线交于点O1,两条角平分线构成一角∠BO1C.得到∠BO1C=90°+12α.探究四:如图3,∠A=α,∠ABC、∠ACB三等分线分别交于点O1、O2,四条等分线构成两个角∠BO1C,∠BO2C,则∠BO2C+∠BO1C= .探究五:如图4,∠A=α,∠ABC、∠ACB四等分线分别交于点O1、O2、O3,六条等分线构成三个角∠BO3C,∠BO2C,∠BO1C,则∠BO3C+∠BO2C+∠BO1C= .探究六:如图1,在△ABC中,∠A=α,∠ABC、∠ACB的n等分线分别交于点O1、O2、…、O n-1,(2n-2))等分线构成(n-1)个角∠BO n-1C…∠BO3C,∠BO2C,∠BO1C,则∠BO n-1C+…∠BO3C+∠BO2C+∠BO1C= .12.如图,在Rt△ABC中,AB=AC=4cm,∠BAC=90°,O为边BC上一点,OA=OB=OC,点M、N分别在边AB、AC上运动,在运动过程中始终保持AN=BM.(1).在运动过程中,OM与ON相等吗?请说明理由.(2).在运动过程中,OM与ON垂直吗?请说明理由.(3).在运动过程中,四边形AMON的面积是否发生变化?若变化,请说明理由;若不变化,求出四边形AMON的面积.13.如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1).当∠BDA=115°时,∠EDC= °,∠DEC= °;点D从B向C运动时,∠BDA逐渐变(填“大”或“小”);(2).当DC等于多少时,△ABD≌△DCE,请说明理由;(3).在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数.若不可以,请说明理由.14.如图,等腰直角三角形ABC,AB=BC,直角顶点B在直线PQ上,且AD⊥PQ于D,CE⊥PQ于E.(1).△ADB与△BEC全等吗?为什么?(2).图1中,AD、DE、CE有怎样的等量关系?说明理由.(3).将直线PQ绕点B旋转到如图2所示的位置,其他条件不变,那么AD、DE、CE有怎样的等量关系?说明理由.15.如图,在等腰△ABC中,CB=CA,延长AB至点D,使DB=CB,连接CD,以CD为边作等腰△CDE,使CE=CD,∠ECD=∠BCA,连接BE交CD于点M.(1).BE=AD吗?请说明理由;(2).若∠ACB=40°,求∠DBE的度数.16.阅读理解基本性质:三角形中线等分三角形的面积.如图,AD是△ABC边BC上的中线,则S△ABD=S△ACD=12S△ABC理由:∵AD是△ABC边BC上的中线∴BD=CD又∵S△ABD=12BD×AH;S△ACD=12CD×AH∴S△ABD=S△ACD=12S△ABC∴三角形中线等分三角形的面积基本应用:(1).如图1,延长△ABC的边BC到点D,使CD=BC,连接DA.则S△ACD与S△ABC的数量关系为:;(2).如图2,延长△ABC的边BC到点D,使CD=BC,延长△ABC的边CA到点E,使AE=AC,连接DE.则S△CDE与S△ABC的数量关系为:(请说明理由);(3).在图2的基础上延长AB到点F,使FB=AB,连接FD,FE,得到△DEF(如图3).则S△EFD与S△ABC的数量关系为:;拓展应用:如图4,点D是△ABC的边BC上任意一点,点E,F分别是线段AD,CE的中点,且△ABC 的面积为18cm2,则△BEF的面积为cm2.17.如图,在△ABC中,DE,FG分别是AB,AC的垂直平分线,连接AE,AF,已知∠BAC=80°,请运用所学知识,确定∠EAF的度数.18.问题发现:如图①,△ABC与△ADE是等边三角形,且点B,D,E在同一直线上,连接CE,求∠BEC的度数,并确定线段BD与CE的数量关系.拓展探究:如图②,△ABC与△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,且点B,D,E在同一直线上,AF⊥BE 于F,连接CE,求∠BEC的度数,并确定线段AF,BF,CE之间的数量关系.19.如图,△ABC中,AB=AC,∠A=90°,D为BC中点,E、F分别为AB、AC上的点,且满足AE=CF.求证:DE=DF.20.如图,在△ABC中,∠ACB=90°,AC=BC,延长AB至点D,使DB=AB,连接CD,以CD为直角边作等腰三角形CDE,其中∠DCE=90°,连接BE.(1).求证:△ACD≌△BCE;(2).若AB=3cm,则BE= cm.(3).BE与AD有何位置关系?请说明理由.21.如图,AP∥BC,∠PAB的平分线与∠CBA的平分线相交于E,CE的延长线交AP于D.(1).求证:AB=AD+BC;(2).若BE=3,AE=4,求四边形ABCD的面积.22.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.(1).如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2).若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?23.如图,△ABC是等边三角形,点E、F分别在边AB和AC上,且AE=BF.(1).求证:△ABE≌△BCF;(2).若∠ABE=20°,求∠ACF的度数;(3).猜测∠BOC的度数并证明你的猜想.24.在△ABC中,AB=AC,点D是直线BC上一点(不与点B、点C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1).如图1,当点D在线段BC上时,如果∠BAC=90°,则∠BCE= ;(2).如图2,当点D在线段BC上时,如果∠BAC=50°,请你求出∠BCE的度数.(写出求解过程);(3).探索发现,设∠BAC=α,∠BCE=β.①如图2,当点D在线段BC上移动,则α,β之间有怎样的数量关系?请直接写出你的结论:.②当点D在线段BC的延长线上时,则α,β之间有怎样的数量关系?请在图3中画出完整图形并请直接写出你的结论:.25.以点A为顶点作等腰Rt△ABC,等腰Rt△ADE,其中∠BAC=∠DAE=90°,如图1所示放置,使得一直角边重合,连接BD、CE.(1).试判断BD、CE的数量关系,并说明理由;(2).延长BD交CE于点F试求∠BFC的度数;(3).把两个等腰直角三角形按如图2放置,(1)、(2)中的结论是否仍成立?请说明理由.26.已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合),以AD为边做正方形ADEF,连接CF.(1).如图1,当点D在线段BC上时,求证CF+CD=BC.(2).如图2,当点D在线段BC得延长线上时,其他条件不变,请直接写出CF,BC,CD三条线段之间的关系.(3).如图3,当点D在线段BC得反向延长线上时,且点A,F分别在直线BC的两侧,若BC=17,CF=7,求DF的长.27.如图,四边形ABCD中,AD∥BC,CE⊥AB,△BDC为等腰直角三角形,∠BDC=90°,BD=CD;CE与BD交于F,连AF,M为BC中点,连接DM交CE于N.请说明:(1).△ABD≌△NCD;(2).CF=AB+AF.28.以点A为顶点作两个等腰直角三角形(△ABC,△ADE),如图1所示放置,使得一直角边重合,连接BD,CE.(1).说明BD=CE;(2).延长BD,交CE于点F,求∠BFC的度数;(3).若如图2放置,上面的结论还成立吗?请简单说明理由.29.如图,已知△ABC中,AB=AC=6cm,∠B=∠C,BC=4cm,点D为AB的中点.(1).如果点P在线段BC上以1cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2).若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,则经过后,点P与点Q第一次在△ABC的边上相遇?(在横线上直接写出答案,不必书写解题过程)30.如图1,已知长方形ABCD,AB=CD=4,BC=AD=6,∠A=∠B=∠C=∠D=90°,E为CD边的中点,P 为长方形ABCD边上的动点,动点P从A出发,沿着A→B→C→E运动到E点停止,设点P经过的路程为x,△APE的面积为y.(1).求当x=5时,对应y的值;(2).如图2、3、4,求出当点P分别在边AB、BC和CE上时,y与x之间的关系式;(3).如备用图,当P在线段BC上运动时,是否存在点P使得△APE的周长最小?若存在,求出此时∠PAD 的度数;若不存在,请说明理由.。
数学七年级上册数学压轴题期末复习试题及答案解答一、压轴题1.已知数轴上,点A和点B分别位于原点O两侧,AB=14,点A对应的数为a,点B对应的数为b.(1) 若b=-4,则a的值为__________.(2) 若OA=3OB,求a的值.(3) 点C为数轴上一点,对应的数为c.若O为AC的中点,OB=3BC,直接写出所有满足条件的c的值.2.如图,在数轴上的A1,A2,A3,A4,……A20,这20个点所表示的数分别是a1,a2,a3,a4,……a20.若A1A2=A2A3=……=A19A20,且a3=20,|a1﹣a4|=12.(1)线段A3A4的长度=;a2=;(2)若|a1﹣x|=a2+a4,求x的值;(3)线段MN从O点出发向右运动,当线段MN与线段A1A20开始有重叠部分到完全没有重叠部分经历了9秒.若线段MN=5,求线段MN的运动速度.3.已知∠AOB=110°,∠COD=40°,OE平分∠AOC,OF平分∠BOD.(1)如图1,当OB、OC重合时,求∠AOE﹣∠BOF的值;(2)如图2,当∠COD从图1所示位置绕点O以每秒3°的速度顺时针旋转t秒(0<t<10),在旋转过程中∠AOE﹣∠BOF的值是否会因t的变化而变化?若不发生变化,请求出该定值;若发生变化,请说明理由.(3)在(2)的条件下,当∠COF=14°时,t=秒.4.已知数轴上两点A、B,其中A表示的数为-2,B表示的数为2,若在数轴上存在一点C,使得AC+BC=n,则称点C叫做点A、B的“n节点”.例如图1所示:若点C表示的数为0,有AC+BC=2+2=4,则称点C为点A、B的“4节点”.请根据上述规定回答下列问题:(1)若点C为点A、B的“n节点”,且点C在数轴上表示的数为-4,求n的值;(2)若点D是数轴上点A、B的“5节点”,请你直接写出点D表示的数为______;(3)若点E在数轴上(不与A、B重合),满足BE=12AE,且此时点E为点A、B的“n节点”,求n的值.5.如图1,线段AB的长为a.(1)尺规作图:延长线段AB到C,使BC=2AB;延长线段BA到D,使AD=AC.(先用尺规画图,再用签字笔把笔迹涂黑.)(2)在(1)的条件下,以线段AB所在的直线画数轴,以点A为原点,若点B对应的数恰好为10,请在数轴上标出点C,D两点,并直接写出C,D两点表示的有理数,若点M 是BC的中点,点N是AD的中点,请求线段MN的长.(3)在(2)的条件下,现有甲、乙两个物体在数轴上进行匀速直线运动,甲从点D处开始,在点C,D之间进行往返运动;乙从点N开始,在N,M之间进行往返运动,甲、乙同时开始运动,当乙从M点第一次回到点N时,甲、乙同时停止运动,若甲的运动速度为每秒5个单位,乙的运动速度为每秒2个单位,请求出甲和乙在运动过程中,所有相遇点对应的有理数.6.如图,数轴上点A表示的数为4-,点B表示的数为16,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t0)>.()1A,B两点间的距离等于______,线段AB的中点表示的数为______;()2用含t的代数式表示:t秒后,点P表示的数为______,点Q表示的数为______;()3求当t为何值时,1PQ AB2=?()4若点M为PA的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变请直接写出线段MN的长.7.(1)探究:哪些特殊的角可以用一副三角板画出?在①135︒,②120︒,③75︒,④25︒中,小明同学利用一副三角板画不出来的特殊角是_________;(填序号)(2)在探究过程中,爱动脑筋的小明想起了图形的运动方式有多种.如图,他先用三角板画出了直线EF,然后将一副三角板拼接在一起,其中45角(AOB∠)的顶点与60角(COD∠)的顶点互相重合,且边OA、OC都在直线EF上.固定三角板COD不动,将三角板AOB绕点O按顺时针方向旋转一个角度α,当边OB与射线OF第一次重合时停止.①当OB 平分EOD ∠时,求旋转角度α;②是否存在2BOC AOD ∠=∠?若存在,求旋转角度α;若不存在,请说明理由. 8.已知,如图,A 、B 、C 分别为数轴上的三点,A 点对应的数为60,B 点在A 点的左侧,并且与A 点的距离为30,C 点在B 点左侧,C 点到A 点距离是B 点到A 点距离的4倍.(1)求出数轴上B 点对应的数及AC 的距离.(2)点P 从A 点出发,以3单位/秒的速度向终点C 运动,运动时间为t 秒. ①当P 点在AB 之间运动时,则BP = .(用含t 的代数式表示)②P 点自A 点向C 点运动过程中,何时P ,A ,B 三点中其中一个点是另外两个点的中点?求出相应的时间t .③当P 点运动到B 点时,另一点Q 以5单位/秒的速度从A 点出发,也向C 点运动,点Q 到达C 点后立即原速返回到A 点,那么Q 点在往返过程中与P 点相遇几次?直.接.写.出.相遇时P 点在数轴上对应的数9.如图,已知数轴上点A 表示的数为10,B 是数轴上位于点A 左侧一点,且AB=30,动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.(1)数轴上点B 表示的数是________,点P 表示的数是________(用含的代数式表示); (2)若M 为线段AP 的中点,N 为线段BP 的中点,在点P 运动的过程中,线段MN 的长度会发生变化吗?如果不变,请求出这个长度;如果会变化,请用含的代数式表示这个长度; (3)动点Q 从点B 处出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时与点Q 相距4个单位长度?10.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且AB=20,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.(1)写出数轴上点B 表示的数______;点P 表示的数______(用含t 的代数式表示) (2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问多少秒时P 、Q 之间的距离恰好等于2?(3)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速到家动,若点P 、Q 同时出发,问点P 运动多少秒时追上Q ?(4)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.11.已知:A 、O 、B 三点在同一条直线上,过O 点作射线OC ,使∠AOC :∠BOC =1:2,将一直角三角板的直角顶点放在点O 处,一边OM 在射线OB 上,另一边ON 在直线AB 的下方.(1)将图1中的三角板绕点O 按逆时针方向旋转至图2的位置,使得ON 落在射线OB 上,此时三角板旋转的角度为 度;(2)继续将图2中的三角板绕点O 按逆时针方向旋转至图3的位置,使得ON 在∠AOC 的内部.试探究∠AOM 与∠NOC 之间满足什么等量关系,并说明理由;(3)将图1中的三角板绕点O 按5°每秒的速度沿逆时针方向旋转一周的过程中,当直角三角板的直角边OM 所在直线恰好平分∠BOC 时,时间t 的值为 (直接写结果). 12.已知:如图,点M 是线段AB 上一定点,12AB cm =,C 、D 两点分别从M 、B 出发以1/cm s 、2/cm s 的速度沿直线BA 向左运动,运动方向如箭头所示(C 在线段AM 上,D 在线段BM 上)()1若4AM cm =,当点C 、D 运动了2s ,此时AC =________,DM =________;(直接填空)()2当点C 、D 运动了2s ,求AC MD +的值.()3若点C 、D 运动时,总有2MD AC =,则AM =________(填空)()4在()3的条件下,N 是直线AB 上一点,且AN BN MN -=,求MN AB的值.13.问题一:如图1,已知A ,C 两点之间的距离为16 cm ,甲,乙两点分别从相距3cm 的A ,B 两点同时出发到C 点,若甲的速度为8 cm/s ,乙的速度为6 cm/s ,设乙运动时间为x (s ), 甲乙两点之间距离为y (cm ). (1)当甲追上乙时,x = . (2)请用含x 的代数式表示y . 当甲追上乙前,y = ;当甲追上乙后,甲到达C 之前,y = ; 当甲到达C 之后,乙到达C 之前,y = .问题二:如图2,若将上述线段AC弯曲后视作钟表外围的一部分,线段AB正好对应钟表上的弧AB(1小时的间隔),易知∠AOB=30°.(1)分针OD指向圆周上的点的速度为每分钟转动 cm;时针OE指向圆周上的点的速度为每分钟转动 cm.(2)若从4:00起计时,求几分钟后分针与时针第一次重合.14.已知:如图,点A、B分别是∠MON的边OM、ON上两点,OC平分∠MON,在∠CON的内部取一点P(点A、P、B三点不在同一直线上),连接PA、PB.(1)探索∠APB与∠MON、∠PAO、∠PBO之间的数量关系,并证明你的结论;(2)设∠OAP=x°,∠OBP=y°,若∠APB的平分线PQ交OC于点Q,求∠OQP的度数(用含有x、y的代数式表示).15.如图①,点O为直线AB上一点,过点O作射线OC,使∠AOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图①中的三角板OMN摆放成如图②所示的位置,使一边OM在∠BOC的内部,当OM平分∠BOC时,∠BO N= ;(直接写出结果)(2)在(1)的条件下,作线段NO的延长线OP(如图③所示),试说明射线OP是∠AOC的平分线;(3)将图①中的三角板OMN摆放成如图④所示的位置,请探究∠NOC与∠AOM之间的数量关系.(直接写出结果,不须说明理由)【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)10;(2)212±;(3)288.5±±,【解析】【分析】(1)根据题意画出数轴,由已知条件得出AB=14,OB=4,则OA=10,得出a的值为10.(2)分两种情况,点A在原点的右侧时,设OB=m,列一元一次方程求解,进一步得出OA的长度,从而得出a的值.同理可求出当点A在原点的左侧时,a的值.(3)画数轴,结合数轴分四种情况讨论计算即可.【详解】(1)解:若b=-4,则a的值为 10(2)解:当A在原点O的右侧时(如图):设OB=m,列方程得:m+3m=14,解这个方程得,7m2 =,所以,OA=212,点A在原点O的右侧,a的值为212.当A在原点的左侧时(如图),a=-21 2综上,a的值为±212.(3)解:当点A在原点的右侧,点B在点C的左侧时(如图), c=-28 5.当点A在原点的右侧,点B在点C的右侧时(如图), c=-8.当点A在原点的左侧,点B在点C的右侧时,图略,c=28 5.当点A在原点的左侧,点B在点C的左侧时,图略,c=8.综上,点c的值为:±8,±28 5.【点睛】本题考查的知识点是通过画数轴,找出数轴上各线段间的数量关系并用一元一次方程来求解,需要注意的是分情况讨论时要考虑全面,此题充分锻炼了学生动手操作能力以及利用数行结合解决问题的能力.2.(1)4,16;(2)x=﹣28或x=52;(3)线段MN的运动速度为9单位长度/秒.【解析】【分析】(1)由A1A2=A2A3=……=A19A20结合|a1﹣a4|=12可求出A3A4的值,再由a3=20可求出a2=16;(2)由(1)可得出a1=12,a2=16,a4=24,结合|a1﹣x|=a2+a4可得出关于x的含绝对值符号的一元一次方程,解之即可得出结论;(3)由(1)可得出A1A20=19A3A4=76,设线段MN的运动速度为v单位/秒,根据路程=速度×时间(类似火车过桥问题),即可得出关于v的一元一次方程,解之即可得出结论.【详解】解:(1)∵A1A2=A2A3=……=A19A20,|a1﹣a4|=12,∴3A3A4=12,∴A3A4=4.又∵a3=20,∴a2=a3﹣4=16.故答案为:4;16.(2)由(1)可得:a1=12,a2=16,a4=24,∴a2+a4=40.又∵|a1﹣x|=a2+a4,∴|12﹣x|=40,∴12﹣x=40或12﹣x=﹣40,解得:x=﹣28或x=52.(3)根据题意可得:A1A20=19A3A4=76.设线段MN的运动速度为v单位/秒,依题意,得:9v=76+5,解得:v=9.答:线段MN的运动速度为9单位长度/秒.【点睛】本题考查了一元一次方程的应用、数轴、两点间的距离以及规律性:图形的变化类,解题的关键是:(1)由相邻线段长度相等求出线段A3A4的长度及a2的值;(2)由(1)的结论,找出关于x的含绝对值符号的一元一次方程;(3)找准等量关系,正确列出一元一次方程.3.(1)35°;(2)∠AOE ﹣∠BOF 的值是定值,理由详见解析;(3)4. 【解析】 【分析】(1)首先根据角平分线的定义求得∠AOE 和∠BOF 的度数,然后根据∠AOE ﹣∠BOF 求解;(2)首先由题意得∠BOC =3t°,再根据角平分线的定义得∠AOC =∠AOB+3t°,∠BOD =∠COD+3t°,然后由角平分线的定义解答即可; (3)根据题意得∠BOF =(3t+14)°,故3314202t t +=+,解方程即可求出t 的值. 【详解】解:(1)∵OE 平分∠AOC ,OF 平分∠BOD , ∴11AOE AOC 11022︒∠=∠=⨯=55°,11AOF BOD 402022︒︒∠=∠=⨯=, ∴∠AOE ﹣∠BOF =55°﹣20°=35°; (2)∠AOE ﹣∠BOF 的值是定值 由题意∠BOC =3t°,则∠AOC =∠AOB+3t°=110°+3t°,∠BOD =∠COD+3t°=40°+3t°, ∵OE 平分∠AOC ,OF 平分∠BOD ,()11AOE AOC 1103t =22︒︒∴∠=∠=⨯+3552t ︒︒+ ∴()113BOF BOD 403t 20t 222︒︒︒︒∠=∠=+=+, ∴33AOE BOF 55t 20t 3522︒︒︒︒︒⎛⎫⎛⎫∠-∠=+-+= ⎪ ⎪⎝⎭⎝⎭, ∴∠AOE ﹣∠BOF 的值是定值,定值为35°; (3)根据题意得∠BOF =(3t+14)°, ∴3314202t t +=+, 解得4t =. 故答案为4. 【点睛】本题考查了角度的计算以及角的平分线的性质,理解角度之间的和差关系是关键. 4.(1)n= 8;(2)-2.5或2.5;(3)n=4或n=12. 【解析】 【分析】(1)根据“n 节点”的概念解答;(2)设点D 表示的数为x ,根据“5节点”的定义列出方程分情况,并解答;(3)需要分类讨论:①当点E 在BA 延长线上时,②当点E 在线段AB 上时,③当点E 在AB延长线上时,根据BE=12AE,先求点E表示的数,再根据AC+BC=n,列方程可得结论.【详解】(1)∵A表示的数为-2,B表示的数为2,点C在数轴上表示的数为-4,∴AC=2,BC=6,∴n=AC+BC=2+6=8.(2)如图所示:∵点D是数轴上点A、B的“5节点”,∴AC+BC=5,∵AB=4,∴C在点A的左侧或在点A的右侧,设点D表示的数为x,则AC+BC=5,∴-2-x+2-x=5或x-2+x-(-2)=5,x=-2.5或2.5,∴点D表示的数为2.5或-2.5;故答案为-2.5或2.5;(3)分三种情况:①当点E在BA延长线上时,∵不能满足BE=12 AE,∴该情况不符合题意,舍去;②当点E在线段AB上时,可以满足BE=12AE,如下图,n=AE+BE=AB=4;③当点E在AB延长线上时,∵BE=12 AE,∴BE=AB=4,∴点E表示的数为6,∴n=AE+BE=8+4=12,综上所述:n=4或n=12.【点睛】本题考查数轴,一元一次方程的应用,解题的关键是掌握“n节点”的概念和运算法则,找出题中的等量关系,列出方程并解答,难度一般.5.(1)详见解析;(2)35;(3)﹣5、15、1123、﹣767.【解析】【分析】(1)根据尺规作图的方法按要求做出即可;(2)根据中点的定义及线段长度的计算求出;(3)认真分析甲、乙物体运行的轨迹来判断它们相遇的可能性,分情况建立一元一次方程来计算相遇的时间,然后计算出位置.【详解】解:(1)如图所示;(2)根据(1)所作图的条件,如果以点A为原点,若点B对应的数恰好为10,则有点C对应的数为30,点D对应的数为﹣30,MN=|20﹣(﹣15)|=35(3)设乙从M点第一次回到点N时所用时间为t,则t=223522MN⨯==35(秒)那么甲在总的时间t内所运动的长度为s=5t=5×35=175可见,在乙运动的时间内,甲在C,D之间运动的情况为175÷60=2……55,也就是说甲在C,D之间运动一个来回还多出55长度单位.①设甲乙第一次相遇时的时间为t1,有5t1=2t1+15,t1=5(秒)而﹣30+5×5=﹣5,﹣15+2×5=﹣5这时甲和乙所对应的有理数为﹣5.②设甲乙第二次相遇时的时间经过的时间t2,有5t2+2t2=25+30+5+10,t2=10(秒)此时甲的位置:﹣15×5+60+30=15,乙的位置15×2﹣15=15这时甲和乙所对应的有理数为15.③设甲乙第三次相遇时的时间经过的时间t3,有5t3﹣2t3=20,t3=203(秒)此时甲的位置:30﹣(5×203﹣15)=1123,乙的位置:20﹣(2×203﹣5)=1123这时甲和乙所对应的有理数为112 3④从时间和甲运行的轨迹来看,他们可能第四次相遇.设第四次相遇时经过的时间为t4,有5t4﹣1123﹣30﹣15+2t4=1123,t4=91621(秒)此时甲的位置:5×91621﹣45﹣1123=﹣767,乙的位置:1123﹣2×91621=﹣767这时甲和乙所对应的有理数为﹣767. 四次相遇所用时间为:5+10+203+91621=3137(秒),剩余运行时间为:35﹣3137=347(秒)当时间为35秒时,乙回到N 点停止,甲在剩余的时间运行距离为5×347=5257⨯=1767. 位置在﹣767+1767=10,无法再和乙相遇,故所有相遇点对应的有理数为﹣5、15、1123、﹣767.【点睛】本题考查数轴作图及线段长度计算的基础知识,重要的是两个点在数轴上做复杂运动时的运动轨迹和相遇的位置,具有比较大的难度.正确分析出可能相遇的情况并建立一元一次方程是解题的关键.6.(1)20,6;(2)43t -+,162t -;(3)t 2=或6时;(4)不变,10,理由见解析. 【解析】 【分析】(1)由数轴上两点距离先求得A ,B 两点间的距离,由中点公式可求线段AB 的中点表示的数;(2)点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q 从点B 出发,向右为正,所以-4+3t ;Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,向左为负,16-2t.(3)由题意,1PQ AB 2=表示出线段长度,可列方程求t 的值; (4)由线段中点的性质可求MN 的值不变. 【详解】解:()1点A 表示的数为4-,点B 表示的数为16,A ∴,B 两点间的距离等于41620--=,线段AB 的中点表示的数为41662-+= 故答案为20,6()2点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,∴点P 表示的数为:43t -+,点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,∴点Q 表示的数为:162t -,故答案为43t -+,162t -()13PQ AB 2=()43t 162t 10∴-+--=t 2∴=或6答:t 2=或6时,1PQ AB 2=()4线段MN 的长度不会变化,点M 为PA 的中点,点N 为PB 的中点,1PM PA 2∴=,1PN PB 2= ()1MN PM PN PA PB 2∴=-=- 1MN AB 102∴== 【点睛】本题考查了一元一次方程的应用,数轴上两点之间的距离,找到正确的等量关系列出方程是本题的关键.7.(1)④;(2)①15α=︒;②当105α=,125α=时,存在2BOC AOD ∠=∠. 【解析】 【分析】(1)根据一副三角板中的特殊角,运用角的和与差的计算,只要是15°的倍数的角都可以画出来;(2)①根据已知条件得到∠EOD=180°-∠COD=180°-60°=120°,根据角平分线的定义得到∠EOB=12∠EOD=12×120°=60°,于是得到结论; ②当OA 在OD 的左侧时,当OA 在OD 的右侧时,根据角的和差列方程即可得到结论. 【详解】解:(1)∵135°=90°+45°,120°=90°+30°,75°=30°+45°, ∴只有25°不能写成90°、60°、45°、30°的和或差,故画不出; 故选④;(2)①因为COD 60∠=,所以EOD 180COD 18060120∠∠=-=-=. 因为OB 平分EOD ∠,所以11EOB EOD 1206022∠∠==⨯=. 因为AOB 45∠=,所以αEOB AOB 604515∠∠=-=-=.②当OA 在OD 左侧时,则AOD 120α∠=-,BOC 135α∠=-. 因为BOC 2AOD ∠∠=, 所以()135α2120α-=-. 解得α105=.当OA 在OD 右侧时,则AOD α120∠=-,BOC 135α∠=-. 因为BOC 2AOD ∠∠=, 所以()135α2α120-=-.解得α125=.综合知,当α105=,α125=时,存在BOC 2AOD ∠∠=. 【点睛】本题考查角的计算,角平分线的定义,正确的理解题意并分类讨论是解题关键. 8.(1)30,120(2)①30﹣3t②5或20③﹣15或﹣4834【解析】 【分析】(1)根据A 点对应的数为60,B 点在A 点的左侧,AB =30求出B 点对应的数;根据AC =4AB 求出AC 的距离;(2)①当P 点在AB 之间运动时,根据路程=速度×时间求出AP =3t ,根据BP =AB ﹣AP 求解;②分P 点是A 、B 两个点的中点;B 点是A 、P 两个点的中点两种情况讨论即可; ③根据P 、Q 两点的运动速度与方向可知Q 点在往返过程中与P 点相遇2次.设Q 点在往返过程中经过x 秒与P 点相遇.第一次相遇是点Q 从A 点出发,向C 点运动的途中.根据AQ ﹣BP =AB 列出方程;第二次相遇是点Q 到达C 点后返回到A 点的途中.根据CQ+BP =BC 列出方程,进而求出P 点在数轴上对应的数. 【详解】(1)∵A 点对应的数为60,B 点在A 点的左侧,并且与A 点的距离为30, ∴B 点对应的数为60﹣30=30;∵C 点到A 点距离是B 点到A 点距离的4倍, ∴AC=4AB =4×30=120; (2)①当P 点在AB 之间运动时, ∵AP=3t ,∴BP=AB ﹣AP =30﹣3t . 故答案为30﹣3t ;②当P点是A、B两个点的中点时,AP=12AB=15,∴3t=15,解得t=5;当B点是A、P两个点的中点时,AP=2AB=60,∴3t=60,解得t=20.故所求时间t的值为5或20;③相遇2次.设Q点在往返过程中经过x秒与P点相遇.第一次相遇是点Q从A点出发,向C点运动的途中.∵AQ﹣BP=AB,∴5x﹣3x=30,解得x=15,此时P点在数轴上对应的数是:60﹣5×15=﹣15;第二次相遇是点Q到达C点后返回到A点的途中.∵CQ+BP=BC,∴5(x﹣24)+3x=90,解得x=1054,此时P点在数轴上对应的数是:30﹣3×1054=﹣4834.综上,相遇时P点在数轴上对应的数为﹣15或﹣4834.【点睛】本题考查了一元一次方程的应用,行程问题相等关系的应用,线段中点的定义,进行分类讨论是解题的关键.9.(1)-20,10-5t;(2)线段MN的长度不发生变化,都等于15.(3)13秒或17秒【解析】【分析】(1)根据已知可得B点表示的数为10-30;点P表示的数为10-5t;(2)分类讨论:①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差易求出MN.(3) 分①点P、Q相遇之前,②点P、Q相遇之后,根据P、Q之间的距离恰好等于2列出方程求解即可;【详解】解:(1))∵点A表示的数为10,B在A点左边,AB=30,∴数轴上点B表示的数为10-30=-20;∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,∴点P表示的数为10-5t;故答案为-20,10-5t;(2)线段MN的长度不发生变化,都等于15.理由如下:①当点P在点A、B两点之间运动时,∵M为线段AP的中点,N为线段BP的中点,∴MN=MP+NP=AP+BP=(AP+BP)=AB=15;②当点P运动到点B的左侧时:∵M为线段AP的中点,N为线段BP的中点,∴MN=MP-NP=AP-BP=(AP-BP)=AB=15,∴综上所述,线段MN的长度不发生变化,其值为15.(3)若点P、Q同时出发,设点P运动t秒时与点Q距离为4个单位长度.①点P、Q相遇之前,由题意得4+5t=30+3t,解得t=13;②点P、Q相遇之后,由题意得5t-4=30+3t,解得t=17.答:若点P、Q同时出发,13或17秒时P、Q之间的距离恰好等于4;【点睛】本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.10.(1)-12,8-5t;(2)94或114;(3)10;(4)MN的长度不变,值为10.【解析】【分析】(1)根据已知可得B点表示的数为8﹣20;点P表示的数为8﹣5t;(2)运动时间为t秒,分点P、Q相遇前相距2,相遇后相距2两种情况列方程进行求解即可;(3)设点P运动x秒时追上Q,根据P、Q之间相距20,列方程求解即可;(4)分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.【详解】(1)∵点A表示的数为8,B在A点左边,AB=20,∴点B表示的数是8﹣20=﹣12,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,∴点P表示的数是8﹣5t,故答案为﹣12,8﹣5t;(2)若点P、Q同时出发,设t秒时P、Q之间的距离恰好等于2;分两种情况:①点P、Q相遇之前,由题意得3t+2+5t=20,解得t=94;②点P、Q相遇之后,由题意得3t﹣2+5t=20,解得t=11 4,答:若点P、Q同时出发,94或114秒时P、Q之间的距离恰好等于2;(3)如图,设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,∵AC﹣BC=AB,∴5x﹣3x=20,解得:x=10,∴点P运动10秒时追上点Q;(4)线段MN的长度不发生变化,都等于10;理由如下:①当点P在点A、B两点之间运动时:MN=MP+NP=12AP+12BP=12(AP+BP)=12AB=10,②当点P运动到点B的左侧时:MN=MP﹣NP=12AP﹣12BP=12(AP﹣BP)=12AB=10,∴线段MN的长度不发生变化,其值为10.【点睛】本题考查了数轴上的动点问题,一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.11.(1)90°;(2)30°;(3)12秒或48秒.【解析】【分析】(1)依据图形可知旋转角=∠NOB,从而可得到问题的答案;(2)先求得∠AOC的度数,然后依据角的和差关系可得到∠NOC=60°-∠AON,∠AOM=90°-∠AON,然后求得∠AOM与∠NOC的差即可;(3)可分为当OM为∠BOC的平分线和当OM的反向延长为∠BOC的平分线两种情况,然后再求得旋转的角度,最后,依据旋转的时间=旋转的角度÷旋转的速度求解即可. 【详解】(1)由旋转的定义可知:旋转角=∠NOB =90°. 故答案为:90°(2)∠AOM ﹣∠NOC =30°.理由:∵∠AOC :∠BOC =1:2,∠AOC +∠BOC =180°, ∴∠AOC =60°. ∴∠NOC =60°﹣∠AON . ∵∠NOM =90°, ∴∠AOM =90°﹣∠AON ,∴∠AOM ﹣∠NOC =(90°﹣∠AON )﹣(60°﹣∠AON )=30°. (3)如图1所示:当OM 为∠BOC 的平分线时,∵OM 为∠BOC 的平分线, ∴∠BOM =∠BOC =60°, ∴t =60°÷5°=12秒.如图2所示:当OM 的反向延长为∠BOC 的平分线时,∵ON 为为∠BOC 的平分线, ∴∠BON =60°.∴旋转的角度=60°+180°=240°. ∴t =240°÷5°=48秒. 故答案为:12秒或48秒. 【点睛】本题主要考查的是三角形的综合应用,解答本题主要应用了旋转的定义、直角三角形的定义以及角的和差计算,求得三角板旋转的角度是解题的关键.12.(1)2AC cm =,4DM cm =;(2)6AC MD cm +=;(3)4AM =;(4)13MN AB =或1. 【解析】【详解】(1)根据题意知,CM=2cm,BD=4cm.∵AB=12cm,AM=4cm,∴BM=8cm,∴AC=AM﹣CM=2cm,DM=BM﹣BD=4cm.故答案为2,4;(2)当点C、D运动了2 s时,CM=2 cm,BD=4 cm.∵AB=12 cm,CM=2 cm,BD=4 cm,∴AC+MD=AM﹣CM+BM﹣BD=AB﹣CM﹣BD=12﹣2﹣4=6 cm;(3)根据C、D的运动速度知:BD=2MC.∵MD=2AC,∴BD+MD=2(MC+AC),即MB=2AM.∵AM+BM=AB,∴AM+2AM=AB,∴AM=13AB=4.故答案为4;(4)①当点N在线段AB上时,如图1.∵AN﹣BN=MN.又∵AN﹣AM=MN,∴BN=AM=4,∴MN=AB﹣AM﹣BN=12﹣4﹣4=4,∴MNAB=412=13;②当点N在线段AB的延长线上时,如图2.∵AN﹣BN=MN.又∵AN﹣BN=AB,∴MN=AB=12,∴MNAB=1212=1.综上所述:MNAB=13或1.【点睛】本题考查了两点间的距离,灵活运用线段的和、差、倍、分转化线段之间的数量关系是十分关键的一点.13.问题一、(1)32;(2)3-2x;2x-3;13-6x;问题一、(1)35;120;24011.【解析】【分析】问题一根据等量关系,路程=速度 时间,路程差=路程1-路程2,即可列出方程求解。
数学七年级上册数学 压轴题 期末复习试题及答案解答一、压轴题1.已知长方形纸片ABCD ,点E 在边AB 上,点F 、G 在边CD 上,连接EF 、EG .将∠BEG 对折,点B 落在直线EG 上的点B ′处,得折痕EM ;将∠AEF 对折,点A 落在直线EF 上的点A ′处,得折痕EN .(1)如图1,若点F 与点G 重合,求∠MEN 的度数;(2)如图2,若点G 在点F 的右侧,且∠FEG =30°,求∠MEN 的度数; (3)若∠MEN =α,请直接用含α的式子表示∠FEG 的大小.2.如图,从左到右依次在每个小方格中填入一个数,使得其中任意三个相邻方格中所填数之和都相等. 6abx-1-2 ...(1)可求得 x =______,第 2021 个格子中的数为______; (2)若前 k 个格子中所填数之和为 2019,求 k 的值;(3)如果m ,n 为前三个格子中的任意两个数,那么所有的|m -n | 的和可以通过计算|6-a |+|6-b|+|a -b|+|a -6| +|b -6|+|b -a| 得到.若m ,n 为前8个格子中的任意两个数,求所有的|m-n|的和.3.已知有理数a ,b ,c 在数轴上对应的点分别为A ,B ,C ,且满足(a-1)2+|ab+3|=0,c=-2a+b .(1)分别求a ,b ,c 的值;(2)若点A 和点B 分别以每秒2个单位长度和每秒1个单位长度的速度在数轴上同时相向运动,设运动时间为t 秒.i )是否存在一个常数k ,使得3BC-k•AB 的值在一定时间范围内不随运动时间t 的改变而改变?若存在,求出k 的值;若不存在,请说明理由.ii )若点C 以每秒3个单位长度的速度向右与点A ,B 同时运动,何时点C 为线段AB 的三等分点?请说明理由.4.已知:OC 平分AOB ∠,以O 为端点作射线OD ,OE 平分AOD ∠.(1)如图1,射线OD 在AOB ∠内部,BOD 82∠=︒,求COE ∠的度数. (2)若射线OD 绕点O 旋转,BOD α∠=,(α为大于AOB ∠的钝角),COE β∠=,其他条件不变,在这个过程中,探究α与β之间的数量关系是否发生变化,请补全图形并加以说明.5.如图,数轴上点A 表示的数为4-,点B 表示的数为16,点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t 秒(t 0)>.()1A ,B 两点间的距离等于______,线段AB 的中点表示的数为______;()2用含t 的代数式表示:t 秒后,点P 表示的数为______,点Q 表示的数为______;()3求当t 为何值时,1PQ AB 2=? ()4若点M 为PA 的中点,点N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变请直接写出线段MN 的长.6.结合数轴与绝对值的知识解决下列问题:探究:数轴上表示4和1的两点之间的距离是____,表示-3和2两点之间的距离是____;结论:一般地,数轴上表示数m 和数n 的两点之间的距离等于∣m-n ∣.直接应用:表示数a 和2的两点之间的距离等于____,表示数a 和-4的两点之间的距离等于____; 灵活应用:(1)如果∣a+1∣=3,那么a=____;(2)若数轴上表示数a 的点位于-4与2之间,则∣a-2∣+∣a+4∣=_____; (3)若∣a-2∣+∣a+4∣=10,则a =______; 实际应用:已知数轴上有A 、B 、C 三点,分别表示-24,-10,10,两只电子蚂蚁甲、乙分别从A 、C 两点同时相向而行,甲的速度为4个单位长度/秒,乙的速度为6个单位长度/秒.(1)两只电子蚂蚁分别从A 、C 两点同时相向而行,求甲、乙数轴上相遇时的点表示的数。
全等图形与全等三角形压轴题五种模型全攻略【考点导航】目录【典型例题】【考点一全等图形识别】【考点二利用全等图形求正方形网格中角度之和】【考点三将已知图形分割成几个全等图形】【考点四全等三角形的概念】【考点五全等三角形的性质】【过关检测】【典型例题】【考点一全等图形识别】1例题:(2023·浙江·八年级假期作业)下列各组图形中,属于全等图形的是( )A. B.C. D.【变式训练】1(2023·浙江·八年级假期作业)对于两个图形,给出下列结论:①两个图形的周长相等;②两个图形的面积相等;③两个图形的周长和面积都相等;④两个图形的形状相同,大小也相等.其中能获得这两个图形全等的结论共有()A.1个B.2个C.3个D.4个2(2022春·七年级单元测试)如图,四边形ABCD与四边形A B C D 全等,则∠A =,∠A=,B C =,AD=.【考点二利用全等图形求正方形网格中角度之和】1例题:(2023春·七年级课时练习)如图,在3×3的正方形网格中标出了∠1和∠2,则∠1+∠2=____ _______度.【变式训练】1(2022秋·湖北武汉·八年级统考期中)在如图所示的3×3正方形网格中,∠1+∠2+∠3=度.2(2023·江苏·八年级假期作业)如图,已知方格纸中是4个相同的小正方形,则∠1+∠2的度数为.【考点三将已知图形分割成几个全等图形】1(2023春·全国·七年级专题练习)沿着图中的虚线,用两种方法将下面的图形划分为两个全等的图形.【变式训练】1(2023·江苏·八年级假期作业)试在下列两个图中,沿正方形的网格线(虚线)把这两个图形分别分割成两个全等的图形,将其中一部分涂上阴影.2(2022秋·全国·八年级专题练习)沿网格线把正方形分割成两个全等图形?用两种不同的方法试一试.【考点四全等三角形的概念】1(2023春·江苏盐城·七年级校考期中)下列说法中,正确的有( )①形状相同的两个图形是全等形 ②面积相等的两个图形是全等形 ③全等三角形的周长相等,面积相等 ④若△ABC≌△DEF,则∠A=∠D,AB=EFA.1个B.2个C.3个D.4个【变式训练】1(2023·全国·八年级假期作业)已知△ABC≌△DEF,且∠A与∠D是对应角,∠B和∠E是对应角,则下列说法中正确的是()A.AC与DF是对应边B.AC与DE是对应边C.AC与EF是对应边D.不能确定AC的对应边2(2023·全国·八年级假期作业)下列说法正确的是()A.形状相同的两个三角形一定是全等三角形B.周长相等的两个三角形一定是全等三角形C.面积相等的两个三角形一定是全等三角形D.边长为5cm的等边三角形都是全等三角形【考点五全等三角形的性质】1(2023春·广东深圳·七年级校考期中)如图,若△ABC≌△DEF,∠A=45°,∠F=35°,则∠B等于___ ___.【变式训练】1(2022秋·八年级单元测试)如图,Rt△ABC≌Rt△EFC,并且CF=5cm,∠EFC=52°,则BC=,∠A=.2(2023秋·八年级课时练习)如图,△ABC≌△ADE,且AE∥BD,∠ADB=25°,则∠BAC的度数为.3(2023·江苏·八年级假期作业)如图,ΔABC≅ΔADE,且∠CAD=10°,∠B=∠D=25°,∠EAB= 120°,求∠DFB和∠DGB的度数.【过关检测】一、选择题1(2023秋·七年级单元测试)下列各组中的两个图形属于全等图形的是()A. B.C. D.2(2023·江苏·八年级假期作业)下列说法正确的是()A.两个形状相同的图形称为全等图形B.两个圆是全等图形C.全等图形的形状、大小都相同D.面积相等的两个三角形是全等图形3(2023·浙江·八年级假期作业)如图,△ABC≌△ADE,∠B=30°,∠E=20°,∠BAE=90°,则∠EAC=()A.10°B.20°C.30°D.40°4(2023·全国·八年级假期作业)如图,△ABC≅△BAD,A的对应顶点是B,C的对应顶点是D,若AB=8,AC=3,BC=7,则AD的长为()A.3B.7C.8D.以上都不对5(2023秋·四川广安·八年级统考期末)如图,已知Rt△ABC≌Rt△BDE,若AC=5,DE=2,则CE 的长为()A.2B.3C.4D.56(2023·江苏·八年级假期作业)如图所示的网格是由9个相同的小正方形拼成的,图形的各个顶点均为格点,则∠1-∠2-∠3的度数为( ).A.30°B.45°C.55°D.60°二、填空题7(2023春·七年级课时练习)请观察图中的5组图案,其中是全等形的是(填序号);8(2023秋·八年级课时练习)已知△ABC中,D是BC边上的一点,△ABD≌△ACD,则∠ADB的度数为.9(2023春·全国·七年级专题练习)如图,四边形ABCD≌四边形A B C D ,若∠B=90°,∠C=60°,∠D =105°,则∠A =°.10(2023·浙江·八年级假期作业)如图,△OAD≌△OBC,且∠O=73°,∠C=20°,则∠AEB=度.11(2023·浙江·八年级假期作业)如图,在4×4的正方形网格中,求α+β=度.12(2023·浙江·八年级假期作业)如图,△ADE≌△ABC,点D在边AC上,延长ED交边BC于点F,若∠EAC=35°,则∠BFD=.三、解答题13(2023·浙江·八年级假期作业)把4×4的正方形方格图形分割成两个全等图形,如图,沿着虚线画出种不同的分法,把4×4的正方形方格图形分割成两个全等图形.14(2023·浙江·八年级假期作业)如图,△ABC≌△DEF,点A对应点D,点B对应点E,点B、F、C、E在一条直线上.(1)求证:BF=EC;(2)若AB=3,EF=7,求AC边的取值范围.15(2023·江苏·八年级假期作业)如图,已知△ABC≌△DEB,点E在AB上,DE与AC相交于点F.(1)当DE=8,BC=5时,求线段AE的长;(2)已知∠D=35°,∠C=60°,求∠DBC与∠AFD的度数.16(2023·江苏·八年级假期作业)如图,已知△ABF≌△CDE.(1)若∠B=45°,∠DCF=25°,求∠EFC的度数;(2)若BD=10,EF=5,求BF的长.17(2023春·七年级课时练习)如图,已知△ABC≅△FED,∠A和∠F是对应角,CB和DE是对应边,AF=8,BE=2.(1)写出其他对应边及对应角;(2)判断AC与DF的位置关系,并说明理由.(3)求AB的长.。
七年级下册数学期末压轴难题试题及答案解答一、选择题1.如图,下列各组角中是同位角的是()A .∠1和∠2B .∠3和∠4C .∠2和∠4D .∠1和∠42.下列图案可以由部分图案平移得到的是()A .B .C .D .3.点()3,5A -在平面直角坐标系中所在的象限是()A .第一象限B .第二象限C .第三象限D .第四象限4.下列四个命题:①两条直线相交,若对顶角互补,则这两条直线互相垂直;②两条直线被第三条直线所截,内错角相等;③如果两条直线都与第三条直线平行,那么这两条直线也互相平行;④经过直线外一点,有且只有一条直线与已知直线平行.其中是真命题的个数是()A .1B .2C .3D .45.将一张边沿互相平行的纸条如图折叠后,若边//AD BC ,则翻折角1∠与2∠一定满足的关系是()A .122∠=∠B .1290∠+∠=︒C .1230∠-∠=︒D .213230∠-∠=︒6.下列说法正确的是()A .0的立方根是0B .0.25的算术平方根是-0.5C .-1000的立方根是10D .49的算术平方根是23±7.如图,已知////AB CD EF ,FC 平分AFE ∠,26C ∠=︒,则A ∠的度数是()A .35︒B .45︒C .50︒D .52︒8.如图,一个机器人从点O 出发,向正西方向走2m 到达点1A ;再向正北方向走4m 到达点2A ,再向正东方向走6m 到达点3A ,再向正南方向走8m 到达点4A ,再向正西方向走10m 到达点5A ,…按如此规律走下去,当机器人走到点20A 时,点20A 的坐标为()A .(20,20)-B .(20,20)C .(22,20)--D .(22,22)-二、填空题9.算术平方根等于本身的实数是__________.10.在平面直角坐标系中,已知点A 的坐标为(﹣2,5),点Q 与点A 关于y 轴对称,点P 与点Q 关于x 轴对称,则点P 的坐标是___.11.如图,已知在四边形ABCD 中,∠A =α,∠C =β,BF ,DP 为四边形ABCD 的∠ABC 、∠ADC 相邻外角的角平分线.当α、β满足条件____________时,BF ∥DP .12.已知//AB CD ,ABE α∠=,FCD β∠=,CFE γ∠=,且BE EF ⊥,请直接写出α、β、γ的数量关系________.13.如图,将△ABC 沿直线AC 翻折得到△ADC ,连接BD 交AC 于点E ,AF 为△ACD 的中线,若BE =2,AE =3,△AFC 的面积为2,则CE=_____.14.对于三个数a ,b ,c ,用M{a ,b ,c}表示这三个数的平均数,用min{a ,b ,c}表示这三个数中最小的数.例如:M{-1,2,3}=123433-++=,min{-1,2,3}=-1,如果M{3,2x +1,4x -1}=min{2,-x +3,5x},那么x =_______.15.已知AB ∥x 轴,A (-2,4),AB =5,则B 点横纵坐标之和为______.16.如图,在平面直角坐标系中,点()10,0A ,点()22,1A ,点()34,2A ,点()46,3A ,,按照这样的规律下去,点2021A 的坐标为__________.三、解答题17.计算下列各题:;18.已知:215a ab +=,210b ab +=,1a b -=,求下列各式的值:(1)a b +的值;(2)22a b +的值.19.如图.已知∠1=∠2,∠C =∠D ,求证:∠A =∠F .(1)请把下面证明过程中序号对应的空白内容补充完整.证明:∴∠1=∠2(已知)又∵∠1=∠DMN ()∵∠2=∠DMN (等量代换)∴DB ∥EC ()∴∠DBC +∠C =180°().∵∠C =∠D (已知),∴∠DBC+()=180°(等量代换)∴DF∥AC()∴∠A=∠F()(2)在(1)的基础上,小明进一步探究得到∠DBC=∠DEC,请帮他写出推理过程.20.将△ABO向右平移4个单位,再向下平移1个单位,得到三角形A′B′O′(1)请画出平移后的三角形A′B′O′.(2)写出点A′、O′的坐标.21.阅读理解.23.∴11<21的整数部分为1,12.解决问题:已知a3的整数部分,b﹣3的小数部分.(1)求a,b的值;(2)求(﹣a)3+(b+4)2)2=17.二十二、解答题22.已知在44⨯的正方形网格中,每个小正方形的边长为1.(1)计算图①中正方形ABCD的面积与边长.(2)利用图②中的正方形网格,作出面积为8的正方形,并在此基础上建立适当的数.二十三、解答题23.已知,AB ∥DE ,点C 在AB 上方,连接BC 、CD .(1)如图1,求证:∠BCD +∠CDE =∠ABC ;(2)如图2,过点C 作CF ⊥BC 交ED 的延长线于点F ,探究∠ABC 和∠F 之间的数量关系;(3)如图3,在(2)的条件下,∠CFD 的平分线交CD 于点G ,连接GB 并延长至点H ,若BH 平分∠ABC ,求∠BGD ﹣∠CGF 的值.24.如图1,//AB CD ,E 是AB 、CD 之间的一点.(1)判定BAE ∠,CDE ∠与AED ∠之间的数量关系,并证明你的结论;(2)如图2,若BAE ∠、CDE ∠的两条平分线交于点F .直接写出AFD ∠与AED ∠之间的数量关系;(3)将图2中的射线DC 沿DE 翻折交AF 于点G 得图3,若AGD ∠的余角等于2E ∠的补角,求BAE ∠的大小.25.如图①,AD 平分BAC ∠,AE ⊥BC ,∠B=450,∠C=730.(1)求DAE ∠的度数;(2)如图②,若把“AE ⊥BC ”变成“点F 在DA 的延长线上,FE BC ⊥”,其它条件不变,求DFE ∠的度数;(3)如图③,若把“AE ⊥BC ”变成“AE 平分BEC ∠”,其它条件不变,DAE ∠的大小是否变化,并请说明理由.26.如图①所示,在三角形纸片ABC 中,70C ∠=︒,65B ∠=︒,将纸片的一角折叠,使点A 落在ABC 内的点A '处.(1)若140∠=︒,2∠=________.(2)如图①,若各个角度不确定,试猜想1∠,2∠,A ∠之间的数量关系,直接写出结论.②当点A 落在四边形BCDE 外部时(如图②),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,A ∠,1∠,2∠之间又存在什么关系?请说明.(3)应用:如图③:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的123456∠+∠+∠+∠+∠+∠和是________.【参考答案】一、选择题1.D解析:D【分析】根据同位角的定义分析即可,两条直线被第三条直线所截,如果两个角分别在两条直线的同侧,且在第三条直线的同旁,那么这两个角叫做同位角.【详解】A.∠1和∠2是邻补角,不符合题意;B.∠3和∠4是同旁内角,不符合题意;C.∠2和∠4没有关系,不符合题意;D.∠1和∠4是同位角,符合题意;故选D .【点睛】本题考查了同位角的定义,理解同位角的定义是解题的关键.2.C【分析】根据平移的定义,逐一判断即可.【详解】解:、是旋转变换,不是平移,选项错误,不符合题意;、轴对称变换,不是平移,选项错误,不符合题意;、是平移,选项正确,符合题意;、图形的大解析:C【分析】根据平移的定义,逐一判断即可.【详解】解:A 、是旋转变换,不是平移,选项错误,不符合题意;B 、轴对称变换,不是平移,选项错误,不符合题意;C 、是平移,选项正确,符合题意;D 、图形的大小发生了变化,不是平移,选项错误,不符合题意.故选:C .【点睛】本题考查平移变换,解题的关键是判断图形是否由平移得到,要把握两个“不变”,图形的形状和大小不变;一个“变”,位置改变.3.B【分析】根据坐标的特点即可求解.【详解】点()3,5A -在平面直角坐标系中所在的象限是第二象限故选B .【点睛】此题主要考查坐标所在象限,解题的关键是熟知直角坐标系的特点.4.C【分析】根据对顶角的性质和垂直的定义判断①;根据内错角相等的判定方法判定②;根据平行线的判定对③进行判断;根据经过直线外一点,有且只有一条直线与已知直线平行判断④即可【详解】解:两条直线相交,若对顶角互补,则这两条直线互相垂直,所以①正确;两条互相平行的直线被第三条直线所截,内错角相等;,所以②错误;如果两条直线都与第三条直线平行,那么这两条直线也互相平行,所以③正确;经过直线外一点,有且只有一条直线与已知直线平行,所以④正确.故选:C .【点睛】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,熟练掌握相关性质是解题的关键.5.B【分析】根据平行可得出∠DAB +∠CBA =180°,再根据折叠和平角定义可求出1290∠+∠=︒.【详解】解:由翻折可知,∠DAE =21∠,∠CBF =22∠,∵//AD BC ,∴∠DAB +∠CBA =180°,∴∠DAE +∠CBF =180°,即2122180∠+∠=°,∴1290∠+∠=︒,故选:B .【点睛】本题考查了平行线的性质和角平分线的性质,解题关键是熟练运用平行线的性质进行推理计算.6.A【分析】根据算术平方根以及立方根的概念逐一进行凑数即可得.【详解】A .0的立方根是0,正确,符合题意;B .0.25的算术平方根是0.5,故B 选项错误,不符合题意;C .-1000的立方根是-10,故C 选项错误,不符合题意;D .49的算术平方根是23,故D 选项错误,不符合题意,故选A .【点睛】本题考查了算术平方根、立方根,熟练掌握相关概念以及求解方法是解题的关键.7.D【分析】由题意易得26EFC C ∠=∠=︒,则有52EFA ∠=︒,然后根据平行线的性质可求解.【详解】解:∵//CD EF ,26C ∠=︒,∴26EFC C ∠=∠=︒,∵FC 平分AFE ∠,∴26EFC CFA ∠=∠=︒,∴52EFA ∠=︒,∵//AB CD ,∴52A EFA ∠=∠=︒;故选D .【点睛】本题主要考查平行线的性质及角平分线的定义,熟练掌握平行线的性质及角平分线的定义是解题的关键.8.A【分析】先求出A1,A2,A3,…A8,发现规律,根据规律求出A20的坐标即可.【详解】解:∵一个机器人从点出发,向正西方向走到达点,点A1在x 轴的负半轴上,∴A1(-2,0)从点A2解析:A【分析】先求出A 1,A 2,A 3,…A 8,发现规律,根据规律求出A 20的坐标即可.【详解】解:∵一个机器人从点O 出发,向正西方向走2m 到达点1A ,点A 1在x 轴的负半轴上,∴A 1(-2,0)从点A 2开始,由点1A 再向正北方向走4m 到达点2A ,A 2(-2,4),由点2A 再向正东方向走6m 到达点3A ,A 3(6-2,4)即(4,4),由点3A 再向正南方向走8m 到达点4A ,A 4(4,4-8)即(4,-4),由点A 4再向正西方向走10m 到达点5A ,A 5(4-10,-4)即(-6,-4),由点A 5再向正北方向走12m 到达点A 6,A 6(-6,12-4)即(-6,8),由点A 6再向再向正东方向走14m 到达点A 7,A 7(14-6,8)即(8,8),由点A 7再向正南方向走16m 到达点8A ,A 8(8,8-16)即(8,-8),观察图象可知,下标为偶数时在二四象限,下标为奇数时(除1外)在一三象限,下标被4整除在第四象限.且横坐标与下标相同,因为2054=⨯,所以20A 在第四象限,坐标为(20,20)-.故选择A .【点睛】本题考查平面直角坐标系点的坐标规律问题,掌握求点的坐标方法与过程,利用下标与坐标的关系找出规律是解题关键.二、填空题9.0或1【详解】根据负数没有算术平方根,一个正数的算术平方根只有一个,1和0的算术平方根等于本身,即可得出答案.解:1和0的算术平方根等于本身.故答案为1和0“点睛”本题考查了算术平方根的知解析:0或1【详解】根据负数没有算术平方根,一个正数的算术平方根只有一个,1和0的算术平方根等于本身,即可得出答案.解:1和0的算术平方根等于本身.故答案为1和0“点睛”本题考查了算术平方根的知识,注意掌握1和0的算术平方根等于本身.10.(2,﹣5).【分析】根据题意分析点P,先关于y轴对称,再求关于x轴对称的点即可【详解】∵点A的坐标为(﹣2,5),点Q与点A关于y轴对称,∴点Q的坐标为(2,5),∵点P与点Q关于x轴解析:(2,﹣5).【分析】根据题意分析点P,先关于y轴对称,再求关于x轴对称的点即可【详解】∵点A的坐标为(﹣2,5),点Q与点A关于y轴对称,∴点Q的坐标为(2,5),∵点P与点Q关于x轴对称,∴点P的坐标是(2,﹣5).故答案为:(2,﹣5).【点睛】本题考查了平面直角坐标系的定义,轴对称,理解题意是解题的关键.11.α=β【详解】试题解析:当BF ∥DP 时,即:整理得:故答案为解析:α=β【详解】试题解析:360.ABC ADC A C ∠+∠+∠+∠= 360.ABC ADC CBM CDN ∠+∠+∠+∠= .CBM CDN A C αβ∴∠+∠=∠+∠=+当BF ∥DP 时,()1,2C PDC FBC CDN CBM ∠=∠+∠=∠+∠即:()1,2βαβ=+整理得:.αβ=故答案为.αβ=12.(上式变式都正确)【分析】过点E 作,过点F 作,可得出(根据平行于同一直线的两条直线互相平行),根据平行线的性质,可得出各个角之间的关系,利用等量代换、等式的性质即可得出答案.【详解】解:如图解析:90γαβ+=︒+(上式变式都正确)【分析】过点E 作//EM AB ,过点F 作//FN AB ,可得出//////AB EM FN CD (根据平行于同一直线的两条直线互相平行),根据平行线的性质,可得出各个角之间的关系,利用等量代换、等式的性质即可得出答案.【详解】解:如图所示,过点E 作//EM AB ,过点F 作//FN AB ,∵//AB CD ,∴//////AB EM FN CD ,∵//AB EM ,∴ABE BEM ∠=∠,∵//EM FN ,∴MEF EFN ∠=∠,∵//NF CD ,∴NFC FCD ∠=∠,∴ABE EFN NFC BEM MEF FCD ∠+∠+∠=∠+∠+∠,∴ABE EFC BEF FCD ∠+∠=∠+∠,∵ABE α∠=,FCD β∠=,CFE γ∠=,且BE EF ⊥,∴90αγβ+=︒+,故答案为:90αγβ+=︒+.【点睛】题目主要考察平行线的性质及等式的性质,作出相应的辅助线、找出相应的角的关系是解题关键.13.【分析】根据已知条件以及翻折的性质,先求得S 四边形ABCD ,根据S 四边形ABCD ,即可求得,进而求得【详解】∵AF 为△ACD 的中线,△AFC 的面积为2,∴S △ACD =2S △AFC =4,∵解析:【分析】根据已知条件以及翻折的性质,先求得S 四边形ABCD ,根据S 四边形ABCD =12AC BD ⨯⨯,即可求得AC ,进而求得CE【详解】∵AF 为△ACD 的中线,△AFC 的面积为2,∴S △ACD =2S △AFC =4,∵△ABC沿直线AC翻折得到△ADC,∴S△ABC=S△ADC,BD⊥AC,BE=ED,∴S四边形ABCD=8,∴18 2AC BD⨯⨯=,∵BE=2,AE=3,∴BD=4,∴AC=4,∴CE=AC﹣AE=4﹣3=1.故答案为1.【点睛】本题考查了三角形中线的性质,翻折的性质,利用四边形ABCD的等面积法求解是解题的关键.14.或【详解】【分析】根据题中的运算规则得到M{3,2x+1,4x-1}=1+2x,然后再根据min{2,-x+3,5x}的规则分情况讨论即可得.【详解】M{3,2x+1,4x-1}==2x+1解析:12或13【详解】【分析】根据题中的运算规则得到M{3,2x+1,4x-1}=1+2x,然后再根据min{2,-x+3,5x}的规则分情况讨论即可得.【详解】M{3,2x+1,4x-1}=321413x x+++-=2x+1,∵M{3,2x+1,4x-1}=min{2,-x+3,5x},∴有如下三种情况:①2x+1=2,x=12,此时min{2,-x+3,5x}=min{2,52,52}=2,成立;②2x+1=-x+3,x=23,此时min{2,-x+3,5x}=min{2,73,103}=2,不成立;③2x+1=5x,x=13,此时min{2,-x+3,5x}=min{2,83,53}=53,成立,∴x=12或13,故答案为12或13.【点睛】本题考查了阅读理解题,一元一次方程的应用,分类讨论思想的运用等,解决问题的关键是读懂题意,依题意分情况列出一元一次方程进行求解.15.-3或7【分析】由AB ∥x 轴可知B 点的纵坐标和A 点的纵坐标相同,再根据线段AB 的长度为5,B 点在A 点的坐标或右边,分别求出B 点的坐标,即可得到答案.【详解】解:∵AB ∥x 轴,∴B 点的纵坐标解析:-3或7【分析】由AB ∥x 轴可知B 点的纵坐标和A 点的纵坐标相同,再根据线段AB 的长度为5,B 点在A 点的坐标或右边,分别求出B 点的坐标,即可得到答案.【详解】解:∵AB ∥x 轴,∴B 点的纵坐标和A 点的纵坐标相同,都是4,又∵A (-2,4),AB =5,∴当B 点在A 点左侧的时候,B (-7,4),此时B 点的横纵坐标之和是-7+4=-3,当B 点在A 点右侧的时候,B (3,4),此时B 点的横纵坐标之和是3+4=7;故答案为:-3或7.【点睛】本题考查了与坐标轴平行的线上点的坐标特征以及分情况讨论的思想,要注意根据B 点位置的不确定得出两种情况分别求解.16.【分析】观察点,点,点,点点的横坐标为,纵坐标为,据此即可求得的坐标;【详解】,,,,,故答案为:【点睛】本题考查了坐标系中点的规律,找到规律是解题的关键.解析:(4040,2020)【分析】观察点()10,0A ,点()22,1A ,点()34,2A ,点()46,3A ,,点的横坐标为22n -,纵坐标为1n -,据此即可求得2021A 的坐标;【详解】()10,0A ,()22,1A ,()34,2A ,()46,3A ,,(22,1)n A n n --,∴2021(4040,2020)A 故答案为:(4040,2020)【点睛】本题考查了坐标系中点的规律,找到规律是解题的关键.三、解答题17.(1)5;(2)-2;(3)2【解析】【分析】根据实数的性质进行化简,再求值.【详解】解:(1)==5;(2)-×=-×4=-2;(3)-++=-6+5+3=2.【点睛】此题主要解析:(1)5;(2)-2;(3)2【解析】【分析】根据实数的性质进行化简,再求值.【详解】解=-12×4=-2;【点睛】此题主要考查实数的计算,解题的关键是熟知实数的性质.18.(1)±5;(2)13【分析】(1)将已知两式相减,再利用完全平方公式得到,可得结果;(2)根据完全平方公式可得=,代入计算即可【详解】解:(1)∵①,②,①+②得:,即,∴;(2)解析:(1)±5;(2)13【分析】(1)将已知两式相减,再利用完全平方公式得到()225a b +=,可得结果;(2)根据完全平方公式可得22a b +=()()2212a b a b ⎡⎤++-⎣⎦,代入计算即可【详解】解:(1)∵215a ab +=①,210b ab +=②,①+②得:22225a b ab ++=,即()225a b +=,∴5a b +=±;(2)∵1a b -=,∴22a b +=()()2212a b a b ⎡⎤++-⎣⎦=()221512⎡⎤±+⎣⎦=13.【点睛】本题主要考查了完全平方公式的变式应用,熟练应用完全平方公式的变式进行计算是解决本题的关键.19.(1)见解析;(2)见解析【分析】(1)由对顶角相等及等量代换得到∠2=∠DMN ,由此判定DB ∥EC ,由平行线的性质及等量代换得出∠DBC+∠D=180°即可判定DF ∥AC ,再根据平行线的性质即解析:(1)见解析;(2)见解析【分析】(1)由对顶角相等及等量代换得到∠2=∠DMN ,由此判定DB ∥EC ,由平行线的性质及等量代换得出∠DBC +∠D =180°即可判定DF ∥AC ,再根据平行线的性质即可得解;(2)由平行线的性质及等量代换即可得解.【详解】解:(1)证明:∵∠1=∠2(已知),又∵∠1=∠DMN (对顶角相等),∴∠2=∠DMN (等量代换),∴DB ∥EC (同位角相等,两直线平行),∴∠DBC +∠C =180°(两直线平行,同旁内角互补),∵∠C =∠D (已知),∵∠DBC +(∠D )=180°(等量代换),∴DF ∥AC (同旁内角互补,两直线平行),∴∠A =∠F (两直线平行,内错角相等).(2)∵DB ∥EC ,∴∠DBC +∠C =180°,∠DEC +∠D =180°,∵∠C =∠D ,∴∠DBC =∠DEC .【点睛】此题考查了平行线的判定与性质,熟练掌握平行线的判定定理与性质定理是解题的关键.20.(1)见解析;(2)A′,O′【分析】(1)分别作出A ,B ,O 的对应点A′,B′,O′即可.(2)根据点的位置写出坐标即可.【详解】解:(1)如图,△A′B′O′即为所求作.(2)A′(解析:(1)见解析;(2)A ′()2,1,O ′()41-,【分析】(1)分别作出A ,B ,O 的对应点A ′,B ′,O ′即可.(2)根据点的位置写出坐标即可.【详解】解:(1)如图,△A ′B ′O ′即为所求作.(2)A ′(2,1),O ′(4,−1).【点睛】本题考查作图−平移变换,解题的关键是熟练掌握基本知识,属于中考常考题型.21.(1)a =1,b =﹣4;(2)±4.【分析】(1)根据被开饭数越大算术平方根越大,可得a,b的值,(2)根据开平方运算,可得平方根.【详解】解:(1)∴,∴4<5,∴1<﹣3<2,∴解析:(1)a=1,b4;(2)±4.【分析】(1)根据被开饭数越大算术平方根越大,可得a,b的值,(2)根据开平方运算,可得平方根.【详解】解:(1<∴4<<5,∴1﹣3<2,∴a=1,b﹣4;(2)(﹣a)3+(b+4)2=(﹣1)3+﹣4+4)2=﹣1+17=16,∴(﹣a)3+(b+4)2的平方根是:±4.【点睛】本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出4<5是解题关键.二十二、解答题22.(1)正方形的面积为10,正方形的边长为;(2)见解析【分析】(1)利用正方形的面积减去4个直角三角形的面积即可求出正方形的面积,然后根据算术平方根的意义即可求出边长;(2)根据(1)的方法画解析:(1)正方形ABCD的面积为10,正方形ABCD;(2)见解析【分析】(1)利用正方形的面积减去4个直角三角形的面积即可求出正方形ABCD的面积,然后根据算术平方根的意义即可求出边长;(2)根据(1)的方法画出图形,然后建立数轴,根据算术平方根的意义即可表示出结论.【详解】解:(1)正方形ABCD的面积为4×4-4×12×3×1=10则正方形ABCD ;(2)如下图所示,正方形的面积为4×4-4×12×2×2=8,所以该正方形即为所求,如图建立数轴,以数轴的原点为圆心,正方形的边长为半径作弧,分别交数轴于两点∴弧与数轴的左边交点为【点睛】此题考查的是求网格中图形的面积和实数与数轴,掌握算术平方根的意义和利用数轴表示无理数是解题关键.二十三、解答题23.(1)证明见解析;(2);(3).【分析】(1)过点作,先根据平行线的性质可得,再根据平行公理推论可得,然后根据平行线的性质可得,由此即可得证;(2)过点作,同(1)的方法,先根据平行线的性质解析:(1)证明见解析;(2)90ABC F ∠-∠=︒;(3)45︒.【分析】(1)过点C 作CF AB ∥,先根据平行线的性质可得180ABC BCF ∠+∠=︒,再根据平行公理推论可得CF DE ,然后根据平行线的性质可得180CDE BCF BCD ∠+∠+∠=︒,由此即可得证;(2)过点C 作CG AB ∥,同(1)的方法,先根据平行线的性质得出180ABC BCG ∠+∠=︒,180F BCG BCF ∠+∠+∠=︒,从而可得ABC F BCF ∠-∠=∠,再根据垂直的定义可得90BCF ∠=︒,由此即可得出结论;(3)过点G 作GM AB ,延长FG 至点N ,先根据平行线的性质可得ABH MGH ∠=∠,MGN DFG ∠=∠,从而可得MGH MGN ABH DFG ∠-∠=∠-∠,再根据角平分线的定义、结合(2)的结论可得45MGH MGN ∠=-∠︒,然后根据角的和差、对顶角相等可得BGD CG MGH MGN F ∠-∠=∠-∠,由此即可得出答案.【详解】证明:(1)如图,过点C 作CF AB ∥,180ABC BCF ∴∠+∠=︒,AB DE ,CF DE ∴P ,180CDE DCF ∴∠+∠=︒,即180CDE BCF BCD ∠+∠+∠=︒,CDE BCF BCD ABC BCF ∴∠+∠+∠=∠+∠,BCD CDE ABC ∴∠+∠=∠;(2)如图,过点C 作CG AB ∥,180ABC BCG ∴∠+∠=︒,AB DE ,CG DE ∴ ,180F FCG ∴∠+∠=︒,即180F BCG BCF ∠+∠+∠=︒,F BCG BCF ABC BCG ∴∠+∠+∠=∠+∠,ABC F BCF ∴∠-∠=∠,CF BC ⊥ ,90BCF ∴∠=︒,90ABC F ∴∠-∠=︒;(3)如图,过点G 作GM AB ,延长FG 至点N ,ABH MGH ∴∠=∠,AB DE ,GM DE ∴ ,MGN DFG ∴∠=∠,BH 平分ABC ∠,FN 平分CFD ∠,11,22ABH AB D C CF DFG ∴∠=∠∠∠=,由(2)可知,90ABC CFD ∠-∠=︒,411225MGH MGN ABH DFG CF B D A C ∠-∠=∠-∠∠-==∴︒,又BGD MGH MGD CGF DGN MGN MGD ∠=∠+∠⎧⎨∠=∠=∠+∠⎩,45MGH BGD GF MGN C ∠-∠∴-==∠∠︒.【点睛】本题考查了平行线的性质、对顶角相等、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键.24.(1),见解析;(2);(3)60°【分析】(1)作EF//AB ,如图1,则EF//CD ,利用平行线的性质得∠1=∠BAE ,∠2=∠CDE ,从而得到∠BAE +∠CDE =∠AED ;(2)如图2,解析:(1)BAE CDE AED ∠+∠=∠,见解析;(2)12AFD AED ∠=∠;(3)60°【分析】(1)作EF //AB ,如图1,则EF //CD ,利用平行线的性质得∠1=∠BAE ,∠2=∠CDE ,从而得到∠BAE +∠CDE =∠AED ;(2)如图2,由(1)的结论得∠AFD =∠BAF +∠CDF ,根据角平分线的定义得到∠BAF =12∠BAE ,∠CDF =12∠CDE ,则∠AFD =12(∠BAE +∠CDE ),加上(1)的结论得到∠AFD =12∠AED ;(3)由(1)的结论得∠AGD =∠BAF +∠CDG ,利用折叠性质得∠CDG =4∠CDF ,再利用等量代换得到∠AGD =2∠AED -32∠BAE ,加上90°-∠AGD =180°-2∠AED ,从而可计算出∠BAE 的度数.【详解】解:(1)BAE CDE AED∠+∠=∠理由如下:作//EF AB ,如图1,//AB CD Q ,//EF CD ∴.1BAE ∴∠=∠,2CDE ∠=∠,BAE CDE AED ∴∠+∠=∠;(2)如图2,由(1)的结论得AFD BAF CDF ∠=∠+∠,BAE ∠ 、CDE ∠的两条平分线交于点F ,12BAF BAE ∴∠=∠,12CDF CDE ∠=∠,1()2AFD BAE CDE ∴∠=∠+∠,BAE CDE AED ∠+∠=∠ ,12AFD AED ∴∠=∠;(3)由(1)的结论得AGD BAF CDG ∠=∠+∠,而射线DC 沿DE 翻折交AF 于点G ,4CDG CDF ∴∠=∠,11422()22AGD BAF CDF BAE CDE BAE AED BAE ∴∠=∠+∠=∠+∠=∠+∠-∠=322AED BAE ∠-∠,901802AGD AED ︒-∠=︒-∠ ,390218022AED BAE AED ∴︒-∠+∠=︒-∠,60BAE ∴∠=︒.【点睛】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.25.(1)∠DAE =14°;(2)∠DFE =14°;(3)∠DAE 的大小不变,∠DAE =14°,证明详见解析.【分析】(1)求出∠ADE 的度数,利用∠DAE=90°-∠ADE 即可求出∠DAE解析:(1)∠DAE =14°;(2)∠DFE =14°;(3)∠DAE 的大小不变,∠DAE =14°,证明详见解析.【分析】(1)求出∠ADE 的度数,利用∠DAE=90°-∠ADE 即可求出∠DAE 的度数.(2)求出∠ADE 的度数,利用∠DFE=90°-∠ADE 即可求出∠DAE 的度数.(3)利用AE 平分∠BEC ,AD 平分∠BAC ,求出∠DFE=15°即是最好的证明.【详解】(1)∵∠B=45°,∠C=73°,∴∠BAC=62°,∵AD 平分∠BAC ,∴∠BAD=∠CAD=31°,∴∠ADE=∠B+∠BAD=45°+31°=76°,∵AE ⊥BC ,∴∠AEB=90°,∴∠DAE=90°-∠ADE=14°.(2)同(1),可得,∠ADE=76°,∵FE ⊥BC ,∴∠FEB=90°,∴∠DFE=90°-∠ADE=14°.(3)DAE ∠的大小不变.DAE ∠=14°理由:∵AD 平分∠BAC ,AE 平分∠BEC∴∠BAC=2∠BAD ,∠BEC=2∠AEB∵∠BAC+∠B+∠BEC+∠C =360°∴2∠BAD+2∠AEB=360°-∠B-∠C=242°∴∠BAD+∠AEB=121°∵∠ADE=∠B+∠BAD∴∠ADE=45°+∠BAD∴∠DAE=180°-∠AEB-∠ADE=180°-∠AEB-45°-∠BAD=135°-(∠AEB+∠BAD )=135°-121°=14°【点睛】本题考查了三角形内角和定理和三角形外角的性质,熟练掌握性质是解题的关键.26.(1)50°;(2)①见解析;②见解析;(3)360°.【分析】(1)根据题意,已知,,可结合三角形内角和定理和折叠变换的性质求解;(2)①先根据折叠得:∠ADE=∠A′DE ,∠AED=∠A′解析:(1)50°;(2)①见解析;②见解析;(3)360°.【分析】(1)根据题意,已知70C ∠=︒,65B ∠=︒,可结合三角形内角和定理和折叠变换的性质求解;(2)①先根据折叠得:∠ADE=∠A′DE ,∠AED=∠A′ED ,由两个平角∠AEB 和∠ADC 得:∠1+∠2等于360°与四个折叠角的差,化简得结果;②利用两次外角定理得出结论;(3)由折叠可知∠1+∠2+∠3+∠4+∠5+∠6等于六边形的内角和减去(∠B'GF+∠B'FG )以及(∠C'DE+∠C'ED )和(∠A'HL+∠A'LH ),再利用三角形的内角和定理即可求解.【详解】解:(1)∵70C ∠=︒,65B ∠=︒,∴∠A′=∠A=180°-(65°+70°)=45°,∴∠A′ED+∠A′DE =180°-∠A′=135°,∴∠2=360°-(∠C+∠B+∠1+∠A′ED+∠A′DE )=360°-310°=50°;(2)①122A ∠+∠=∠,理由如下由折叠得:∠ADE=∠A′DE ,∠AED=∠A′ED ,∵∠AEB+∠ADC=360°,∴∠1+∠2=360°-∠ADE-∠A′DE-∠AED-∠A′ED=360°-2∠ADE-2∠AED ,∴∠1+∠2=2(180°-∠ADE-∠AED )=2∠A ;②221A ∠=∠+∠,理由如下:∵2∠是ADF 的一个外角∴2A AFD ∠=∠+∠.∵AFD ∠是A EF '△的一个外角∴1AFD A '∠=∠+∠又∵A A '∠=∠∴221A ∠=∠+∠(3)如图由题意知,∠1+∠2+∠3+∠4+∠5+∠6=720°-(∠B'GF+∠B'FG )-(∠C'DE+∠C'ED )-(∠A'HL+∠A'LH )=720°-(180°-∠B')-(180°-C')-(180°-A')=180°+(∠B'+∠C'+∠A')又∵∠B=∠B',∠C=∠C',∠A=∠A',∠A+∠B+∠C=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=360°.【点睛】题主要考查了折叠变换、三角形、四边形内角和定理.注意折叠前后图形全等;三角形内角和为180°;四边形内角和等于360度.。
人教版七年级下册数学期末复习压轴题解答题试卷及答案精选模拟一、解答题1.解方程或不等式(组)(1)24 231 x yx y+=⎧⎨-=⎩(2)2151132x x-+-≥(3)312(2)15233x xx x+<+⎧⎪⎨-≤+⎪⎩2.对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如图1,可以得到222()2a b a ab b+=++这个等式,请解答下列问题:(1)写出图2中所表示的数学等式.(2)根据整式乘法的运算法则,通过计算验证上述等式.(3)利用(1)中得到的结论,解决下面的问题:若10a b c++=,35ab ac bc++=,则222a b c++=.(4)小明同学用图3中x张边长为a的正方形,y张边长为b的正方形,z张长宽分别为a、b的长方形纸片拼出一个面积为2)(4)a b a b++(的长方形,则x y z++=.3.解方程组:(1)2531y xx y=-⎧⎨+=-⎩;(2)3000.050.530.25300x yx y+=⎧⎨+=⨯⎩.4.如图,甲长方形的两边长分别为1m+,7m+;乙长方形的两边长分别为2m+,4m+.(其中..m为正整数....)(1)图中的甲长方形的面积1S,乙长方形的面积2S,比较:1S2S(填“<”、“=”或“>”);(2)现有一正方形,其周长与图中的甲长方形周长相等,试探究:该正方形面积S与图中的甲长方形面积1S 的差(即1S S -)是一个常数,求出这个常数;(3)在(1)的条件下,若某个图形的面积介于1S 、2S 之间(不包括1S 、2S )并且面积为整数,这样的整数值有且只有16个,求m 的值.5.如果a c = b ,那么我们规定(a ,b )=c ,例如:因为23= 8 ,所以(2,8)=3. (1)根据上述规定,填空:(3,27)=,(4,1)= ,(2,14)= ; (2)若记(3,5)=a ,(3,6)=b ,(3,30)=c ,求证: a + b = c .6.如图,已知AB ∥CD , 12∠=∠,BE 与CF 平行吗?7.仔细阅读下列解题过程:若2222690a ab b b ++-+=,求a b 、的值.解:2222690a ab b b ++-+=222222690()(3)003033a ab b b b a b b a b b a b ∴+++-+=∴++-=∴+=-=∴=-=,,根据以上解题过程,试探究下列问题:(1)已知2222210x xy yy -+-+=,求2x y +的值;(2)已知2254210a b ab b +--+=,求a b 、的值;(3)若248200m n mn t t =++-+=,,求2m t n -的值.8.在如图所示的正方形网格中,每个小正方形的边长均为1个单位长度,△ABC 的顶点都在正方形网格的格点(网格线的交点)上.(1)画出△ABC 先向右平移5个单位长度,再向上平移2个单位长度所得的△A 1B 1C 1; (2)画出△ABC 的中线AD ;(3)画出△ABC 的高CE 所在直线,标出垂足E :(4)在(1)的条件下,线段AA 1和CC 1的关系是9.南山植物园中现有A,B两个园区.已知A园区为长方形,长为(x+y)米,宽为(x-y)米;B园区为正方形,边长为(x+3y)米.(1)请用代数式表示A,B两园区的面积之和并化简.(2)现根据实际需要对A园区进行整改,长增加(11x-y)米,宽减少(x-2y)米,整改后A园区的长比宽多350米,且整改后两园区的周长之和为980米.①求x,y的值;②若A园区全部种植C种花,B园区全部种植D种花,且C,D两种花投入的费用与吸引游客的收益如下表:C D投入(元/米2)1216收益(元/米2)1826求整改后A,B两园区旅游的净收益之和.(净收益=收益-投入)10.如图,∠A=65°,∠ABD=30°,∠ACB=72°,且CE平分∠ACB,求∠BEC的度数.11.(知识生成)我们已经知道,通过计算几何图形的面积可以表示一些代数恒等式.例如图1可以得到(a+b)2=a2+2ab+b2,基于此,请解答下列问题:(1)根据图2,写出一个代数恒等式:.(2)利用(1)中得到的结论,解决下面的问题:若a+b+c=10,ab+ac+bc=35,则a2+b2+c2=.(3)小明同学用图3中x张边长为a的正方形,y张边长为b的正方形,z张宽、长分别为a、b的长方形纸片拼出一个面积为(2a+b)(a+2b)长方形,则x+y+z=.(知识迁移)(4)事实上,通过计算几何图形的体积也可以表示一些代数恒等式,图4表示的是一个边长为x的正方体挖去一个小长方体后重新拼成一个新长方体,请你根据图4中图形的变化关系,写出一个代数恒等式:.12.因式分解:(1)x4﹣16;(2)2ax2﹣4axy+2ay2.13.如图1是一个长为4a、宽为b的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个“回形”正方形(如图2)(1)观察图2请你写出(a+b)2、(a﹣b)2、ab之间的等量关系是;(2)根据(1)中的结论,若x+y=5,x•y=94,则x﹣y=;(3)拓展应用:若(2019﹣m)2+(m﹣2020)2=15,求(2019﹣m)(m﹣2020)的值.14.解方程组:(1)2338y xx y=-⎧⎨-=⎩(2)743832x yx y⎧+=⎪⎪⎨⎪+=⎪⎩15.先化简,再计算:(2a+b)(b-2a)-(a-b)2,其中a=-1,b=-216.计算:(1)-22+30(2)(2a)3+a8÷(-a)5(3)(x+2y-3)(x-2y+3)(4)(m+2)2(m-2)217.因式分解:(1)a3﹣a;(2)4ab2﹣4a2b﹣b3;(3)a2(x﹣y)﹣9b2(x﹣y);(4)(y2﹣1)2+6 (1﹣y2)+9.18.已知:直线//AB CD,点E,F分别在直线AB,CD上,点M为两平行线内部一点.(1)如图1,∠AEM,∠M,∠CFM的数量关系为________;(直接写出答案)(2)如图2,∠MEB和∠MFD的角平分线交于点N,若∠EMF等于130°,求∠ENF的度数;(3)如图3,点G为直线CD上一点,延长GM交直线AB于点Q,点P为MG上一点,射线PF、EH相交于点H,满足13PFG MFG∠=∠,13BEH BEM∠=∠,设∠EMF=α,求∠H的度数(用含α的代数式表示).19.(数学经验)三角形的中线的性质:三角形的中线等分三角形的面积.(经验发展)面积比和线段比的联系:(1)如图1,M为△ABC的AB上一点,且BM=2AM.若△ABC的面积为a,若△CBM的面积为S,则S=_______(用含a的代数式表示).(结论应用)(2)如图2,已知△CDE的面积为1,14CDAC=,13CECB=,求△ABC的面积.(迁移应用)(3)如图3.在△ABC中,M是AB的三等分点(13AM AB=),N是BC的中点,若△ABC的面积是1,请直接写出四边形BMDN的面积为________.20.水果商贩老徐上水果批发市场进货,他了解到草莓的批发价格是每箱60元,苹果的批发价格是每箱40元.老徐购得草莓和苹果共60箱,刚好花费3100元.(1)问草莓、苹果各购买了多少箱?(2)老徐有甲、乙两家店铺,每出售一箱草莓或苹果,甲店分别获利15元和20元,乙店分别获利12元和16元.设老徐将购进的60箱水果分配给甲店草莓a箱,苹果b箱,其余均分配给乙店,由于他口碑良好,两家店都很快卖完了这批水果.①若老徐在甲店获利600元,则他在乙店获利多少元?②若老徐希望获得总利润为1000元,则a b+=?【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)21x y =⎧⎨=⎩;(2)1x ≤-;(3)13x -≤< 【分析】(1)根据加减消元法解答;(2)根据解一元一次不等式的方法解答即可;(3)先分别解两个不等式,再取其解集的公共部分即得结果.【详解】解:(1)对24231x y x y +=⎧⎨-=⎩①②, ①×2,得248x y +=③,③-②,得7y =7,解得:y =1,把y =1代入①,得x +2=4,解得:x =2,∴原方程组的解为:21x y =⎧⎨=⎩; (2)不等式两边同乘以6,得()()2216351x x --≥+,去括号,得426153x x --≥+,移项、合并同类项,得1111x -≥,不等式两边同除以﹣1,得1x ≤-;(3)对()312215233x x x x ⎧+<+⎪⎨-≤+⎪⎩①②, 解不等式①,得x <3,解不等式②,得1x ≥-,∴原不等式组的解集为13x -≤<.【点睛】本题考查了二元一次方程组、一元一次不等式和一元一次不等式组的解法,属于基本题型,熟练掌握解二元一次方程组和一元一次不等式的方法是关键.2.(1) ()2222222.a b c a b c ab ac bc ++=+++++(2)证明见解析;(3) 30; (4) 15.【分析】(1)依据正方形的面积=()2a b c ++ ;正方形的面积=222a +b +c +2ab+2ac+2bc.,可得等式;(2)运用多项式乘多项式进行计算即可;(3)依据()2222a b +c a b c -2ab-2ac-2bc,+=++ 进行计算即可;(4)依据所拼图形的面积为:22xa yb zab ++ , 而()()222224284249a b a b a ab ab b a b ab ++=+++=++ ,即可得到x, y, z 的值,即可求解.【详解】解: (1) 正方形的面积=()2a b c ++ ;大正方形的面积=222a +b +c +2ab+2ac+2bc. 故答案为:()2222222.a b c a b c ab ac bc ++=+++++(2)证明: (a+b+c) (a+b+c) ,=222a ab ac ab b bc ac bc c ++++++++ ,=222222a b c ab ac bc +++++ .(3)()2222222,a b c a b c ab ac bc ++=++---=()2102ab ac bc -++ , =100235-⨯ ,=30.故答案为: 30;(4)由题可知,所拼图形的面积为:22xa yb zab ++ ,(2a+b) (a+4b)=222a 8ab ab 4b ,+++=222a 4b 9ab,++∴x=2,y=4, z=9.∴x+y+z=2+4+9=15.故答案为: 15.【点睛】本题考查了完全平方公式的几何背景,根据矩形的面积公式分整体与部分两种思路表示出面积,然后再根据同一个图形的面积相等即可解答.3.(1)21x y =⎧⎨=-⎩;(2)175125x y =⎧⎨=⎩. 【分析】(1)利用代入消元法解二元一次方程组即可;(2)方程组整理后,利用加减消元法解二元一次方程组即可.【详解】解:(1)2531y x x y =-⎧⎨+=-⎩①②, 把①代入②得:x +6x ﹣15=﹣1,解得:x =2,把x =2代入①得:y =﹣1,则方程组的解为21x y =⎧⎨=-⎩; (2)方程组整理得:3005537500x y x y +=⎧⎨+=⎩①②, ①×53﹣②得:48x =8400,解得:x =175,把x =175代入①得:y =125,则方程组的解为175125x y =⎧⎨=⎩. 【点睛】此题考查的是解二元一次方程组,掌握利用代入消元法和加减消元法解二元一次方程组是解决此题的关键.4.(1)>;(2)9;(3)9.【分析】(1)根据矩形的面积公式计算即可;(2)根据矩形和正方形的周长和面积公式即可得到结论;(3)根据题意列出不等式,然后求解即可得到结论.【详解】解:(1)图①中长方形的面积21(7)(1)87S m m m m , 图②中长方形的面积22(4)(2)68S m m m m , 1221S S m ,m 为正整数,m 最小为1,2110m ,12S S ∴>;(2)依题意得,正方形的边长为:2(71)44m m m ; 则:221(4)(87)9S S m m m ,是一个定值;(3)由(1)得,1221S S m ,根据某个图形的面积介于1S 、2S 之间(不包括1S 、2S )并且面积为整数,这样的整数值有且只有16个,∴当162117m 时, ∴1792m , m 为正整数,9m ∴=.【点睛】本题考查了完全平方方公式的几何背景,多项式的乘法,整式的混合运算,一元一次不等式,熟记相关运算法则是解题的关键.5.(1)3;0; -2;(2)证明见解析.【分析】(1)根据已知和同底数的幂法则得出即可;(2)根据已知得出3a =5,3b =6,3c =30,求出3a ×3b =30,即可得出答案.【详解】(1)(3,27)=3,(4,1)=0,(2,14)=-2, 故答案为3;0;-2;(2)证明:由题意得:3a = 5,3b = 6,3c = 30,∵ 5⨯ 6=30,∴ 3a ⨯ 3b = 3c ,∴ 3a +b = 3c ,∴ a + b = c .【点睛】本题考查了同底数幂的乘法,有理数的混合运算等知识点,能灵活运用同底数幂的乘法法则进行变形是解此题的关键.6.见解析.【分析】先根据平行线的性质得出ABC BCD ∠=∠,再根据角的和差得出EBC BCF ∠=∠,然后根据平行线的判定即可得.【详解】 //BE CF ,理由如下:∵//AB CD∴ABC BCD ∠=∠(两直线平行,内错角相等)∵12∠=∠∴12ABC BCD ∠-∠=∠-∠即EBC BCF ∠=∠∴//BE CF .(内错角相等,两直线平行)【点睛】本题考查了角的和差、平行线的判定与性质,掌握平行线的判定与性质是解题关键.7.(1)23x y +=;(2)21a b ==,;(3)21m t n -=.【分析】(1)首先把第3项22y 裂项,拆成22y y +,再用完全平方公式因式分解,利用非负数的性质求得x y 、代入求得数值;(2)首先把第2项25b 裂项,拆成224b b +,再用完全平方公式因式分解,利用非负数的性质求得a b 、代入求得数值;(3)先把4m n =+代入28200mn t t +-+=,得到关于n 和 t 的式子,再仿照(1)(2)题.【详解】解:(1)2222210x xy y y -+-+=2222210x xy y y y ∴-++-+=22()(1)0x y y ∴-+-=010x y y ∴-=-=,,11x y ∴==,,23x y ∴+=;(2)2254210a b ab b +--+=22244210a b ab b b ∴+-+-+=22(2)(1)0a b b ∴-+-=2010a b b ∴-=-=,21a b ∴==,;(3)4m n =+,2(4)8200n n t t ∴++-+=22448160n n t t ∴+++-+=22(2)(4)0n t ∴++-=2040n t ∴+=-=,24n t ∴=-=,42m n ∴=+=20(2)1m t n -∴=-=【点睛】本题考查的分组分解法、配方法和非负数的性质,对于项数较多的多项式因式分解,分组分解法是一个常用的方法. 首先要观察各项特征,寻找熟悉的式子,熟练掌握平方差公式和完全平方公式是基础.8.(1)见解析;(2)见解析;(3)见解析;(4)平行且相等【分析】(1)利用网格特点和平移的性质画出A 、B 、C 的对应点A 1、B 1、C 1即可;(2)根据三角形中线的定义画出图形即可;(3)根据三角形高的定义画出图形即可;(4)根据平移的性质即可得出结论.【详解】解:(1)如图,△A 1B 1C 1即为所作图形;(2)如图,线段AD 即为所作图形;(3)如图,直线CE 即为所作图形;(4)∵△A 1B 1C 1是由△ABC 平移得到,∴A 和A 1,C 和C 1是对应点,∴AA 1和CC 1的关系是:平行且相等.【点睛】本题考查了平移作图,平移的性质,三角形的高和中线的画法,熟练掌握平移的性质是解题的关键.9.(1)2x 2+6xy+8y 2;(2)①3010x y =⎧⎨=⎩②57600元; 【分析】(1)根据长方形的面积公式和正方形的面积公式分别计算A 、B 两园区的面积,再相加即可求解;(2)①根据等量关系:整改后A 区的长比宽多350米;整改后两园区的周长之和为980米;列出方程组求出x ,y 的值;②代入数值得到整改后A 、B 两园区的面积之和,再根据净收益=收益﹣投入,列式计算即可求解.【详解】解:(1)(x+y )(x ﹣y )+(x+3y )(x+3y )=x 2﹣y 2+x 2+6xy+9y 2=2x 2+6xy+8y 2(平方米)答:A 、B 两园区的面积之和为(2x 2+6xy )平方米;(2)(x+y )+(11x ﹣y )=x+y+11x ﹣y=12x (米),(x ﹣y )﹣(x ﹣2y )=x ﹣y ﹣x+2y=y (米),依题意有: 123502(12)4(3)980x y x y x y -=⎧⎨+++=⎩, 解得3010x y =⎧⎨=⎩9. 12xy=12×30×10=3600(平方米),(x+3y )(x+3y )=x2+6xy+9y2=900+1800+900=3600(平方米),(18﹣12)×3600+(26﹣16)×3600=6×3600+10×3600=57600(元).答:整改后A、B两园区旅游的净收益之和为57600元.考点:整式的混合运算.10.131°【解析】【分析】先根据∠A=65°,∠ACB=72°得出∠ABC的度数,再由∠ABD=30°得出∠CBD的度数,根据CE平分∠ACB得出∠BCE的度数,根据∠BEC=180°-∠BCE-∠CBD即可得出结论【详解】在△ABC中,∵∠A=65°,∠ACB=72°∴∠ABC=43°∵∠ABD=30°∴∠CBD=∠ABC﹣∠ABD=13°∵CE平分∠ACB∴∠BCE=∠ACB=36°∴在△BCE中,∠BEC=180°﹣13°﹣36°=131°.【点睛】本题考察了三角形内角和定理,在两个三角形中,三个角之间的关系是解决此题的关键11.(1)(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;(2)30;(3)9;(4)x3﹣x=(x+1)(x﹣1)x【分析】(1)依据正方形的面积=(a+b+c)2;正方形的面积=a2+b2+c2+2ab+2ac+2bc,可得等式;(2)依据a2+b2+c2=(a+b+c)2﹣2ab﹣2ac﹣2bc,进行计算即可;(3)依据所拼图形的面积为:xa2+yb2+zab,而(2a+b)(a+2b)=2a2+4ab+ab+2b2=2a2+5b2+2ab,即可得到x,y,z的值.(4)根据原几何体的体积=新几何体的体积,列式可得结论.【详解】(1)由图2得:正方形的面积=(a+b+c)2;正方形的面积=a2+b2+c2+2ab+2ac+2bc,∴(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,故答案为:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;(2)∵(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,∵a+b+c=10,ab+ac+bc=35,∴102=a 2+b 2+c 2+2×35,∴a 2+b 2+c 2=100﹣70=30,故答案为:30;(3)由题意得:(2a+b )(a+2b )=xa 2+yb 2+zab ,∴2a 2+5ab+2b 2=xa 2+yb 2+zab ,∴225x y z =⎧⎪=⎨⎪=⎩,∴x+y+z =9,故答案为:9;(4)∵原几何体的体积=x 3﹣1×1•x =x 3﹣x ,新几何体的体积=(x+1)(x ﹣1)x ,∴x 3﹣x =(x+1)(x ﹣1)x .故答案为:x 3﹣x =(x+1)(x ﹣1)x .【点睛】本题主要考查的是整式的混合运算,利用直接法和间接法分别求得几何图形的体积或面积,然后根据它们的体积或面积相等列出等式是解题的关键.12.(1)2(4)(2)(2)x x x ++- (2)22()a x y -【分析】(1)原式利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解即可.【详解】解:(1)原式=(x 2+4)(x 2﹣4)=(x 2+4)(x +2)(x ﹣2);(2)原式=2a (x 2﹣2xy +y 2)=2a (x ﹣y )2.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.(1)(a+b)2-(a-b)2=4ab ;(2)±4;(3)-7【分析】(1)由图可知,图1的面积为4ab ,图2中白色部分的面积为(a+b)2-(b-a)2=(a+b)2-(a-b)2,图1的面积和图2中白色部分的面积相等即可求解.(2)由(1)知,(x+y)2-(x-y)2=4xy ,将x+y =5,x•y =94代入(x+y)2-(x-y)2=4xy ,即可求得x-y 的值(3)因为(2019﹣m)+(m ﹣2020)=-1,等号两边同时平方,已知(2019﹣m)2+(m ﹣2020)2=15,即可求解.【详解】(1)由图可知,图1的面积为4ab ,图2中白色部分的面积为(a+b)2-(b-a)2=(a+b)2-(a-b)2∵图1的面积和图2中白色部分的面积相等∴(a+b)2-(a-b)2=4ab故答案为:(a+b)2-(a-b)2=4ab(2)由(1)知,(x+y)2-(x-y)2=4xy∵x+y=5,x•y=9 4∴52-(x-y)2=4×9 4∴(x-y)2=16∴x-y=±4故答案为:±4(3)∵(2019﹣m)+(m﹣2020)=-1∴[(2019﹣m)+(m﹣2020)]2=1∴(2019﹣m)2+2(2019﹣m)(m﹣2020)+ (m﹣2020)2=1∵(2019﹣m)2+(m﹣2020)2=15∴2(2019﹣m)(m﹣2020)=1-15=-14∴(2019﹣m)(m﹣2020)=-7故答案为:-7【点睛】本题考查了完全平方公式的几何背景,运用几何直观理解、解决完全平方公式的推导过程,通过几何图形之间的数量关系对完全平方公式做出几何解释.14.(1)57xy=⎧⎨=⎩;(2)6024xy=⎧⎨=-⎩【分析】(1)2338y xx y=-⎧⎨-=⎩①②,由①得2x-y=3③,②-③可求得x,将x值代入①可得y值,即可求得方程组的解.(2)743832x yx y⎧+=⎪⎪⎨⎪+=⎪⎩①②,先将①×12去分母,将分式方程化为整式方程,得3x+4y=84③,将②×6,由分式方程化为整式方程,得2x+3y=48④,③和④再利用加减消元法即可求解方程组的解.【详解】(1)23 38 y xx y=-⎧⎨-=⎩①②由①,得2x-y=3③②-③,得x=5将x=5代入①,得2×5-y=3∴y=7故方程组的解为:57x y =⎧⎨=⎩故答案为:57x y =⎧⎨=⎩(2)743832x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩①② ①×12,得3x+4y=84③②×6,得2x+3y=48④③×2,得6x+8y=168⑤④×3,得6x+9y=144⑥⑤-⑥,得y=-24将y=-24代入①,得874x -= ∴x=60故方程组的解为:6024x y =⎧⎨=-⎩故答案为:6024x y =⎧⎨=-⎩ 【点睛】 本题考查了一元二次方程的解法—加减消元法,将方程组中的各个方程化简成标准形式,方程组的两个方程中,如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等,把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程,解这个一元一次方程,求出一个未知数的值;15.-5a 2+2ab ,-1【分析】先利用平方差公式和完全平方公式进行计算,然和合并同类项,最后把a ,b 的值代入即可.【详解】()()()22222()=4222b a a a b b a ab b a b --++----2222=42b a a b ab ---+252a ab =-+,当a =-1,b =-2时,原式=-1.【点睛】本题考查了整式的化简求值,解题的关键是熟练掌握混合运算的顺序和整式的乘法公式.16.(1)-3 (2)7a 3(3)x 2-4y 2+12y -9(4)m 4-8m 2+16【分析】(1)原式利用零指数幂法则及乘方的意义化简,计算即可得到结果;(2)先 利用积的乘方公式和同底数幂的除法公式计算,然后合并即可得到结果; (3)原式利用平方差公式,以及完全平方公式化简即可得到结果;(4)原式先利用平方差方式计算,再利用完全平方公式计算即可得到结果.【详解】(1)2042331=-+-=-+;(2)()()533833()872a a a a a a ÷=+-=+-;(3) ()()()()23232323x y x y y x x y +--+---=+⎡⎤⎡⎤⎣⎦⎣⎦()2222234129x y x y y =--=-+-;(4)()()()()2222222m m m m +-+-=⎡⎤⎣⎦()42228146m m m =-+-=.【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.17.(1)a (a+1)(a ﹣1);(2)﹣b (2a ﹣b )2;(3)(x ﹣y )(a+3b )(a ﹣3b );(4)(y+2)2(y ﹣2)2【分析】(1)直接提取公因式a ,进而利用平方差公式分解因式得出答案;(2)直接提取公因式﹣b ,进而利用完全平方公式分解因式即可;(3)直接提取公因式(x ﹣y ),进而利用平方差公式分解因式得出答案;(4)直接利用完全平方公式分解因式,再利用平方差公式分解因式即可.【详解】解:(1)a 3﹣a=a (a 2﹣1)=a (a+1)(a ﹣1);(2)4ab 2﹣4a 2b ﹣b 3=﹣b (﹣4ab+4a 2+b 2)=﹣b (2a ﹣b )2;(3)a 2(x ﹣y )﹣9b 2(x ﹣y )=(x ﹣y )(a 2﹣9b 2)=(x ﹣y )(a+3b )(a ﹣3b );(4)(y 2﹣1)2+6(1﹣y 2)+9=(y 2﹣1)2﹣6 (y 2﹣1)+9=(y 2﹣1﹣3)2=(y+2)2(y ﹣2)2.【点睛】此题主要考查因式分解的几种方法:提公因式法,公式法等,能熟练运用是解题关键.18.(1)M AEM CFM ∠=∠+∠;(2)115ENF ∠=︒;(3)1603H α∠=︒-. 【分析】(1)过点M 作//ML AB ,利用平行线的性质可得1AEM ∠=∠,2CFM ∠=∠,由12EMF ∠=∠+∠,经过等量代换可得结论;(2)过M 作//ME AB ,利用平行线的性质以及角平分线的定义计算即可.(3)如图②中设BEH x ∠=,PFG y ∠=,则3BEM x ∠=,3MFG y ∠=,设EH 交CD 于K .证明H x y ∠=-,求出x y -即可解决问题.【详解】(1)如图1,过点M 作//ML AB ,//AB CD ,////ML AB CD ∴,1AEM ∴∠=∠,2CFM ∠=∠,12EMF ∠=∠+∠,M AEM CFM ∴∠=∠+∠;(2)过M 作//ME AB ,//AB CD ,//ME CD ∴,24180BEM DFM ∴∠+∠=∠+∠=︒,1802BEM ∴∠=︒-∠,1804DFM ∠=︒-∠,EN ,FN 分别平分MEB ∠和DFM ∠,112BEM ∴∠=∠,132DFM ∠=∠, 111113(1802)(1804)180(24)1801301152222∴∠+∠=︒-∠+︒-∠=︒-∠+∠=︒-⨯︒=︒,36013360115130115ENF EMF ∴∠=︒-∠-∠-∠=︒-︒-︒=︒;(3)如图②中设BEH x ∠=,PFG y ∠=,则3BEM x ∠=,3MFG y ∠=,设EH 交CD 于K .//AB CD ,BEH DKH x ∴∠=∠=,PFG HFK y ∠=∠=,DKH H HFK ∠=∠+∠,H x y ∴∠=-,EMF MGF α∠=∠=,180BQG MGF ∠+∠=︒,180BQG α∴∠=︒-,QMF QMF EMF MGF MFG ∠=∠+∠=∠+∠,3QME MFG y ∴∠=∠=,BEM QME MQE ∠=∠+∠,33180x y α∴-=︒-,1603x y α∴-=︒-, 1603H α∴∠=︒-. 【点睛】本题考查平行线的性质和判定,三角形的外角的性质,三角形的内角和定理等知识,作出平行线,利用参数解决问题是解题的关键.19.(1)23a (2)12(3)512 【分析】(1)根据三角形的面积公式及比例特点即可求解;(2)连接AE ,先求出△ACE 的面积,再得到△ABC 的面积即可;(3)连接BD ,设△ADM 的面积为a ,则△BDM 的面积为2a,设△CDN 的面积为b ,则△BDN 的面积为b ,根据图形的特点列出方程组求出a,b,故可求解.【详解】(1)设△ABC 中BC 边长的高为h ,∵BM =2AM .∴BM=23AB∴S=12BM×h=12×23AB×h=23S△ABC=23a故答案为:23 a;(2)如图2,连接AE,∵14 CD AC=∴CD=14 AC∴S△DCE=14S△ACE=1∴S△ACE=4,∵13 CE CB=∴CE=13 CB∴S△ACE=13S△ABC=4∴S△ABC=12;(3)如图3,连接BD,设△ADM的面积为a,∵13 AM AB=∴BM=2AM,BM=23 AB,∴S△BDM=2S△ABM=2a, S△BCM=23S△ABC=23设△CDN的面积为b,∵N是BC的中点,∴S△CDN=S△BDN=b,S△ABN=12S△ABC=12∴122223a a bb b a⎧++=⎪⎪⎨⎪++=⎪⎩,解得11214ab⎧=⎪⎪⎨⎪=⎪⎩∴四边形BMDN的面积为2a+b=5 12故答案为5 12.【点睛】此题主要考查三角形面积公式的应用,解题的关键是根据题意找到面积的之间的关系.20.(1)草莓35箱,苹果25箱;(2)①340元,②53或52【分析】(1)抓住题中关键的已知条件,老徐购得草莓和苹果共60箱,刚好花费3100元,设未知数列方程组,求解方程即可;(2)①由题意列二元一次方程,可得到34120a b +=,列式求出他在乙店获利;②根据老徐希望获得总利润为1000元,建立关于a 、b 的二元一次方程,整理可得18034a b -=,再根据a 、b 的取值范围及a 一定是4的整数倍,即可求出结果; 【详解】 (1)解:设草莓购买了x 箱,苹果购买了y 箱,根据题意得:6060403100x y x y ⎧+=⎨+=⎩, 解得3525x y ⎧=⎨=⎩. 答:草莓购买了35箱,苹果购买了25箱;(2)解:①若老徐在甲店获利600元,则1520600ab +=, 整理得:34120a b +=,他在乙店的获利为:()()12351625a b -+-, =()820434a b -+,=820-4120⨯,=340元;②根据题意得:()()1520123516251000a b a b ++-+-=, 整理得:34180ab +=, 得到18034ab -=,∵a、b 均为正整数,∴a 一定是4的倍数,∴a 可能是0,4,8…,∵035a ≤≤,025b ≤≤, ∴当且仅当a=32,b=21或a=25,b=24时34180a b +=成立, ∴322153a b +=+=或28+24=52.故答案为340元;53或52.【点睛】本题主要考查了二元一次方程组的应用,根据题意列式是解题的关键.。
七年级数学版下册压轴题第一题:分数的加减乘除运算题目要求:请计算以下数式的值,并将答案化简至最简形式。
1.(1/3) + (2/5)2.(4/7) - (1/5)3.(2/3) × (3/8)4.(5/6) ÷ (1/4)答案及解析1.(1/3) + (2/5)解法:首先最小公倍数为15,将分数的分母变为15,得到(5/15) + (6/15) = 11/15,所以答案为11/15。
2.(4/7) - (1/5)解法:首先最小公倍数为35,将分数的分母变为35,得到(20/35) - (7/35) = 13/35,所以答案为13/35。
3.(2/3) × (3/8)解法:将分数相乘得到(2×3)/(3×8) = 6/24,将6/24化简为最简形式,得到1/4,所以答案为1/4。
4.(5/6) ÷ (1/4)解法:将除法转化为乘法,得到(5/6) × (4/1)= (5×4)/(6×1) = 20/6,将20/6化简为最简形式,得到10/3,所以答案为10/3。
第二题:解一元一次方程题目要求:解下列一元一次方程。
1.2x - 3 = x + 42.3(x + 5) = 6x - 93.2(x + 3) - 4(x - 2) = 5(2x - 1)答案及解析1.2x - 3 = x + 4解法:将方程中的变量合并在一起,得到2x - x = 4 + 3,化简得到x = 7,所以方程的解为x = 7。
2.3(x + 5) = 6x - 9解法:先将方程中的括号展开,得到3x + 15 = 6x - 9,将变量合并在一起,得到3x - 6x = -9 - 15,化简得到-3x = -24,再将方程两边同时除以-3,得到x = 8,所以方程的解为x = 8。
3.2(x + 3) - 4(x - 2) = 5(2x - 1)解法:先将方程中的括号展开,得到2x + 6 - 4x + 8 = 10x - 5,将变量合并在一起,得到-2x + 14 = 10x - 5,将方程中的常数项合并在一起,得到-2x - 10x = -5 - 14,化简得到-12x = -19,再将方程两边同时除以-12,得到x =19/12,所以方程的解为x = 19/12。
人教版七年级上册数学 压轴题 期末复习试卷及答案一、压轴题1.如图1,已知面积为12的长方形ABCD ,一边AB 在数轴上。
点A 表示的数为—2,点B 表示的数为1,动点P 从点B 出发,以每秒1个单位长度的速度沿数轴向左匀速运动,设点P 运动时间为t (t>0)秒.(1)长方形的边AD 长为 单位长度;(2)当三角形ADP 面积为3时,求P 点在数轴上表示的数是多少;(3)如图2,若动点Q 以每秒3个单位长度的速度,从点A 沿数轴向右匀速运动,与P 点出发时间相同。
那么当三角形BDQ ,三角形BPC 两者面积之差为12时,直接写出运动时间t 的值. 2.综合试一试(1)下列整数可写成三个非0整数的立方和:45=_____;2=______.(2)对于有理数a ,b ,规定一种运算:2a b a ab ⊗=-.如2121121⊗=-⨯=-,则计算()()532-⊗⊗-=⎡⎤⎣⎦______. (3)a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,1-的差倒数是()11112=--.已知12a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,……,以此类推,122500a a a ++⋅⋅⋅+=______.(4)10位裁判给一位运动员打分,每个人给的分数都是整数,去掉一个最高分,再去掉一个最低分,其余得分的平均数为该运动员的得分.若用四舍五入取近似值的方法精确到十分位,该运动员得9.4分,如果精确到百分位,该运动员得分应当是_____分. (5)在数1.2.3...2019前添加“+”,“-”并依次计算,所得结果可能的最小非负数是______(6)早上8点钟,甲、乙、丙三人从东往西直行,乙在甲前400米,丙在乙前400米,甲、乙、丙三人速度分别为120米/分钟、100米/分钟、90米/分钟,问:______分钟后甲和乙、丙的距离相等.3.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=22,动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)出数轴上点B表示的数;点P表示的数(用含t的代数式表示)(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问多少秒时P、Q之间的距离恰好等于2?(3)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(4)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN的长.4.已知多项式3x6﹣2x2﹣4的常数项为a,次数为b.(1)设a与b分别对应数轴上的点A、点B,请直接写出a=,b=,并在数轴上确定点A、点B的位置;(2)在(1)的条件下,点P以每秒2个单位长度的速度从点A向B运动,运动时间为t 秒:①若PA﹣PB=6,求t的值,并写出此时点P所表示的数;②若点P从点A出发,到达点B后再以相同的速度返回点A,在返回过程中,求当OP=3时,t为何值?5.已知有理数a,b,c在数轴上对应的点分别为A,B,C,且满足(a-1)2+|ab+3|=0,c=-2a+b.(1)分别求a,b,c的值;(2)若点A和点B分别以每秒2个单位长度和每秒1个单位长度的速度在数轴上同时相向运动,设运动时间为t秒.i)是否存在一个常数k,使得3BC-k•AB的值在一定时间范围内不随运动时间t的改变而改变?若存在,求出k的值;若不存在,请说明理由.ii)若点C以每秒3个单位长度的速度向右与点A,B同时运动,何时点C为线段AB的三等分点?请说明理由.6.对于数轴上的点P,Q,给出如下定义:若点P到点Q的距离为d(d≥0),则称d为点P 到点Q的d追随值,记作d[PQ].例如,在数轴上点P表示的数是2,点Q表示的数是5,则点P到点Q的d追随值为d[PQ]=3.问题解决:(1)点M ,N 都在数轴上,点M 表示的数是1,且点N 到点M 的d 追随值d[MN]=a(a≥0),则点N 表示的数是_____(用含a 的代数式表示);(2)如图,点C 表示的数是1,在数轴上有两个动点A ,B 都沿着正方向同时移动,其中A 点的速度为每秒3个单位,B 点的速度为每秒1个单位,点A 从点C 出发,点B 表示的数是b ,设运动时间为t(t>0).①当b=4时,问t 为何值时,点A 到点B 的d 追随值d[AB]=2; ②若0<t≤3时,点A 到点B 的d 追随值d[AB]≤6,求b 的取值范围.7.已知∠AOB 和∠AOC 是同一个平面内的两个角,OD 是∠BOC 的平分线. (1)若∠AOB=50°,∠AOC=70°,如图(1),图(2),求∠AOD 的度数;(2)若∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,< 且m n <,求∠AOD 的度数(结果用含m n 、的代数式表示),请画出图形,直接写出答案.8.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且AB=20,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.(1)写出数轴上点B 表示的数______;点P 表示的数______(用含t 的代数式表示) (2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问多少秒时P 、Q 之间的距离恰好等于2?(3)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速到家动,若点P 、Q 同时出发,问点P 运动多少秒时追上Q ?(4)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.9.已知:如图数轴上两点A 、B 所对应的数分别为-3、1,点P 在数轴上从点A 出发以每秒钟2个单位长度的速度向右运动,点Q 在数轴上从点B 出发以每秒钟1个单位长度的速度向左运动,设点P 的运动时间为t 秒.(1)若点P 和点Q 同时出发,求点P 和点Q 相遇时的位置所对应的数;(2)若点P 比点Q 迟1秒钟出发,问点P 出发几秒后,点P 和点Q 刚好相距1个单位长度;(3)在(2)的条件下,当点P 和点Q 刚好相距1个单位长度时,数轴上是否存在一个点C ,使其到点A 、点P 和点Q 这三点的距离和最小,若存在,直接写出点C 所对应的数,若不存在,试说明理由.10.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角尺(∠M =30°)的直角顶点放在点O 处,一边ON 在射线OA 上,另一边OM 与OC 都在直线AB 的上方.(1)若将图1中的三角尺绕点O 以每秒5°的速度,沿顺时针方向旋转t 秒,当OM 恰好平分∠BOC 时,如图2. ①求t 值;②试说明此时ON 平分∠AOC ;(2)将图1中的三角尺绕点O 顺时针旋转,设∠AON =α,∠COM =β,当ON 在∠AOC 内部时,试求α与β的数量关系;(3)若将图1中的三角尺绕点O 以每秒5°的速度沿顺时针方向旋转的同时,射线OC 也绕点O 以每秒8°的速度沿顺时针方向旋转,如图3,那么经过多长时间,射线OC 第一次平分∠MON ?请说明理由.11.从特殊到一般,类比等数学思想方法,在数学探究性学习中经常用到,如下是一个具体案例,请完善整个探究过程。
七年级下册数学期末复习压轴题 解答题试卷(含答案)一、解答题1.如图,在网格中,每个小正方形的边长均为1个单位长度,我们将小正方形的顶点叫做格点,三角形ABC 的三个顶点均在格点上.(1)将三角形ABC 先向右平移6个单位长度,再向上平移3个单位长度,得到三角形A 1B 1C 1,画出平移后的三角形A 1B 1C 1;(2)建立适当的平面直角坐标系,使得点A 的坐标为(-4,3),并直接写出点A 1的坐标; (3)求三角形ABC 的面积.2.已知有理数,x y 满足:1x y -=,且221x y ,求22x xy y ++的值.3.解方程组 (1)21325x y x y +=⎧⎨-=⎩ (2)111231233x y x y ⎧-=⎪⎪⎨⎪--=⎪⎩ 4.(知识生成)通常情况下、用两种不同的方法计算同一图形的面积,可以得到一个恒等式.(1)如图 1,请你写出()()22,a b a b ab +-,之间的等量关系是(知识应用)(2)根据(1)中的结论,若74,4x y xy +==,则x y -= (知识迁移)类似地,用两种不同的方法计算同一几何体的情况,也可以得到一个恒等式.如图 2 是边长为+a b 的正方体,被如图所示的分割成 8块.(3)用不同的方法计算这个正方体的体积,就可以得到一个等式,这个等式可以是 (4)已知4a b +=,1ab =,利用上面的规律求33+a b 的值.5.计算:(1)()20202011 3.142π-⎛⎫-+-+ ⎪⎝⎭ (2)()2462322x y x xy -- (3)()()22342a b a a b --- (4)()()2323m n m n -++- 6.问题1:现有一张△ABC 纸片,点D 、E 分别是△ABC 边上两点,若沿直线DE 折叠. (1)探究1:如果折成图①的形状,使A 点落在CE 上,则∠1与∠A 的数量关系是 ;(2)探究2:如果折成图②的形状,猜想∠1+∠2和∠A 的数量关系是 ; (3)探究3:如果折成图③的形状,猜想∠1、∠2和∠A 的数量关系,并说明理由.(4)问题2:将问题1推广,如图④,将四边形ABCD 纸片沿EF 折叠,使点A 、B 落在四边形EFCD 的内部时,∠1+∠2与∠A 、∠B 之间的数量关系是 .7.先化简,再求值:2(1)(3)(2)(2)x x x x x ---++-,其中x =﹣2.8.(知识回顾):如图①,在△ABC 中,根据三角形内角和定理,我们知道∠A +∠B +∠C =180°.如图②,在△ABC 中,点D 为BC 延长线上一点,则∠ACD 为△ABC 的一个外角.请写出∠ACD 与∠A 、∠B 的关系,直接填空:∠ACD = .(初步运用):如图③,点D、E分别是△ABC的边AB、AC延长线上一点.(1)若∠A=70°,∠DBC=150°,则∠ACB=°.(直接写出答案)(2)若∠A=70°,则∠DBC+∠ECB=°.(直接写出答案)(拓展延伸):如图④,点D、E分别是四边形ABPC的边AB、AC延长线上一点.(1)若∠A=70°,∠P=150°,则∠DBP+∠ECP=°.(请说明理由)(2)分别作∠DBP和∠ECP的平分线,交于点O,如图⑤,若∠O=40°,求出∠A和∠P 之间的数量关系,并说明理由.(3)分别作∠DBP和∠ECP的平分线BM、CN,如图⑥,若∠A=∠P,求证:BM∥CN.9.A市准备争创全国卫生城市.某小区积极响应,决定在小区内安装垃圾分类的提示牌和垃圾箱,若购买2个提示牌和3个垃圾箱共需550元,且垃圾箱的单价是提示牌单价的3倍.(1)求提示牌和垃圾箱的单价各是多少元?(2)该小区至少需要安放48个垃圾箱,如果购买提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案.10.某公司有A、B两种型号的商品需运出,这两种商品的体积和质量如表所示:体积(m3/件)质量(吨/件)A两种型号0.80.5B两种型号21(1)已知一批商品有A、B两种型号,体积一共是20m3,质量一共是10.5吨,求A、B两种型号商品各有几件;(2)物流公司现有可供使用的货车每辆额定载重3.5吨,容积为6m3,其收费方式有以下两种:按车收费:每辆车运输货物到目的地收费900元;按吨收费:每吨货物运输到目的地收费300元.要将(1)中的商品一次或分批运输到目的地,该公司应如何选择运送方式,使所付运费最少,并求出该方式下的运费是多少元.11.⑴ 如图,试用a 的代数式表示图形中阴影部分的面积;⑵ 当a =2时,计算图中阴影部分的面积.12.已知:5x y +=,(2)(2)3x y --=-.求下列代数式的的值.(1)xy ;(2)224x xy y ++;(3)25x xy y ++.13.同一平面内的两条直线有相交和平行两种位置关系.(1)如图a ,若//AB CD ,点P 在AB 、CD 外部,我们过点P 作AB 、CD 的平行线PE ,则有////AB CD PE ,则BPD ∠,B ,D ∠之间的数量关系为_________.将点P 移到AB 、CD 内部,如图b ,以上结论是否成立?若成立,说明理由;若不成立,则BPD ∠、B 、D ∠之间有何数量关系?请证明你的结论.(2)迎“20G ”科技节上,小兰制作了一个“飞旋镖”,在图b 中,将直线AB 绕点B 逆时针方向旋转一定角度交直线CD 于点Q ,如图c ,他很想知道BPD ∠、ABP ∠、D ∠、BQD ∠之间的数量关系,请你直接写出它们之间的数量关系:__________.(3)设BF 交AC 于点P ,AE 交DF 于点Q ,已知126APB ∠=︒,100AQF ∠=︒,直接写出B E F ∠+∠+∠的度数为_______度,A ∠比F ∠大______度.14.(问题背景)(1)如图1的图形我们把它称为“8字形”,请说理证明∠A+∠B=∠C+∠D(简单应用)(2)如图2,AP、CP分别平分∠BAD、∠BCD,若∠ABC=28°,∠ADC=20°,求∠P的度数(可直接使用问题(1)中的结论)(问题探究)(3)如图3,直线BP平分∠ABC的外角∠FBC,DP平分∠ADC的外角∠ADE,若∠A=30°,∠C=18°,则∠P的度数为(拓展延伸)(4)在图4中,若设∠C=x,∠B=y,∠CAP=14∠CAB,∠CDP=14∠CDB,试问∠P与∠C、∠B之间的数量关系为(用x、y表示∠P)(5)在图5中,BP平分∠ABC,DP平分∠ADC的外角∠ADE,猜想∠P与∠A、∠C的关系,直接写出结论.15.如图,在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上.将△ABC向左平移2格,再向上平移4格.(1)请在图中画出平移后的△A′B′C′;(2)再在图中画出△ABC的高CD;(3)在图中能使S△PBC=S△ABC的格点P的个数有个(点P异于A)16.阅读理解并解答:为了求1+2+22+23+24+…+22009的值.可令S=1+2+22+23+24+…+22009则2S=2+22+23+24+…+22009+22010因此2S﹣S=(2+22+23+24+…+22009+22010)﹣(1+22+23+24+…+22009)=22010﹣1所以S=22010﹣1即1+2+22+23+24+…+22009=22010﹣1请依照此法,求:1+5+52+53+54+…+52020的值.17.先化简,再求值:(2a﹣b)2﹣(a+1﹣b)(a+1+b)+(a+1)2,其中a=12,b=﹣2.18.解方程组(1)2431y x x y =-⎧⎨+=⎩(2)121632(1)13(2)x y x y --⎧-=⎪⎨⎪-=-+⎩. 19.如图,网格中每个小正方形边长为1,△ABC 的顶点都在格点上.将△ABC 向左平移2格,再向上平移3格,得到△A ′B ′C ′.(1)请在图中画出平移后的△A ′B ′C ′;(2)画出平移后的△A ′B ′C ′的中线B ′D ′(3)若连接BB ′,CC ′,则这两条线段的关系是________(4)△ABC 在整个平移过程中线段AB 扫过的面积为________(5)若△ABC 与△ABE 面积相等,则图中满足条件且异于点C 的格点E 共有______个 (注:格点指网格线的交点)20.如图,△ABC 中,AD 是高,AE 、BF 是角平分线,它们相交于点O ,∠BAC=60°,∠C=50°,求∠DAC 及∠BOA 的度数.【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)见解析;(2)(2,6);(3)192【分析】 (1)利用网格特点和平移的性质画出A 、B 、C 的对应点A 1、B 1、C 1,从而得到△A 1B 1C 1; (2)利用A 点坐标画出直角坐标系,再写出A 1坐标即可;(3)利用分割法求出坐标即可.【详解】解:(1)画出平移后的△A 1B 1C 1如下图;;(2)如上图建立平面直角坐标系,使得点A 的坐标为(-4,3),由图可知:点A 1的坐标为(2,6);(3)由(2)中的图可知:A (-4,3),B (5,-1),C (0,0),∴S △ABC =11119(45)434512222+⨯-⨯⨯-⨯⨯=. 【点睛】 本题考查了作图——平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.2.【分析】利用1x y -=将221xy 整理求出xy 的值,然后将22x xy y ++利用完全平方公式变形,将各自的值代入计算即可求出值. 【详解】∵221x y ,∴化简得:241xy xy , ∵1x y -=,∴241xy x y 可化为:241xy ,即有:5xy =,∴2222313516x xy y x y xy .【点睛】此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.3.(1)3214x y ⎧=⎪⎪⎨⎪=-⎪⎩;(2)14111211x y ⎧=⎪⎪⎨⎪=-⎪⎩. 【分析】(1)直接利用加减消元法解方程组,即可得到答案;(2)直接利用加减消元法解方程组,即可得到答案;【详解】解:(1)21325x y x y +=⎧⎨-=⎩①②, 由①+②,得46x =, ∴32x =, 把32x =代入①,得14y =-, ∴方程组的解为:3214x y ⎧=⎪⎪⎨⎪=-⎪⎩; (2)111231233x y x y ⎧-=⎪⎪⎨⎪--=⎪⎩①②, 由①3⨯-②,得:11763x =, ∴1411x =, 把1411x =代入①,解得:1211y =-, ∴方程组的解为:14111211x y ⎧=⎪⎪⎨⎪=-⎪⎩; 【点睛】本题考查了解二元一次方程组,解题的关键是熟练掌握加减消元法解二元一次方程组.4.(1)22()4()a b ab a b +-=-.(2)3x y -= .(3)33322()33a b a b a b ab +=+++.(4)54.【分析】(1)根据两种面积的求法的结果相等,即可得到答案;(2)根据第(1)问中已知的等式,将数值分别代入,即可求得答案.(3)根据正方体的体积公式,正方体的边长的立方就是正方体的体积;2个正方体和6个长方体的体积和就是大长方体的体积,则可得到等式;(4)结合4a b +=,1ab =,根据(3)中的公式,变形进行求解即可.【详解】(1)22()4()a b ab a b +-=-.(2)4x y +=,74xy =,()()22274441679.4x y x y xy -=+-=-⨯=-= 故3x y -= . (3)33322()33a b a b a b ab +=+++ .(4)由4a b +=,1ab =,根据第(3)得到的公式可得()()()()333322333641254a b a b a b ab a b ab a b +=+-+=+-+=-=.【点睛】本题考查完全平方公式以及立方公式的几何背景,从整体和局部两种情况分析并写出面积以及体积的表达式是解题的关键.5.(1)4;(2)462x y -;(3)-4ab+9b 2;(4)m 2-4n 2+12n-9. 【分析】(1)原式第一项利用乘方的意义化简,第二项利用零指数幂法则计算,最后一项利用负指数幂法则计算即可得到结果;(2)原式利用积的乘方运算法则计算,合并即可得到结果;(3)原式第一项利用完全平方公式展开,第二项利用单项式乘以多项式法则计算,去括号合并即可得到结果;(4)原式利用平方差公式化简,再利用完全平方公式展开,计算即可得到结果.【详解】解:(1)原式=-1+1+4=4;(2)原式=464646242x y x y x y -=-;(3)原式=4a 2-12ab+9b 2-4a 2+8ab=-4ab+9b 2;(4)原式=m 2-(2n-3)2=m 2-4n 2+12n-9.【点睛】此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.6.(1)12A ∠=∠;(2)122A ∠+∠=∠;(3)见解析;(4)1222360A B ∠+∠=∠+∠-︒【分析】(1)根据三角形外角性质可得;(2)在四边形A EAD '中,内角和为360°,∠BDA=∠CEA=180°,利用这两个条件,进行角度转化可得关系式;(3)如下图,根据(1)可得∠1=2∠DAA ',∠2=2∠EAA ',从而推导出关系式; (4)根据平角的定义以及四边形的内角和定理,与(2)类似思路探讨,可得关系式.【详解】(1)∵△'EDA 是△EDA 折叠得到∴∠A=∠A '∵∠1是△'ADA 的外角∴∠1=∠A+∠A '∴12A ∠=∠;(2)∵在四边形A EAD '中,内角和为360°∴∠A+A '+∠A DA '+∠A EA '=360°同理,∠A=∠A '∴2∠A+∠A DA '+∠A EA '=360°∵∠BDA=∠CEA=180∴∠1+∠A DA '+∠A EA '+∠2=360°∴122A ∠+∠=∠ ;(3)数量关系:212A ∠-∠=∠理由:如下图,连接AA '由(1)可知:∠1=2∠DAA ',∠2=2∠EAA '∴212()2EAA DAA DAE ∠-∠=∠-=∠'∠';(4)由折叠性质知:∠2=180°-2∠AEF ,∠1=180°-2∠BFE相加得:123602(360)22360A B A B ∠+∠=︒-︒-∠-∠=∠+∠-︒.【点睛】本题考查角度之间的关系,(4)问的解题思路是相同的,主要运用三角形的内角和定理和四边形的内角和定理进行角度转换.7.23x x +-;1-【分析】先通过整式的乘法及乘法公式对原式进行去括号,然后通过合并同类项进行计算即可化简原式,再将2x =-代入即可得解.【详解】解:原式222221343x x x x x x x =-+-++-=+-将2x =-代入,原式2(2)(2)34231=-+--=--=-.【点睛】本题主要考查了整式的混合运算,熟练掌握整式的乘法公式及合并同类项的运算方法是解决本题的关键.8.知识回顾:∠A+∠B ;初步运用:(1)80;(2)250;拓展延伸:(1)220;(2)∠A和∠P之间的数量关系是:∠P=∠A+80°,理由见解析;(3)见解析.【分析】知识回顾:根据三角形内角和即可求解.初步运用:(1)根据知识与回顾可求出∠DBC度数,进而求得∠ACB度数;(2)已知∠A度数,即可求得∠ABC+∠ACB度数,进而求得∠DBC+∠ECB度数.拓展延伸:(1)连接AP,根据三角形外角性质,∠DBP=∠BAP+∠APB,∠ECP=∠CAP+∠APC,得到∠DBP+∠ECP=∠BAC+∠BPC,已知∠BAC=70°,∠BPC=150°,即可求得∠DBP+∠ECP度数;(2)如图⑤,设∠DBO=x,∠OCE=y,则∠OBP=∠DBO=x,∠PCO=∠OCE=y,由(1)同理得:x+y=∠A+∠O,2x+2y=∠A+∠P,即可求出∠A和∠P之间的数量关系;(3)如图,延长BP交CN于点Q,根据角平分线定义,∠DBP=2∠MBP,∠ECP=2∠NCP,且∠DBP+∠ECP=∠A+∠BPC,∠A=∠BPC,得到∠BPC=∠MBP+∠NCP,因为∠BPC=∠PQC+∠NCP,证得∠MBP=∠PQC,进而得到BM∥CN.【详解】知识回顾:∵∠ACD+∠ACB=180°,∠A+∠B+∠ACB=180°,∴∠ACD=∠A+∠B;故答案为:∠A+∠B;初步运用:(1)∵∠DBC=∠A+∠ACB,∠A=70°,∠DBC=150°,∴∠ACB=∠DBC﹣∠A=150°﹣70°=80°;故答案为:80;(2)∵∠A=70°,∴∠ABC+∠ACB=110°,∴∠DBC+∠ECB=360°﹣110°=250°,故答案为:250;拓展延伸:(1)如图④,连接AP,∵∠DBP=∠BAP+∠APB,∠ECP=∠CAP+∠APC,∴∠DBP+∠ECP=∠BAP+∠APB+∠CAP+∠APC=∠BAC+∠BPC,∵∠BAC=70°,∠BPC=150°,∴∠DBP+∠ECP=∠BAC+∠BPC=70°+150°=220°,故答案为:220;(2)∠A和∠P之间的数量关系是:∠P=∠A+80°,理由是:如图⑤,设∠DBO=x,∠OCE=y,则∠OBP=∠DBO=x,∠PCO=∠OCE=y,由(1)同理得:x+y=∠A+∠O,2x+2y=∠A+∠P,2∠A+2∠O=∠A+∠P,∵∠O=40°,∴∠P=∠A+80°;(3)证明:如图,延长BP交CN于点Q,∵BM平分∠DBP,CN平分∠ECP,∴∠DBP=2∠MBP,∠ECP=2∠NCP,∵∠DBP+∠ECP=∠A+∠BPC,∠A=∠BPC,∴2∠MBP+2∠NCP=∠A+∠BPC=2∠BPC,∴∠BPC=∠MBP+∠NCP,∵∠BPC=∠PQC+∠NCP,∴∠MBP=∠PQC,∴BM∥CN.【点睛】本题考查了三角形内角和定理,三角形内角和为360°;三角形外角性质定理,三角形的任一外角等于不相邻的两个内角和;角平分线定义,根据角平分线定义证明;以及平行线的判定,内错角相等两直线平行.9.(1)50元,150元;(2)提示牌50个,垃圾箱50个;提示牌51个,垃圾箱49个;提示牌52个,垃圾箱48个;【分析】1)根据“购买2个提示牌和3个垃圾箱共需550元”,建立方程求解即可得出结论;(2)根据“费用不超过10000元和至少需要安放48个垃圾箱”,建立不等式即可得出结论.【详解】解:(1)设提示牌的单价为x 元,则垃圾箱的单价为3x 元,根据题意得,233550x x +⨯=,50x ∴=,3150x ∴=,即:提示牌和垃圾箱的单价各是50元和150元;(2)设购买提示牌y 个(y 为正整数),则垃圾箱为(100)y -个,根据题意得,1004850150(100)10000y y y ,5052y , y 为正整数,y ∴为50,51,52,共3种方案;即:温馨提示牌50个,垃圾箱50个;温馨提示牌51个,垃圾箱49个;温馨提示牌52个,垃圾箱48个,【点睛】此题主要考查了一元一次不等式组,一元一次方程的应用,正确找出相等关系是解本题的关键.10.(1)A 种商品有5件,B 种商品有8件;(2)先按车收费用3辆车运送18m 3,再按吨收费运送1件B 型产品,运费最少为3000元【分析】(1)设A 、B 两种型号商品各有x 件和y 件,根据体积一共是20m 3,质量一共是10.5吨列出方程组再解即可;(2)分别计算出①按车收费的费用,②按吨收费的费用,③两种方式混合用的花费,进而可得答案.【详解】解:(1)设A 、B 两种型号商品各有x 件和y 件,由题意得,0.82200.510.5x y x y +=⎧⎨+=⎩, 解得:58x y =⎧⎨=⎩, 答:A 、B 两种型号商品各有5件、8件;(2)①按车收费:10.5÷3.5=3(辆),但车辆的容积为:6×3=18<20,所以3辆车不够,需要4辆车,此时运费为:4×900=3600元;②按吨收费:300×10.5=3150元,③先用3辆车运送A 商品5件,B 商品7件,共18m 3,按车付费3×900=2700(元). 剩余1件B 型产品,再运送,按吨付费300×1=300(元).共需付2700+300=3000(元).∵3000<3150<3600,∴先按车收费用3辆车运送18m 3,再按吨收费运送1件B 型产品,运费最少为3000元. 答:先按车收费用3辆车运送18m 3,再按吨收费运送1件B 型产品,运费最少为3000元.【点睛】本题考查二元一次方程组的应用,关键是正确理解题意,找出题中的等量关系. 11.24【分析】(1)由2个矩形面积之和表示出阴影部分面积即可;(2)将x 的值代入计算即可求出值.【详解】(1)根据题意得:阴影部分的面积=a(2a+3)+a(2a +3−a)=3a 2+6a ;(2)当a =2时,原式=3×22+2×6=24.答:图中阴影部分的面积是24.【点睛】本题考查代数式求值和列代数式,解题的关键是根据题意列代数式.12.(1)3;(2)31;(3)25.【分析】(1)把多项式乘积展开,再将已知5x y +=代入,即可求解;(2)根据(1)得到3xy =,再利用完全平方公式,即可求解;(3)根据5x y +=将x 用y 来表示,再代入25x xy y ++,合并同类项即可求解.【详解】解:(1)∵()(2)(2)22424=3x y xy x y xy x y --=--+=-++-,而5x y +=, ∴ ()=324=3254=3xy x y -++--+⨯-.故答案为3.(2)由(1)知3xy =,∴ ()22224=2=523=31x xy y x y xy +++++⨯. 故答案为31.(3)∵5x y +=,得5x y =-,则()()22225=55525105525x xy y y y y y y y y y y ++-+-+=-++-+=. 故答案为25.【点睛】本题目考查整式的乘法,难度一般,是常考知识点,熟练掌握代数式之间的转化是顺利解题的关键.13.(1)∠BPD=∠B-∠D ;将点P 移到AB 、CD 内部,∠BPD=∠B-∠D 不成立,∠BPD=∠B+∠D ,证明见解析;(2)∠BPD=∠ABP+∠D+∠BQD ;(3)80,46.【分析】(1)由平行线的性质得出∠B=∠BPE,∠D=∠DPE,即可得出∠BPD=∠B-∠D;将点P移到AB、CD内部,延长BP交DC于M,由平行线的性质得出∠B=∠BMD,即可得出∠BPD=∠B+∠D;(2)由平行线的性质得出∠A′BQ=∠BQD,同(1)得:∠BPD=∠A′BP+∠D,即可得出结论;(3)过点E作EN∥BF,则∠B=∠BEN,同(1)得:∠FQE=∠F+∠QEN,得出∠EQF=∠B+∠E+∠F,求出∠EQF=180°-100°=80°,即∠B+∠E+∠F=80°,由∠AMP=∠APB-∠A=126°-∠A,∠FMQ=180°-∠AQF-∠F=180°-100°-∠F=80°-∠F,∠AMP=∠FMQ,得出126°-∠A=80°-∠F,即可得出结论.【详解】解(1)∵AB∥CD∥PE,∴∠B=∠BPE,∠D=∠DPE,∵∠BPE=∠BPD+∠DPE,∴∠BPD=∠B-∠D,故答案为:∠BPD=∠B-∠D;将点P移到AB、CD内部,∠BPD=∠B-∠D不成立,∠BPD=∠B+∠D,理由如下:延长BP交DC于M,如图b所示:∵AB∥CD,∴∠B=∠BMD,∵∠BPD=∠BMD+∠D,∴∠BPD=∠B+∠D;(2)∵A′B∥CD,∴∠A′BQ=∠BQD,同(1)得:∠BPD=∠A′BP+∠D,∴∠BPD=∠ABP+∠D+∠BQD,故答案为:∠BPD=∠ABP+∠D+∠BQD;(3)过点E作EN∥BF,如图d所示:则∠B=∠BEN,同(1)得:∠FQE=∠F+∠QEN,∴∠EQF=∠B+∠E+∠F,∵∠AQF=100°,∴∠EQF=180°-100°=80°,即∠B+∠E+∠F=80°,∵∠AMP=∠APB-∠A=126°-∠A,∠FMQ=180°-∠AQF-∠F=180°-100°-∠F=80°-∠F;∵∠AMP=∠FMQ,∴126°-∠A=80°-∠F,∴∠A-∠F=46°,故答案为:80,46.【点睛】本题考查了平行线性质,三角形外角性质、三角形内角和定理等知识,熟练掌握平行线的性质是解题的关键.14.(1)证明见解析;(2)24°;(3)24°;(4)∠P=34x+14y;(5)∠P=180()2A C︒-∠+∠【分析】(1)根据三角形内角和为180°,对顶角相等,即可证得∠A+∠B=∠C+∠D(2)由(1)的结论得:∠BCP+∠P=∠BAP+∠ABC①,∠PAD+∠P=∠PCD+∠ADC②,将两个式子相加,已知AP、CP分别平分∠BAD、∠BCD,可得∠BAP=∠PAD,∠BCP=∠PCD,可证得∠P=12(∠ABC+∠ADC),即可求出∠P度数.(3)已知直线BP平分∠ABC的外角∠FBC,DP平分∠ADC的外角∠ADE,可得∠1=∠2,∠3=∠4,由(1)的结论得:∠C+180°-∠3=∠P+180°-∠1,∠A+∠4=∠P+∠2,两式相加即可求出∠P的度数.(4)由(1)的结论得:14∠CAB+∠C=∠P+14∠CDB,34∠CAB+∠P=∠B+34∠CDB,第一个式子乘以3,得到的式子减去第二个式子即可得出用x、y表示∠P(5)延长AB交DP于点F,标注出∠1,∠2,∠3,∠4,由(1)的结论得:∠A+2∠1=∠C+180°-2∠3,其中根据对顶角相等,三角形内角和,以及外角的性质即可得到∠1=∠PBF=180°-∠BFP-∠P=180°-(∠A+∠3)-∠P,代入∠A+2∠1=∠C+180°-2∠3,即可得出∠P与∠A、∠C的关系.【详解】(1)如图1,∠A+∠B+∠AOB=∠C+∠D+∠COD=180°∵∠AOB=∠COD∴∠A+∠B=∠C+∠D(2)∵AP、CP分别平分∠BAD、∠BCD∴∠BAP=∠PAD,∠BCP=∠PCD,由(1)的结论得:∠BCP+∠P=∠BAP+∠ABC①,∠PAD+∠P=∠PCD+∠ADC②①+②,得2∠P+∠PAD+∠BCP=∠BAP+∠ABC +∠PCD+∠ADC∴∠P=12(∠ABC+∠ADC)∴∠ABC=28°,∠ADC=20°∴∠P=12(28°+20°)∴∠P=24°故答案为:24°(3)∵如图3,直线BP平分∠ABC的外角∠FBC,DP平分∠ADC的外角∠ADE,∴∠1=∠2,∠3=∠4由(1)的结论得:∠C+180°-∠3=∠P+180°-∠1①,∠A+∠4=∠P+∠2②①+②,得∠C+180°-∠3+∠A+∠4=∠P+180°-∠1+∠P+∠2∴30°+18°=2∠P∴∠P=24°故答案为:24°(4)由(1)的结论得:14∠CAB+∠C=∠P+14∠CDB①,34∠CAB+∠P=∠B+34∠CDB②①×3,得34∠CAB+3∠C=3∠P+34∠CDB③②-③,得∠P-3x=y-3∠P∴∠P=34x+14y故答案为:∠P=34x+14y(5)如图5所示,延长AB交DP于点F由(1)的结论得:∠A+2∠1=∠C+180°-2∠3∵∠1=∠PBF=180°-∠BFP-∠P=180°-(∠A+∠3)-∠P ∴∠A+360°-2∠A-2∠3-2∠P=∠C+180°-2∠3解得:∠P=180()2A C︒-∠+∠故答案为:∠P=180()2A C︒-∠+∠【点睛】本题是考查了角平分线性质及三角形内角和定理,对顶角相等,三角形任一外角等于不相邻的两个内角和等知识点,本题是典型的拓展延伸题,一般第一问得出基本结论,后面的问题将基本结论作为解题基础,进行拓展延伸.15.(1)见解析;(2)见解析;(3)4.【分析】整体分析:(1)根据平移的要求画出△A´B´C´;(2)延长AB,过点C作AB延长线的垂线段;(3)过点A作BC的平行线,这条平行线上的格点数(异于点A)即为结果.【详解】(1)如图所示(2)如图所示.(3)如图,过点A作BC的平行线,这条平行线上的格点数除点A外有4个,所以能使S△ABC=S△PBC的格点P的个数有4个,故答案为4.16.2021 514【分析】根据题目信息,设S=1+5+52+53+…+52020,求出5S,然后相减计算即可得解.【详解】解:设S=1+5+52+53+ (52020)则5S=5+52+53+54 (52021)两式相减得:5S﹣S=4S=52021﹣1,则202151.4S-=∴1+5+52+53+54+…+52020的值为2021514-.【点睛】本题考查了有理数的乘方,读懂题目信息,理解求和的运算方法是解题的关键.17.22442a ab b-+;13【分析】原式利用平方差公式及完全平方公式展开,去括号合并得到最简结果,把a与b的值代入计算即可求出值.【详解】解:原式=4a2﹣4ab+b2﹣(a2+2a+1﹣b2)+a2+2a+1=4a2﹣4ab+b2﹣a2﹣2a﹣1+b2+a2+2a+1=4a2﹣4ab+2b2,当a=12,b=﹣2时,原式=1+4+8=13.【点睛】此题考查了整式的混合运算−化简求值,熟练掌握运算法则是解本题的关键.18.(1)12xy=⎧⎨=-⎩;(2)53xy=⎧⎨=⎩【分析】(1)方程组利用代入消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【详解】解:(1)2431y xx y=-⎧⎨+=⎩①②,把①代入②得:3x+2x﹣4=1,解得:x=1,把x=1代入①得:y=﹣2,则方程组的解为12 xy=⎧⎨=-⎩;(2)121632(1)13(2) x yx y--⎧-=⎪⎨⎪-=-+⎩方程组整理得:211 213x yx y+=⎧⎨+=⎩①②,①×2﹣②得:3y=9,解得:y=3,把y=3代入②得:x=5,则方程组的解为53 xy=⎧⎨=⎩.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法,要根据方程特点选择合适的方法简化运算.19.(1)画图见解析;(2)画图见解析;(3)平行且相等;(4)12;(5)9【分析】(1)利用网格特点和平移的性质分别画出点A、B、C的对应点A′、B′、C′即可得到△A′B′C′;(2)找出线段A′C′的中点E′,连接B′E′;(3)根据平移的性质求解;(4)由于线段AB扫过的部分为平行四边形,则根据平行四边形的面积公式可求解.(5)根据同底等高面积相等可知共有9个点.【详解】(1)△A′B′C′如图所示;(2)B′D′如图所示;(3)BB′∥CC′,BB′=CC′;(4)线段AB扫过的面积=4×3=12;(5)有9个点.【点睛】本题考查了作图-平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.20.∠DAC=40°,∠BOA=115°【解析】试题分析:在Rt△ACD中,根据两锐角互余得出∠DAC度数;△ABC中由内角和定理得出∠ABC度数,再根据AE,BF是角平分线可得∠BAO、∠ABO,最后在△ABO中根据内角和定理可得答案.解:∵AD是BC边上的高,∴∠ADC=90°,又∵∠C=50°,∴在△ACD中,∠DAC=90°-∠C=40°,∵∠BAC=60°,∠C=50°,∴在△ABC中,∠ABC=180°-∠BAC-∠C=70°,又∵AE、BF分别是∠BAC 和∠ABC的平分线,∴∠BAO=12∠BAC=30°,∠ABO=12∠ABC=35°,∴∠BOA=180°-∠BAO -∠ABO =180°-30°-35°=115°.。
BA ODCE图8七年级下三角形综合题归类一、 双等边三角形模型1. (1)如图7,点O 是线段AD 的中点,分别以AO 和DO 为边在线段AD 的同侧作等边三角形OAB 和等边三角形OCD ,连结AC 和BD ,相交于点E ,连结BC .求∠AEB 的大小; (2)如图8,ΔOAB 固定不动,保持ΔOCD 的形状和大小不变,将ΔOCD 绕着点O 旋转(ΔOAB 和ΔOCD 不能重叠),求∠AEB 的大小.2. 已知:点C 为线段AB 上一点,△ACM,△CBN 都是等边三角形,且AN 、BM 相交于O.① 求证:AN=BM ② 求 ∠AOB 的度数。
③ 若AN 、MC 相交于点P ,BM 、NC 交于点Q ,求证:PQ ∥AB 。
(湘潭·中考题)同类变式: 如图a ,△ABC 和△CEF 是两个大小不等的等边三角形,且有一个公共顶点C ,连接AF 和BE.(1)线段AF 和BE 有怎样的大小关系?请证明你的结论;(2)将图a 中的△CEF 绕点C 旋转一定的角度,得到图b ,(1)中的结论还成立吗?作出判断并说明理由;(3)若将图a 中的△ABC 绕点C 旋转一定的角度,请你画出一个变换后的图形c(草图即可),(1)中的结论还成立吗?作出判断不必说明理由.图c3. 如图9,若△ABC 和△ADE 为等边三角形,,M N 分别为,EB CD 的中点,易证:CD BE ,△AMN 是等边三角形.CBOD图7 AEA BCMNO PQ(1)当把△ADE 绕A 点旋转到图10的位置时,CD BE =是否仍然成立?若成立,请证明;若不成立,请说明理由;(2)当△ADE 绕A 点旋转到图11的位置时,△AMN 是否还是等边三角形?若是,请给出证明,若不是,请说明理由.同类变式:已知,如图①所示,在ABC △和ADE △中,AB AC =,AD AE =,BAC DAE ∠=∠,且点B A D ,,在一条直线上,连接BE CD M N ,,,分别为BE CD,的中点.(1)求证:①BE CD =;②AN AM =;(2)在图①的基础上,将ADE △绕点A 按顺时针方向旋转180,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立.4. 如图,四边形ABCD 和四边形AEFG 均为正方形,连接BG 与DE 相交于点H .(1)证明:△ABG ≌△ADE ;(2)试猜想∠BHD 的度数,并说明理由;图9 图10 图11CENDA BM图①CAE M BDN 图②(3)将图中正方形ABCD 绕点A 逆时针旋转(0°<∠BAE <180°),设△ABE 的面积 为1S ,△ADG 的面积为2S ,判断1S 与2S 的大小关系,并给予证明.5.已知:如图,ABC △是等边三角形,过AB 边上的点D 作DG BC ∥,交AC 于点G ,在GD 的延长线上取点E ,使DE DB =,连接AE CD ,. (1)求证:AGE DAC △≌△;(2)过点E 作EF DC ∥,交BC 于点F ,请你连接AF ,并判断AEF △是怎样的三角形,试证明你的结论.CGAEDBF二、 垂直模型(该模型在基础题和综合题中均为重点考察内容)考点1:利用垂直证明角相等1. 如图,△ABC 中,∠ACB =90°,AC =BC ,AE 是BC 边上的中线,过C 作CF ⊥AE ,垂足为F ,过B 作BD ⊥BC 交CF 的延长线于D .求证:(1)AE =CD ; (2)若AC =12 cm ,求BD 的长.C FGEDAH2. (西安中考)如图(1), 已知△ABC 中, ∠BAC=900, AB=AC, AE 是过A的一条直线, 且B 、C 在A 、E 的异侧, BD ⊥AE 于D, CE ⊥AE 于E 。
全等三角形综合练习1姓名: ____________一.解答题(共26 小题)1.问题情境:如图1, AB∥CD,∠ PAB=130°,∠ PCD=120°.求∠ APC度数.小明的解题思路是:如图2,过P 作 PE∥ AB,通过平行线性质,可得∠APC=50°+60°=110°.问题迁移:(1)如图 3, AD∥BC,点 P 在射线 OM 上运动,当点 P 在 A、 B 两点之间运动时,∠ ADP=∠α,∠ BCP=∠β.试判断∠ CPD、∠α、∠β之间有何数量关系?请说明理由;(2)在( 1)的条件下,如果点 P 在 A、 B 两点外侧运动时(点 P 与点 A、B、 O 三点不重合),请你直接写出∠ CPD、∠α、∠β间的数量关系.2.已知直线 l1∥l2,直线 l3和直线 l1、l2交于点 C 和 D,点 P 是直线 l3上一动点(1)如图 1,当点 P 在线段 CD上运动时,∠ PAC,∠APB,∠PBD之间存在什么数量关系?请你猜想结论并说明理由.(2)当点 P 在 C、D 两点的外侧运动时( P 点与点 C、D 不重合,如图 2 和图 3),上述( 1)中的结论是否还成立?若不成立,请直接写出∠ PAC,∠ APB,∠ PBD之间的数量关系,不必写理由.3.如图,已知 AB∥CD, CE、BE 的交点为 E,现作如下操作:第一次操作,分别作∠ ABE和∠ DCE的平分线,交点为E1,第二次操作,分别作∠ ABE 和∠ DCE 的平分线,交点为 E ,112第三次操作,分别作∠ ABE 和∠ DCE 的平分线,交点为 E ,⋯,223第 n 次操作,分别作∠ ABE n﹣1和∠ DCE n﹣1的平分线,交点为E n.( 1)如图①,求证:∠ BEC=∠ABE+∠DCE;( 2)如图②,求证:∠ BE C= ∠ BEC;2( 3)猜想:若∠ E n=α度,那∠ BEC等于多少度?(直接写出结论).4.阅读下面的材料,并完成后面提出的问题.(1)如图 1 中, AC∥DB,请你探究一下∠ M,∠ A 与∠ B 的数量有何关系,并说明理由(2)如图 2 中,当点 M 向左移动到图 2 所示的位置时,∠ M 、∠ A 与∠ B 又有怎样的数量关系呢?(3)如图 3 中,当点 M 向上移动到图 2 所示的位置时,∠ M 、∠ A 与∠ B 又有怎样的数量关系呢?(4)如图 4 中,当点 M 向下移动到图 2 所示的位置时,∠ M 、∠ A 与∠ B 又有怎样的数量关系呢?写出对应图形的数量关系,并选其中的一个图形加以证明5.已知:如图 1,线段 AB、CD相交于点 O,连接 AD、CB,我们把形如图 1 的图形称之为“8字形”,试解答下列问题:( 1)在图 1 中,请直接写出∠ A、∠ B、∠ C、∠ D 之间的数量关系;(2)在图 2 中,若∠ D=40°,∠ B=36°,∠ DAB 和∠ BCD的平分线 AP 和 CP相交于点 P,并且与 CD、AB 分别相交于 M 、N,利用( 1)的结论,试求∠ P 的度数;( 3)如果图 2 中∠ D 和∠ B 为任意角时,其他条件不变,试问∠P 与∠ D、∠ B 之间存在着怎样的数量关系?并说明理由.6.将两个全等的直角三角形ABC和 DBE按图①方式摆放,其中∠ ACB=∠DEB=90°,∠A=∠D=30°,点 E落在 AB 上, DE 所在直线交 AC 所在直线于点 F.( 1)求证: AF+EF=DE;( 2)若将图①中的△ DBE绕点 B 按顺时针方向旋转角α,且 0°<α<60°,其它条件不变,请在图②中画出变换后的图形,并直接写出你在( 1)中猜想的结论是否仍然成立;( 3)若将图①中的△ DBE绕点 B 按顺时针方向旋转角β,且 60°<β< 180°,其它条件不变,如图③.你认为( 1)中猜想的结论还成立吗?若成立,写出证明过程;若不成立,请写出 AF、 EF与 DE之间的关系,并说明理由.7.(本题有3 小题,第(1)小题为必答题,满分5 分;第(2)、(3)小题为选答题,其中,第(2)小题满分3 分,第(3)小题满分6 分,请从中任选1 小题作答,如两题都答,以第( 2)小题评分.)在△ ABC中,∠ ACB=90°,AC=BC,直线 MN 经过点 C,且 AD⊥ MN 于 D,BE⊥MN于E.(1)当直线 MN 绕点 C 旋转到图 1 的位置时,求证:①△ ADC≌△ CEB;② DE=AD+BE;(2)当直线 MN 绕点 C 旋转到图 2 的位置时,求证: DE=AD﹣BE;(3)当直线 MN 绕点 C 旋转到图 3 的位置时,试问 DE、AD、BE 具有怎样的等量关系?请写出这个等量关系,并加以证明.注意:第( 2)、(3)小题你选答的是第2 小题.8.已知△ ABC中,∠ A=30°.( 1)如图①,∠ ABC、∠ ACB的角平分线交于点O,则∠ BOC=°.(2)如图②,∠ ABC、∠ACB的三等分线分别对应交于 O1、O2,则∠ BO2C=°.(3)如图③,∠ ABC、∠ ACB的 n 等分线分别对应交于 O1、 O2⋯O n﹣1(内部有 n ﹣ 1 个点),求∠ BO n﹣1C(用 n 的代数式表示).( 4)如图③,已知∠ ABC、∠ ACB的 n 等分线分别对应交于 O1、O2⋯O n﹣1,若∠BO n﹣1C=60°,求 n 的值.9.已知:∠ MON=40°,OE 平分∠ MON,点 A、 B、C 分别是射线 OM、OE、ON上的动点( A、B、C 不与点 O 重合),连接 AC交射线 OE于点 D.设∠ OAC=x°.(1)如图 1,若 AB∥ON,则①∠ ABO的度数是;②当∠ BAD=∠ABD时, x=;当∠ BAD=∠ BDA时,x=.(2)如图 2,若 AB⊥ OM,则是否存在这样的 x 的值,使得△ ADB 中有两个相等的角?若存在,求出 x 的值;若不存在,说明理由.10.如图,已△ ABC中, AB=AC=12厘米, BC=9厘米,点 D 为 AB 的中点.( 1)如果点 P 在线段 BC上以 3 厘米 / 秒的速度由 B 向 C 点运动,同时点 Q 在线段 CA上由 C点向 A 点运动.①若点 Q 的运动速度与点 P 的运动速度相等, 1 秒钟时,△ BPD与△ CQP是否全等,请说明;②点 Q 的运动速度与点 P 的运动速度不相等,当点 Q 的运动速度为多少时,能够使△ BPD≌△ CPQ?(2)若点 Q 以②的运动速度从点 C 出发点 P 以原来运动速度从点 B 同时出发,都逆时针沿 ABC的三边运动,求多长时间点 P 与点 Q 第一次在△ ABC的哪条边上相遇?11.已知:如图, AB⊥ AC,且 AB=AC,AD=AE, BD=CE.求证: AD⊥AE.12.如图,已知△ ACB和△ DCE均为等腰直角三角形,∠ ACB=∠ DCE=90°,点A、D、E 在同一直线上, CM⊥ AE于点 M ,连结 BE.(1)请判断线段 AD、BE之间的数量关系,并说明理由;(2)求证: AM=CM+BE.13.如图①②,点 E、F 分别是线段 AB、线段 CD的中点,过点 E 作 AB 的垂线,过点 F 作 CD 的垂线,两垂线交于点 G,连接 AG、BG、CG、DG,且∠ AGD=∠ BGC.(1)线段 AD 和线段 BC有怎样的数量关系?请说明理由;(2)当 DG⊥GC时,试判断直线 AD 和直线 BC的位置关系,并说明理由.14.如图,已知△ ABC中,∠B=∠ C,AB=8厘米,BC=6厘米,点 D 为 AB 的中点.如果点 P 在线段 BC上以每秒 2 厘米的速度由 B 点向 C 点运动,同时,点 Q 在线段CA上以每秒a 厘米的速度由C 点向A 点运动,设运动时间为t(秒)(0≤t≤3).(1)用的代数式表示 PC的长度;(2)若点 P、Q 的运动速度相等,经过 1 秒后,△ BPD与△ CQP是否全等,请说明理由.15.如图①,AB=4cm,AC⊥ AB,BD⊥ AB,AC=BD=3cm.点 P 在线段 AB上以1cm/s 的速度由 A 向 B 运动.同时点 Q 在线段 BD 上由点 B 向点 D 运动.它们运动的时间为 t s.(1)若点 Q 的运动速度与点 P 的运动速度相等,当 t=1 时,△ ACP与△ BPQ是否全等?请说明理由,并判断此时线段 PC和线段 PQ 的位置关系.(2)如图②,将“AC⊥AB,BD⊥AB”改为“∠ CAB=∠ DBA”,其他条件不变,设点Q 运动速度为 x cm/s,是否存在实数x,使得△ ACP与△ BPQ全等?若存在,求出相应 x,t 的值;若不存在,说明理由.16.如图,已知 AB⊥ AD,AC⊥AE,AB=AD,AC=AE, BC分别交 AD、DE 于点 G、F,AC与 DE交于点 H.求证:(1)△ ABC≌△ ADE;(2)BC⊥ DE.17.如图,在△ ABC中,∠BAD=∠DAC,DF⊥ AB,DM⊥AC,AF=10cm,AC=14cm,动点 E 以 2cm/s 的速度从 A 点向 F 点运动,动点G 以 1cm/s 的速度从 C 点向 A点运动,当一个点到达终点时,另一个点随之停止运动,设运动时间为t .(1)求证:在运动过程中,不管 t 取何值,都有 S△AED=2S△DGC.(2)当 t 取何值时,△ DFE与△ DMG 全等.18.如图所示,在Rt△ ABC和 Rt△ADE中, AB=AC,AD=AE,CE与 BD 相交于点M, BD 与 AC交于点 N,试猜想 BD与 CE有何关系?说明理由.19.如图,长方形ABCD中,AB=10cm,BC=8cm,点E 是CD的中点,动点P 从 A 点出发,以每秒 2cm 的速度沿 A→ B→ C→ E 运动,最终到达点 E.若点 P 运动的时间为 x 秒,那么当 x 为何值时,△ APE的面积等于 32cm2?(提醒:同学们,要分类讨论哦!)20.如图,在 Rt△ABC中,∠ C=90°,∠ A=60°,AB=12cm,若点 P 从点 B 出发以 2cm/s 的速度向点 A 运动,点 Q 从点 A 出发以 1cm/s 的速度向点 C 运动,设P、 Q 分别从点 B、A 同时出发,运动的时间为 ts.(1)用含 t 的式子表示线段 AP、 AQ 的长;(2)当 t 为何值时,△ APQ是以 PQ为底边的等腰三角形?(3)当 t 为何值时, PQ∥BC?21.如图,在△ ABC中, AB=AC=2,∠ B=∠ C=40°,点 D 在线段 BC上运动( D 不与 B、C 重合),连接 AD,作∠ ADE=40°,DE交线段 AC 于 E.( 1)当∠ BDA=115°时,∠ EDC=°,∠ DEC=°;点D从B向C运动时,∠BDA逐渐变(填“大”或“小”);(2)当 DC等于多少时,△ ABD≌△ DCE,请说明理由;(3)在点 D 的运动过程中,△ ADE 的形状可以是等腰三角形吗?若可以,请直接写出∠ BDA的度数.若不可以,请说明理由.22.如图,在△ ABC中, AB=AC=2,∠ B=∠ C=50°,点 D 在线段 BC上运动(点 D 不与 B、C 重合),连接 AD,作∠ ADE=50°,DE交线段 AC于 E.(1)在点 D 的运动过程中,△ ADE 的形状可以是等腰三角形吗?若可以,请求出∠ BDA的度数;若不可以,请说明理由.(2)若 DC=2,求证:△ ABD≌△ DCE.23.如图,长方形纸片 ABCD,点 E、 F 分别在边 AB、CD 上,连接 EF,将∠ BEF 对折,点 B 落在直线 EF上的 B′处,得到折痕 EC,将点 A 落在直线 EF上的点 A′处,得到折痕 EN.( 1)若∠ BEB′=110,°则∠ BEC=°,∠ AEN=°,∠ BEC+∠ AEN=°.(2)若∠ BEB′=m,°则( 1)中∠ BEC+∠AEN的值是否改变?请说明你的理由.(3)将∠ ECF对折,点 E 刚好落在 F 处,且折痕与 B′C重合,求∠ DNA′.24.如图,△ ABC中,AB=AC=18cm,BC=16cm,点 D 是 AB 的中点.有一点 E 在BC上从点 B 向点 C 运动,速度为 2cm/s,同时有一点 F 在 AC 上从点 C 向点 A 运动,其中一点停止运动另一点也随之停止运动.问当点 F 的运动速度是多少时,△DBE和△ EFC全等?25.已知:如图,△ ABC是边长 3cm 的等边三角形,动点P、Q 同时从 A、B 两点出发,分别沿 AB、 BC方向匀速移动,它们的速度都是1cm/s,当点 P 到达点B 时, P、Q 两点停止运动,设点 P 的运动时间为 t(s).( 1)当动点 P、Q 同时运动 2s 时,则 BP=cm,BQ=cm.( 2)当动点 P、Q 同时运动 t(s)时,分别用含有 t 的式子表示; BP=cm,BQ=cm.( 3)当 t 为何值时,△ PBQ是直角三角形?26.如图,△ ABC中, AB=BC=AC=12cm,现有两点 M、N 分别从点 A、点 B 同时出发,沿三角形的边运动,已知点 M 的速度为 1cm/s,点 N 的速度为 2cm/s.当点 N 第一次到达 B 点时, M、N 同时停止运动.( 1)点 M 、 N 运动几秒后, M、N 两点重合?( 2)点 M 、 N 运动几秒后,可得到等边三角形△ AMN?( 3)当点 M 、N 在 BC边上运动时,能否得到以 MN 为底边的等腰三角形 AMN?如存在,请求出此时 M 、N 运动的时间.第 10 页(共 44 页)全等三角形综合练习1 答案一.解答题(共26 小题)1.问题情境:如图1, AB∥CD,∠ PAB=130°,∠ PCD=120°.求∠ APC度数.小明的解题思路是:如图2,过P 作 PE∥ AB,通过平行线性质,可得∠APC=50°+60°=110°.问题迁移:(1)如图 3, AD∥BC,点 P 在射线 OM 上运动,当点 P 在 A、 B 两点之间运动时,∠ ADP=∠α,∠ BCP=∠β.试判断∠ CPD、∠α、∠β之间有何数量关系?请说明理由;(2)在( 1)的条件下,如果点 P 在 A、 B 两点外侧运动时(点 P 与点 A、B、 O 三点不重合),请你直接写出∠ CPD、∠α、∠β间的数量关系.【解答】解:(1)∠ CPD=∠α+∠β,理由如下:如图 3,过 P 作 PE∥AD 交 CD于 E,∵AD∥BC,∴AD∥PE∥BC,∴∠ α=∠ DPE,∠β=∠CPE,∴∠ CPD=∠DPE+∠CPE=∠α+∠β;(2)当 P 在 BA 延长线时,∠ CPD=∠β﹣∠ α;理由:如图 4,过 P 作 PE∥AD 交 CD于 E,∵ AD∥BC,∴ AD∥PE∥BC,∴∠ α=∠ DPE,∠β=∠CPE,∴∠ CPD=∠CPE﹣∠ DPE=∠β﹣∠ α;当 P 在 AB 延长线时,∠ CPD=∠α﹣∠β.理由:如图 5,过 P 作 PE∥AD 交 CD于E,∵ AD∥BC,∴ AD∥PE∥BC,∴∠ α=∠ DPE,∠β=∠CPE,∴∠ CPD=∠DPE﹣∠ CPE=∠α﹣∠β.第 12 页(共 44 页)2.已知直线 l1∥l2,直线 l3和直线 l1、l2交于点 C 和 D,点 P 是直线 l3上一动点(1)如图 1,当点 P 在线段 CD上运动时,∠ PAC,∠APB,∠PBD之间存在什么数量关系?请你猜想结论并说明理由.(2)当点 P 在 C、D 两点的外侧运动时( P 点与点 C、D 不重合,如图 2 和图 3),上述( 1)中的结论是否还成立?若不成立,请直接写出∠ PAC,∠ APB,∠ PBD之间的数量关系,不必写理由.【解答】解:(1)∠ APB=∠PAC+∠PBD,如图 1,过点 P 作 PE∥l1,∴∠ APE=∠PAC,∵l1∥ l2,∴ PE∥l2,∴∠ BPE=∠PBD,∴∠ APE+∠BPE=∠PAC+∠PBD,∴∠ APB=∠PAC+∠PBD;( 2)不成立,如图 2:∠ PAC=∠ APB+∠ PBD,理由:过点 P 作 PE∥l1,∴∠ APE=∠PAC,∵l1∥ l2,∴ PE∥l2,∴∠ BPE=∠PBD,∵∠ APB=∠APE﹣∠ BPE=∠ PAC﹣∠ PBD,∴∠PAC=∠APB+∠PBD;如图 3:∠ PBD=∠ PAC+∠ APB,理由:过点 P 作 PE∥l1,∴∠ APE=∠PAC,∵l1∥ l2,∴ PE∥l2,∴∠ BPE=∠PBD,∵APB=∠ BPE﹣∠ APE=∠PBD﹣∠ PAC,∴∠ PBD=∠PAC+∠APB.3.如图,已知 AB∥CD, CE、BE 的交点为 E,现作如下操作:第一次操作,分别作∠ ABE和∠ DCE的平分线,交点为E1,第二次操作,分别作∠ ABE1和∠ DCE1的平分线,交点为E2,第三次操作,分别作∠ ABE2和∠ DCE2的平分线,交点为E3,⋯,第 n 次操作,分别作∠ ABE n﹣1和∠ DCE n﹣1的平分线,交点为E n.( 1)如图①,求证:∠ BEC=∠ABE+∠DCE;( 2)如图②,求证:∠ BE C= ∠ BEC;2(3)猜想:若∠ E n=α度,那∠ BEC等于多少度?(直接写出结论).【解答】解:(1)如图①,过 E 作 EF∥AB,∵ AB∥CD,∴ AB∥EF∥CD,∴∠ B=∠ 1,∠ C=∠ 2,∵∠ BEC=∠1+∠ 2,∴∠BEC=∠ABE+∠DCE;(2)如图 2,∵∠ ABE和∠ DCE的平分线交点为 E1,∴由( 1)可得,∠CE1B=∠ABE1+∠ DCE1= ∠ABE+ ∠DCE= ∠ BEC;∵∠ ABE1和∠ DCE1的平分线交点为E2,∴由( 1)可得,∠BE2C=∠ABE2+∠ DCE2= ∠ABE1+ ∠ DCE1= ∠CE1B= ∠BEC;( 3)如图 2,∵∠ ABE2和∠ DCE2的平分线,交点为E3,∴∠ BE3C=∠ABE3+∠DCE3= ∠ ABE2+∠DCE2=∠ CE2B=∠BEC;⋯以此类推,∠ E n=∠BEC,∴当∠ E n=α度时,∠ BEC等于 2nα度.4.阅读下面的材料,并完成后面提出的问题.(1)如图 1 中, AC∥DB,请你探究一下∠ M,∠ A 与∠ B 的数量有何关系,并说明理由(2)如图 2 中,当点 M 向左移动到图 2 所示的位置时,∠ M 、∠ A 与∠ B 又有怎样的数量关系呢?(3)如图 3 中,当点 M 向上移动到图 2 所示的位置时,∠ M 、∠ A 与∠ B 又有怎样的数量关系呢?(4)如图 4 中,当点 M 向下移动到图 2 所示的位置时,∠ M 、∠ A 与∠ B 又有怎样的数量关系呢?写出对应图形的数量关系,并选其中的一个图形加以证明【解答】解:(1)∠ AMB=∠ A+∠B.理由:如图 1,过点 M 作 ME∥AC,∵AC∥DB,∴AC∥ME∥DB,∴∠ A=∠ AME,∠ B=∠BME,∴∠ A+∠ B=∠AME+∠ BME=∠AMB;(2)∠ AMB+∠A+∠B=360°.理由:如图 2,过点 M 作 MF∥AC,∵AC∥DB,∴AC∥MF∥DB,∴∠ A+∠ AMF=180°,∠ B+∠BMF=180°,∴∠ AMB+∠A+∠B=∠A+∠ AMF+∠B+∠ BMF=360°;(3)∠ A﹣∠ B=∠AMB.理由:如图 3,过点 M 作 MG∥AC,∵ AC∥DB,∴ AC∥MG∥ DB,∴∠ A=∠ AMG,∠ B=∠ BMG,∴∠ A﹣∠ B=∠AMG﹣∠ BMG=∠AMB;(4)∠ B﹣∠ A=∠AMB.理由:如图 4,过点 M 作 MH∥AC,∵AC∥DB,∴AC∥MH∥ DB,∴∠ A=∠ AMH,∠ B=∠ BMH,∴∠ B﹣∠ A=∠BMH﹣∠ AMH=∠AMB.5.已知:如图 1,线段 AB、CD相交于点 O,连接 AD、CB,我们把形如图 1 的图形称之为“8字形”,试解答下列问题:( 1)在图 1 中,请直接写出∠ A、∠ B、∠ C、∠ D 之间的数量关系∠A+∠D=∠C+∠B;;(2)在图 2 中,若∠ D=40°,∠ B=36°,∠ DAB 和∠ BCD的平分线 AP 和 CP相交于点 P,并且与 CD、AB 分别相交于 M 、N,利用( 1)的结论,试求∠ P 的度数;( 3)如果图 2 中∠ D 和∠ B 为任意角时,其他条件不变,试问∠P 与∠ D、∠ B 之间存在着怎样的数量关系?并说明理由.【解答】解:( 1)根据三角形内角和定理以及对顶角相等,可得结论:∠ A+∠D=∠C+∠B;故答案为:∠ A+∠D=∠ C+∠B;(2)由( 1)可知,∠ 1+∠D=∠P+∠3,①∠ 4+∠B=∠2+∠ P,②∵∠ DAB和∠ BCD的平分线 AP 和 CP相交于点 P,∴∠ 1=∠ 2,∠ 3=∠4,由① +②得:∠ 1+∠D+∠4+∠B=∠P+∠3+∠2+∠P,即 2∠P=∠ D+∠B,又∵∠ D=40°,∠ B=36°,∴ 2∠ P=40°+36°=76°,∴∠ P=38°;(3)∠ P 与∠ D、∠ B 之间存在的关系为 2∠P=∠D+∠B.∵∠ 1+∠ D=∠P+∠3,①∠ 4+∠B=∠2+∠ P,②∵∠ DAB和∠ BCD的平分线 AP 和 CP相交于点 P,∴∠ 1=∠ 2,∠ 3=∠4,由① +②得:∠ 1+∠D+∠4+∠B=∠P+∠3+∠2+∠P,即 2∠P=∠ D+∠B.6.将两个全等的直角三角形ABC和 DBE按图①方式摆放,其中∠ ACB=∠DEB=90°,∠A=∠D=30°,点 E落在 AB 上, DE 所在直线交 AC 所在直线于点 F.( 1)求证: AF+EF=DE;( 2)若将图①中的△ DBE绕点 B 按顺时针方向旋转角α,且 0°<α<60°,其它条件不变,请在图②中画出变换后的图形,并直接写出你在( 1)中猜想的结论是否仍然成立;( 3)若将图①中的△ DBE绕点 B 按顺时针方向旋转角β,且 60°<β< 180°,其它条件不变,如图③.你认为( 1)中猜想的结论还成立吗?若成立,写出证明过程;若不成立,请写出 AF、 EF与 DE之间的关系,并说明理由.【解答】(1)证明:连接 BF(如图①),∵△ ABC≌△ DBE(已知),∴BC=BE,AC=DE.∵∠ACB=∠DEB=90°,∴∠BCF=∠BEF=90°.在 Rt△BFC和 Rt△BFE中,∴Rt△BFC≌Rt△BFE( HL).∴CF=EF.又∵ AF+CF=AC,∴AF+EF=DE.( 2)解:画出正确图形如图②∴( 1)中的结论 AF+EF=DE仍然成立;(3)不成立.证明:连接BF,∵△ABC≌△DBE,∴ BC=BE,∵∠ ACB=∠DEB=90°,∴△ BCF和△ BEF是直角三角形,在 Rt△BCF和 Rt△BEF中,,∴△ BCF≌△ BEF(HL),∴CF=EF;∵△ ABC≌△ DBE,∴AC=DE,∴AF=AC+FC=DE+EF.第 20 页(共 44 页)7.(本题有3 小题,第(1)小题为必答题,满分5 分;第(2)、(3)小题为选答题,其中,第(2)小题满分3 分,第(3)小题满分6 分,请从中任选1 小题作答,如两题都答,以第( 2)小题评分.)在△ ABC中,∠ ACB=90°,AC=BC,直线 MN 经过点 C,且 AD⊥ MN 于 D,BE⊥MN于E.(1)当直线 MN 绕点 C 旋转到图 1 的位置时,求证:①△ ADC≌△ CEB;② DE=AD+BE;(2)当直线 MN 绕点 C 旋转到图 2 的位置时,求证: DE=AD﹣BE;(3)当直线 MN 绕点 C 旋转到图 3 的位置时,试问 DE、AD、BE 具有怎样的等量关系?请写出这个等量关系,并加以证明.注意:第( 2)、(3)小题你选答的是第2 小题.【解答】证明:(1)①∵∠ ADC=∠ACB=∠BEC=90°,∴∠ CAD+∠ACD=90°,∠ BCE+∠CBE=90°,∠ ACD+∠BCE=90°.∴∠ CAD=∠BCE.∵AC=BC,∴△ ADC≌△ CEB.②∵△ ADC≌△ CEB,∴CE=AD,CD=BE.∴DE=CE+CD=AD+BE.解:( 2)∵∠ ADC=∠CEB=∠ACB=90°,∴∠ ACD=∠CBE.又∵ AC=BC,∴△ ACD≌△ CBE.∴CE=AD,CD=BE.∴DE=CE﹣CD=AD﹣BE.( 3)当 MN 旋转到图 3 的位置时, AD、DE、BE所满足的等量关系是DE=BE﹣AD (或 AD=BE﹣DE,BE=AD+DE 等).∵∠ ADC=∠CEB=∠ACB=90°,∴∠ ACD=∠CBE,又∵ AC=BC,∴△ ACD≌△ CBE,∴AD=CE,CD=BE,∴DE=CD﹣ CE=BE﹣AD.8.已知△ ABC中,∠ A=30°.( 1)如图①,∠ ABC、∠ ACB的角平分线交于点O,则∠ BOC=°.(2)如图②,∠ ABC、∠ACB的三等分线分别对应交于 O1、O2,则∠ BO2C=°.(3)如图③,∠ ABC、∠ ACB的 n 等分线分别对应交于 O1、 O2⋯O n﹣1(内部有 n ﹣ 1 个点),求∠ BO n﹣1C(用 n 的代数式表示).( 4)如图③,已知∠ ABC、∠ ACB的 n 等分线分别对应交于 O1、O2⋯O n﹣1,若∠BO n﹣1C=60°,求 n 的值.【解答】解:∵∠ BAC=30°,∴∠ ABC+∠ACB=150°,(1)∵点 O 是∠ ABC与∠ ACB的角平分线的交点,∴∠ OBC+∠OCB= (∠ ABC+∠ACB)=75°,∴∠ BOC=105°;(2)∵点 O2是∠ ABC与∠ ACB的三等分线的交点,∴∠ O2BC+∠ O2CB= (∠ ABC+∠ACB)=100°,∴∠ BO2C=80°;(3)∵点 O n﹣1是∠ ABC与∠ ACB的 n 等分线的交点,∴∠ O nBC+∠ O n﹣1CB= (∠ ABC+∠ACB) = ×150°,﹣1∴∠ BO n﹣1°﹣×°C=180150( 4)由( 3)得: 180°﹣×150°=60°,解得: n=5.9.已知:∠ MON=40°,OE 平分∠ MON,点 A、 B、C 分别是射线 OM、OE、ON上的动点( A、B、C 不与点 O 重合),连接 AC交射线 OE于点 D.设∠ OAC=x°.(1)如图 1,若 AB∥ON,则①∠ ABO的度数是 20°;②当∠ BAD=∠ABD时, x= 120°;当∠ BAD=∠BDA时, x= 60° .(2)如图 2,若 AB⊥ OM,则是否存在这样的 x 的值,使得△ ADB 中有两个相等的角?若存在,求出 x 的值;若不存在,说明理由.【解答】解:(1)①∵∠ MON=40°,OE平分∠ MON∴∠ AOB=∠ BON=20°∵AB∥ON∴∠ ABO=20°②∵∠ BAD=∠ABD∴∠ BAD=20°∵∠ AOB+∠ABO+∠OAB=180°∴∠OAC=120°∵∠ BAD=∠ BDA,∠ ABO=20°∴∠ BAD=80°∵∠ AOB+∠ABO+∠ OAB=180°∴∠ OAC=60°故答案为:① 20②120,60(2)①当点 D 在线段 OB 上时,若∠ BAD=∠ABD,则 x=20若∠ BAD=∠BDA,则 x=35若∠ ADB=∠ABD,则 x=50②当点 D 在射线 BE上时,因为∠ ABE=110°,且三角形的内角和为 180°,所以只有∠ BAD=∠BDA,此时 x=125.综上可知,存在这样的x 的值,使得△ ADB 中有两个相等的角,且 x=20、 35、50、125.10.如图,已△ ABC中, AB=AC=12厘米, BC=9厘米,点 D 为 AB 的中点.(1)如果点 P 在线段 BC上以 3 厘米 / 秒的速度由 B 向 C 点运动,同时点 Q 在线段 CA上由 C点向 A 点运动.①若点 Q 的运动速度与点 P 的运动速度相等, 1 秒钟时,△ BPD与△ CQP是否全等,请说明;②点 Q 的运动速度与点 P 的运动速度不相等,当点 Q 的运动速度为多少时,能够使△ BPD≌△ CPQ?( 2)若点 Q 以②的运动速度从点 C 出发点 P 以原来运动速度从点 B 同时出发,都逆时针沿 ABC的三边运动,求多长时间点 P 与点 Q 第一次在△ ABC的哪条边上相遇?【解答】解:(1)①∵ t=1(秒),∴BP=CQ=3(厘米)∵AB=12,D 为AB 中点,∴ BD=6(厘米)又∵ PC=BC﹣ BP=9﹣ 3=6(厘米)∴ PC=BD∵AB=AC,∴∠ B=∠ C,在△ BPD与△ CQP中,,∴△ BPD≌△ CQP(SAS),②∵ V P≠V Q,∴BP≠CQ,又∵∠ B=∠C,要使△ BPD≌△ CPQ,只能 BP=CP=4.,5∵△ BPD≌△ CPQ,∴CQ=BD=6.∴点 P 的运动时间 t= ==1.5(秒),此时 V Q= ==4(厘米 / 秒).(2)因为 V Q>V P,只能是点 Q 追上点 P,即点 Q 比点 P 多走 AB+AC的路程设经过 x 秒后 P 与 Q 第一次相遇,依题意得 4x=3x+2×12,解得 x=24(秒)此时 P 运动了 24×3=72(厘米)又∵△ ABC的周长为 33 厘米, 72=33×2+6,∴点 P、Q 在 BC边上相遇,即经过了 24 秒,点 P 与点 Q 第一次在 BC边上相遇.11.已知:如图, AB⊥ AC,且 AB=AC,AD=AE, BD=CE.求证: AD⊥AE.【解答】证明:在△ ABD和△ ACE中,,∴△ ABD≌△ ACE(SSS),∴∠ EAC=∠DAB,∴∠ DAE=∠BAC,∵AB⊥AC,∴∠ BAC=90°,∴∠ DAE=90°,即 AD⊥AE.12.如图,已知△ ACB和△ DCE均为等腰直角三角形,∠ACB=∠ DCE=90°,点 A、D、E 在同一直线上, CM⊥ AE于点 M ,连结 BE.( 1)请判断线段 AD、BE之间的数量关系,并说明理由;(2)求证: AM=CM+BE.【解答】(1)解:结论: AD=BE,理由如下:∵△ ACB和△ DCE均为等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,CD=CE,∠ ACB﹣∠ DCB=∠ DCE﹣∠DCB,即∠ ACD=∠BCE,在 ACD和△ BCE中,∴△ ACD≌△ BCE,∴AD=BE.(2)证明:∵△ DCE为等腰直角三角形,∠ DCE=90°,∴∠ CDM=45°,∵ CM⊥ AE,∴∠ DCM=45°,∴∠ CDM=∠ DCM=45°,∴ CM=DM,∵ AM=AD+DM,AD=BE,∴ AM=CM+BE.13.如图①②,点 E、F 分别是线段 AB、线段 CD的中点,过点 E 作 AB 的垂线,过点F 作 CD 的垂线,两垂线交于点 G,连接 AG、BG、CG、DG,且∠ AGD=∠ BGC.(1)线段 AD 和线段 BC有怎样的数量关系?请说明理由;(2)当 DG⊥GC时,试判断直线 AD 和直线 BC的位置关系,并说明理由.【解答】解:(1)AD=BC.理由:∵ GF垂直平分 DC,∴GD=GC同理, GA=GB,在△ ADG和△ BCG中,,∴△ ADG≌△ BCG(SAS),∴AD=BC;(2) AD⊥BC.理由:延长 AD,与 CG相交于点 O、与 BC的延长线相交于点Q.∵△ ADG≌△ BCG,∴∠ ADG=∠BCG,则∠ GDO=∠QCO,∴∠ QDC+∠QCD=∠ DQC+∠DCG+∠QCG=∠ QDC+∠GDQ+∠DCG=∠ CDG+∠DCG,∵DG⊥ GC,∴∠ QDC+∠QCD=∠ CDG+∠DCG=90°,∴∠ Q=90°,∴AD⊥BC.14.如图,已知△ ABC中,∠B=∠ C,AB=8厘米,BC=6厘米,点 D 为 AB 的中点.如果点 P 在线段 BC上以每秒 2 厘米的速度由 B 点向 C 点运动,同时,点 Q 在线段CA上以每秒a 厘米的速度由C 点向A 点运动,设运动时间为t(秒)(0≤t≤3).(1)用的代数式表示 PC的长度;(2)若点 P、Q 的运动速度相等,经过 1 秒后,△ BPD与△ CQP是否全等,请说明理由.【解答】解:(1)BP=2t,则 PC=BC﹣ BP=6﹣ 2t;(2)△ BPD和△ CQP全等理由:∵ t=1 秒,∴ BP=CQ=2×1=2 厘米,∴ CP=BC﹣BP=6﹣2=4 厘米,∵AB=8厘米,点D 为AB 的中点,∴ BD=4厘米.∴ PC=BD,在△ BPD和△ CQP中,,∴△ BPD≌△ CQP(SAS).15.如图①,AB=4cm,AC⊥ AB,BD⊥ AB,AC=BD=3cm.点 P 在线段 AB上以 1cm/s的速度由 A 向 B 运动.同时点 Q 在线段 BD 上由点 B 向点 D 运动.它们运动的时间为 t s.(1)若点 Q 的运动速度与点 P 的运动速度相等,当 t=1 时,△ ACP与△ BPQ是否全等?请说明理由,并判断此时线段 PC和线段 PQ 的位置关系.(2)如图②,将“AC⊥AB,BD⊥AB”改为“∠ CAB=∠ DBA”,其他条件不变,设点Q 运动速度为 x cm/s,是否存在实数 x,使得△ ACP与△ BPQ全等?若存在,求出相应 x,t 的值;若不存在,说明理由.【解答】解:(1)当 t=1 时, AP=BQ=1,BP=AC=3,又∵∠ A=∠B=90°,在△ ACP和△ BPQ中,,∴△ ACP≌△ BPQ(SAS).∴∠ ACP=∠BPQ,∴∠ APC+∠BPQ=∠APC+∠ACP=90°.∴∠ CPQ=90°,即线段 PC与线段 PQ垂直.(2)①若△ACP≌△BPQ,则 AC=BP, AP=BQ,,解得;②若△ ACP≌△ BQP,则 AC=BQ,AP=BP,,解得;综上所述,存在或使得△ ACP与△ BPQ全等.16.如图,已知 AB⊥ AD,AC⊥AE,AB=AD,AC=AE, BC分别交 AD、DE 于点G、F,AC与 DE交于点 H.求证:(1)△ ABC≌△ ADE;(2)BC⊥ DE.【解答】证明:(1)∵ AB⊥AD,AC⊥ AE,∴∠ DAB=∠CAE=90°,∴∠ DAB+∠DAC=∠CAE+∠DAC,即∠ BAC=∠DAE,在△ ABC和△ ADE中,∴△ ABC≌△ ADE(SAS).(2)∵△ ABC≌△ ADE,∴∠ E=∠C,∵∠ E+∠AHE=90°,∠ AHE=∠DHC,∴∠ C+∠ DHC=90°,∴BC⊥DE.17.如图,在△ ABC中,∠BAD=∠DAC,DF⊥ AB,DM⊥AC,AF=10cm,AC=14cm,动点 E 以 2cm/s 的速度从 A 点向 F 点运动,动点G 以 1cm/s 的速度从 C 点向 A点运动,当一个点到达终点时,另一个点随之停止运动,设运动时间为t .(1)求证:在运动过程中,不管 t 取何值,都有 S△AED=2S△DGC.(2)当 t 取何值时,△ DFE与△ DMG 全等.【解答】(1)证明:∵∠ BAD=∠DAC, DF⊥AB,DM⊥AC,∴DF=DM,∵S△AED= AE?DF,S△DGC= CG?DM,∴= ,∵点 E 以 2cm/s 的速度从 A 点向 F 点运动,动点 G 以 1cm/s 的速度从 C 点向 A 点运动,∴=2,即=2,∴在运动过程中,不管取何值,都有S△AED=2S△DGC.(2)解:设时间为t 时,△DFE与△DMG 全等,则EF=MG,①当 M 在线段 CG的延长线上时,∵点 E 以 2cm/s 的速度从 A 点向 F 点运动,动点 G 以 1cm/s 的速度从 C 点向 A点运动,∴EF=AF﹣AE=10﹣2t,MG=AC﹣ CG﹣AM=4﹣t,即 10﹣ 2t=4﹣t ,解得: t=6,当t=6 时,MG=﹣2,所以舍去;②当 M 在线段 CG上时,∵点 E 以 2cm/s 的速度从 A 点向 F 点运动,动点 G 以 1cm/s 的速度从 C 点向 A 点运动,∴EF=AF﹣AE=10﹣2t,MG=AM﹣(AC﹣CG)=t﹣4,即 10﹣ 2t=t ﹣4,解得: t=,综上所述当 t=时,△ DFE与△ DMG全等.18.如图所示,在Rt△ ABC和 Rt△ADE中, AB=AC,AD=AE,CE与 BD 相交于点M, BD 与 AC交于点 N,试猜想 BD与 CE有何关系?说明理由.【解答】解:结论: BD=CE且 BD⊥CE.理由:∵△ ABC和△ ADE是直角三角形,∴∠ BAC=∠DAE=90°,∴∠ BAC+∠CAD=∠DAE+∠CAD,即∠ BAD=∠CAE,在△ BAD与△ CAE中,,∴△ BAD≌△ CAE(SAS),∴BD=CE,∠ ABD=∠ACE,∵∠ABD+∠ANB+∠BAC=180°,∠ACE+∠ CNM+∠NMC=180°,∠ANB=∠CNM,∴∠ NMC=∠ BAC=90°,∴BD⊥CE,即 BD=CE且 BD⊥CE.19.如图,长方形 ABCD中, AB=10cm,BC=8cm,点 E 是 CD的中点,动点 P 从A 点出发,以每秒2cm 的速度沿 A→ B→ C→ E 运动,最终到达点E.若点 P 运动的时间为 x 秒,那么当 x 为何值时,△ APE的面积等于 32cm2?(提醒:同学们,要分类讨论哦!)【解答】解:①如图 1,当 P 在 AB上时,∵△ APE的面积等于 32,∴×2x?8=32,解得: x=4;②当 P 在 BC上时,∵△ APE的面积等于 32,∴S矩形ABCD﹣S△CPE﹣S△ADE﹣S△ABP=32,∴10×8﹣( 10+8﹣ 2x)× 5﹣× 8× 5﹣×10×( 2x﹣ 10)=32,解得: x=6.6;③当 P 在 CE上时,∴(10+8+5﹣2x)× 8=32,解得: x=7.5<(10+8+5),此时不符合;答: 4 或 6.6.20.如图,在 Rt△ABC中,∠ C=90°,∠ A=60°,AB=12cm,若点 P 从点 B 出发以 2cm/s 的速度向点 A 运动,点 Q 从点 A 出发以 1cm/s 的速度向点 C 运动,设P、 Q 分别从点 B、A 同时出发,运动的时间为 ts.(1)用含 t 的式子表示线段 AP、 AQ 的长;(2)当 t 为何值时,△ APQ是以 PQ为底边的等腰三角形?(3)当 t 为何值时, PQ∥BC?【解答】解:(1)∵ Rt△ ABC中,∠ C=90°,∠ A=60°,∴∠ B=30°.又∵ AB=12cm,∴AC=6cm,BP=2t, AP=AB﹣ BP=12﹣2t, AQ=t;(2)∵△APQ是以PQ 为底的等腰三角形,∴ AP=AQ,即 12﹣2t=t,∴当 t=4 时,△ APQ是以 PQ为底边的等腰三角形;(3)当 PQ⊥AC时, PQ∥BC.∵∠ C=90°,∠ A=60°,∴∠ B=30°∵PQ∥BC,∴∠ QPA=30°∴ AQ= AP,∴t= (12﹣ 2t ),解得 t=3,∴当 t=3 时, PQ∥BC.21.如图,在△ ABC中, AB=AC=2,∠ B=∠ C=40°,点 D 在线段 BC上运动( D 不与 B、C 重合),连接 AD,作∠ ADE=40°,DE交线段 AC 于 E.( 1)当∠ BDA=115°时,∠ EDC= 25 °,∠ DEC= 115 °;点 D 从 B 向 C 运动时,∠ BDA逐渐变小(填“大”或“小”);(2)当 DC等于多少时,△ ABD≌△ DCE,请说明理由;(3)在点 D 的运动过程中,△ ADE 的形状可以是等腰三角形吗?若可以,请直接写出∠ BDA的度数.若不可以,请说明理由.【解答】解:(1)∠ EDC=180°﹣∠ ADB﹣∠ ADE=180°﹣115°﹣40°=25°,∠DEC=180°﹣∠ EDC﹣∠ C=180°﹣40°﹣25°=115°,小;(2)当 DC=2时,△ ABD≌△ DCE,理由:∵∠ C=40°,∴∠DEC+∠EDC=140°,又∵∠ ADE=40°,∴∠ADB+∠EDC=140°,∴∠ ADB=∠DEC,又∵ AB=DC=2,∴△ ABD≌△ DCE(AAS),(3)当∠ BDA的度数为 110°或 80°时,△ ADE的形状是等腰三角形,理由:∵∠ BDA=110°时,∴∠ ADC=70°,∵∠ C=40°,∴∠ DAC=70°,∠ AED=∠C+∠EDC=30°+40°=70°,∴∠ DAC=∠AED,∴△ ADE的形状是等腰三角形;∵当∠ BDA的度数为 80°时,∴∠ ADC=100°,∵∠ C=40°,∴∠ DAC=40°,∴∠ DAC=∠ADE,∴△ ADE的形状是等腰三角形.22.如图,在△ ABC中, AB=AC=2,∠ B=∠ C=50°,点 D 在线段 BC上运动(点 D不与 B、C 重合),连接 AD,作∠ ADE=50°,DE交线段 AC于 E.(1)在点 D 的运动过程中,△ ADE 的形状可以是等腰三角形吗?若可以,请求出∠ BDA的度数;若不可以,请说明理由.(2)若 DC=2,求证:△ ABD≌△ DCE.【解答】解:(1)∵∠ B=∠C=50°,∠ ADE=50°,∴∠ BDA+∠EDC=∠CED+∠EDC=130°,∴∠ BDA=∠CED,∵点 D 在线段 BC上运动(点 D 不与 B、C 重合),∴AD≠AE,ⅰ)如图所示,当EA=ED时,∠ EAD=∠ADE=50°,∴∠ BDA=∠CED=50°+50°=100°;ⅱ)如图所示,当DA=DE时,∠ EAD=∠AED=65°,∴∠ BDA=∠CED=65°+50°=115°;(2)由( 1)可得∠ BDA=∠CED,又∵∠ B=∠C=50°,AB=DC=2,∴在△ ABD和△ DCE中,,∴△ ABD≌△ DCE(AAS).23.如图,长方形纸片 ABCD,点 E、 F 分别在边 AB、CD 上,连接 EF,将∠ BEF 对折,点 B 落在直线 EF上的 B′处,得到折痕 EC,将点 A 落在直线 EF上的点 A′处,得到折痕 EN.(1)若∠ BEB′=110,°则∠ BEC= 55 °,∠AEN= 35 °,∠ BEC+∠ AEN= 90 °.(2)若∠ BEB′=m,°则( 1)中∠ BEC+∠AEN的值是否改变?请说明你的理由.(3)将∠ ECF对折,点 E 刚好落在 F 处,且折痕与 B′C重合,求∠ DNA′.【解答】解:(1)由折叠的性质可得,∠BEC=∠B'EC,∠ AEN=∠A'EN,∵∠ BEB′=110,°∴∠ AEA'=180°﹣ 110°=70°,∴∠ BEC=∠B'EC= ∠BEB′=55,°∠ AEN=∠A'EN= ∠AEA'=35°.∴∠ BEC+∠AEN=55°+35°=90°;( 2)不变.由折叠的性质可得:∠ BEC=∠B'EC,∠ AEN=∠ A'EN,∵∠ BEB′=m,°∴∠ AEA'=180°﹣ m°,可得∠ BEC=∠B'EC= ∠ BEB′=m°,∠ AEN=∠A'EN= ∠ AEA'= (180°﹣ m°),∴∠ BEC+∠AEN= m°+(180°﹣m°)=90°,故∠ BEC+∠AEN 的值不变;(3)由折叠的性质可得:∠ B'CF=∠B'CE,∠ B'CE=∠BCE,∴∠ B'CF=∠B'CE=∠BCE= × 90°=30°,在 Rt△BCE中,∵∠ BEC与∠ BCE互余,∴∠ BEC=90°﹣∠ BCE=90°﹣30°=60°,∴∠ B'EC=∠BEC=60°,∴∠ AEA'=180°﹣∠ BEC﹣∠ B'EC=180°﹣60°﹣ 60°=60°,∴∠ AEN= ∠AEA'=30°,∴∠ ANE=90°﹣∠ AEN=90°﹣30°=60°,∴∠ ANE=∠A'NE=60°,∴∠ DNA'=180°﹣∠ ANE﹣∠ A'NE=180°﹣60°﹣60°=60°.故答案为: 55, 35,90.24.如图,△ ABC中,AB=AC=18cm,BC=16cm,点 D 是 AB 的中点.有一点 E 在BC上从点 B 向点 C 运动,速度为 2cm/s,同时有一点 F 在 AC 上从点 C 向点 A 运动,其中一点停止运动另一点也随之停止运动.问当点 F 的运动速度是多少时,△DBE和△ EFC全等?【解答】解:设点 F 运动的时间为ts,点 F 运动的速度为 xcm/s,则 BE=2t,EC=16﹣2t,CF=tx,∵点 D 为 AB 的中点,∴BD= AB=9,∵∠ B=∠ C,∴当 CE=BD,CF=BE时,可根据“SAS判”断△ DBE≌△ ECF,即 16﹣2t=9,tx=2t,解得 t=3.5,x=2;当 CE=BE, CF=BD时,可根据“SAS判”断△ DBE≌△ EFC,即 16﹣ 2t=2t, tx=9,解得 t=4,x=2.25,综上所述,当点 F 的运动速度是 2 厘米 / 秒或 2.25 厘米 / 秒时,△ DBE和△ EFC 全等.25.已知:如图,△ ABC是边长 3cm 的等边三角形,动点 P、 Q 同时从 A、B 两点出发,分别沿 AB、 BC方向匀速移动,它们的速度都是 1cm/s,当点 P 到达点B 时, P、Q 两点停止运动,设点P 的运动时间为t(s).(1)当动点 P、Q 同时运动 2s 时,则 BP= 1 cm, BQ= 2 cm.(2)当动点 P、Q 同时运动 t(s)时,分别用含有 t 的式子表示; BP= ( 3﹣ t)cm,BQ= t cm.( 3)当 t 为何值时,△ PBQ是直角三角形?【解答】解:(1)BQ=1×2=2(cm),BP=3﹣2=1(cm),故答案为 1,2;(2) BP=(3﹣t) cm,BQ=tcm,故答案为( 3﹣t),t ;(3)根据题意,得 AP=t cm, BQ=tcm.在△ ABC中, AB=BC=3 cm,∠B=60°,∴ BP=(3﹣t) cm.在△ PBQ中, BP=(3﹣t )cm.,BQ=tcm,若△ PBQ是直角三角形,则只有∠ BQP=90°或∠ BPQ=90°①当∠ BQP=90°时, BQ= BP,即 t= (3﹣t ),解得 t=1;②当∠ BPQ=90°时, BP= BQ,即 3﹣t= t .解得 t=2.答:当 t=1s 或 t=2s 时,△ PBQ是直角三角形.26.如图,△ ABC中, AB=BC=AC=12cm,现有两点 M、N 分别从点 A、点 B 同时出发,沿三角形的边运动,已知点M 的速度为 1cm/s,点 N 的速度为 2cm/s.当点 N 第一次到达 B 点时, M、N 同时停止运动.( 1)点 M 、 N 运动几秒后, M、N 两点重合?( 2)点 M 、 N 运动几秒后,可得到等边三角形△ AMN?( 3)当点 M 、N 在 BC边上运动时,能否得到以 MN 为底边的等腰三角形 AMN?如存在,请求出此时 M 、N 运动的时间.第 42 页(共 44 页)。
人教版七年级下册数学期末复习压轴题解答题模拟综合测试题本文为人教版七年级下册数学期末复习压轴题解答题模拟综合测试题答案。
一、填空题1. 两个交集为5,4,两个集合的并集为5,6,8,10,则两个集合分别是{5, 4}和{5, 6, 8, 10}。
2. 用分数1/4表示,所表示的是4个人中的1个。
3. 最简单的做法是将称量的硬币从1到7编号,先称量1,2,3和4,5,6,如果两边重量相等,则假币在7号;如果不相等,则根据结果再次进行称量即可确定假币的位置。
4. 随机抓取一个纸条的概率为2/10=1/5。
二、选择题1. A;2. C;3. B;4. D;5. B;6. C;7. D;8. A;9. B;10. C;11. B;12. D;13. C;14. A;15. C;16. D;17. A;18. C;19. B;20. D;三、解答题1. 解:直接利用定义进行计算,10! = 10 × 9 × 8 × 7 × 6 × 5 × 4 × 3 ×2 × 1 = 3,628,800。
2. 解:根据题目条件,设甲车每小时行驶x公里,则乙车每小时行驶(x+4)公里,所以根据题目给出的条件方程,我们可以得到方程2x+(x+4) = 85,解方程可得x=27,所以甲车的速度为27km/h,乙车的速度为31km/h。
3. 解:假设她小学阶段相遇的次数为x次。
那么初中阶段相遇的次数就是(x+2)次。
根据题目条件得到方程(x+x+2) × 165 = 1980,解得x=4。
所以小学阶段相遇的次数为4次,初中阶段相遇的次数为4+2=6次。
四、应用题1. 解:首先将长度单位统一,1米=100厘米,所以6.3米=630厘米;然后根据比例关系列方程x/563=630/100,解得x=356.49,所以应该进一步减短至356厘米。
专题13旋转、中心对称、图形全等压轴题四种模型全攻略【考点导航】目录【典型例题】 (1)【考点一根据旋转的性质求解】 (1)【考点二找旋转中心、旋转角、对应点】 (2)【考点三根据中心对称的性质求面积、长度、角度】 (3)【考点四利用全等图形求正方形网格中角度之和】 (5)【过关检测】 (6)【典型例题】【考点一根据旋转的性质求解】例题:(2023·浙江宁波·一模)如图,将ABC 绕点A 逆时针旋转80︒得到AB C ''△.若50BAC ∠=︒,则CAB '∠的度数为()A .30︒B .40︒C .50︒D .80︒【变式训练】1.(23-24九年级下·重庆巴南·阶段练习)如图,Rt ABC △中,90A ∠=︒,ABC α∠=,将Rt ABC △绕点C 逆时针旋转得到Rt EDC ,点A 的对应点E 正好落在BC 上,连接BD ,则CBD ∠的度数是()A .1452α︒+B .90α︒-C .45α︒+D .1902α︒-2.(23-24八年级下·辽宁沈阳·阶段练习)已知:在等腰ABC 中,AB AC AB BC =>,.把ABC 绕点C 逆时针旋转得到DEC ,其中点D ,E 分别是点A ,B 的对应点.(1)如图1,若40A ∠=︒,CB 平分ACD ∠,求ACE ∠的度数;(2)在ABC 旋转过程中,若直线BC DE ,相交于点F .①如图2,当点D ,E 在直线BC 右侧时,若45CFE ∠=︒,求ACE ∠的度数;②设()0CFE αα∠=≠,请直接用含α的式子表示ACE ∠.【考点二找旋转中心、旋转角、对应点】例题:(23-24七年级下·全国·课后作业)如图,将ABD △经旋转后到达ACE △的位置.问:(1)旋转中心是哪一点?(2)如果M 是边AB 的中点,那么经过上述旋转后,点M 转到了什么位置?【变式训练】1.(22-23九年级上·北京海淀·期中)已知:如图,ABC 绕某点按一定方向旋转一定角度后得到111A B C ,点A ,B ,C 分别对应点1A ,1B ,1C .(1)根据点1A 和1B 的位置确定旋转中心是点.(2)请在图中画出111A B C .2.(21-22九年级上·河北邢台·期末)如图,ABC 是边长为2的等边三角形,ABP 旋转后能与CBP 重合,(1)写出旋转中心;(2)求旋转角.【考点三根据中心对称的性质求面积、长度、角度】例题:(23-24八年级下·全国·课后作业)如图,已知ABC 和EFD △关于点O 成中心对称.(1)分别找出图中的对称点和对称线段;(2)ABC 和EFD △是否全等.【变式训练】1.(22-23九年级上·河北邢台·期末)如图,ABC 和DEF 关于点O 成中心对称.(1)找出它们的对称中心O ;(2)若6,5,4AB AC BC ===,求DEF 的周长;2.(21-22九年级上·湖北武汉·期中)如图,在9×9网格中的每个小正方形边长都为1个单位长度,我们把每个小正方形的顶点称为格点,A ,B ,C ,D ,E ,F ,P 均为格点,请按要求仅用一把无刻度的直尺作图.(1)将DEF 绕点P 逆时针旋转90°得到111D E F V ,请画出111D E F V ;(2)将ABC 绕点O 旋转180°得到2BAD ,请画出点O 和2BAD ;(3)将格点线段EF 平移至格点线段MN (点E ,F 的对应点分别为M ,N ),使得MN 平分四边形2ACBD 的面积,请画出线段MN ;(4)在线段2AD 上找一点M ,使得2AOM BOD ∠=∠,请画出点M .【考点四利用全等图形求正方形网格中角度之和】例题:(22-23八年级上·重庆潼南·期中)如图,在33⨯的正方形网格中标出了1∠和2∠,则12∠+∠=度.【变式训练】1.(22-23八年级上·湖北武汉·期中)在如图所示的3×3正方形网格中,123∠+∠+∠=度.2.(22-23八年级上·江苏无锡·阶段练习)如图,已知方格纸中是4个相同的小正方形,则∠1+∠2的度数为.【过关检测】一、单选题1.(2024八年级下·全国·专题练习)窗花是贴在窗子或窗户上的剪纸,是中国古老的传统民间艺术之一,下列窗花作品是中心对称图形的有()A .1个B .2个C .3个D .4个2.(23-24八年级下·陕西西安·阶段练习)如图,将ABC 绕点A 逆时针旋转至ADE V ,此时DE 边过点C ,AD BC ⊥于点O ,若25DAC ∠=︒,则BAD ∠的度数为().A .65︒B .60︒C .50︒D .30︒3.(2024八年级下·全国·专题练习)如图是由基本图案多边形ABCDE 旋转而成的,它的旋转角为()A .30︒B .45︒C .60︒D .120︒4.(21-22八年级上·江苏南京·期中)如图,在四边形ABCD 与A B C D ''''中,AB A B B B BC B C '''''=∠=∠=,,.下列条件中:①A A AD A D '''∠=∠=,;②A A CD C D '''∠=∠=,;③A A D D ''∠=∠∠=∠,;④AD A D CD C D ''''==,.添加上述条件中的其中一个,可使四边形ABCD ≌四边形A B C D '''',上述条件中符合要求的有()A .①②③B .①③④C .①④D .①②③④二、填空题5.(2024·江西南昌·一模)如图,将ABC 绕着点A 逆时针旋转得到ADE V ,使得点B 的对应点D 落在边AC 的延长线上,若12AB =,7AE =,则线段CD 的长为.6.(23-24九年级上·河南商丘·期中)如图,△ABC 和△DEC 关于点C 成中心对称,若2AC =,4AB =,90BAC ∠=︒,则AE 的长是.7.(2024·江苏盐城·一模)如图,在ABC 中,90ACB ∠=︒,20BAC =︒∠,将ABC 绕点C 顺时针旋转90︒得到A B C ''△,点B 的对应点B '在边AC 上(不与点A C 、重合),则AA B ∠''的度数为.8.(22-23九年级上·江西上饶·期末)如图,两张完全重合在一起的正三角形硬纸片,点O 是它们的中心,若按住下面的纸片不动,将上面的纸片绕O 顺时针旋转,设旋转角为()0360αα︒<<︒,当a =时,两张硬纸片所构成的图形为中心对称图形.三、解答题9.(23-24七年级下·全国·课后作业)如图,将ABC 逆时针旋转一定角度后得到DEC ,点D 恰好为BC 的中点.(1)若130ACE ∠=︒,指出旋转中心,并求出旋转角度;(2)若6BC =,求AC 的长.10.(23-24九年级上·河北保定·期中)如图,D 是ABC 边BC 的中点,连接AD 并延长到点E ,使DE AD =,连接BE .(1)ADC △和成中心对称;(2)已知ADC △的面积为4,则ABE 的面积是.11.(23-24七年级下·全国·课后作业)如图,正五边形ABCDE 的边长等于2,分别以正五边形各边为直径,向外作半圆.(1)这个图形________(填“是”或“不是”)旋转对称图形,若是,则旋转中心是点________,最小旋转角为________;(2)求阴影部分的周长和面积(用含π的式子表示).12.(2024七年级下·全国·专题练习)如图①,直角三角形DEF 与直角三角形ABC 的斜边在同一直线上,90ACB E ∠=∠=︒,36EDF ∠=︒,40ABC ∠=︒,CD 平分ACB ∠,将DEF 绕点D 按逆时针方向旋转,如图②,记ADF ∠为()0180αα︒<<︒,在旋转过程中:(1)当α∠=__________°时,DE BC ∥,当α∠=___________°时,DE BC ⊥;(2)如图③,当顶点C 在DEF 的内部时,边DF 、DE 分别交BC 、AC 的延长线于点M 、N .①求出此时α∠的度数范围;②1∠与2∠的度数和是否变化?若不变,请直接写出1∠与2∠的度数和;若变化,请说明理由.。
全等三角形压轴题组卷一.选择题(共5小题)1.如图所示,是瑞安部分街道示意图,AB=BC=AC,CD=CE=DE,A,B,C,D,E,F,G,H为“公交汽车”停靠点,甲公共汽车从A站出发,按照A,H,G,D,E,C,F的顺序到达F站,乙公共汽车从B站出发,按照B,F,H,E,D,C,G的顺序到达G站,如果甲、乙两车分别从A、B两站同时出发,各站耽误的时间相同,两辆车速度也一样,则( )A.甲车先到达指定站B.乙车先到达指定站C.同时到达指定站D.无法确定2.如图,在△ABC中,∠A=52°,∠ABC与∠ACB的角平分线交于D1,∠ABD1与∠ACD1的角平分线交于点D2,依此类推,∠ABD4与∠ACD4的角平分线交于点D5,则∠BD5C的度数是( )A.56°B.60°C.68°D.94°3.如图在△ABD和△ACE都是等边三角形,则△ADC≌△ABE的根据是( )A.SSSB.SASC.ASAD.AAS4.如图1,已知AB=AC,D为∠BAC的角平分线上面一点,连接BD,CD;如图2,已知AB=AC,D、E为∠BAC的角平分线上面两点,连接BD,CD,BE,CE;如图3,已知AB=AC,D、E、F为∠BAC的角平分线上面三点,连接BD,CD,BE,CE,BF,CF;…,依次规律,第n个图形中有全等三角形的对数是( )A.n B.2n-1 C. D.3(n+1)5.如图,D为∠BAC的外角平分线上一点并且满足BD=CD,∠DBC=∠DCB,过D作DE⊥AC于E,DF⊥AB交BA的延长线于F,则下列结论:①△CDE≌△BDF;②CE=AB+AE;③∠BDC=∠BAC;④∠DAF=∠CBD.其中正确的结论有( )A.1个B.2个C.3个D.4个二.填空题(共3小题)6.如图,AC=BC,∠ACB=90°,AE平分∠BAC,BF⊥AE,交AC延长线于F,且垂足为E,则下列结论:①AD=BF;②BF=AF;③AC+CD=AB,④AB=BF;⑤AD=2BE.其中正确的结论有.第6题第7题第8题7.如图,已知△ABC和△BDE都是等边三角形.则下列结论:①AE=CD.②BF=BG.③HB⊥FG.④∠AHC=60°.⑤△BFG是等边三角形,其中正确的有.8.如图,∠AOB内一点P,P1、P2分别是点P关于OA、OB的对称点,P1P2交OA于M,交OB于N,若P1P2=5cm,则△PMN的周长是.三.解答题(共22小题)9.已知:如图,△ABC中,∠ABC=45°,DH垂直平分BC交AB于点D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,试说明一下论断正确的理由:(1).∠BDC=90°;(2).BF=AC;(3).CE=12 BF.10.已知,D是△ABC中AB上一点,并且∠BDC=90°,DH垂直平分BC交BC于点H.(1).试说明:BD=DC;(2).如图2,若BE⊥AC于E,与CD相交于点F,试说明:△BDF≌△ACD;(3).在(1)、(2)条件下,若BE平分∠ABC,试说明:BF=2CE.11.数学问题:如图1,在△ABC中,∠A=α,∠ABC、∠ACB的n等分线分别交于点O1、O2、…、O n-1,求∠BO n-1C的度数?问题探究:我们从较为简单的情形入手.探究一:如图2,在△ABC中,∠A=α,∠ABC、∠ACB的角平分线分别交于点O1,求∠BO1C的度数?解:由题意可得∠O1BC=12∠ABC,∠O1CB=12∠ACB∴∠O1BC+∠O1CB=12(∠ABC+∠ACB)=12(180°-α)∴∠BO1C=180°-12(180°-α)=90°+12α.探究二:如图3,∠A=α,∠ABC、∠ACB三等分线分别交于点O1、O2,求∠BO2C的度数.解:由题意可得∠O2BC=23∠ABC,∠O2CB=23∠ACB∴∠O2BC+∠O2CB=23(∠ABC+∠ACB)=23(180°﹣α)∴∠BO2C=180°-23(180°-α)=60°+23α.探究三:如图4,∠A=α,∠ABC、∠ACB四等分线分别交于点O1、O2、O3,求∠BO3C 的度数.(仿照上述方法,写出探究过程)问题解决:如图1,在△ABC中,∠A=α,∠ABC、∠ACB的n等分线分别交于点O1、O2、…、O n-1,求∠BO n﹣1C的度数.问题拓广:如图2,在△ABC中,∠A=α,∠ABC、∠ACB的角平分线交于点O1,两条角平分线构成一角∠BO1C.得到∠BO1C=90°+12α.探究四:如图3,∠A=α,∠ABC、∠ACB三等分线分别交于点O1、O2,四条等分线构成两个角∠BO1C,∠BO2C,则∠BO2C+∠BO1C= .探究五:如图4,∠A=α,∠ABC、∠ACB四等分线分别交于点O1、O2、O3,六条等分线构成三个角∠BO3C,∠BO2C,∠BO1C,则∠BO3C+∠BO2C+∠BO1C= .探究六:如图1,在△ABC中,∠A=α,∠ABC、∠ACB的n等分线分别交于点O1、O2、…、O n-1,(2n-2))等分线构成(n-1)个角∠BO n-1C…∠BO3C,∠BO2C,∠BO1C,则∠BO n-1C+…∠BO3C+∠BO2C+∠BO1C= .12.如图,在Rt△ABC中,AB=AC=4cm,∠BAC=90°,O为边BC上一点,OA=OB=OC,点M、N分别在边AB、AC上运动,在运动过程中始终保持AN=BM.(1).在运动过程中,OM与ON相等吗?请说明理由.(2).在运动过程中,OM与ON垂直吗?请说明理由.(3).在运动过程中,四边形AMON的面积是否发生变化?若变化,请说明理由;若不变化,求出四边形AMON的面积.13.如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(D不与B、C 重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1).当∠BDA=115°时,∠EDC= °,∠DEC= °;点D从B向C运动时,∠BDA 逐渐变 (填“大”或“小”);(2).当DC等于多少时,△ABD≌△DCE,请说明理由;(3).在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数.若不可以,请说明理由.14.如图,等腰直角三角形ABC,AB=BC,直角顶点B在直线PQ上,且AD⊥PQ于D,CE⊥PQ于E.(1).△ADB与△BEC全等吗?为什么?(2).图1中,AD、DE、CE有怎样的等量关系?说明理由.(3).将直线PQ绕点B旋转到如图2所示的位置,其他条件不变,那么AD、DE、CE有怎样的等量关系?说明理由.15.如图,在等腰△ABC中,CB=CA,延长AB至点D,使DB=CB,连接CD,以CD为边作等腰△CDE,使CE=CD,∠ECD=∠BCA,连接BE交CD于点M.(1).BE=AD吗?请说明理由;(2).若∠ACB=40°,求∠DBE的度数.16.阅读理解基本性质:三角形中线等分三角形的面积.如图,AD是△ABC边BC上的中线,则S△ABD=S△ACD=12S△ABC理由:∵AD是△ABC边BC上的中线∴BD=CD又∵S△ABD=12BD×AH;S△ACD=12CD×AH∴S△ABD=S△ACD=12S△ABC∴三角形中线等分三角形的面积基本应用:(1).如图1,延长△ABC的边BC到点D,使CD=BC,连接DA.则S△ACD与S△ABC的数量关系为:;(2).如图2,延长△ABC的边BC到点D,使CD=BC,延长△ABC的边CA到点E,使AE=AC,连接DE.则S△CDE与S△ABC的数量关系为: (请说明理由);(3).在图2的基础上延长AB到点F,使FB=AB,连接FD,FE,得到△DEF(如图3).则S△EFD与S△ABC的数量关系为:;拓展应用:如图4,点D是△ABC的边BC上任意一点,点E,F分别是线段AD,CE的中点,且△ABC的面积为18cm2,则△BEF的面积为 cm2.17.如图,在△ABC中,DE,FG分别是AB,AC的垂直平分线,连接AE,AF,已知∠BAC=80°,请运用所学知识,确定∠EAF的度数.18.问题发现:如图①,△ABC与△ADE是等边三角形,且点B,D,E在同一直线上,连接CE,求∠BEC的度数,并确定线段BD与CE的数量关系.拓展探究:如图②,△ABC与△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,且点B,D,E在同一直线上,AF⊥BE于F,连接CE,求∠BEC的度数,并确定线段AF,BF,CE之间的数量关系.19.如图,△ABC中,AB=AC,∠A=90°,D为BC中点,E、F分别为AB、AC上的点,且满足AE=CF.求证:DE=DF.20.如图,在△ABC中,∠ACB=90°,AC=BC,延长AB至点D,使DB=AB,连接CD,以CD为直角边作等腰三角形CDE,其中∠DCE=90°,连接BE.(1).求证:△ACD≌△BCE;(2).若AB=3cm,则BE= cm.(3).BE与AD有何位置关系?请说明理由.21.如图,AP∥BC,∠PAB的平分线与∠CBA的平分线相交于E,CE的延长线交AP于D.(1).求证:AB=AD+BC;(2).若BE=3,AE=4,求四边形ABCD的面积.22.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.(1).如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2).若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?23.如图,△ABC是等边三角形,点E、F分别在边AB和AC上,且AE=BF.(1).求证:△ABE≌△BCF;(2).若∠ABE=20°,求∠ACF的度数;(3).猜测∠BOC的度数并证明你的猜想.24.在△ABC中,AB=AC,点D是直线BC上一点(不与点B、点C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1).如图1,当点D在线段BC上时,如果∠BAC=90°,则∠BCE= ;(2).如图2,当点D在线段BC上时,如果∠BAC=50°,请你求出∠BCE的度数.(写出求解过程);(3).探索发现,设∠BAC=α,∠BCE=β.①如图2,当点D在线段BC上移动,则α,β之间有怎样的数量关系?请直接写出你的结论:.②当点D在线段BC的延长线上时,则α,β之间有怎样的数量关系?请在图3中画出完整图形并请直接写出你的结论:.25.以点A为顶点作等腰Rt△ABC,等腰Rt△ADE,其中∠BAC=∠DAE=90°,如图1所示放置,使得一直角边重合,连接BD、CE.(1).试判断BD、CE的数量关系,并说明理由;(2).延长BD交CE于点F试求∠BFC的度数;(3).把两个等腰直角三角形按如图2放置,(1)、(2)中的结论是否仍成立?请说明理由.26.已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合),以AD为边做正方形ADEF,连接CF.(1).如图1,当点D在线段BC上时,求证CF+CD=BC.(2).如图2,当点D在线段BC得延长线上时,其他条件不变,请直接写出CF,BC,CD三条线段之间的关系.(3).如图3,当点D在线段BC得反向延长线上时,且点A,F分别在直线BC的两侧,若BC=17,CF=7,求DF的长.27.如图,四边形ABCD中,AD∥BC,CE⊥AB,△BDC为等腰直角三角形,∠BDC=90°,BD=CD;CE与BD交于F,连AF,M为BC中点,连接DM交CE于N.请说明:(1).△ABD≌△NCD;(2).CF=AB+AF.28.以点A为顶点作两个等腰直角三角形(△ABC,△ADE),如图1所示放置,使得一直角边重合,连接BD,CE.(1).说明BD=CE;(2).延长BD,交CE于点F,求∠BFC的度数;(3).若如图2放置,上面的结论还成立吗?请简单说明理由.29.如图,已知△ABC中,AB=AC=6cm,∠B=∠C,BC=4cm,点D为AB的中点.(1).如果点P在线段BC上以1cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2).若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,则经过后,点P与点Q第一次在△ABC的边上相遇?(在横线上直接写出答案,不必书写解题过程)30.如图1,已知长方形ABCD,AB=CD=4,BC=AD=6,∠A=∠B=∠C=∠D=90°,E为CD边的中点,P为长方形ABCD边上的动点,动点P从A出发,沿着A→B→C→E运动到E点停止,设点P经过的路程为x,△APE的面积为y.(1).求当x=5时,对应y的值;(2).如图2、3、4,求出当点P分别在边AB、BC和CE上时,y与x之间的关系式;(3).如备用图,当P在线段BC上运动时,是否存在点P使得△APE的周长最小?若存在,求出此时∠PAD的度数;若不存在,请说明理由.。
北师大版七年级下全等三角形压轴题分类解析汇报七年级下三角形综合题归类一、双等边三角形模型1.(1)如图7点O是线段AD的中点分别以 AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD连结AC和BD相交于点E连结BC.求∠AEB的大小;(2)如图8OAB 固定不动保持OCD 的形状和大小不变将OCD绕着点O旋转( OAB和OCD不能重叠)求∠AEB的大小.CB2.已知:点C为线段AB上一点△ACM,△CBN都是等C边三角形且AN、BM相交于O.E①求证:AN=BM②求∠AOB的度数。
OA③若AN、MC相交于点PBM、NC交于点Q求证:图D(湘潭·中考题)MOBEO APQ∥AB。
图N同类变式:已知如图①所示在△ABC和PQ△ADE中ABACADAEACBBACDAE且点BAD在一条直线上连接BECDMN分别为BECD的中点.(1)求证:①BECD;②AMAN;(2)在图①的基础上将△ADE绕点A按顺时针方向旋转180 其他条件不变得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立.CH.4.如图四边形ABCD和四边形AEFG均为正方形连接BG与DE 相交于点(1)证明:△ABG≌△;CNADENED(2)试猜想BA的度数并说明理由;BHDMDMBAE图①图②3)将图中正方形ABCD绕点A逆时针旋转(0°<BAE<180°)设△ABE的面积S1△ADG的面积为S2判断S1与S2的大小关系并给予证明.5.已知:如图△ABC是等边三角形过AB边上的点DD作DG∥BC交AC于点G在GD的延长线上取点E使DEGADB连接AECD.(1)求证:△AGE≌△DAC;HCF E2)过点E作EF∥DC交BC于点F请你连接AF并判断△BAEF 是怎样的三角形试证明你的结论.二、垂直模型(该模型在基础题和综合题中均为重点考察内容)考点1:利用垂直证明角相等如图△ABC中∠ACB=90°AC=BCAE是BC边上的中线过C作CF⊥AE垂足为F过B作BD⊥BC交CF的延长线于D.求证:(1)AE=CD;(2)若AC=12cm求BD的长.考点2:利用角相等证明垂直已知BECF是△ABC的高且BP=ACCQ=AB试确定AP与AQ的数量关系和位置关系如图在等腰Rt△ABC中∠ACB=90°D为BC的中点DE⊥AB垂足为E过点B作BF∥AC交DE的延长线于点F连接CF.求证:CD=BF;求证:AD⊥CF;连接AF试判断△ACF的形状.拓展巩固:如图9所示△ABC是等腰直角三角形∠ACB=90°AD是BC边上的中线过C作AD的垂线交AB于点E交AD于点F求证:∠ADC=∠BDE.C(提示:对比此题的条件和上面那题的条件对比此题的图形和上题的图像有F D什么区别和联系?)A BE3.如图1已知正方形ABCD的边CD在正方形DEFG的边DE上连接AE图GC.(1)试猜想AE与GC有怎样的位置关系并证明你的结论;(2)将正方形DEFG绕点D按顺时针方向旋转使E点落在BC 边上如图2连接AE和GC.你认为(1)中的结论是否还成立?若成立给出证明;若不成立请说明理由.4.如图1ABC的边BC在直线l上ACBC,且ACBC,EFP的边FP也在直线l上边EF与边AC重合且EFFP(1)在图1中请你通过观察、测量猜想并写出AB与AP所满足的数量关系和位置关系;(2)将EFP沿直线l向左平移到图2的位置时EP交AC于点Q,连接AP,BQ.猜想并写出BQ与AP所满足的数量关系和位置关系请证明你的猜想;(3)将EFP沿直线l向左平移到图3的位置时EP的延长线交AC的延长线于点Q,连结AP,BQ,你认为(2)中所猜想的BQ与AP的数量关系和位置关系和位置关系还成立吗?若成立给出证明;若不成立请说明理由 .A(E)EA三、等腰三角形(中考重难点之一)EQABC(F)PlFBFPCBPCll考点1:等腰三角形性质的应用(1)(2)1.如图ABC中ABACBAC90D是BC中点EDFDED与AB(3Q交于EFD与AC交于F.求证:BEAFAECF.两个全等的含3060角的三角板ADE和三角板ABC如图所示放置E,A,C三点在一条直线上连结BD取BD的中点M连结ME,MC.试判断EMC的形状并说明理由.压轴题拓展:(三线合一性质的应用)已知Rt ABC中ACBC C 90D为AB边的中点EDF 90 EDF绕D点旋转它的两边分别交AC、CB(或它们的延长线)于 E、F.1当EDF绕D点旋转到DE AC于E时(如图1)易证SDEFSCEF SABC.当2EDF绕D点旋转到DE和AC不垂直时在图2和图3这两种情况下上述结论是否成立若成立请给予证明;若不成立SDEFSCEFSABC 又有怎样的数量关系?请写出你的猜想不需证明.提示:此题为上面题目的综合应用思路与第一题相似。
数学初中几何压轴题几何是初中数学中的一个重要部分,包含了很多基本的几何概念和定理。
在初中数学中,几何部分出现在很多考试、测试和作业中,因此学好几何题非常重要。
以下是一些常见的几何压轴题及其相关参考内容。
1. 直角三角形问题直角三角形是最基本的几何概念之一,它的特点是其中一个角为直角(即90度)。
常见的直角三角形问题包括求已知两边长度的直角三角形的斜边长度,以及求已知一边长度和另一个角度的直角三角形的另外两边长度。
解决这类问题需要运用勾股定理和正弦、余弦、正切等三角函数的概念。
参考内容:勾股定理,即“直角三角形斜边的平方等于两直角边的平方和”;正弦定理,即“在任意三角形中,任意一边的对边与此边的正弦值成比例”;余弦定理,即“在任意三角形中,任意一边的对边与此边的余弦值成比例”;正切定理,即“在任意三角形中,一个角的正切等于对边与邻边的比值”。
2. 平行线与三角形问题平行线与三角形的关系是几何学中非常重要的一部分。
在平行线与三角形问题中,常见的题型包括平行线截割比、平行线角度找关系等。
解决这类问题需要运用平行线的性质和使用一些平行线的定理,如同位角定理、内错角定理等。
参考内容:平行线的性质,如同位角相等、内错角相等等;同位角定理,即“两条平行线与交线相交形成的同位角相等”;内错角定理,即“两条平行线与交线形成的内角与交线的夹角互补”。
3. 相似三角形与比例的应用相似三角形和比例的关系也常常出现在几何题中。
在这类问题中,常见的题型包括相似三角形的边长比、面积比等。
解决这类问题需要运用相似三角形的性质和比例的概念。
参考内容:相似三角形的性质,如对应的角度相等、对应的边成比例等;相似三角形的边长比定理,即“两个相似三角形的任意两条对应边的比例相等”;相似三角形的面积比定理,即“两个相似三角形的面积比等于对应边长的平方的比”。
4. 图形的面积和周长问题图形的面积和周长是几何学中经常涉及的问题。
常见的题型包括矩形、正方形、三角形、圆形等图形的面积和周长的计算。
期末复习3: 图形的全等的压轴题
班级 姓名
例1、如图,正方形ABCD 的边长是3cm ,一个边长为1cm 的小正方形沿着正方形ABCD 的边AB ⇒BC ⇒CD ⇒DA ⇒AB 连续地翻转,那么这个小正方形第一次回到起始位置时,它的方向是( )
第1题 第2题
例2、如图,等边△ABC 的边长为1cm ,D 、E 分别是AB 、AC 上的点,将△ADE 沿直线DE 折叠,点A 落在点A ′处,且点A ′在△ABC 外部,则阴影部分图形的周长为 cm . 例3、如图,△ABC 和△ADC 都是边长相等的等边三角形,点E 、F 同时分别从点B 、A 出发,(1)各自沿BA 、AD 方向运动到点A 、D 停止,运动的速度相同,连接EC 、FC . ①在点E 、F 运动过程中∠ECF 的大小是否随之变化?说明理由;
②在点E 、F 运动过程中,以点A 、E 、C 、F 为顶点的四边形的面积变化了吗?说明理由; ③连接EF ,在图中找出和∠ACE 相等的所有角,并说明理由.
(2)当点E ,F 继续运动到BA 和AD
的延长线上时,
①四边形ACFE 的面积变么?(直接写出结论)
②△
CEF
是什么三角形?(直接写出结论)
E D C B A F
例4、已知∠AOB=90°,在∠AOB的平分线OM上有一点C,将一个三角板的直角顶点与C重合,它的两条直角边分别与OA、OB(或它们的反向延长线)相交于点D、E.(1)当三角板绕点C旋转到CD与OA垂直时(如图1),CD和CE相等么,说明理由;(2)当三角板绕点C旋转到CD与OA不垂直时,在图2、图3这两种情况下,上述结论是否还成立?若成立,请分别说明理由;
例5、★如图,△ABC中,∠ACB=90°,AC=6,BC=8.点P从A点出发沿A-C-B路径向终点运动,终点为B点;点Q从B点出发沿B-C-A路径向终点运动,终点为A点.点P 和Q分别以1和3的运动速度同时开始运动,两点都要到相应的终点时才能停止运动,在某时刻,分别过P和Q作PE⊥l于E,QF⊥l于F.问:点P运动多少时间时,△PEC与QFC
全等?请说明理由.
期末复习三第十一章图形的全等课外作业
1、用两个全等的等边三角形△ABC和△ACD拼成四边形ABCD.把一个含60°角的三角尺与这个四边形叠合,使三角尺的60°角的顶点与点A重合,两边分别与AB,AC重合.将三角尺绕点A按逆时针方向旋转.
(1)当三角尺的两边分别与四边形的两边BC,CD相交于点E,F时,(如图1),通过观察或测量BE,CF的长度,你能得出什么结论并证明你的结论;
(2)当三角尺的两边分别与四边形的两边BC,CD的延长线相交于点E,F时(如图2),你在(1)中得到的结论还成立吗?简要说明理由.
2、如图,已知∠AOB=120°,OM平分∠AOB,将等边三角形的一个顶点P放在射线OM 上,两边分别与OA、OB(或其所在直线)交于点C、D.
(1)如图①,当三角形绕点P旋转到PC⊥OA时,证明:PC=PD.
(2)如图②,当三角形绕点P旋转到PC与OA不垂直时,线段PC和PD相等吗?请说明理由.
(3)如图③,当三角形绕点P旋转到PC与OA所在直线相交的位置时,线段PC和PD 相等吗?请说明理由
3、如图,已知长方形ABCD中,AD=6cm,AB=4cm,点E为AD的中点.若点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BC上由点B向点C运动.(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△AEP与△BPQ是否全等?请说明理由,并判断此时线段PE和线段PQ的位置关系;
(2)若点Q的运动速度与点P的运动速度相等,运动时间为t秒,设△PEQ的面积为Scm2,请用t的代数式表示S;
(3)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使
△AEP与△BPQ全等?。