2015年高中数学1.1两个基本计数原理导学案苏教版选修2_3
- 格式:doc
- 大小:82.50 KB
- 文档页数:3
第一章计数原理第1节两个基本计数原理教材分析本节课《分类计数原理与分步计数原理》是苏教版普通高中课程标准试验教科书(选修2-3)第一章第一节的内容,是本章后续知识的基础,对后续内容的学习有着举足轻重的作用,另外本节课涉及的分步、分类的思想是解决实际问题的最有效武器,是人们思考问题的最根本方法.学情分析高二学生已具备一定的数学知识和方法,能很容易的接受两个原理的内容,并应用原理解决一些简单的实际问题,这些形成了学生思维的“最近发展区”.虽然学生已经具备了一定的归纳、类比能力,但在数学的应用意识与应用能力方面尚需进一步培养.另外,学生的求知欲强,参与意识,自主探索意识明显增强,对能够引起认知冲突,表现自身价值的学习素材特别感兴趣。
但在合作交流意识欠缺,有待加强. 目标分析⑴知识与技能①掌握分类计数原理与分步计数原理的内容②能根据具体问题的特征选择分类计数原理与分步计数原理解决一些简单实际问题.⑵过程与方法①通过具体问题情境总结出两个计数原理,并通过实际事例学生感悟两个原理的应用并最终学会应用②通过“学生自主探究、合作探究,师生共究”更深刻的理解分类计数与分步计数原理,并应用它们解决实际问题⑶情感、态度、价值观树立学生积极合作的意识,增强数学应用意识,激发学生学习数学的热情和兴趣.教学重难点分析教学重点:分类计数原理与分步计数原理的掌握教学难点:根据具体问题特征选择分类计数原理与分步计数原理解决实际问题.教法、学法分析教法分析:①启发探究法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性。
②分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性。
学法分析:本节课要求学生自主探究,学会用类比的思想解决问题,树立学生的合作交流意识.教学过程一、创设情境:对于分类计数原理设计如下情境(看多媒体):该情境是原教材上情境经过加工设计的,比原教材情境更加贴近学生生活,能够增强学生的有意注意,激发学生的兴趣,调动学生的主动性和积极性,从而进入思维情境接着是对情境的处理:在情境处理过程中要启发学生由特殊情形归纳出一般原理,遵循由简单到复杂的认知规律,我处理情境的办法是:第一步在解决问题时首先让学生尝试分析,然后由学生代表分析解答,教师及时给出评价,并由老师给出解题过程,在这里由老师按分类计数原理给出解题过程,为学生顺利总结概括出原理做好铺垫.第二步对原问题加以引申:若当天有4次航班,则有多少种不同方法?设计的意图是让学生更清楚的认识到总方法数是各类方法数之和.第三步提出问题:你能否尽可能简练的总结出问题1中的计数规律?接着由学生分组讨论、总结问题1中计数规律,这样由学生总结归纳,并通过讨论准确叙述出分类计数原理,可以提高学生的数学表达意识,激发合作意识和竞争意识,体验获得成功的喜悦,也就完成了情感目标.第四步由教师板书分类计数原理(加法原理)并说明由于总方法数是各类方法数之和,树立学生平时学习生活中的讲道理意识.在分类计数原理中设计如下问题情境,问题2与问题1的背景一样:都是乘车方法的计数问题.对于问题2的处理办法是:第一步由学生自主尝试分析解答,但该问题并没有问题1般简单所以就有了第二步教师电脑屏幕显示分析及解题过程,利用多媒体显示动画,辅助分析,展示不同的走法,帮助学生更直观的解决问题,然后由感性进入理性,这也符合一般的认知规律.第三步问题引申将问题引申为若从兰州到天水新增一辆4号汽车,则有多少种乘车方法?设计的意图是:通过引申让学生更加清楚的认识到总方法数是各步方法数相乘.第四步提出问题:你能否对照分类计数原理,归纳概括出问题2蕴含的计数规律,并尝试命名,这样设计一可指导学生通过类比给出分步计数原理,渗透类比思想第二也可在自主探究中掌握本节重点,当然重点的突破也为难点突破打下了知识基础第五部教师板书:分步计数原理(乘法原理),由学生说明其称为乘法原理的理由.分步计数原理(乘法原理):做一件事情,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有m n种不同的方法,那么完成这件事有N=m1×m2×…×m n种不同的方法.二、建构数学在总结出两个计数原理的基础上让学生进行如下三个问题的探究,初步突破难点.探究1:对比两计数原理,指出相同点与不同点设计探究1的意图是通过自主探究合作探究,加深两个定理的理解并且在两个定理内容的比较中提高学生阅读数学的能力.探究方式:分组讨论(合作交流,加深理解)探究结果:共同点是:研究对象相同,它们都是研究完成一件事情,共有多少种不同的方法.不同点是:它们研究完成一件事情的方式不同,分类计数原理是“分类完成”,分步计数原理是“分步完成”由于学生的认识水平有限,在这里只要求认识到分类计数原理是“分类完成”,分步计数原理是“分步完成”.探究2:何时用分类计数原理,何时用分步计数原理探究方式:自主探究,代表发言,共同总结.探究结果:若完成一件事情有n类方法,则用分类计数原理.若完成一件事情有n个步骤,则用分步计数原理.设计意图:在探究1基础上进一步突破重难点,培养学生分析问题的能力.探究3:用两个计数原理解决计数问题的思维步骤探究方式:分组讨论,合作探究,代表发言,共同总结.探究结果:1、明确要完成什么事2、判断分类还是分步3、计算总方法数(一)两个计数原理内容1、分类计数原理:完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法……在第n类办法中有m n种不同的方法,那么完成这件事共有N=m1 +m2 +……+m n种不同的方法.2、分步计数原理:完成一件事,需要分n个步骤,做第1步骤有m1种不同的方法,做第2步骤有m2种不同的方法……做第n步骤有m n种不同的方法,那么完成这件事共有N=m1×m2×……×m n种不同的方法.(二)例题分析例1 某学校食堂备有5种素菜、3种荤菜、2种汤。
一笔画问题
传统意义上的几何学是研究图形的形状大小等性质,而存在一些几何问题,它们所研究的对象与图形的形状和线段的长短没关系,而只和线段的数目和它们之间的连接关系有关,比如一笔画问题就是如此。
即平面上由曲线段构成的一个图形能不能一笔画成,使得在每条线段上都不重复?例如汉字“日”和“中”字都可一笔画,而“田”和“目”则不能。
两两相连区域可一笔画,例如,平面4个区域两两相连区域可一笔划;轮胎状上7个两两相连区域可一笔画;我们可以构造一个多维空间的无穷个两两相连区域一笔划。
1。
基本计数原理(二)【学习目标】1. 掌握分类加法计数原理与分步乘法计数原理.2. 用两个原理分析和解决一些简单应用问题3. 通过比较这两个原理的异同,培养学生比较、类比、归纳等数学思想和灵活应用的能力. 【自主学习】1.在使用两个计数原理解决计数问题前,最重要的工作是区分分类还是分步。
2.在应用加法原理时,要注意“类”与“类”之间的独立性和并列性,各类办法是彼此独立的、并列的;应用乘法原理时,要注意“步”与“步”之间是连续的。
3.分类要做到不重复不遗漏,分类后再分别对每一类进行计数,最后用加法计数原理求和,得到总数;分步要做到步骤完整,步与步之间要相互独立,根据分步计数原理,把完成每一步的方法数相乘得到总数。
你能准确地驾驭这两个原理计数吗?【自主检测】1.已知x∈{2,3,7},y∈{-31,-24,4},则x· y可表示不同的值的个数是()A.2B.3C.6D.92.已知集合A={1,2,3},且A中至少有一个奇数,则这样的集合有()A.2个B.3个C.4个D.5个3.火车上有10名乘客,要在沿途的5个车站下车,则乘客下车的所有可能情况共有()A.510种B.105种C.50种D.以上都不对4.三人踢毽子,互相传递,每人每次只能踢一下.由甲开始踢,经过4次传递后,毽子又被踢回甲,则不同的传递方式共有()A.4种B.5种C.6种D.12种5.现有高一学生9人,高二学生12人,高三学生7人,自发组织参加数学课外活动小组,从中推选两名来自不同年级的学生做一次活动的主持人,共有不同的选法()种A.756B.56C.28D.255【典型例题】例1、随着人们生活水平的提高,某城市家庭汽车拥有量迅速增长,汽车牌照号码需要扩容,交通管理部门出台了一种汽车牌照组成办法,每一个汽车牌照都必须有3个不重复的英文字母和3个不重复的阿拉伯数字,并且3个字母必须合成一组出现,3个数字也必须合成一组出现.那么这种办法共能给多少辆汽车上牌照?变式1:给程序模块命名,需要用3个字符,其中首字符要求用字母A~G 或U~Z , 后两个要求用数字1~9.问最多可以给多少个程序命名?例2.(1)8张卡片上写着0,1,2,…,7共8个数字,取其中的三张卡片排放在一起,可组成多少个不同的三位数?(2)4张卡片的正、反面分别写有0与1、2与3、4与5、6与7,将其中的3张卡片排放在一起,共有多少个不同的三位数?变式2:用0,1,…,9这十个数字,可以组成多少个:(1)三位整数?(2)无重复数字的三位整数?(3)小于500的无重复数字的三位整数?【目标检测】1.只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,则这样的四位数有()A.6个B.9个C.18个D.36个2.如图1-1-4所示,在A,B间有四个焊接点,若焊接点脱落,则可能导致电路不通,今发现A,B之间线路不通,则焊接点脱落的不同情况有________种.图1-1-43. 用n种不同颜色为下列两块广告牌着色(如图10-1-5①②),要求在A、B、C、D 四个区域中相邻(有公共边的)区域不用同一种颜色.图10-1-5(1)若n=6,为①着色时共有多少种不同的方法?(2)若为②着色时共有120种不同的方法,求n.4. “渐升数”是指每个数字比它左边的数字大的正整数(如1 458),若把四位“渐升数”按从小到大的顺序排列,求第30个“渐升数”.【总结提升】1.弄清两个计数原理的区别与联系,是正确使用这两个原理的前提和条件,2.这两个原理都是指完成一件事而言的,其区别在于:(1)分类计数原理是“分类”,每类办法中的每一种方法都能独立完成一件事,(2)分步计数原理是“分步”;每种方法都只能做这件事的一步,不能独立完成这件事! 2.会用分类加法计数原理和分步乘法计数原理解决生活遇到的计数答案自我检测:1.D2.D3.A4.C5.D例1:【解析】将汽车牌照分为2类,一类的字母组合在左,另一类的字母组合在右.字母组合在左时,分6个步骤确定一个牌照的字母和数字:第1步,从26个字母中选1个,放在首位,有26种选法;第2步,从剩下的25个字母中选1个,放在第2位,有25种选法;第3步,从剩下的24个字母中选1个,放在第3位,有24种选法;第4步,从10个数字中选1个,放在第4位,有10种选法;第5步,从剩下的9个数字中选1个,放在第5位,有9种选法;第6步,从剩下的8个数字中选1个,放在第6位,有8种选法.根据分步乘法计数原理,字母组合在左的牌照共有26×25×24×10×9×8=11 232 000(个).同理,字母组合在右的牌照也有11 232 000个.所以共能给11 232 000+11 232 000=22 464 000辆汽车上牌照.变式1:第一步,先计算首字符的选法.由分类加法计数原理,首字符共有7+6=13(种)选法;第二步,中间字符和末位字符各有9种不同的选法.根据分步乘法计数原理,最多可以有13×9×9=1 053(种)不同的选法,即最多可以给1 053个程序命名.例2.(1)7×7×6=294;(2)【解析】要组成三位数,根据首位、十位、个位应分三步:第一步:首位可放8-1=7(个)数;第二步:十位可放6个数;第三步:个位可放4个数.故由分步计数原理,得共可组成7×6×4=168(个)不同的三位数.变式2:【解析】由于0不可在最高位,因此应对它进行单独考虑.(1)百位数字有9种选择,十位数字和个位数字都各有10种选择.由分步乘法计数原理知,适合题意的三位数共有9×10×10=900(个).(2)由于数字不可重复,可知百位数字有9种选择,十位数字也有9种选择,但个位数字仅有8种选择.由分步乘法计数原理知,适合题意的三位数共有9×9×8=648(个).(3)百位数字只有4种选择,十位数字有9种选择,个位数字有8种选择.由分步乘法计数原理知,适合题意的三位数共有4×9×8=288(个).目标检测:1.C 2. 133.【解析】(1)分四步:第1步涂A有6种不同的方法,第2步涂B有5种不同的方法,第3步涂C有4种不同的方法,第4步涂D有4种不同的方法.根据分步乘法计数原理,共有6×5×4×4=480种不同的方法.(2)由题意,得n(n-1)(n-2)(n-3)=120,注意到n∈N*,可得n=5.4.【解析】渐升数由小到大排列,形如12××的渐升数共有:6+5+4+3+2+1=21(个).形如134×的渐升数共有5个.形如135×的渐升数共有4个.故此时共有21+5+4=30个渐升数.因此从小到大的渐升数的第30个必为1 359.。
1.1《两个基本计数原理》教案一、教学目标1.理解分类加法计数原理与分步乘法计数原理;2.会利用两个原理分析和解决一些简单的应用问题.二、教学重难点1、理解分类计数原理与分步计数原理2、会利用两个原理分析和解决一些简单的应用问题三、教学过程一、问题情况问题1:.从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船.一天中,火车有4 班, 汽车有2班,轮船有3班.那么一天中乘坐这些交通工具从甲地到乙地共有多少种不同的走法?问题2:如图,由A村去B村的道路有3条,由B村去C村的道路有2条.从A村经B村去C村,共有多少种不同的走法?要解决这些问题,就要运用有关排列、组合知识. 排列组合是一种重要的数学计数方法. 总的来说,就是研究按某一规则做某事时,一共有多少种不同的做法.在运用排列、组合方法时,经常要用到分类加法计数原理与分步乘法计数原理. 这节课,我们从具体例子出发来学习这两个原理.二、学生活动探究:你能说说以上两个问题的特征吗?三、数学构建一、分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法.那么完成这件事共有=N+mn种不同的方法.分类记数原理的另一种表述:做一件事情,完成它可以有n类办法,在第一类办法中有m种不同的方法,在第二1类办法中有m种不同的方法,……,在第n类办法中有n m种不同的方法.那么完2成这件事共有12n N m m m =+++种不同的方法.问题1解答:分析:从甲地到乙地有3类方法:第一类方法,乘火车,有4种方法;第二类方法,乘汽车,有2种方法;第三类方法,乘轮船,有3种方法.所以,从甲地到乙地共有 4 + 2 + 3 = 9 种方法.问题2解答:分析:从A 村经B 村去C 村有两步:第一步,由A 村去B 村有3种方法,第二步,由B 村去C 村有2种方法,所以,从A 村经 B 村去C 村共有 3 ×2 = 6 种不同的方法.四、数学运用例 1 书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放有2本不同的体育书,(1)从书架上任取1本书,有多少种取法?(2)从书架的第1,2,3层各取1本书,有多少不同的取法?分析:(1)从书架上任取1本书,有三类办法:第一类办法, 从第1层中任取一本书, 共有 1m = 4 种不同的方法; 第二类办法, 从第2层中任取一本书, 共有2m = 3 种不同的方法;第三类办法:从第3层中任取一本书,共有3m = 2 种不同的方法.A 南 北所以, 根据分类记数原理, 得到不同选法种数共有N = 4+3+2= 9 种.点评:解题的关键是从总体上弄清楚这件事情是“分类完成”,还是“分步完成”.“分类完成”用“分类记数原理”;“分步完成”用“分步记数原理”.例2 在所有的两位数中,个位数字大于十位数字的两位数共有多少个?分析1:按个位数字是2,3,4,5,6,7,8,9分成8类,在每一类中满足条件的两位数分别有1个,2个,3个,4个,5个,6个,7 个,8 个.则根据分类记数原理共有 1 +2 +3 +4 + 5 + 6 + 7 + 8 =36 (个).分析2:按十位数字是1,2,3,4,5,6,7,8分成8类,在每一类中满足条件的两位数分别有8个,7个,6个,5个,4个,3个,2个,1个.则根据分类记数原理共有 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1 = 36 (个).二、分步记数原理:做一件事情,完成它需要分成n 个步骤,做第一步有1m 种不同的方法,做第二步有2m 种不同的方法,……,做第n 步有n m 种不同的方法,那么完成这件事有12n N m m m =⨯⨯⨯种不同的方法.例 3 一种号码锁有4个拨号盘,每个拨号盘上有从0到9共十个数字,这4个拨号盘可以组成多少个四位数的号码(各位上的数字允许重复)?首位数字不为0的号码数有多少?首位数字是0的号码数又有多少?分析:按号码位数,从左到右依次设置第一位、第二位、第三位、第四位,需分为四步完成:第一步,1m =10;第二步,2m = 10; 第三步,3m =10,第四步,4m = 10.根据分步记数原理, 共可以设置N = 10×10×10 ×10 =410种四位数的号码. 答:首位数字不为0的号码数有N =9×10×10 ×10 = 9×310种,首位数字是0的号码数有N = 1×10×10 ×10 =310种.由此可以看出,首位数字不为0的号码数与首位数字是0的号码数之和等于号码总数.分类记数原理中的“分类”要全面, 不能遗漏; 但也不能重复、交叉;“类”与“类”之间是并列的、互斥的、独立的,也就是说,完成一件事情,每次只能选择其中的一类办法.若完成某件事情有n类办法, 即它们两两的交为空集,n类的并为全集.分步记数原理中的“分步”程序要正确.“步”与“步”之间是连续的,不间断的,缺一不可;但也不能重复、交叉;若完成某件事情需n步,则必须且只需依次完成这n个步骤后,这件事情才算完成在运用“分类记数原理、分步记数原理”处理具体应用题时,除要弄清是“分类”还是“分步”外,还要搞清楚“分类”或“分步”的具体标准.在“分类”或“分步”过程中,标准必须一致,才能保证不重复、不遗漏.练习:练习1 如图,要给地图A、B、C、D四个区域分别涂上3种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种?投影完成解: 按地图A、B、C、D四个区域依次分四步完成,第一步,m= 3种,1第二步,m= 2种,2第三步,m= 1种,3第四步,m= 1种.4所以根据分步记数原理, 得到不同的涂色方案种数共有N = 3 × 2 ×1×1 = 6 种.练习2 如图,该电路,从A 到B 共有多少条不同的线路可通电?解:从总体上看由A 到B 的通电线路可分三类,第一类, 1m = 3 条,第二类,2m =1条,第三类,3m =2×2 = 4条.所以, 根据分类记数原理, 从A 到B 共有N = 3 + 1 + 4 = 8条不同的线路可通电. 点评: 我们可以把分类记数原理看成“并联电路”;分步记数原理看成“串联电路”.五、课堂小结1.主要学习了分类记数原理和分步记数原理2.两个原理的异同点:共同点是:它们都是研究完成一件事情,共有多少种不同的方法.不同点是:它们研究完成一件事情的方式不同,分类记数原理是“分类完成”,即任何一类办法中的任何一个方法都能完成这件事.分步记数原理是“分步完成”, 即这些方法需要分步,各个步骤顺次相依,且每一步都完成了,才能完成这件事情.这也是本节课的重点.A B。
人教B版数学选修2-3《1.1基本计数原理》说课稿各位老师,大家好,我今天说课的课题是《基本计数原理》,我将从教材、学情、教学策略、教学过程、板书设计、教学反思等几个方面对本节课进行说明。
一、教材分析本节课是人教B版的数学教材选修2-3第一章第一节第一课,本节课所讲授的两个基本计数原理,即分类加法原理与分步乘法原理,是本章继续学习排列、组合的基础,学生能否理解并能应用两个基本原理,是学好本章知识的一个关键,本节课建议安排两课时,本节为第一课时,根据其在教材中的地位,结合课标的要求,设置了如下的教学目标:1、知识目标理解分类加法计数原理和分步乘法计数原理,并能应用两个基本原理分析、解决一些简单的应用问题。
2、能力目标在概念形成的过程中培养学生的总结与概括能力,在解决实际问题过程中锻炼学生逻辑思维能力。
3、情感目标让学生体验知识从生活中来又应用到生活中去得过程,培养学生用数学的眼光观察世界和用数学的思想思考世界的习惯。
教学重点是两个基本计数原理的内容。
难点是如何正确是用两个基本计数原理来解决实际问题。
二、学情分析高二学段的高中生已经具备较好的计算能力和基本的逻辑思维能力,但是对于实际问题的生活背景了解不多,对问题中创设的实际背景和如何完成一件事的含义的理解将成为学生运用两个基本计数原理解决问题是的瓶颈,所以找到如何完成一项实际任务的方法,是应用过程中难点。
三、教学策略本课由于内容比较简单学生通过预习多都能够看懂,在实际授课时,我将使用更能贴近学生生活的实例,以激发学生的求知欲和学习热情。
采用教师启发、学生小组合作学习方式进行教学,利用多媒体课件展示引例的问题环境,引导学生思维,具体的分析比较进而归纳出两个基本计数原理,遵循从特殊到一般的思维过程,在学生现有的认知基础上,促使其获取知识,让学生始终保持高水平的思维活动水平,增强学习效果。
四、教学过程1、设置情景,引入新课使用多媒体课件展示郑板桥《咏雪》让学生齐读古诗并请学生对古诗进行自由鉴赏。
1.2 排列(二)五分钟训练(预习类训练,可用于课前)1.将5辆车停在5个车位上,其中A 车不停在一号车位上,B 车要停在二号车位上.不同的停车方案有 ( )A.6种B.18种C.24种D.78种 答案:B解析:N=3313A A =18(种).2.用1,2,3三个数字,可组成无重复数字的正整数共( )A.6个B.27个C.15个D.9个 答案:C解析:利用1,2,3可组成数字不重复的一位,二位,三位正整数,于是有N=332313A A A ++=15(个).3.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目,如果将这两个节目插入原节目单中,那么不同的插法的种数为( )A.42B.30C.20D.12 答案:A解析:分两类:①两个新节目相邻的插法有622A 种;②两个新节目不相邻的插法有26A 种,故N=6×2+6×5=42.或者直接采用插空法:N=1716A A •=42.4.3个男生和2个女生排成一排,若两端不能排女生,则共有____________种不同的排法. 答案:36解析:男生排在两端有23A 种排法,其余位置有33A 种排法.故共有23A ·33A =36种排法. 十分钟训练(强化类训练,可用于课中)1.一个人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为( )A.2544A A B.25A C.44A D.4488A A -答案:B解析:命中4枪,恰好有3枪连在一起的“三枪”看作一个整体(一个元素),第4枪看作一个元素,共两个元素.打不中的四枪间,连同前后共5个空,任选两个空插入,有25A 种. 2.将1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数字,则每个方格的标号与所填的数字均不相同的填法有( )A.6种B.9种C.11种D.23种 答案:B有3种情况,总共3×3=9种.3.某工程队有6项工程需要先后单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后才能进行,又工程丁必须在工程丙完成后立即进行,那么安排这6项工程的不同排法种数是______________.(用数字作答) 答案:12解析:工程甲、工程乙、工程丙、工程丁的顺序已确定且丙丁相邻,则只需将剩下的2个工程安排好,即24A =12.4.由数字0,1,2,3,4,5可以组成____________个没有重复数字且能被5整除的六位数. 答案:216解析:分两类:末位数字是0的有55A =120(个),末位数字是5的有4414A A =96(个). 总共120+96=216(个).5.一天课表中,6节课要安排3门理科,3门文科,要使文,理科间排,不同的排课方法有_________种;要使数学与物理连排,化学不得与数学,物理连排,不同的排课方法有___________种. 答案:72 144解析:要使文理科间排,有两种情况:文科排1,3,5,理科排2,4,6或理科排1,3,5,文科排2,4,6,共有33333333A A A A •+•=72.数学与物理连排,则把数学、物理当作一个元素,化学不得与数学、物理连排,用插空法得:2433A A •·2=144.6.在3 000至8 000中有多少个无重复数字的奇数?解法一:分两类:首位数字是3,5,7的四位奇数有281413A A A ••=672(个);首位数字是4,6的四位奇数有281512A A A ••=560(个).故满足条件的数共有672+560=1 232(个).解法二:若允许首末位数字相同,则末位可取1,3,5,7,9五个数字,首位可取3~7五个数,于是3 000~8 000中的奇数有281515A A A 个;其中首末位数字相同的情况是3**3,5**5,7**7,共有13A 28A 个.于是共有:28A ×5×5-13A ·28A =1 400-168=1 232(个)满足题设条件的数.30分钟训练(巩固类训练,可用于课后)1.从5位同学中选派4位同学在星期五,星期六,星期日参加公益活动,每人一天,要求星期五有2人参加,星期六,星期日各有1人参加,则不同的选派方法共有( )A.40种B.60种C.100种D.120种 答案:B解析:先从5人中选2人安排在星期五,再从剩下的3人中选1人安排在星期六,从最后02人中选1人安排在星期日.121325C C C =60.2.若n∈N *,n<20,则(20-n)·(21-n)…(29-n)·(30-n)等于( )A.1020A B.1120n A - C.1030n A - D.1130n A -答案:D解析:mn A =n(n-1)…(n -m+1), 故原式=1130n A -.3.不等式21-n A -n≤0的解是( )A.n=3B.n=2C.n=2或n=3D.n=1或n=2或n=3 答案:A解析:∵n -1≥2,又(n-1)(n-2)≤n, ∴n=3.4.200件产品中有197件合格品,3件次品,现从中任意抽出5件,其中至少有2件次品的抽法有( )A.219733319723C C C C +种B.319723C C -种 C.51975200C A -种 D.4197135200C C C -种答案:A解析:有两件次品的抽法为233197C C ,有三件次品的抽法为332197C C ,共有232197233197C C C C +种.5.由1,2,3,4,5组成的没有重复数字的五位数中,若百位数字最大,万位数字比千位数字小,个位数字比十位数字小,这样的五位数的个数为( )A.12B.8C.6D.4 答案:C解析:百位数字量大,所以安排5,剩余的4个空位,安排1,2,3,4,全排列有44A 个,但要求万位数字比千位数字小,即这两个位置大小次序一定,属于定序问题,所以应去掉对顺序的安排22A ;同理个位、十位也要去掉对顺序的安排22A ,所以这样的五位数的个数共有222244A A A =6个.6.有8本互不相同的书,其中数学书3本,外文书2本,其他书3本.将这些书排成一排放在书架上,那么数学书恰好排在一起,外文书也恰好排在一起的排法共有___________种. 答案:1 440解析:先排数学有33A 种排法; 再排外语有22A 种排法;将数学,外语看成整体与其他书全排有55A 种排法. ∴N=33A ·22A ·55A 1 440(种).7.由四个不同数字1,4,5,x(x≠0)组成没有重复数字的四位数,所有这些四位数的各位数字之和为288,求x 的值.解:因为1,4,5,x 四个数字互不相同,故在排成的四位数中,1在千位上,百位上,十位上,个位数字上分别出现33A 次,故所有的1的和为1×4×33A =24.同理可知,所有4的和共有4×4×33A =96,所有5的和共有5×4×33A 120,所有x 的和共有x·433A =24x.由题设得24+96+120+24x=288,解得x=2.8.用1,2,3,4,5五个数字组成无重复数字的五位数,其中恰有一个奇数夹在两个偶数之间的五位数的个数是多少?解:满足要求的五位数分为三类:偶奇偶奇奇:221312A A A ••; 奇偶奇偶奇:221213A A A ••;奇奇偶奇偶:221312A A A ••;共有3221312A A A ••=36(个).9.从-1、0、1、2、3中选三个(不重复)数字组成二次函数y=ax 2+bx+c 的系数. (1)开口向上且不过原点的不同抛物线有几条?(2)与x 轴正、负半轴均有交点的不同抛物线有几条? (3)与x 轴负半轴至少有一个交点的不同抛物线有几条?解:(1)a>0且c≠0,共有131313A A A ••=27种.(2)只需ac<0,故-1必须排除,有221313A A A ••=18种.(3)可分为三类:第一类与x 轴正、负半轴均有交点的直线共有18条,第二类过原点且与x 轴负半轴有一个交点,此时,c=0,ab>0,共有23A =6条.第三类,与x 轴负半轴有两个交点,则必须满足⎩⎨⎧≥-⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧><-≥∆同号a 、、b、ac b ac a b040002 即b=3,a 、c 在1、2中取,有2条,由分类计数原理可得有26条. 10.4名男生和3名女生并坐一排,分别回答下列问题. (1)男生必须排在一起的坐法有多少种? (2)女生互不相邻的坐法有多少种?(3)男生相邻,女生也相邻的坐法有多少种? (4)女生顺序已定的坐法有多少种?解:(1)从整体出发,将4名男生看成一个“大元素”与3名女生进行全排列,有44A 种排法,而“大元素”内部又有44A 种排法,故共有44A ·44A =576种坐法.(2)先将4名男生排好,有44A 种排法,然后在男生之间隔出的五个空档中插入3名女生,故有44A ·33A =1 440种坐法.(3)N=44A ·33A ·22A =288种坐法.(4)N=473377A A A =840种坐法.。
1.1 两个基本计数原理
1.分类计数原理
完成一件事,有n 类方式,在第1类方式中有m 1种不同的方法,在第2类方式中有m 2种不同的方法,……,在第n 类方式中有m n 种不同的方法,那么完成这件事共有N =m 1+m 2+…+m n 种不同的方法.分类计数原理又称为加法原理.
预习交流1
应用分类计数原理的原则是什么? 提示:做一件事有n 类方式,每一类方式中的每一种方法均完成了这件事.
2.分步计数原理
完成一件事,需要分成n 个步骤,做第1步有m 1种不同的方法,做第2步有m 2种不同的方法,……,做第n 步有m n 种不同的方法,那么完成这件事共有N =m 1×m 2×…×m n 种不同的方法.分步计数原理又称为乘法原理.
预习交流2
应用分步计数原理的原则是什么?
提示:
做一件事要分n 个步骤完成,只有所有步骤完成时,才完成这件事,也就是说,每一步骤中每种方法均不能完成这件事.
一、分类计数原理问题
从甲地到乙地每天有火车3班,汽车8班,飞机2班,轮船2班,问一天内乘坐班次不同的运输工具由甲地到乙地,有多少种不同的走法?
思路分析:由于每班火车、汽车、飞机、轮船均能实现从甲地到乙地,因此利用分类计数原理.
解:根据运输工具可分四类:
第1类是乘坐火车,有3种不同的走法;
第2类是乘坐汽车,有8种不同的走法;
第3类是乘坐飞机,有2种不同的走法;
第4类是乘坐轮船,有2种不同的走法;
根据分类计数原理,共有不同的走法的种数是N=3+8+2+2=15.
设有5幅不同的油画,2幅不同的国画,7幅不同的水彩画.从这些画中只选一幅布置房间,有__________种不同的选法.
答案:14
解析:根据分类计数原理,不同的选法有N=5+2+7=14种.
如果完成一件事有n类方式,每类方式彼此之间是相互独立的,无论哪一种方式的每种方法都能单独完成这件事,求完成这件事的方法种数,就用分类计数原理(加法原理).
二、分步计数原理问题
有三个盒子,分别装有不同编号的红色小球6个,白色小球5个,黄色小球4个,现从盒子里任取红、白、黄小球各1个,有多少种不同的取法?
思路分析:要从盒子里取到红、白、黄小球各1个,应分三个步骤,并且这三个步骤均完成时,才完成这件事,故应用分步计数原理.
解:分三步完成:
第1步是取红球,有6种不同的取法;
第2步是取白球,有5种不同的取法;
第3步是取黄球,有4种不同的取法;
根据分步计数原理,不同取法的种数为N=6×5×4=120.
现有高一学生9人,高二学生12人,高三学生7人自发组织参加数学课外活动小组,为便于管理,每年级各选一名组长,有__________种不同的选法.
答案:756
解析:根据分步计数原理有N=9×12×7=756种不同的选法.
如果完成一件事需要分成n个步骤,缺一不可,即需要依次完成所有步骤才能完成这件事,而完成每一个步骤各有若干种不同的方法,求完成这件事的方法种数就用分步计数原理(乘法原理).
1.两个书橱,一个书橱内有7本不同的小说,另一个书橱内有5本不同的教科书.现从两个书橱任取一本书的取法有__________种.
答案:12
解析:根据分类计数原理,不同的取法有N=7+5=12种.
2.教学大楼有5层,每层均有2个楼梯,由1楼到5楼的走法有__________种.
答案:16
解析:根据分步计数原理,不同的走法有N=2×2×2×2=16种.
3.现有高一学生9人,高二学生12人,高三学生7人,从中推选两名来自不同年级的学生做一次活动的主持人,共有__________种不同的选法.
答案:255
解析:分三类:第1类是从高一和高二各取1人,有9×12=108种选法;
第2类是从高一和高三各取1人,有9×7=63种选法;
第3类是从高二和高三各取1人,有12×7=84种选法;
由分类计数原理,不同的选法有N=108+63+84=255种.
4.某体育彩票规定,从01~36共36个号中抽出7个号为一注,每注2元,某人想选定吉利号18,然后从01~17中选3个连续的号,从19~29中选2个连续的号,从30~36
中选1个号组成一注,若这个人要把这种号全买下来至少要花多少钱?
解:分三步选号:第1步从01~17中选3个连续的号共有15种选法;
第2步从19~29中选2个连续的号共有10种选法;
第3步从30~36中选1个号共有7种选法;
因此由分步计数原理知共有N=15×10×7=1 050(注),故要花1 050×2=2 100(元).5.有四位同学参加三项不同的竞赛.
(1)每位同学必须只参加一项比赛,有多少种竞赛方案?
(2)每项竞赛只允许一位同学参加,有多少种竞赛方案?
解:(1)同学可以选择竞赛项目,而竞赛项目对于同学无条件限制,所以每位同学均有3个不同的机会,要完成这件事必须是每位同学参加竞赛的项目全确定下来.因此分四步,所以根据分步计数原理,共有N=3×3×3×3=34=81种不同的方案.
(2)竞赛项目可挑选同学,而同学无选择项目的机会,每一个项目可挑选4个不同的同学中的一个,要完成这件事须每项竞赛所参加的同学全部确定下来才行.因此需分三步,根据分步计数原理,共有M=4×4×4=64种不同的方案.。