直线与圆方程知识总结
- 格式:docx
- 大小:47.45 KB
- 文档页数:8
直线与圆的方程1、直线的斜率公式:1212x x y y k --=,2、直线方程的五种形式:(1)点斜式:()11x x k y y -=-;(2)斜截式:b kx y +=; (3)两点式:121121x x x x y y y y --=--;(4)截距式:1=+b ya x ; (5)一般式:0(,Ax By C A B ++=不同时为0). 3、两条直线的位置关系:(1)平行(不重合)的条件:212121,//b b k k l l ≠=⇔且;21//l l ⇔212121C C B B A A ≠=. (2)两条直线垂直的条件:12121-=⋅⇔⊥k k l l ;21l l ⊥02121=+⇔B B A A .(4)直线1l 与直线2l 夹角)900(︒≤<︒θ (6)点到直线的距离公式:2200BA C By Ax d +++=.4、圆的方程(1)圆的标准方程: 222)()(r b y a x =-+-.(2)一般方程: 022=++++F Ey Dx y x①当0422F E D -+时,方程表示一个圆,其中圆心⎪⎭⎫⎝⎛--2,2E D C ,半径2422FE D r -+=.②当0422=-+F E D 时,方程表示一个点⎪⎭⎫⎝⎛--2,2E D .③当0422F E D -+时,方程无图形 (3)圆的参数方程:⎩⎨⎧+=+=θθsin cos r b y r a x (θ为参数,几何意义是圆的圆心角).5、直线和圆的位置关系判断方法一: 判断方法二: 基础题练习:1、若直线过点(3,-3)且倾斜角为30°,则该直线的方程为2、若1(23)(32)2A B C m ⎛⎫-- ⎪⎝⎭,,,,,三点共线,则m 的值为 3、已知点()1,2A ,()3,1B ,则线段AB 的垂直平分线的方程是 4、过点A(2,3)且与直线2x + y -5 = 0垂直的直线方程为 。
高一数学直线和圆的方程知识点总结一、直线方程1.直线的倾斜角:一条直线向上的方向与x轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与x轴平行或重合时,其倾斜角为0,故直线倾斜角的范围是[0,180)注:①当倾斜角等于90时,直线l垂直于x轴,它的斜率不存在.②每一条直线都存在惟一的倾斜角,除与x轴垂直的直线不存在斜率外,其余每一条直线都有惟一的斜率,并且当直线的斜率一定时,其倾斜角也对应确定.2.直线方程的几种形式:点斜式、截距式、两点式、斜切式.二、圆的方程1.⑴曲线与方程:在直角坐标系中,如果某曲线C上的与一个二元方程f(x,y)=0的实数建立了如下关系:①曲线上的点的坐标都是这个方程的解.②以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫做曲线方程;这条曲线叫做方程的曲线(图形).⑵曲线和方程的关系,实质上是曲线上任一点M(x,y)其坐标与方程f(x,y)=0的一种关系,曲线上任一点(x,y)是方程f(x,y)=0的解;反过来,满足方程f(x,y)=0的解所对应的点是曲线上的点.注:如果曲线C的方程是f(x,y)=0,那么点P0(x0,y)线C上的充要条件是f(x0,y0)=01.提出反证法:一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立.2.证明基本步骤:假设原命题的结论不成立→从假设出发,经推理论证得到矛盾→矛盾的原因是假设不成立,从而原命题的结论成立3.应用关键:在正确的推理下得出矛盾(与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实矛盾等).4.方法实质:反证法是利用互为逆否的命题具有等价性来进行证明的,即由一个命题与其逆否命题同真假,通过证明一个命题的逆否命题的正确,从而肯定原命题真实.看过"高一数学直线和圆的方程知识点总结"的还看了:。
高中直线与圆的方程知识点总结直线与圆的方程在高中数学里就像两颗璀璨的星星,各自闪耀又相互关联。
咱先说说直线的方程吧。
直线在平面直角坐标系里那可是千变万化的。
最常见的斜截式方程y = kx + b,这里的k就像是直线的“坡度”,如果k 越大,直线就越陡峭,就好像爬山的时候,坡度大的路爬起来更费劲呢。
b 呢,是直线在y轴上的截距,就好比是直线这个小火车在y轴这个站台的起始位置。
那要是k = 0呢,直线就变成了一马平川的平地,也就是平行于x 轴的直线了。
还有点斜式方程,知道直线上一点的坐标和它的斜率就能确定这条直线的方程,这就像你知道一个人的起点和他前进的方向,就能知道他的路线一样。
再看看直线之间的关系。
平行的直线啊,它们的斜率相等,就像两条同向行驶而且速度一样的铁轨,永远不会相交。
而垂直的直线呢,它们斜率的乘积是 - 1,这就好比是两个互相制约的力量,一个向上一个向下,形成了一种完美的平衡关系。
说到圆的方程,标准方程(x - a)²+(y - b)² = r²,这里的(a,b)就是圆心的坐标,圆心就像圆这个大家庭的家长,r就是半径,半径就像是这个家庭的活动范围,在这个范围内的点都属于这个圆家族。
圆是一个特别对称的图形,关于圆心对称,不管从哪个方向看,都是那么圆润、和谐。
直线和圆的位置关系可有趣了。
有相交、相切和相离三种情况。
相交的时候,直线就像一个调皮的小孩,闯进了圆的领地,和圆有两个交点,就像小孩在圆里踩了两个脚印。
相切的时候呢,直线就像是圆的守护神,刚好和圆亲密接触于一点,这一点就是切点,多像两个好朋友轻轻地碰了一下手。
相离就比较惨了,直线和圆就像两个互不相干的陌生人,远远地分开,谁也不挨着谁。
那怎么判断直线和圆的位置关系呢?我们可以用圆心到直线的距离d和半径r来比较。
如果d < r,那就是相交,就好像一个小蚂蚁距离一个圆形的蛋糕中心的距离小于蛋糕的半径,那这个小蚂蚁肯定是在蛋糕上啦。
直线与圆方程知识总结一、坐标法 1.点和坐标成立了平面直角坐标系后,坐标平面上的点和一对有序实数(x ,y)成立了一一对应的关系.2.两点间的距离公式设两点的坐标为P 1(x 1,y 1),P 2(x 2,y 2),那么两点间的距离特殊位置的两点间的距离,可用坐标差的绝对值表示: (1)当x 1=x 2时(两点在y 轴上或两点连线平行于y 轴),那么 |P 1P 2|=|y 2-y 1|(2)当y 1=y 2时(两点在x 轴上或两点连线平行于x 轴),那么 |P 1P 2|=|x 2-x 1|3.线段的定比分点(2)公式:分P 1(x 1,y 2)和P 2(x 2,y 2)连线所成的比为λ的分点坐标是公式二、直线1.直线的倾斜角和斜率(1)当直线和x 轴相交时,把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角,叫做这条直线的倾斜角.当直线和x 轴平行线重合时,规定直线的倾斜角为0. 因此直线的倾斜角α∈[0,π).(2)倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜∴当k ≥0时,α=arctank .(锐角) 当k <0时,α=π-arctank .(钝角)(3)斜率公式:通过两点P 1(x 1,y 1)、P 2(x 2,y 2)的直线的斜率为2.直线的方程(1)点斜式 已知直线过点(x 0,y 0),斜率为k ,那么其方程为:y -y 0=k(x -x 0) (2)斜截式 已知直线在y 轴上的截距为b ,斜率为k ,那么其方程为:y=kx +b (3)两点式 已知直线过两点(x 1,y 1)和(x 2,y 2),那么其方程为:(4)截距式 已知直线在x ,y 轴上截距别离为a 、b ,那么其方程为:(5)参数式 已知直线过点P(x 0,y 0),它的一个方向向量是(a ,b),v(cos α,sin α)(α为倾斜角)时,那么其参数式方程为|P P |=12()()x x y y 212212-+-(1)P P P P P PP P P PP P P P =P P P P 12121212112定义:设点把有向线段分成和两部分,那么有向线段和的数量的比,就是点分所成的比,通常用λ表示,即λ,点叫做分线段为定比λ的定比分点.PPP 2当点内分时,λ>;当点外分时,λ<.P P P 0P P P 01212x x x y y y =++=++⎧⎨⎪⎪⎩⎪⎪-1212111λλλλλ≠()特殊情况,当是的中点时,λ,得线段的中点坐标P P P =1P P 1212x x x y y y =+=+⎧⎨⎪⎪⎩⎪⎪121222率,直线的斜率常用表示,即αα≠π.k k =tan ()2k =y (x x )212--y x x 121≠y y y y x x x ----121121=x (x x )12≠x a yb +=1则其参数式方程为为参数,特别地,当方向向量为x x at y y bt =+=+⎧⎨⎩00(t )x x t y y t =+=+⎧⎨⎩00cos sin αα为参数(t )这时,的几何意义是,→→t tv =p p |t|=|p p|=|p p|000(6)一样式 Ax +By +C=0 (A 、B 不同时为0). (7)特殊的直线方程①垂直于x 轴且截距为a 的直线方程是x=a ,y 轴的方程是x=0. ②垂直于y 轴且截距为b 的直线方程是y=b ,x 轴的方程是y=0.3.两条直线的位置关系(1)平行:当直线l 1和l 2有斜截式方程时,k 1=k 2且b 1≠b 2.(2)重合:当l 1和l 2有斜截式方程时,k 1=k 2且b 1=b 2,当l 1和l 2是(3)相交:当l 1,l 2是斜截式方程时,k 1≠k 24.点P(x 0,y 0)与直线l :Ax +By +C=0的位置关系:5.两条平行直线l 1∶Ax +By +C 1=0,l 2∶Ax +By +C 2=0间6.直线系方程具有某一一起属性的一类直线的集合称为直线系,它的方程的特点是除含坐标变量x ,y 之外,还含有特定的系数(也称参变量).确信一条直线需要两个独立的条件,在求直线方程的进程中往往先依照一个条件写出所求直线所在的直线系方程,然后再依照另一个条件来确信其中的参变量.(1)共点直线系方程:通过两直线l 1∶A 1x +B 1y +C 1=0,l 2∶A 2x +B 2y +C 2=0的交点的直线系方程为:A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0,其中λ是待定的系数.在那个方程中,不管λ取什么实数,都得不到A 2x +B 2y +C 2=0,因此它不表示l 2.当λ=0时,即得A 1x +B 1y +C 1=0,现在表示l 1.(2)平行直线系方程:直线y=kx +b 中当斜率k 必然而b 变更时,表示平行直线系方程.与直线Ax +By +C=0平行的直线系方程是Ax +By +λ=0(λ≠C),λ是参变量.(3)垂直直线系方程:与直线Ax +By +C=0(A ≠0,B ≠0)垂直的直线系方程是:Bx -Ay +λ=0.若是在求直线方程的问题中,有一个已知条件,另一个条件待按时,可选用直线系方程来求解.7.简单的线性计划(1)二元一次不等式Ax +By +C >0(或<0)表示直线Ax +By +C=0某一侧所有点组成的平面区域. 二元一次不等式组所表示的平面区域是各个不等式所表示的平面点集的交集,即各个不等式所表示的平面区域的公共部份.(2)线性计划:求线性目标函数在线性约束条件下的最大值或最小值的问题,称为线性计划问题,例如,z=ax +by ,其中x ,y 知足以下条件:求z 的最大值和最小值,这确实是线性计划问题,不等式组(*)是一组对变量x 、y 的线性约束条件,z=ax +by 叫做线性目标函数.知足线性约束条件的解(x ,y)叫做可行解,由所有可行解组成的集合叫做可行域,使线性目标函数取得最大值和最小值的可行解叫做最优解.三、曲线和方程 1.概念当和是一般式方程时,≠l l 12A A B B CC 121212=一般方程时,A A B B CC 121212==当,是一般式方程时,≠l l 12A A B B 2212①斜交交点:的解到角:到的角θ≠夹角公式:和夹角θ≠A x B y C A x B y C k k k k k k k k k k k k 11122222112121221121200110110++=++=⎧⎨⎩=-++=-++⎧⎨⎪⎪⎪⎪⎩⎪⎪⎪⎪l l l l 1tan ()tan ||()②垂直当和有叙截式方程时,-当和是一般式方程时,+l l l l 1212121212k k =1A AB B =0⎧⎨⎩Ax By C =0P ()Ax By C 0P 0000++在直线上点的坐标满足直线方程++≠在直线外.⇔⇔l l 点,到直线的距离为:P(x y )d =|Ax +By +C|0000l A B 22+的距离为:.d =|C C |12-+A B22A xB yC 0(0)A x B y C 0(0)A x B x C 0(0)111222nn n ++≥或≤++≥或≤……++≥或≤⎧⎨⎪⎪⎩⎪⎪(*)在选定的直角坐标系下,若是某曲线C 上的点与一个二元方程f(x ,y)=0的实数解成立了如下关系:(1)曲线C 上的点的坐标都是方程f(x ,y)=0的解(一点不杂); (2)以方程f(x ,y)=0的解为坐标的点都是曲线C 上的点(一点不漏).这时称方程f(x ,y)=0为曲线C 的方程;曲线C 为方程f(x ,y)=0的曲线(图形).设P={具有某种性质(或适合某种条件)的点},Q={(x ,y)|f(x ,y)=0},假设设点M 的坐标为(x 0,y 0),那么用集合的观点,上述概念中的两条能够表述为:以上两条还能够转化为它们的等价命题(逆否命题):为曲线C 的方程;曲线C 为方程f(x ,y)=0的曲线(图形). 2.曲线方程的两个大体问题(1)由曲线(图形)求方程的步骤:①建系,设点:成立适当的坐标系,用变数对(x ,y)表示曲线上任意一点M 的坐标; ②立式:写出适合条件p 的点M 的集合p={M|p(M)}; ③代换:用坐标表示条件p(M),列出方程f(x ,y)=0; ④化简:化方程f(x ,y)=0为最简形式; ⑤证明:以方程的解为坐标的点都是曲线上的点.上述方式简称“五步法”,在步骤④中假设化简进程是同解变形进程;或最简方程的解集与原始方程的解集相同,那么步骤⑤可省略不写,因为现在所求得的最简方程确实是所求曲线的方程.(2)由方程画曲线(图形)的步骤:①讨论曲线的对称性(关于x 轴、y 轴和原点); ②求截距:③讨论曲线的范围; ④列表、描点、画线.3.交点求两曲线的交点,确实是解这两条曲线方程组成的方程组.4.曲线系方程过两曲线f 1(x ,y)=0和f 2(x ,y)=0的交点的曲线系方程是f 1(x ,y)+λf 2(x ,y)=0(λ∈R).四、圆 1.圆的概念平面内与定点距离等于定长的点的集合(轨迹)叫圆.2.圆的方程(1)标准方程(x -a)2+(y -b)2=r 2.(a ,b)为圆心,r 为半径. 专门地:当圆心为(0,0)时,方程为x 2+y 2=r 2(2)一样方程x 2+y 2+Dx +Ey +F=0当D 2+E 2-4F <0时,方程无实数解,无轨迹.(3)参数方程 以(a ,b)为圆心,以r 为半径的圆的参数方程为专门地,以(0,0)为圆心,以r 为半径的圆的参数方程为3.点与圆的位置关系(1)M P (x y )Q P Q (2)(x y )Q M P Q P 0000∈,∈,即;,∈∈,即.⇒⊆⇒⊆(1)(x y )Q M P (2)M P (x y )Q 0000,;,.∉⇒∉∉⇒∉显然,当且仅当且,即时,才能称方程,P Q Q P P =Q f(x y)=0⊆⊆方程组,的解是曲线与轴交点的坐标;f x y y ()==⎧⎨⎩00x 方程组,的解是曲线与轴交点的坐标;f x y x ()==⎧⎨⎩00y 配方()()x D y E D E F+++=+-22442222当+->时,方程表示以-,-为圆心,以为半径的圆;D E 4F 0()22D ED E F 2212422+-当+-时,方程表示点-,-D E 4F =0()22D E 22x a r y b r =+=+⎧⎨⎩cos sin θθθ为参数()x r y r ==⎧⎨⎩cos sin θθθ为参数()设点到圆心的距离为d ,圆的半径为r .4.直线与圆的位置关系设直线l :Ax +By +C=0和圆C :(x -a)2+(y -b)2=r 2,那么5.求圆的切线方式(1)已知圆x 2+y 2+Dx +Ey +F=0.①假设已知切点(x 0,y 0)在圆上,那么切线只有一条,其方程是过两个切点的切点弦方程.②假设已知切线过圆外一点(x 0,y 0),那么设切线方程为y -y 0=k(x -x 0),再利用相切条件求k ,这时必有两条切线,注意不要漏掉平行于y 轴的切线.③假设已知切线斜率为k ,那么设切线方程为y=kx +b ,再利用相切条件求b ,这时必有两条切线.(2)已知圆x 2+y 2=r 2.①假设已知切点P 0(x 0,y 0)在圆上,那么该圆过P 0点的切线方程为x 0x +y 0y=r 2.6.圆与圆的位置关系已知两圆圆心别离为O 1、O 2,半径别离为r 1、r 2,那么(1)d r (2)d =r (3)d r 点在圆外>;点在圆上;点在圆内<.⇔⇔⇔d Aa Bb C A B=+++||22.(1)0d r (2)=0d =r (3)0d r 相交直线与圆的方程组成的方程组有两解,△>或<;相切直线与圆的方程组成的方程组有一组解,△或;相离直线与圆的方程组成的方程组无解,△<或>.⇔⇔⇔x x y y D x x E y y F 0000220=+++++=()().当,在圆外时,++++表示(x y )x x y y D(x )E(y )F =0000000++x y22②已知圆的切线的斜率为,圆的切线方程为±.k y =kx r k 2+1(1)|O O |=r r (2)|O O |=|r r |(3)|r r ||O O |r r 12121212121212两圆外切+;两圆内切-;两圆相交-<<+.⇔⇔⇔。
直线与圆的方程知识点总结归纳直线与圆是几何学中常见的两类曲线,在数学中有各自的方程表示形式。
在本文中,我们将总结和归纳直线与圆的方程的相关知识点。
让我们一起深入了解吧。
直线的方程在平面几何中,直线可以用多种形式表示。
其中,最常见的是点斜式和一般式。
1. 点斜式方程点斜式方程是直线的一种表示方法,使用直线上的一个点和直线的斜率来表示。
设直线上一点为(x₁, y₁),斜率为m。
那么点斜式方程可以表示为:y - y₁ = m(x - x₁)2. 一般式方程一般式方程是直线的另一种表示方法,使用直线的斜率和截距来表示。
设直线的斜率为m,截距为c。
那么一般式方程可以表示为:ax + by + c = 0其中,a和b为不同时为0的任意实数。
圆的方程在平面几何中,圆可以用多种形式表示。
常见的表示形式有标准式和一般式。
1. 标准式方程标准式方程是圆的一种表示方法,使用圆心的坐标和半径长度来表示。
设圆心坐标为(h, k),半径长度为r。
那么标准式方程可以表示为:(x - h)² + (y - k)² = r²2. 一般式方程一般式方程是圆的另一种表示方法,使用圆心的坐标和半径长度来表示。
设圆心坐标为(h, k),半径长度为r。
那么一般式方程可以表示为:x² + y² + Dx + Ey + F = 0其中,D、E和F为不全为0的任意实数。
直线与圆的关系直线与圆的关系可以通过它们的方程来判断。
根据方程的形式,可以得出直线与圆的以下关系:1. 直线与圆相切如果直线的方程与圆的方程仅有一个交点,那么直线与圆相切。
2. 直线与圆相离如果直线的方程与圆的方程没有交点,那么直线与圆相离。
3. 直线与圆相交如果直线的方程与圆的方程有两个交点,那么直线与圆相交。
4. 直线为圆的切线如果直线的方程与圆的方程有一个交点,并且该交点为圆上的点,那么直线为圆的切线。
总结本文总结归纳了直线与圆的方程的相关知识点。
高三直线和圆知识点直线和圆是高中数学中的重要知识点,对于理解几何图形的性质和解题能力起着至关重要的作用。
本文将为大家详细介绍高三直线和圆的相关知识。
一、直线的定义和性质直线是由无数个点按照同一方向延伸而成的图形。
直线的特点是无限延伸,并且上面的任意两点都可以用直线段相连接。
直线的性质有以下几点:1. 直线上的任意两点可以确定一条直线。
2. 直线上的任意一点,都在直线上。
二、圆的定义和性质圆是由平面上与某一点的距离相等的所有点组成的图形。
这个距离称为圆的半径,通常用字母r表示。
圆心是与所有这些点距离相等的点。
直径是通过圆心的两个点,并且是圆的最长的一条线段,长度等于半径的两倍。
圆的性质有以下几点:1. 圆上所有点到圆心的距离都相等。
2. 圆的直径是圆的最长直线段,且等于半径的两倍。
3. 圆的周长公式为C=2πr,其中C表示周长,r表示半径。
4. 圆的面积公式为A=πr²,其中A表示面积,r表示半径。
三、直线和圆的关系直线和圆是几何图形中经常会出现的组合。
它们之间的关系有以下几种情况:1. 直线与圆的位置关系:a) 直线与圆相切:直线与圆只有一个交点,此时交点为切点。
b) 直线与圆相离:直线与圆没有交点。
c) 直线与圆相交:直线与圆有两个交点。
2. 圆上的点到直线的距离:a) 圆心到直线的距离:圆心到直线的距离等于直线的垂直距离,即圆心到直线的距离是最短的。
b) 圆上任意一点到直线的距离:圆上的任意一点到直线的距离都等于它到直线的垂直距离。
3. 直线和圆的方程:a) 直线的方程:直线的方程可以用斜截式、一般式、点斜式等形式表示,根据题目给定的条件来确定具体的方程形式。
b) 圆的方程:圆的方程可以用标准方程和一般方程来表示,其中标准方程为(x-a)²+(y-b)²=r²,一般方程为Ax²+By²+Cx+Dy+E=0,其中a、b为圆心的坐标,r为半径。
直线与圆的方程一、直线的方程 1、倾斜角:,范围0≤α<π,x l //轴或与x 轴重合时,α=00。
2、斜率: k=tan α α与κ的关系:α=0⇔κ=0已知L 上两点P 1(x 1,y 1) 0<α<02>⇔k πP 2(x 2,y 2) α=κπ⇔2不存在`⇒k=1212x x y y -- 022<⇔<<κππ当1x =2x 时,α=900,κ不存在。
当0≥κ时,α=arctank ,κ<0时,α=π+arctank 3、截距(略)曲线过原点⇔横纵截距都为0。
几种特殊位置的直线 ①x 轴:y=0 ②y 轴:x=0 ③平行于x 轴:y=b!④平行于y 轴:x=a ⑤过原点:y=kx两个重要结论:①平面内任何一条直线的方程都是关于x 、y 的二元一次方程。
②任何一个关于x 、y 的二元一次方程都表示一条直线。
5、直线系:(1)共点直线系方程:p 0(x 0,y 0)为定值,k 为参数y-y 0=k (x-x 0) '特别:y=kx+b ,表示过(0、b )的直线系(不含y 轴)(2)平行直线系:①y=kx+b ,k 为定值,b 为参数。
②AX+BY+入=0表示与Ax+By+C=0 平行的直线系 ③BX-AY+入=0表示与AX+BY+C 垂直的直线系(3)过L 1,L 2交点的直线系A 1x+B 1y+C 1+入(A 2X+B 2Y+C 2)=0(不含L2) 6、三点共线的判定:①AC BC AB =+,②K AB =K BC ,③写出过其中两点的方程,再验证第三点在直线上。
二、两直线的位置关系(说明:当直线平行于坐标轴时,要单独考虑) 2、L 1 到L 2的角为0,则12121tan k k k k •+-=θ(121-≠k k )3、夹角:12121tan kk k k +-=θ4、点到直线距离:2200BA c By Ax d +++=(已知点(p 0(x 0,y 0),L :AX+BY+C=0)①两行平线间距离:L 1=AX+BY+C 1=0 L 2:AX+BY+C 2=0⇒2221B A c c d +-=②与AX+BY+C=0平行且距离为d 的直线方程为Ax+By+C ±022=+B A d③与AX+BY+C 1=0和AX+BY+C 2=0平行且距离相等的直线方程是0221=+++C C BY AX 5、对称:(1)点关于点对称:p(x 1,y 1)关于M (x 0,y 0)的对称)2,2(1010Y Y X X P --':(2)点关于线的对称:设p(a 、b)一般方法:如图:(思路1)设P 点关于L 的对称点为P 0(x 0,y 0) 则Kpp 0﹡K L =-1P , P 0中点满足L 方程:解出P 0(x 0,y 0)(思路2)写出过P ⊥L 的垂线方程,先求垂足,然后用中点坐标公式求出P 0(x 0,y 0)的坐标。
直线与圆的方程一、概念理解:1、倾斜角:①找α:直线向上方向、x 轴正方向; ②平行:α=0°;③范围:0°≤α<180° 。
2、斜率:①找k :k=tan α (α≠90°); ②垂直:斜率k 不存在; ③范围: 斜率 k ∈ R 。
3、斜率与坐标:12122121tan x x y y x x y y k --=--==α①构造直角三角形(数形结合); ②斜率k 值于两点先后顺序无关; ③注意下标的位置对应。
4、直线与直线的位置关系:222111:,:b x k y l b x k y l +=+= ①相交:斜率21k k ≠(前提是斜率都存在)特例----垂直时:<1> 0211=⊥k k x l 不存在,则轴,即; <2> 斜率都存在时:121-=•k k 。
②平行:<1> 斜率都存在时:2121,b b k k ≠=; <2> 斜率都不存在时:两直线都与x 轴垂直。
③重合: 斜率都存在时:2121,b b k k ==; 二、方程与公式: 1、直线的五个方程:①点斜式:)(00x x k y y -=- 将已知点k y x 与斜率),(00直接带入即可; ②斜截式:b kx y += 将已知截距k b 与斜率),0(直接带入即可;③两点式:),(2121121121y y x x x x x x y y y y ≠≠--=--其中, 将已知两点),(),,(2211y x y x 直接带入即可;④截距式:1=+bya x 将已知截距坐标),0(),0,(b a 直接带入即可; ⑤一般式:0=++C By Ax ,其中A 、B 不同时为0 用得比较多的是点斜式、斜截式与一般式。
2、求两条直线的交点坐标:直接将两直线方程联立,解方程组即可3、距离公式:①两点间距离:22122121)()(y y x x P P -+-= ②点到直线距离:2200BA C By Ax d +++=③平行直线间距离:2221BA C C d +-=4、中点、三分点坐标公式:已知两点),(),,(2211y x B y x A①AB 中点),(00y x :)2,2(2121y y x x ++ ②AB 三分点),(),,(2211t s t s :)32,32(2121y y x x ++ 靠近A 的三分点坐标 )32,32(2121y y x x ++ 靠近B 的三分点坐标 中点坐标公式,在求对称点、第四章圆与方程中,经常用到。
直线与圆的方程知识点总结一、直线的方程1.直线的定义:直线是由一切与它上面两点P、Q相应的全体点构成的集合。
在坐标平面中,直线可以由一般式方程、对称式方程、斜截式方程、截距式方程等多种形式表示。
2.一般式方程:Ax+By+C=0,其中A、B、C为常数,A和B不同时为0。
一般式方程表示直线的一种常用形式,它能够直观地反映直线的方向和位置。
3.对称式方程:(x-x1)/(x2-x1)=(y-y1)/(y2-y1),其中(x1,y1)和(x2,y2)为直线上的两个点。
对称式方程通过给出直线上两个点的坐标,从而确定直线的方程。
4. 斜截式方程:y = kx + b,其中k为直线的斜率,b为直线与y轴的截距。
斜截式方程将直线的方程转化为了y和x的关系,便于直观地理解直线的特征。
5.截距式方程:x/a+y/b=1,其中a和b为直线与x轴和y轴的截距。
截距式方程能够直观地表达直线与坐标轴的交点,并通过截距反映直线的位置和倾斜情况。
二、圆的方程1.圆的定义:圆是平面上所有到定点的距离等于定长的点的轨迹。
在坐标平面中,圆可以由一般式方程、截距式方程、标准方程等多种形式表示。
2.一般式方程:(x-a)²+(y-b)²=r²,其中(a,b)为圆心的坐标,r为半径的长度。
一般式方程为圆的一种常用形式,能够直观地描述圆的位置和形状。
3.截距式方程:(x-a)²+(y-b)²=r²,其中(a,b)为圆心的坐标,r为半径的长度。
截距式方程通过圆的截距反映了圆的位置和形状。
4.标准方程:x²+y²+Dx+Ey+F=0,其中D、E、F为常数。
通过圆的标准方程,可以直观地反映圆的位置、形状以及与坐标轴的交点等信息。
5. 圆的三角方程:由半径与直径、半径与斜边等关系来定义圆的方程,例如sinθ = r/l,其中θ为圆心角的弧度,l为圆弧的长度。
圆的三角方程常用于解决涉及圆的三角学问题。
直线的倾斜角与斜率直线的倾斜角1.倾斜角的定义(1)当直线l 与x 轴相交时,我们以x 轴为基准,x 轴正向与直线l 向上的方向之间所成的角α叫做直线l 的倾斜角.(2)当直线l 与x 轴平行或重合时,规定它的倾斜角为0°. 2.直线的倾斜角α的取值范围为0°≤α<180°.直线的斜率1.直线的斜率把一条直线的倾斜角α的正切值叫做这条直线的斜率,斜率常用小写字母k 表示,即k =tan α.2.斜率与倾斜角的对应关系α=0° 0°<α<90°α=90° 90°<α<180°3.过两点的直线的斜率公式过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2)的直线的斜率公式为k =1212x x y y --.两条直线(不重合)平行的判定两条直线垂直的判定l∥l(两直线的斜率都存在)⇔l的斜率不存在,l的斜率为0直线的方程直线的点斜式方程和斜截式方程y-y=k(x-x)y=kx+b直线的两点式方程和截距式方程直线的一般式方程关于x 和y 的二元一次方程都表示一条直线.我们把关于x ,y 的二元一次方程Ax +By +C =0(其中A ,B 不同时为0)叫做直线的一般式方程,简称一般式.直线方程的一般式与斜截式、截距式的互化直线的五种形式的方程比较两条直线的交点1.两直线的交点已知直线l 1:A 1x +B 1y +C 1=0;l 2:A 2x +B 2y +C 2=0.点A(a ,b). (1)若点A 在直线l 1:A 1x +B 1y +C 1=0上,则有A 1a +B 1b +C 1=0 .(2)若点A 是直线l 1与l 2的交点,则有⎩⎨⎧=++=++00222111C b B a A C b B a A2.两直线的位置关系两点间的距离公式公式:点P 1(x 1,y 1),P 2(x 2,y 2)间的距离公式21P P =212212)()(y y x x -+-.特别提醒:(1)此公式与两点的先后顺序无关. (2) 原点O(0,0)与任一点P (x ,y )的距离22y x OP +=.点到直线的距离、两条平行线间的距离点P (x ,y )到直线两条平行直线圆的标准方程(1)条件:圆心为C (a ,b ),半径长为r . (2)方程:(x -a )2+(y -b )2=r 2.(3)特例:圆心为坐标原点,半径长为r 的圆的方程是x 2+y 2=r 2.点与圆的位置关系点M (x 0,y 0)与圆C :(x -a )2+(y -b )2=r 2的位置关系及判断方法圆的一般方程1.圆的一般方程当D2+E2-4F>0时,二元二次方程x2+y2+Dx+Ey+F=0称为圆的一般方程.=0表示的图形2.方程x2+y2+Dx+Ey+F直线与圆的位置关系:直线Ax+By+C=0与圆(x-a)2+(y-b)2=r2的位置关系及判断直线与圆相切1.圆的切线方程的几个重要结论:(1)经过圆222r y x =+上一点P (x 0 , y 0)的圆的切线方程为200r y y x x =+。
直线和圆一.直线1.斜率与倾斜角:tan k θ=,[0,)θπ∈ (1)[0,)2πθ∈时,0k ≥;(2)2πθ=时,k 不存在;(3)(,)2πθπ∈时,0k <(4)当倾斜角从0︒增加到90︒时,斜率从0增加到+∞;当倾斜角从90︒增加到180︒时,斜率从-∞增加到0 2.直线方程(1)点斜式:)(00x x k y y -=- (2)斜截式:y kx b =+(3)两点式:121121x x x x y y y y --=--(4)截距式:1x ya b+= (5)一般式:0C =++By Ax 3.距离公式(1)点111(,)P x y ,222(,)P x y 之间的距离:22122121()()PP x x y y =-+- (2)点00(,)P x y 到直线0Ax By C ++=的距离:0022||Ax By C d A B++=+(3)平行线间的距离:10Ax By C ++=与20Ax By C ++=的距离:1222||C C d A B-=+4.位置关系(1)截距式:y kx b =+形式重合:1212 k k b b == 相交:12k k ≠ 平行:1212 k k b b =≠ 垂直:121k k ⋅=- (2)一般式:0Ax By C ++=形式重合:1221A B A B =且1221A C A C =且1212B C C B = 平行:1221A B A B =且1221A C A C ≠且1212B C C B ≠垂直:12120A A B B += 相交:1221A B A B ≠ 5.直线系1112220A x B y C A x B y C λ++++=+()表示过两直线1111:0l A x B y C ++=和2222:0l A x B y C ++=交点的所有直线方程(不含2l ) 二.圆 1.圆的方程(1)标准形式:222()()x a y b R -+-=(0R >)(2)一般式:220x y Dx Ey F ++++=(2240D E F +->)(3)参数方程:00cos sin x x r y y r θθ=+⎧⎨=+⎩(θ是参数)【注】题目中出现动点求量时,通常可采取参数方程转化为三角函数问题去解决.(4)以11(,)A x y ,22(,)B x y 为直径的圆的方程是:()()()()0A B A B x x x x y y y y --+--= 2.位置关系(1)点00(,)P x y 和圆222()()x a y b R -+-=的位置关系:当22200()()x a y b R -+-<时,点00(,)P x y 在圆222()()x a y b R -+-=内部 当22200()()x a y b R -+-=时,点00(,)P x y 在圆222()()x a y b R -+-=上 当22200()()x a y b R -+->时,点00(,)P x y 在圆222()()x a y b R -+-=外(2)直线0Ax By C ++=和圆222()()x a y b R -+-=的位置关系: 判断圆心(,)O a b 到直线0Ax By C ++=的距离22||Aa Bb C d A B++=+与半径R 的大小关系当d R <时,直线和圆相交(有两个交点); 当d R =时,直线和圆相切(有且仅有一个交点); 当d R <时,直线和圆相离(无交点); 判断直线与圆的位置关系常见的方法(1)几何法:利用圆心到直线的距离d 和圆半径r 的大小关系. (2)代数法:联立直线与圆的方程消元后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内可判断直线与圆相交.3.圆和圆的位置关系判断圆心距12d OO =与两圆半径之和12R R +,半径之差12R R -(12R R >)的大小关系 当12d R R >+时,两圆相离,有4条公切线; 当12d R R =+时,两圆外切,有3条公切线;当1212R R d R R -<<+时,两圆相交,有2条公切线; 当12d R R =-时,两圆内切,有1条公切线; 当120d R R ≤<-时,两圆内含,没有公切线; 4.当两圆相交时,两圆相交直线方程等于两圆方程相减 5.弦长公式:222l R d =-例1若圆x 2+y 2=1与直线y =kx +2没有公共点,则实数k 的取值范围是________.解析:由题意知21+k2>1,解得-3<k < 3. 答案:(-3, 3)例2已知两圆C 1:x 2+y 2-2x +10y -24=0,C 2:x 2+y 2+2x +2y -8=0,则两圆公共弦所在的直线方程是____________.解析:两圆相减即得x -2y +4=0. 答案:x -2y +4=0例3设直线x -my -1=0与圆(x -1)2+(y -2)2=4相交于A 、B 两点,且弦AB 的长为23,则实数m 的值是________.解析:由题意得,圆心(1,2)到直线x -my -1=0的距离d =4-3=1,即|1-2m -1|1+m 2=1,解得m =±33. 答案:±33例4若a ,b ,c 是直角三角形ABC 三边的长(c 为斜边),则圆C :x 2+y 2=4被直线l :ax +by +c =0所截得的弦长为________.解析:由题意可知圆C :x 2+y 2=4被直线l :ax +by +c =0所截得的弦长为24-⎝ ⎛⎭⎪⎫c a 2+b 22,由于a 2+b 2=c 2,所以所求弦长为2 3.答案:2 3例5已知⊙M :x 2+(y -2)2=1,Q 是x 轴上的动点,QA ,QB 分别切⊙M 于A ,B 两点.(1)若|AB |=423,求|MQ |及直线MQ 的方程;(2)求证:直线AB 恒过定点.解:(1)设直线MQ 交AB 于点P ,则|AP |=223,又|AM |=1,AP ⊥MQ ,AM ⊥AQ ,得|MP |=12-89=13,又∵|MQ |=|MA |2|MP |,∴|MQ |=3.设Q (x,0),而点M (0,2),由x 2+22=3,得x =±5, 则Q 点的坐标为(5,0)或(-5,0).从而直线MQ 的方程为2x +5y -25=0或2x -5y +25=0.(2)证明:设点Q (q,0),由几何性质,可知A ,B 两点在以QM 为直径的圆上,此圆的方程为x (x -q )+y (y -2)=0,而线段AB 是此圆与已知圆的公共弦,相减可得AB 的方程为qx -2y +3=0,所以直线AB 恒过定点⎝ ⎛⎭⎪⎫0,32.例6过点(-1,-2)的直线l 被圆x 2+y 2-2x -2y +1=0截得的弦长为 2,则直线l 的斜率为________.解析:将圆的方程化成标准方程为(x -1)2+(y -1)2=1,其圆心为(1,1),半径r =1.由弦长为2得弦心距为22.设直线方程为y +2=k (x +1),即kx -y +k -2=0,则|2k -3|k 2+1=22,化简得7k 2-24k +17=0,得k =1或k =177. 答案:1或177例7圆x 2-2x +y 2-3=0的圆心到直线x +3y -3=0的距离为________.解析:圆心(1,0),d =|1-3|1+3=1.答案:1例8圆心在原点且与直线x +y -2=0相切的圆的方程为 ____________________.解析:设圆的方程为x 2+y 2=a 2(a >0)∴|2|1+1=a ,∴a =2,∴x 2+y 2=2.答案:x 2+y 2=2例9已知圆C 经过A (5,1),B (1,3)两点,圆心在x 轴上,则圆C 的方程为________________.圆C 的方程为x 2+y 2+Dx +F =0, 则⎩⎪⎨⎪⎧26+5D +F =0,10+D +F =0, 解得⎩⎪⎨⎪⎧D =-4,F =-6.圆C 的方程为x 2+y 2-4x -6=0.[答案] (1)C (2)x 2+y 2-4x -6=0例10 (1)与曲线C :x 2+y 2+2x +2y =0相内切,同时又与直线l :y =2-x 相切的半径最小的圆的半径是________.(2)已知实数x ,y 满足(x -2)2+(y +1)2=1则2x -y 的最大值为________,最小值为________.解析:(1)依题意,曲线C 表示的是以点C (-1,-1)为圆心,2为半径的圆,圆心C (-1,-1)到直线y =2-x即x +y -2=0的距离等于|-1-1-2|2=22,易知所求圆的半径等于22+22=322.(2)令b =2x -y ,则b 为直线2x -y =b 在y 轴上的截距的相反数,当直线2x -y =b 与圆相切时,b 取得最值.由|2×2+1-b |5=1.解得b =5±5,所以2x -y 的最大值为5+5,最小值为5- 5. 答案:(1)322(2)5+ 5 5- 5例11已知x ,y 满足x 2+y 2=1,则y -2x -1的最小值为________.解析:y -2x -1表示圆上的点P (x ,y )与点Q (1,2)连线的斜率,所以y -2x -1的最小值是直线PQ 与圆相切时的斜率.设直线PQ 的方程为y -2=k (x -1)即kx -y +2-k =0.由|2-k |k 2+1=1得k =34,结合图形可知,y -2x -1≥34,故最小值为34. 答案:34例12已知两点A (-2,0),B (0,2),点C 是圆x 2+y 2-2x =0上任意一点,则△ABC 面积的最小值是________.解析:l AB :x -y +2=0,圆心(1,0)到l 的距离d =32,则AB 边上的高的最小值为32-1.故△ABC 面积的最小值是12×22×⎝ ⎛⎭⎪⎫32-1=3- 2.答案:3- 2例13平面直角坐标系xoy 中,直线10x y -+=截以原点O 为圆心的圆所得的弦长为6 (1)求圆O 的方程;(2)若直线l 与圆O 切于第一象限,且与坐标轴交于D ,E ,当DE 长最小时,求直线l 的方程;(3)设M ,P 是圆O 上任意两点,点M 关于x 轴的对称点为N ,若直线MP 、NP 分别交于x 轴于点(m ,0)和(n ,0),问mn 是否为定值?若是,请求出该定值;若不是,请说明理由.解: ⑴因为O 点到直线10x y -+=的距离为12,所以圆O 的半径为2216()()222+=, 故圆O 的方程为222x y +=.⑵设直线l 的方程为1(0,0)x ya b a b+=>>,即0bx ay ab +-=,由直线l 与圆O 相切,得222aba b =+,即221112a b +=,2222222112()()8DE a b a b a b =+=++≥,当且仅当2a b ==时取等号,此时直线l 的方程为20x y +-=.⑶设11(,)M x y ,22(,)P x y ,则11(,)N x y -,22112x y +=,22222x y +=,直线MP 与x 轴交点122121(,0)x y x y y y --,122121x y x y m y y -=-, 直线NP 与x 轴交点122121(,0)x y x y y y ++,122121x y x y n y y +=+,222222221221122112211221222221212121(2)(2)2x y x y x y x y x y x y y y y y mn y y y y y y y y-+----====-+--,故mn 为定值2.例14圆x 2+y 2=8内一点P (-1,2),过点P 的直线l 的倾斜角为α,直线l 交圆于A 、B 两点. (1)当α=43π时,求AB 的长; (2)当弦AB 被点P 平分时,求直线l 的方程.解:(1)当α=43π时,k AB =-1, 直线AB 的方程为y -2=-(x+1),即x +y -1=0. 故圆心(0,0)到AB 的距离d =2100-+=22, 从而弦长|AB|=2218-=30. (2)设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-2,y 1+y 2=4.由⎪⎩⎪⎨⎧=+=+,8,822222121y x y x两式相减得(x 1+x 2)(x 1-x 2)+(y 1+y 2)(y 1-y 2)=0, 即-2(x 1-x 2)+4(y 1-y 2)=0, ∴k AB =212121=--x x y y . ∴直线l 的方程为y -2=21(x +1),即x -2y +5=0.例15已知半径为5的动圆C 的圆心在直线l :x -y +10=0上. (1)若动圆C 过点(-5,0),求圆C 的方程;(2)是否存在正实数r ,使得动圆C 中满足与圆O :x 2+y 2=r 2相外切的圆有且仅有一个,若存在,请求出来;若不存在,请说明理由.解: (1)依题意,可设动圆C 的方程为(x -a)2+(y -b)2=25,其中圆心(a,b)满足a -b+10=0.又∵动圆过点(-5,0),∴(-5-a)2+(0-b)2=25. 解方程组⎪⎩⎪⎨⎧=-+--=+-25)0()5(01022b a b a ,可得⎩⎨⎧=-=010b a 或⎩⎨⎧=-=55b a , 故所求圆C 的方程为(x+10)2+y 2=25或(x+5)2+(y -5)2=25. (2)圆O 的圆心(0,0)到直线l 的距离d=1110+=52.当r 满足r+5<d 时,动圆C 中不存在与圆O :x 2+y 2=r 2相外切的圆;当r 满足r+5>d 时,r 每取一个数值,动圆C 中存在两个圆与圆O :x 2+y 2=r 2相外切; 当r 满足r+5=d,即r=52-5时,动圆C 中有且仅有1个圆与圆O :x 2+y 2=r 2相外切.题目1.自点(1,4)A -作圆22(2)(3)1x y -+-=的切线l ,则切线l 的方程为 .2.求与圆522=+y x 外切于点)2,1(-P ,且半径为52的圆的方程.3.若点P 在直线l 1:x +y +3=0上,过点P 的直线l 2与曲线C :(x -5)2+y 2=16相切于点M ,则PM 的最小值 .4.设O为坐标原点,曲线x2+y2+2x-6y+1=0上有两点P、Q,满足关于直线x+my+4=0对称,又满足OP·OQ=0. (1)求m的值;(2)求直线PQ的方程.5.已知圆C:x2+y2-2x+4y-4=0,问是否存在斜率是1的直线l,使l被圆C截得的弦AB,以AB为直径的圆经过原点,若存在,写出直线l的方程;若不存在,说明理由.6. 已知曲线C:x2+y2-4ax+2ay-20+20a=0.(1)证明:不论a取何实数,曲线C必过定点;(2)当a≠2时,证明曲线C是一个圆,且圆心在一条直线上;(3)若曲线C与x轴相切,求a的值.。
圆直线方程知识点总结圆直线方程是解析几何中的重要内容,它描述了圆和直线在平面上的几何特性。
掌握圆直线方程的知识对于解决与圆和直线相关的几何问题是至关重要的。
本文将对圆直线方程的相关知识进行总结,包括圆的标准方程、一般方程和直线的一般方程等内容,并对圆和直线的位置关系、交点等问题进行探讨。
一、圆的标准方程和一般方程1. 圆的标准方程圆的标准方程是描述平面上一点到圆心的距离等于半径的平方的方程。
设圆的圆心坐标为(h,k),半径为r,则圆的标准方程为:(x - h)² + (y - k)² = r²其中,(x,y)为圆上的任意一点的坐标。
例如,圆心坐标为(2,3),半径为5的圆的标准方程为:(x - 2)² + (y - 3)² = 252. 圆的一般方程圆的一般方程是描述平面上一点到圆心的距离等于半径的平方的方程的一般形式。
设圆的圆心坐标为(h,k),半径为r,则圆的一般方程为:x² + y² + 2gx + 2fy + c = 0其中,g、f、c分别为常数,满足g² + f² - c > 0。
具体的圆心坐标和半径通过一般方程不容易直接看出来,但一般方程更灵活,适合解决一些特殊情况下的圆的问题。
二、直线的一般方程直线的一般方程是描述平面上一条直线的一般形式方程。
设直线的斜率为m,截距为b,则直线的一般方程为:y = mx + b其中,m为斜率,表示直线的倾斜程度,b为截距,表示直线与y轴的交点。
三、圆和直线的位置关系1. 圆和直线的位置关系有四种可能的相交情况:(1)相离:直线与圆无交点;(2)相切:直线与圆只有一个交点;(3)相交:直线与圆有两个不同的交点;(4)相含:直线完全包含在圆内部,或者圆完全包含在直线内部。
2. 判断圆和直线的位置关系的方法:(1)计算直线方程和圆的方程,求出交点;(2)用坐标代入判断,判断交点的位置关系;(3)通过图像观察,直线与圆的位置关系。
直线和圆的方程知识点在数学中,直线和圆分别是几何图形中的基本要素。
它们在解决几何问题和实际应用中起着重要的作用。
本文将介绍直线和圆的方程知识点,以帮助读者更好地理解和应用这些基础概念。
一、直线的方程直线的方程可以通过点斜式、截距式和一般式表示。
下面将分别介绍这三种表示直线的方法。
1. 点斜式点斜式适用于已知直线上一点和斜率的情况。
假设直线上已知一点A(x₁,y₁)和斜率k,那么直线的点斜式方程可以表示为:y - y₁ = k(x - x₁)。
例如,给定一点A(2, 3)和斜率k = 2,那么直线的点斜式方程为:y - 3 = 2(x - 2)。
2. 截距式截距式适用于已知直线与x轴和y轴的交点情况。
假设直线与x轴和y轴的交点分别为A(0, b)和B(a, 0),那么直线的截距式方程可以表示为:x/a + y/b = 1。
例如,给定直线与x轴和y轴的交点分别为A(0, 2)和B(3, 0),那么直线的截距式方程为:x/3 + y/2 = 1。
3. 一般式一般式是直线表示的常见形式,即Ax + By + C = 0,其中A、B和C分别是系数。
一般式可以通过点斜式或截距式转换得到。
例如,将点斜式方程y - 3 = 2(x - 2)转换成一般式方程,将得到2x - y + 1 = 0。
二、圆的方程圆的方程可以通过圆心和半径、直径、两点坐标等不同条件表示。
下面将分别介绍几种表示圆的方法。
1. 圆心和半径如果已知圆的圆心坐标为(h, k),半径为r,那么圆的方程可以表示为:(x - h)² + (y - k)² = r²。
例如,已知圆心坐标为(2, -1),半径为3,那么圆的方程为:(x - 2)²+ (y + 1)² = 9。
2. 直径如果已知圆的两个端点坐标为A(x₁, y₁)和B(x₂, y₂),那么圆的方程可以表示为:(x - (x₁ + x₂)/2)² + (y - (y₁ + y₂)/2)² = [(x₂ - x₁)² + (y₂ - y₁)²]/4。
第三章直线与方程(1)直线的倾斜角定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。
特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0°.因此,倾斜角的取值范围是0180α︒≤<︒(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。
直线的斜率常用k 表示。
即tan k α=。
斜率反映直线与轴的倾斜程度。
当直线l 与x 轴平行或重合时,0α=︒,tan 00k =︒=; 当直线l 与x 轴垂直时,90α=︒,k 不存在.当[) 90,0∈α时,0≥k ;当() 180,90∈α时,0<k ;当 90=α时,k 不存在。
②过两点的直线的斜率公式:)(211212x x x x y y k ≠--=(11122212(,),(,),P x y P x y x x ≠) 注意下面四点:(1)当21x x =时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k 与P 1、P 2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
注意:当直线的斜率为1当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但l x x x(5)两条直线的交点0:1111=++C y B x A l 0:2222=++C y B x A l 相交交点坐标即方程组⎩⎨⎧=++=++00222111C y B x A C y B x A 的一组解。
方程组无解21//l l ⇔;方程组有无数解⇔1l 与2l 重合(6设(,),A x y B x y ,()(7一点()00,y x P 到直线0:1=++C By Ax l(8已知两条平行线直线1l 和2l01=++C By Ax ,2l :02=++C By Ax ,则1l 与2l第四章圆与方程1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。
高中数学直线与圆的方程知识点总结公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-高中数学之直线与圆的方程一、概念理解:1、倾斜角:①找α:直线向上方向、x 轴正方向; ②平行:α=0°;③范围:0°≤α<180° 。
2、斜率:①找k :k=tan α (α≠90°); ②垂直:斜率k 不存在; ③范围: 斜率 k ∈ R 。
3、斜率与坐标:12122121tan x x y y x x y y k --=--==α ①构造直角三角形(数形结合); ②斜率k 值于两点先后顺序无关; ③注意下标的位置对应。
4、直线与直线的位置关系:222111:,:b x k y l b x k y l +=+=①相交:斜率21k k ≠(前提是斜率都存在) 特例----垂直时:<1>0211=⊥k k x l 不存在,则轴,即;<2> 斜率都存在时:121-=•k k 。
②平行:<1> 斜率都存在时:2121,b b k k ≠=;<2> 斜率都不存在时:两直线都与x 轴垂直。
③重合: 斜率都存在时:2121,b b k k ==; 二、方程与公式:1、直线的五个方程:①点斜式:)(00x x k y y -=- 将已知点k y x 与斜率),(00直接带入即可;②斜截式:b kx y += 将已知截距k b 与斜率),0(直接带入即可;③两点式:),(2121121121y y x x x x x x y y y y ≠≠--=--其中, 将已知两点),(),,(2211y x y x 直接带入即可;④截距式:1=+bya x 将已知截距坐标),0(),0,(b a 直接带入即可;⑤一般式:0=++C By Ax ,其中A 、B 不同时为0 用得比较多的是点斜式、斜截式与一般式。
2、求两条直线的交点坐标:直接将两直线方程联立,解方程组即可3、距离公式:①两点间距离:22122121)()(y y x x P P -+-=②点到直线距离:2200BA C By Ax d +++=③平行直线间距离:2221BA C C d +-=4、中点、三分点坐标公式:已知两点),(),,(2211y x B y x A①AB 中点),(00y x :)2,2(2121y y x x ++ ②AB 三分点),(),,(2211t s t s :)32,32(2121yy x x ++ 靠近A 的三分点坐标)32,32(2121y y x x ++ 靠近B 的三分点坐标中点坐标公式,在求对称点、第四章圆与方程中,经常用到。
直线和圆的方程单元知识总结一、直线1.直线的倾斜角和斜率(1)直线的倾斜角α∈[0,π).(2)直线的斜率,即0tan (90)kαα=≠(3)斜率公式:经过两点P 1(x 1,y 1)、P 2(x 2,y 2)的直线的斜率为212121(0)y y k x x x x -=-≠-2.直线的方程(1)点斜式 已知直线过点(x 0,y 0),斜率为k ,则其方程为:y -y 0=k(x -x 0) (2)斜截式 已知直线在y 轴上的截距为b ,斜率为k ,则其方程为:y=kx +b (3)两点式 已知直线过两点(x 1,y 1)和(x 2,y 2),则其方程为:112121y y x x y y x x --=--(4)截距式 已知直线在x ,y 轴上截距分别为a 、b ,则其方程为:1x y ab+=(5)一般式 Ax +By +C=0 (A 、B 不同时为0). (6)直线系方程:过两直线⎩⎨⎧=++=++0:0:22221111C y B x A l C y B x A l 的交点的直线系方程是111222()0A xB yC A x B y C λ+++++=(0222=++C y B x A 不包括在内)3.两条直线的位置关系(1)平行:当直线l 1和l 2有斜截式方程时,k 1=k 2且b 1≠b 2;(2)重合:当l 1和l 2有斜截式方程时,k 1=k 2且b 1=b 2; (3)相交:当l 1,l 2是斜截式方程时,k 1≠k 2(4)垂直:设两条直线1l 和2l 的斜率分别为1k 和2k ,则有12121-=⇔⊥k k l l 一般式方程时,1212210llA B A B ⊥⇔+=(优点:对斜率是否存在不讨论)(5)到角:直线1l 到2l 的角,是指直线1l 绕交点依逆时针方向旋转到与2l 重合时所转动的角θ,它的范围是),0(π,当90≠θ时21121tankk k k +-=θ.(6)夹角:两条相交直线1l 与2l 的夹角,是指由1l 与2l 相交所成的四个角中最小的正角θ,又称为1l 和2l 所成的角,它的取值范围是 ⎝⎛⎥⎦⎤2,0π,当90≠θ,则有21121t an kk k k +-=θ.(7)交点:求两直线交点,即解方程组1112220A x B y C A x B y C ++=⎧⎨++=⎩4.点到直线的距离:设点),(00y x P ,直线PC By Ax l ,0:=++到l 的距离为22BA CByAxd +++=.5.两条平行线间的距离公式:设两条平行直线)(0:,0:212211C C C By Ax l C By Ax l ≠=++=++,它们之间的距离为d ,则有2221BA CC d+-=.6. 关于点对称和关于某直线对称:⑴关于点对称的两条直线一定是平行直线,且这个点到两直线的距离相等. ⑵关于某直线对称的两条直线:若两条直线平行,则对称直线也平行,且两直线到对称直线距离相等.若两条直线不平行,则对称直线必过两条直线的交点,且对称直线为两直线夹角的角平分线. ⑶点关于某一条直线对称,用中点表示两对称点,则中点在对称直线上(方程①),过两对称点的直线方程与对称直线方程垂直(方程②)①②可解得所求对称点.即求点00(,)P x y 关于直线l :0=++C By Ax (B A ,不全为零)对称点时,设对称点为'(,)P x y '',则根据l 是线段'PP 的垂直平分线,即l ⊥'PP 且'PP 的中点在直线l 上,得'x ,'y 应满足的方程组为:0000'()1'''022y y A x x B x x y y A B C -⎧⋅-=-⎪-⎪⎨++⎪⋅+⋅+=⎪⎩,由此解得'P 点的坐标(,)x y ''.7.简单的线性规划----线性规划的三种类型:1.截距型:形如z=ax+by, 把z 看作是y 轴上的截距,目标函数的最值就转化为y 轴上的截距的最值。
(6)两点间距离公式:|设A(X 1,yJ , (X 2,y 2)是平面直角坐标系中的两个点,则精品文档第三章直线与方程(1) 直线的倾斜角定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。
特别地,当直线与x 轴平行或重合时,我们规定它 的倾斜角为0° •因此,倾斜角的取值范围是 0 180(2) 直线的斜率 ① 定义:倾斜角不是 90°的直线,它的倾斜角的正切叫做这条直线的斜率。
直线的斜率常用 k 表示。
即k tan 斜率反映直线与轴的倾斜程度。
当直线I 与x 轴平行或重合时,0 , k tan0 0;② 过两点的直线的斜率公式 :k 池—— (x 1 x 2)( P(x 1, ), P a (x 2, y 2), x 2 )x 2 x 1 注意下面四点:(1)当X 1 X 2时,公式右边无意义,直线的斜率不存在,倾斜角为90°; (2) k 与P 1、P 2的顺序无关;(3) 以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得; ⑷ 求直线的倾斜角可由直线上两点的坐标先求斜率得到。
注意:当直线的斜率为0°时,k=0,直线的方程是 y=y 1。
当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示•但因I 上每一点的横坐标都等于X 1,所以它的方程是 X =X 1。
注 ②特殊的方程如:平行于x 轴的直线:y__b (b 为常数);|平行于y 轴的直线:x a (a 为常数); (4)两直线平行与垂直注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。
(5) 两条直线的交点h :Ax By G 0 I 2 :A 2X B 2y C 2 0相交交点坐标即方程组A1X B1 y C10的一组解。
A2X B2y C20方程组无解I1//I2 ;方程组有无数解I1与12重合精品文档(7)点到直线距离公式:一点P Xo, Vo 到直线l 1 : Ax Bv C 0的距离d l A 0_B y0 C I 1/ / i' 2 2(8)两平行直线距离公式 :已知两条平行线直线|1和|2的一般式方程为l 1 : Ax By C 1 0 , l 2 :Ax By C 2 0 ,则l i 与l 2的距离为d C l C 2I J A 2 B 2I 第四章圆与方程1、 圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。
直线和圆--知识总结一、直线的方程 1、倾斜角:L α,范围0≤α<π,若x l //轴或与x 轴重合时,α=00。
2、斜率: k=tan α α与κ的关系:α=0⇔κ=0已知L 上两点P 1(x 1,y 1) 0<α<02>⇔k πP 2(x 2,y 2) α=κπ⇔2不存在⇒k=1212x x y y -- 022<⇔<<κππ当1x =2x 时,α=900,κ不存在。
当0≥κ时,α=arctank ,κ<0时,α=π+arctank 3、截距(略)曲线过原点⇔横纵截距都为0。
4、直线方程的几种形式 已知 方程 说明几种特殊位置的直线 斜截式K 、bY=kx+b不含y 轴和行平于y 轴的直线①x 轴:y=0点斜式P 1=(x 1,y 1) k y-y 1=k(x-x 1) 不含y 轴和平行于y 轴的直线②y 轴:x=0两点式P 1(x 1,y 1) P 2(x 2,y 2) 121121x x x x y y y y --=-- 不含坐标辆和平行于坐标轴的直线③平行于x 轴:y=b截距式a 、b1=+by a x 不含坐标轴、平行于坐标轴和过原点的直线④平行于y 轴:x=a ⑤过原点:y=kx一般式 Ax+by+c=0 A 、B 不同时为0两个重要结论:①平面内任何一条直线的方程都是关于x 、y 的二元一次方程。
②任何一个关于x 、y 的二元一次方程都表示一条直线。
5、直线系:(1)共点直线系方程:p 0(x 0,y 0)为定值,k 为参数y-y 0=k (x-x 0) 特别:y=kx+b ,表示过(0、b )的直线系(不含y 轴) (2)平行直线系:①y=kx+b ,k 为定值,b 为参数。
②AX+BY+入=0表示与Ax+By+C=0 平行的直线系 ③BX-AY+入=0表示与AX+BY+C 垂直的直线系(3)过L 1,L 2交点的直线系A 1x+B 1y+C 1+入(A 2X+B 2Y+C 2)=0(不含L2)6、三点共线的判定:①AC BC AB =+,②K AB =K BC ,③写出过其中两点的方程,再验证第三点在直线上。
直线与圆方程知识总结一、坐标法1.点和坐标建立了平面直角坐标系后,坐标平面上的点和一对有序实数(x ,y)建立了一一对应的关系.2.两点间的距离公式设两点的坐标为P 1(x 1,y 1),P 2(x 2,y 2),则两点间的距离特殊位置的两点间的距离,可用坐标差的绝对值表示:(1)当x 1=x 2时(两点在y 轴上或两点连线平行于y 轴),则|P 1P 2|=|y 2-y 1|(2)当y 1=y 2时(两点在x 轴上或两点连线平行于x 轴),则|P 1P 2|=|x 2-x 1|3.线段的定比分点(2)公式:分P 1(x 1,y 2)和P 2(x 2,y 2)连线所成的比为λ的分点坐标是公式|P P |=12()()x x y y 212212-+-(1)P P P P P PP P P PP P P P =P P P P 12121212112定义:设点把有向线段分成和两部分,那么有向线段和的数量的比,就是点分所成的比,通常用λ表示,即λ,点叫做分线段为定比λ的定比分点.P PP 2当点内分时,λ>;当点外分时,λ<.P P P 0P P P 01212x x x y y y =++=++⎧⎨⎪⎪⎩⎪⎪-1212111λλλλλ≠()特殊情况,当是的中点时,λ,得线段的中点坐标P P P =1P P 1212二、直线1.直线的倾斜角和斜率(1)当直线和x 轴相交时,把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角,叫做这条直线的倾斜角.当直线和x 轴平行线重合时,规定直线的倾斜角为0.所以直线的倾斜角α∈[0,π).(2)倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜∴当k ≥0时,α=arctank .(锐角)当k <0时,α=π-arctank .(钝角) (3)斜率公式:经过两点P 1(x 1,y 1)、P 2(x 2,y 2)的直线的斜率为2.直线的方程(1)点斜式 已知直线过点(x 0,y 0),斜率为k ,则其方程为:y -y 0=k(x -x 0)(2)斜截式 已知直线在y 轴上的截距为b ,斜率为k ,则其方程为:y=kx +b(3)两点式 已知直线过两点(x 1,y 1)和(x 2,y 2),则其方程为:(4)截距式 已知直线在x ,y 轴上截距分别为a 、b ,则其方程为:(5)参数式 已知直线过点P(x 0,y 0),它的一个方向向量是(a ,b),v(cos α,sin α)(α为倾斜角)时,则其参数式方程为x x x y y y =+=+⎧⎨⎪⎪⎩⎪⎪121222率,直线的斜率常用表示,即αα≠π.k k =tan ()2k =y (x x )212--y x x 121≠y y y y x x x ----121121=x (x x )12≠x a y b +=1则其参数式方程为为参数,特别地,当方向向量为x x at y y bt =+=+⎧⎨⎩00(t )(6)一般式 Ax +By +C=0 (A 、B 不同时为0).(7)特殊的直线方程①垂直于x 轴且截距为a 的直线方程是x=a ,y 轴的方程是x=0.②垂直于y 轴且截距为b 的直线方程是y=b ,x 轴的方程是y=0.3.两条直线的位置关系(1)平行:当直线l 1和l 2有斜截式方程时,k 1=k 2且b 1≠b 2.(2)重合:当l 1和l 2有斜截式方程时,k 1=k 2且b 1=b 2,当l 1和l 2是(3)相交:当l 1,l 2是斜截式方程时,k 1≠k 24.点P(x 0,y 0)与直线l :Ax +By +C=0的位置关系:x x t y y t =+=+⎧⎨⎩00cos sin αα为参数(t )这时,的几何意义是,→→t tv =p p |t|=|p p|=|p p|000当和是一般式方程时,≠l l 12A A B B C C 121212=一般方程时,A A B B C C 121212==当,是一般式方程时,≠l l 12A A B B 2212①斜交交点:的解到角:到的角θ≠夹角公式:和夹角θ≠A x B y C A x B y C k k k k k k k k k k k k 11122222112121221121200110110++=++=⎧⎨⎩=-++=-++⎧⎨⎪⎪⎪⎪⎩⎪⎪⎪⎪l l l l 1tan ()tan ||()②垂直当和有叙截式方程时,-当和是一般式方程时,+l l l l 1212121212k k =1A A B B =0⎧⎨⎩Ax By C =0P ()Ax By C 0P 0000++在直线上点的坐标满足直线方程++≠在直线外.⇔⇔l l 点,到直线的距离为:P(x y )d =|Ax +By +C|0000l A B 22+5.两条平行直线l 1∶Ax +By +C 1=0,l 2∶Ax +By +C 2=0间6.直线系方程 具有某一共同属性的一类直线的集合称为直线系,它的方程的特点是除含坐标变量x ,y 以外,还含有特定的系数(也称参变量).确定一条直线需要两个独立的条件,在求直线方程的过程中往往先根据一个条件写出所求直线所在的直线系方程,然后再根据另一个条件来确定其中的参变量.(1)共点直线系方程:经过两直线l 1∶A 1x +B 1y +C 1=0,l 2∶A 2x +B 2y +C 2=0的交点的直线系方程为:A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0,其中λ是待定的系数.在这个方程中,无论λ取什么实数,都得不到A 2x +B 2y +C 2=0,因此它不表示l 2.当λ=0时,即得A 1x +B 1y +C 1=0,此时表示l 1.(2)平行直线系方程:直线y=kx +b 中当斜率k 一定而b 变动时,表示平行直线系方程.与直线Ax +By +C=0平行的直线系方程是Ax +By +λ=0(λ≠C),λ是参变量.(3)垂直直线系方程:与直线Ax +By +C=0(A ≠0,B ≠0)垂直的直线系方程是:Bx -Ay +λ=0.如果在求直线方程的问题中,有一个已知条件,另一个条件待定时,可选用直线系方程来求解.7.简单的线性规划(1)二元一次不等式Ax +By +C >0(或<0)表示直线Ax +By +C=0某一侧所有点组成的平面区域.二元一次不等式组所表示的平面区域是各个不等式所表示的平面点集的交集,即各个不等式所表示的平面区域的公共部分.(2)线性规划:求线性目标函数在线性约束条件下的最大值或最小值的问题,称为线性规划问题,例如,z=ax +by ,其中x ,y 满足下列条件:的距离为:.d =|C C |12-+A B 22求z 的最大值和最小值,这就是线性规划问题,不等式组(*)是一组对变量x 、y 的线性约束条件,z=ax +by 叫做线性目标函数.满足线性约束条件的解(x ,y)叫做可行解,由所有可行解组成的集合叫做可行域,使线性目标函数取得最大值和最小值的可行解叫做最优解.三、曲线和方程1.定义在选定的直角坐标系下,如果某曲线C 上的点与一个二元方程f(x ,y)=0的实数解建立了如下关系:(1)曲线C 上的点的坐标都是方程f(x ,y)=0的解(一点不杂);(2)以方程f(x ,y)=0的解为坐标的点都是曲线C 上的点(一点不漏).这时称方程f(x ,y)=0为曲线C 的方程;曲线C 为方程f(x ,y)=0的曲线(图形). 设P={具有某种性质(或适合某种条件)的点},Q={(x ,y)|f(x ,y)=0},若设点M 的坐标为(x 0,y 0),则用集合的观点,上述定义中的两条可以表述为:以上两条还可以转化为它们的等价命题(逆否命题):为曲线C 的方程;曲线C 为方程f(x ,y)=0的曲线(图形).2.曲线方程的两个基本问题(1)由曲线(图形)求方程的步骤:①建系,设点:建立适当的坐标系,用变数对(x ,y)表示曲线上任意一点M 的坐标;②立式:写出适合条件p 的点M 的集合p={M|p(M)};A xB yC 0(0)A x B y C 0(0)A x B x C 0(0)111222n n n ++≥或≤++≥或≤……++≥或≤⎧⎨⎪⎪⎩⎪⎪(*)(1)M P (x y )Q P Q (2)(x y )Q M P Q P 0000∈,∈,即;,∈∈,即.⇒⊆⇒⊆(1)(x y )Q M P (2)M P (x y )Q 0000,;,.∉⇒∉∉⇒∉显然,当且仅当且,即时,才能称方程,P Q Q P P =Q f(x y)=0⊆⊆③代换:用坐标表示条件p(M),列出方程f(x ,y)=0;④化简:化方程f(x ,y)=0为最简形式;⑤证明:以方程的解为坐标的点都是曲线上的点.上述方法简称“五步法”,在步骤④中若化简过程是同解变形过程;或最简方程的解集与原始方程的解集相同,则步骤⑤可省略不写,因为此时所求得的最简方程就是所求曲线的方程.(2)由方程画曲线(图形)的步骤:①讨论曲线的对称性(关于x 轴、y 轴和原点);②求截距:③讨论曲线的范围;④列表、描点、画线.3.交点求两曲线的交点,就是解这两条曲线方程组成的方程组.4.曲线系方程过两曲线f 1(x ,y)=0和f 2(x ,y)=0的交点的曲线系方程是f 1(x ,y)+λf 2(x ,y)=0(λ∈R).四、圆1.圆的定义平面内与定点距离等于定长的点的集合(轨迹)叫圆.2.圆的方程(1)标准方程(x -a)2+(y -b)2=r 2.(a ,b)为圆心,r 为半径.特别地:当圆心为(0,0)时,方程为x 2+y 2=r 2(2)一般方程x 2+y 2+Dx +Ey +F=0方程组,的解是曲线与轴交点的坐标;f x y y ()==⎧⎨⎩00x 方程组,的解是曲线与轴交点的坐标;f x y x ()==⎧⎨⎩00y 配方()()x D y E D E F +++=+-22442222当D 2+E 2-4F <0时,方程无实数解,无轨迹.(3)参数方程 以(a ,b)为圆心,以r 为半径的圆的参数方程为特别地,以(0,0)为圆心,以r 为半径的圆的参数方程为3.点与圆的位置关系设点到圆心的距离为d ,圆的半径为r .4.直线与圆的位置关系设直线l :Ax +By +C=0和圆C :(x -a)2+(y -b)2=r 2,则5.求圆的切线方法(1)已知圆x 2+y 2+Dx +Ey +F=0.①若已知切点(x 0,y 0)在圆上,则切线只有一条,其方程是 过两个切点的切点弦方程.当+->时,方程表示以-,-为圆心,以为半径的圆;D E 4F 0()22D E D E F 2212422+-当+-时,方程表示点-,-D E 4F =0()22D E 22x a r y b r =+=+⎧⎨⎩cos sin θθθ为参数()x r y r ==⎧⎨⎩cos sin θθθ为参数()(1)d r (2)d =r (3)d r 点在圆外>;点在圆上;点在圆内<.⇔⇔⇔d Aa Bb C A B =+++||22.(1)0d r (2)=0d =r (3)0d r 相交直线与圆的方程组成的方程组有两解,△>或<;相切直线与圆的方程组成的方程组有一组解,△或;相离直线与圆的方程组成的方程组无解,△<或>.⇔⇔⇔x x y y D x x E y y F 0000220=+++++=()().当,在圆外时,++++表示(x y )x x y y D(x )E(y )F =0000000++x y 22②若已知切线过圆外一点(x 0,y 0),则设切线方程为y -y 0=k(x -x 0),再利用相切条件求k ,这时必有两条切线,注意不要漏掉平行于y 轴的切线.③若已知切线斜率为k ,则设切线方程为y=kx +b ,再利用相切条件求b ,这时必有两条切线.(2)已知圆x 2+y 2=r 2.①若已知切点P 0(x 0,y 0)在圆上,则该圆过P 0点的切线方程为x 0x +y 0y=r 2.6.圆与圆的位置关系已知两圆圆心分别为O 1、O 2,半径分别为r 1、r 2,则②已知圆的切线的斜率为,圆的切线方程为±.k y =kx r k 2+1(1)|O O |=r r (2)|O O |=|r r |(3)|r r ||O O |r r 12121212121212两圆外切+;两圆内切-;两圆相交-<<+.⇔⇔⇔。