眼应用光学基础共158页文档
- 格式:ppt
- 大小:13.36 MB
- 文档页数:158
第一章几何光学基本定律与成像概念1、波面:某一时刻其振动位相相同的点所构成的等相位面成为波阵面,简称波面。
光的传播即为光波波阵面的传播。
2、光束:与波面对应的所有光线的集合。
3、波面分类:a)平面波:对应相互平行的光线束(平行光束)b)球面波:对应相较于球面波球心的光束(同心光束)c)非球面波4、全反射发生条件:a)光线从光密介质向光疏介质入射b)入射角大于临界角5、光程:光在介质中传播的几何路程l与所在介质的折射率n的乘积s。
光程等于同一时间内光在真空中所走的几何路程。
6、费马原理:光从一点传播到另一点,期间无论经过多少次折射和反射,其光程为极值。
7、马吕斯定律:光线束在各向同性的均匀介质中传播时,始终保持着与波面的正交性,并且入射波面与出射波面对应点之间的光程均为定值。
8、完善像:a)一个被照明物体每个物点发出一个球面波,如果该球面波经过光学系统后仍为一球面波,那么对应光束仍为同心光束,则称该同心光束的中心为物点经过光学系统后的完善像点。
b)每个物点的完善像点的集合就是完善像。
c)物体所在空间称为物空间,像所在空间称为像空间。
10、完善成像条件:a)入射波面为球面波时,出射波面也为球面波。
b)或入射光为同心光束时,出射光也为同心光束。
c)或物点A1及其像点之间任意两条光路的光程相等。
11、物像虚实:几个光学系统组合在一起时,前一系统形成的虚像应看成当前系统的实物。
12、子午面:物点和光轴的截面。
13、决定光线位置的两个参量:a)物方截距:曲面顶点到光线与光轴交点A的距离,用L表示。
b)物方孔径角:入射光线与光轴的夹角,用U表示。
14、符号规则a)沿轴线段:以折射面顶点为原点,由顶点到光线与光轴交点或球心的方向于光线传播方向相同时取证,相反取负b)垂轴线段:以光轴为基准,在光轴上方为正,下方为负。
c)夹角:i.优先级:光轴》光线》法线。
ii.由优先级高的以锐角方向转向优先级低的。
iii.顺时针为正,逆时针为负。
完整word版)眼科学基础眼科学基础1、视觉器官包括:眼球,眼眶及眼的附属器,视路以及眼部的相关血管和神经结构等。
2、眼球出生前后径16mm,3岁23mm,成人24mm,垂直径较水平径略短。
位于眼眶前部,借眶筋膜、韧带与眶壁联系,周围有眶脂肪垫衬,其前面有眼睑保护,后面有眶骨壁保护。
眼球由眼球壁和眼球内容物所组成。
3、眼球壁分为三层:外层为纤维膜(角膜,巩膜,角膜缘,前房角),中层为葡萄膜层(虹膜。
睫状体,脉络膜),内层为视网膜。
4、角膜的横径约11.5-12mm,垂直径约10.5-11mm。
组织学上从前向后分为5层:上皮细胞层。
前弹力层,基质层,后弹力层,内皮细胞层。
状,称巩膜筛板,视神经纤维束由此处穿出眼球。
巩膜在眼外肌附着处最薄(0.3mm),视神经周围最厚(1.0mm)。
组织学上分为:表层巩膜、巩膜实质层和棕黑板层。
6、[角膜缘]解剖结构上是前房角及房水引流系统的所在部位,临床上又是许多内眼手术切口的标志部位,组织学上还是角膜干细胞所在的地方。
7、前房角位于周边角膜与虹膜根部的连接处。
其内可见:Schwalbe线、小梁网和Schlemm管、XXX膜突、睫状带和虹膜根部。
前房角是房水排出眼球的主要通道。
8、眼球壁中层为葡萄膜,主要由三部分组成,由前到后为虹膜、睫状体和头绪膜。
虹膜的中心有一个2.5-4mm的圆孔称为[瞳孔]。
9、睫状体主要由睫状肌和睫状上皮细胞组成。
10、眼球壁内层为视网膜,[黄斑中心凹是视网膜最敏锐的部位]。
视网膜后极部有一个无血管凹陷区,剖解上称为中心凹,临床上称为黄斑。
其中心有一小凹,剖解上称中心小凹,临床上称为黄斑中心凹。
视盘,又称视,是距黄斑鼻侧约3mm、大小约1.5mm×1.75mm、境界清楚的橙红色略呈竖椭圆形的盘状结构,是视网膜上视觉神经纤维汇集组成视神经、向视觉中枢传递穿出眼球的部位,视盘中心有小凸起区称视杯或杯凹。
有视网膜中心A、V经由过程。
视网膜是由胚胎时期神经外胚叶形成的视杯发育而来,视杯外层形成单一的视素上皮(RPE)层,视杯内层分化为视网膜神经感觉层,二者之间有一潜在间隙,临床上视网膜脱离即由此处分离。
眼应用光学在空气中波长为1nm~1mm范围内的电磁辐射称为光辐射或光。
• 光辐射包含紫外线、可见光和红外线。
自发光点发出的同心光束,经光学系统后仍保持为同心光束,则出射单心光束的“心”为点像。
• 对某一光学系统来说,入射同心光束的“心”称为物点。
垂直轴距离的符号规则• 以光轴为初始点,自光轴向上的距离取正号,自光轴向下的距离取负号。
物体通过平板玻璃成像后,像相对于物,偏移的距离• 通过厚度为t,折射率为1.5的平板玻璃后,所成像偏移物的距离为t/3.将使用目视光学仪器后人眼视网膜光学像大小与人眼直接观察物体的视网膜像大小之比称为视放大率,用符号Γ表示。
眼睛配戴远视镜片,会产生枕形畸变。
• 眼睛配戴近视镜片,会产生桶形畸变。
完全偏振光的分类• 包括线偏振光、椭圆偏振光和圆偏振光三种。
在眼睛其他因素不变的情况下,前房深度减小1mm,会使眼睛的总屈光力增加约1.4D 。
模型眼• 是一个依据人眼的平均尺寸,用各种曲率半径的球面代表眼球光学系统的共轴球面光学系统模型。
孔径光阑经它后面光学系统所成的像称为出射光瞳。
• 孔径光阑经它前面光学系统所成的像称为入射光瞳。
横向放大率• 像的大小与物的大小的比值,用β表示。
已知薄透镜的横向放大率为2,像方焦距f ’=2cm,则像的位置x’为()。
球面透镜,从形状分类,为凸透镜,凹透镜。
厚透镜的基点• 物方主点,像方主点• 物方焦点,像方焦点• 物方节点,像方节点。
半波损失• 光在被反射过程中,反射光在离开反射点时的振动方向与入射光到达入射点时的振动方向相反,该现象叫做半波损失。
• 入射光在光疏媒质中前进,遇到光密媒质界面时,在反射过程中产生半波损失。
• 折射光的振动方向相对于入射光的振动方向,永远不发生变化,故无半波损失。
入射光在光密媒质中前进,遇到光疏媒质的界面时,反射光不产生半波损失。
• 入射光在厚度为零的薄膜两表面反射时,由于半波损失,该位置会出现暗条纹。
电磁波• r射线、x射线、紫外线、可见光、红外线、微波和无线电波因为光是一种具有波粒二象性的物质,所以光既有波动性,又有粒子性。
基础知识1.1924年,德布罗意大胆地创立了物质波动学说。
光既具有粒子性,又具有波动性,光在传播时表现为波动性,而与物质作用时又表现为粒子性。
2.波动光学理论认为,光是某波段的电磁波。
3.可见光的波长范围约为380~760nm4.光源间指性能够辐射光能的物体称为光源。
5.光源可分为普通光源和激光光源。
6.自发辐射有两个特点:其一是随机性其二是间歇性7.具有单一频率的光称为单色光8.由各种频率复合的光称为复色光9.各种不同频率的光将按不同的折射角分开,形成光谱,这种现象称为色散。
10.满足光的相干条件:频率相同的两光波在相遇点有相同的振动方向和恒定的相位差。
满足本条件的光称为相干光11.能发出相干光的光源称为相干光源12.波的叠加原理:从几个波源产生的波在同一介质中传播时,无论它们相遇与否,都保持自己原有的特性,即频率不变、波长不变、振动方向不变,各列波都按自己原来传播的方向继续前进,不受其他波的影响13.折射率和几何路程的乘积,叫做光程14.光程之差称为光程差15.托马斯·杨解释了干涉现象16.光从光疏媒质(折射率小)向光密媒质(折射率大)表面入射时,反射光的位相改变π.它相当于光多(或少)传播半个波长的距离,这种现象称为半波损失17.劳埃德镜实验显示了光的干涉现象,证实了光的波动性,证明了光由光疏介质射向光密介质表面发生反射时,反射光会发生半波损失。
18.相干光,在相遇时将会产生干涉现象,称为薄膜干涉19.光波绕过障碍物的边缘传播的现象叫做光的衍射20.衍射系统由光源、衍射屏(障碍物)和接收屏幕(观察屏)组成21.衍射现象分为两类:一类是菲涅耳衍射(距离有限)另一类是夫琅禾费衍射(距离无限远)22.用半波带法分析单缝衍射23.艾里斑的光强占整个衍射光强的约84%24.圆孔愈小或波长愈长,所得艾里斑也越大,衍射现象越明显25.任何具有空间周期性的衍射屏都可以叫做衍射光栅26.光的偏振现象证实了光的横波性质27.自然光与偏振光光波是一种电磁波28.光波是横波,具有偏振特性29马吕斯发现了光的偏振现象30.在所有可能的方向上的光矢量的振动次数和振幅的时间平均值相等,这样的光称为自然光31.这种光振动矢量只在某一平面内沿某一确定方向振动的光,称为平面偏振光亦称为线偏振光32.光的双折射当一束光线在各向同性介质的表面折射时,折射光线只有一束,且遵守折射定律。