华东师大版:七年级下册期末测试卷
- 格式:docx
- 大小:121.97 KB
- 文档页数:5
华东师大版七年级数学下册期末综合检测含解析(120分钟120分)一、选择题(每小题3分,共30分)1.如果一个三角形的两边长分别为2和4,则第三边长可能是( )A.2B.4C.6D.82.方程=1-去分母后正确的结果是( )A.2(2x-1)=8-3-xB.2(2x-1)=1-(3-x)C.2x-1=1-(3-x)D.2(2x-1)=8-(3-x)3.下列标志图中,既是轴对称图形,又是中心对称图形的是( )4.如果一个多边形的内角和是其外角和的一半,那么这个多边形是( )A.六边形B.五边形C.四边形D.三角形5.已知是二元一次方程组的解,则a-b的值为( )A.-1B.1C.2D.36.如图,不等式组的解集在数轴上表示为( )7.下列图形中,不能通过其中一个四边形平移得到的是( )8.如果△ABC≌△DEF,△DEF的周长为13,DE=3,EF=4,则AC的长为( )A.13B.3C.4D.69.将一副三角板按如图所示摆放,图中∠α的度数是( )A.75°B.90°C.105°D.120°10.现有100名人员,需要同时租用6人间和4人间两种客房,若每个房间都住满,则租房方案共有( )A.8种B.9种C.16种D.17种二、填空题(每小题3分,共24分)11.图中多边形的周长是厘米.12.已知关于x的不等式x-a<1的解集为x<2,则a的值是.13.若关于x,y的二元一次方程组的解满足x+y>1,则k的取值范围是.14.如图,若∠1=40°,∠2=40°,∠3=116°30′,则∠4= .15.利用边长相等的正三角形和正六边形的地砖镶嵌地面时,在每个顶点周围有a块正三角形和b块正六边形的地砖(a,b都不为0),则a+b的值为.16.如图,在直角△OAB中,∠AOB=30°,将△OAB绕点O逆时针旋转100°得到△OA1B1,则∠A1OB的度数为.17.某商店一套西服的进价为300元,按标价的80%销售可获利100元,则该服装的标价为元.18.对于任意有理数a,b,c,d,规定a bc d=ad-bc,如1 23 4=1×4-2×3,若x 23 4--=-2,则x= .三、解答题(共66分)19.(8分)(1)解方程-=1.(2)解方程组20.(8分)(1)解不等式:->-1,并把解集在数轴上表示出来.(2)解不等式组并将其解集在数轴上表示出来.21.(8分)画图并填空:(1)画出图中△ABC的高CD(标注出点D的位置).(2)画出把△ABC沿射线CD方向平移3cm后得到的△A1B1C1.(3)根据“图形平移”的性质,得BB1= cm,AC与A1C1的关系是:.22.(8分)列方程或方程组解应用题:在“五一”期间,小明、小亮等同学随家长一同到某公园去游玩,下面是购买门票时,小明与他爸爸的对话(如图),试根据图中的信息,解答下列问题:(1)小明他们一共去了几个成人,几个学生?(2)请你帮助小明算一算,用哪种方式购票更省钱?23.(8分)已知方程组和有相同的解,求a2-2ab+b2的值.24.(8分)如图,点P是△ABC内部的一点.(1)度量线段AB,AC,PB,PC的长度,根据度量结果比较AB+AC与PB+PC的大小.(2)改变点P的位置,上述结论还成立吗?(3)你能说明上述结论为什么正确吗?25.(8分)(1)观察图案(1),它可以看作是由哪个“基本图案”经过怎样的变换得到的.(2)如图(2)所示,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上).①把△ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的△A1B1C1;②把△A1B1C1绕点A1按逆时针方向旋转90°,在网格中画出旋转后的△A1B2C2.26.(10分)某商场促销方案规定:商场内所有商品按标价的80%出售,同时,当顾客在商场内消费满一定金额后,按下表获得相应的返还金额.消费金额(元) 300~400400~500500~600600~700700~900…返还金额(元)30 60 100 130 150 …注:300~400表示消费金额大于300元且小于或等于400元,其他类同.根据上述促销方案,顾客在该商场购物可以获得双重优惠.例如,若购买标价为400元的商品,则消费金额为320元,获得的优惠额为400×(1-80%)+30=110(元).(1)购买一件标价为1 000元的商品,顾客获得的优惠额是多少?(2)如果顾客购买标价不超过800元的商品,要使获得的优惠额不少于226元,那么该商品的标价至少为多少元?答案解析1.【解析】选B.由三角形的三边关系可得第三边的范围为大于2小于6,则B项正确.2.【解析】选D.方程左右两边同时乘以8,得:2(2x-1)=8-(3-x).3.【解析】选B.A只是中心对称图形,C只是轴对称图形,D既不是轴对称图形也不是中心对称图形.4.【解析】选D.四个选项中三角形的内角和是其外角和的一半,故选D.5.【解析】选A.∵已知是二元一次方程组的解,∴由①+②,得a=2,由①-②,得b=3,∴a-b=-1.6.【解析】选C.由2x-1≤3得x≤2,由2-x<3得x>-1,故解集为-1<x≤2,结合选项中解集表示,可知选C.7.【解析】选D.A,B,C能通过其中一个四边形平移得到;D不能通过其中一个四边形平移得到,可需要一个四边形旋转得到.8.【解析】选D.∵△ABC≌△DEF,∴DF=AC,∵△DEF的周长为13,DE=3,EF=4,∴DF=6,即AC=6.9.【解析】选C.∠α的度数为180°-45°-30°=105°.10.【解析】选A.设租用6人间为x间,4人间为y间.依题意,得6x+4y=100,整理得:3x+2y=50∴y=25-x>0,∴0<x<<17,由于x,y为正整数,∴x能被2整除,即x为偶数,∴x=2,4,6,…,16(8个数值),相应的y=22,19,16,…,1(8个数值),∴对应如下8个租房方案:方案一二三四五六七八数量房间6人间 2 4 6 8 10 12 14 164人间22 19 16 13 10 7 4 111.【解析】通过平移可知多边形的周长为:(5+2)×2=14(厘米).答案:1412.【解析】不等式x-a<1两边都加a,得x<1+a,所以1+a=2,所以a=1.答案:113.【解析】①+②得3x+3y=3k-3,∴x+y=k-1.∵x+y>1,∴k-1>1,解得k>2.答案:k>214.【解析】∵∠3=∠1+∠5,∴∠5=∠3-∠1=76°30′.又∵∠2=40°,∴∠6=180°-40°-76°30′=63°30′.∴∠4=∠6=63°30′.答案:63°30′15.【解析】∵正三角形和正六边形内角分别为60°,120°,又∵60×4+120=360,或60×2+120×2=360,∴a=4,b=1或a=2,b=2,①当a=4,b=1时,a+b=5;②当a=2,b=2时,a+b=4.答案:4或516.【解析】∠A1OB=∠AOA1-∠AOB=100°-30°=70°.答案:70°17.【解析】设该服装的标价为x元,则实际售价为80%x,根据等量关系列方程得:80%x-300=100. 解得:x=500.答案:50018.【解析】由题意得,-4x-(-2)×3=-2,即-4x+6=-2,两边都减6,得-4x=-8,两边同除以-4,得x=2. 答案:219.【解析】(1)原方程可化为:-=1,去分母(方程两边同乘以6),得:20x-3(17-20x)=6,去括号,得:20x-51+60x=6,移项,得:20x+60x=6+51,合并同类项,得:80x=57,两边都除以80,得:x=.(2)由①得x=-3y-1③,将③代入②,得3(-3y-1)-2y=8,解得:y=-1.将y=-1代入③,得x=2.故原方程组的解是20.(1)【解析】去分母,得2(2x+1)-(2-x)>3(x-1)-6,去括号,得4x+2-2+x>3x-3-6,移项,得4x+x-3x>-3-6-2+2,合并同类项,得2x>-9,两边都除以2,得x>-,解集用数轴表示如下:(2)【解析】由①得x≤1,由②得x>-2.所以不等式组的解集为-2<x≤1,在数轴上表示为:21.【解析】(1),(2)如图:(3)根据“图形平移”的性质,得BB1=3cm,AC与A1C1的关系是平行且相等.22.【解析】(1)设去了x个成人,则去了(12-x)个学生,依题意得40x+20(12-x)=400,解得x=8,12-x=4.答:小明他们一共去了8个成人,4个学生.(2)若按团体票购票:16×40×0.6=384,∵384<400,∴按团体票购票更省钱.23.【解析】解方程组得把代入方程组得解此方程组得∴a2-2ab+b2=1.24.【解析】(1)如图有:AB+AC>PB+PC.(2)改变点P的位置,上述结论还成立.(3)如图,连结AP,BP,CP,延长BP交于AC于点E,在△ABE中有,AB+AE>BE=BP+PE ①在△CEP中有,PE+CE>PC ②①+②得,AB+AE+PE+CE>BP+PE+PC,AB+AC+PE>BP+PE+PC,∴AB+AC>BP+PC.25.【解析】(1)基本图案先连续两次平移,前后得到三个星星组成的一个基本图案,再连续旋转三次,即分别旋转90°,前后图形共同组成的.(2)①②如图26.【解析】(1)购买一件标价为1 000元的商品,消费金额为800元,顾客获得的优惠额为1 000×(1-80%)+150=350(元).(2)设该商品的标价为x元.当80%x≤500,即x≤625时,顾客获得的优惠额不超过625×(1-80%)+60=185<226;当500<80%x≤600,即625<x≤750时,(1-80%)x+100≥226.解得x≥630.所以630≤x≤750.当600<80%x≤800×80%,即750<x≤800时,顾客获得的优惠额大于750×(1-80%)+130=280>226.综上,顾客购买标价不超过800元的商品,要使获得的优惠额不少于226元,那么该商品的标价至少为630元.。
一、选择题1.下列说法中不正确的是( )A .抛一枚质地均匀的硬币,正面朝上的概率与抛硬币的次数无关B .随机选择一户二孩家庭,头胎、二胎都是男孩的概率为14C .任意画一个三角形内角和为360°是随机事件D .连续投两次骰子,前后点数之和为偶数的概率是12 2.下列事件中,属于必然事件的是( )A .一个数的相反数等于它本身B .早上的太阳从北方升起C .380人中有两人的生日在同一天D .明天上学路上遇到下雨 3.在抛掷硬币的试验中,下列结论正确的是( )A .经过大量重复的抛掷硬币试验,可发现“正面向上”的频率越来越稳定B .抛掷10000次硬币与抛掷12000次硬币“正面向上”的频率相同C .抛掷50000次硬币,可得“正面向上”的频率为0.5D .若抛掷2000次硬币“正面向上”的频率是0.518,则“正面向下”的频率也为0.518 4.下列命题正确的是( )A .全等三角形的对应边相等B .面积相等的两个三角形全等C .两个全等三角形一定成轴对称D .所有等腰三角形都只有一条对称轴 5.如图,把一个正方形三次对折后沿虚线剪下,得到的图形是( )A .B .C .D . 6.如图,若ABC ∆的面积为24,6AC =,现将ABC ∆沿 AB 所在直线翻折,使点 C 落在直线AD 上的C '处,P 为直线AD 上一点,则线段 BP 的长可能是( )A .3B .5C .6D .107.如图,在ABC 中,AB AC =,点D ,E 在BC 上,连接AD ,AE ,若只添加一个条件使DAB EAC ∠=∠,则添加的条件不能为( )A .BD CE =B .AD AE =C .BE CD = D .DA DE = 8.如图,在△ABC 中,已知点D ,E ,F 分别为边AC ,BD ,CE 的中点,且阴影部分图形面积等于4平方厘米,则△ABC 的面积为( )平方厘米A .8B .12C .16D .189.工人师傅常用直角尺平分一个角,做法如下:如图所示,在∠AOB 的边OA ,OB 上分别取OM =ON ,移动直角尺,使直角尺两边相同的刻度分别与M ,N 重合(即CM =CN ).此时过直角尺顶点C 的射线OC 即是∠AOB 的平分线.这种做法的道理是( )A .HLB .SASC .SSSD .ASA 10.李钰同学利用计算机设计了一个程序,输入和输出的数据如下表:输入… 1 2 3 4 5 … 输出 … 2 5 10 17 26 …那么,当输入数据8时,输出的数据是( )A .61B .63C .65D .6711.如图,AB //EF,∠D=90°,则α,β,γ的大小关系是( )A .βαγ=+B .90βαγ=+-︒C .90βγα=+︒-D .90βαγ=+︒-12.下列计算正确的是( )A .(a 2)3=a 5B .(2a 2)2=2a 4C .a 3•a 4=a 7D .a 4÷a =a 4二、填空题13.如图,假设可以在图中每个小正方形内任意取点(每个小正方形除颜色外完全相同),那么这个点取在阴影部分的概率是______.14.在一不透明的口袋中有4个为红球,3个绿球,2个白球,它们除颜色不同外完全一样,现从中任摸一球,恰为红球的概率为__________.15.如图,Rt △AFC 和Rt △AEB 关于虚线成轴对称,现给出下列结论:①∠1=∠2;②△ANC ≌△AMB ;③CD =DN .其中正确的结论是_____.(填序号)16.生活中,将一个宽度相等的纸条按图所示折叠一下, 如果∠1=140º,那么∠2=_____.17.已知:AD 、AE 分别是ABC 的高,中线,6BE =,4CD =,则DE 的长为_________.18.拖拉机工作时,油箱中的余油量Q (升)与工作时间t (时)的关系式为406Q t =-.当4t =时,Q =_________,从关系式可知道这台拖拉机最多可工作_________小时.19.已知α∠的余角是354520'''︒,则α∠补角的度数是_______.20.计算:3212ab ⎛⎫ ⎪⎝⎭-=________________. 三、解答题21.将表示下列事件发生的概率的字母标在下图中:(1)投掷一枚骰子,掷出7点的概率1P ;(2)在数学测验中做一道四个选项的选择题(单选题),由于不知道那个是正确选项,现任选一个,做对的概率2P ;(3)袋子中有两个红球,一个黄球,从袋子中任取一球是红球的概率3P ;(4)太阳每天东升西落4P ;(5)在1---100之间,随机抽出一个整数是偶数的概率5P .22.如图①,将笔记本活页一角折过去,使角的顶点A 落在A '处,BC 为折痕.(1)图①中,若130∠=︒,则A BD '∠=________;(2)如果又将活页的另一角斜折过去,使BD 边与BA '重合,折痕为BE ,如图②所示,130∠=︒,求2∠以及CBE ∠的度数;(3)如果在图②中改变1∠的大小则BA '的位置也随之改变那么问题(2)中CBE ∠的大小是否改变?如果不会改变请直接写出CBE ∠的度数;如果会改变,请说明理由. 23.如图,在五边形ABCDE 中,AB DE =,AC AD =.(1)请你添加一个与角有关的条件,使得ABC DEA ≌,并说明理由;(2)在(1)的条件下,若65CAD ∠=︒,110B ∠=︒,求BAE ∠的度数. 24.科学家研究发现,声音在空气中传播的速度y (米/秒)与气温x (°C )有关,当气温是0°C 时,音速是331米/秒;当气温是5°C 时,音速是334米/秒;当气温是10°C 时,音速是337米/秒;气温是15°C 时,音速是340米/秒;气温是20℃时,音速是343米/秒;气温是25°C 时,音速是346米/秒;气温是30°C 时,音速是349米/秒.(1)请你用表格表示气温与音速之间的关系;(2)表格反映了哪两个变量之间的关系?哪个是自变量?哪一个是对应的值?(3)当气温是35°C时,估计音速y可能是多少?(4)能否用一个式子来表示两个变量之间的关系?25.己知:线段a如图所示.求作:正方形ABCD,使得AB a.26.计算:4a2·(-b)-8ab·(b-12 a).【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据抛硬币简单概率求法判断选项A,利用求概率的方法判断选项B,根据三角形的内角和是180°判断选项C,求出两次抛骰子的所有可能结果和点数和为偶数的结果数即可判断选项D,即可做出选择.【详解】A、抛一枚质地均匀的硬币,出现的情况有两种一正一反,正面朝上的概率是12,与抛硬币的次数无关,故原选项正确;B、随机选择一户二孩家庭,头胎、二胎的共有4种等可能的结果,其中,都是男孩的有1种,所以随机选择一户二孩家庭,头胎、二胎都是男孩的概率为14,此原选项正确,C、任意一个三角形的内角和为180°,所以任意画一个三角形内角和为360°是不可能事件,为确定性事件,不是随机事件,故原选项不正确,;D、连续投两次骰子,前后点数之和共有36种等可能的结果,其中点数之和是偶数的有18种结果,所以前后点数之和为偶数的概率是181362,故原选项正确,故选择:C.【点睛】本题考查求事件发生的概率,理解事件发生的概率的意义,会区分确定事件与随机事件,能根据所学概率知识对各个选项作出正确判断是解答的关键.2.C解析:C【分析】根据事件发生的可能性判断相应事件的类型即可.【详解】A. 一个数的相反数等于它本身,0的相反数等于它本身,是不确定事件.B. 早上的太阳从北方升起,是不可能事件.C. 380人中有两个人的生日在同一天是必然事件.D. 明天上学路上遇到下雨,是不确定事件.故选:C.【点睛】此题考查随机事件,解题关键在于判断相应事件的类型.3.A解析:A【解析】【分析】根据概率的定义对各选项进行逐一分析即可.【详解】解:A、经过大量重复的抛掷硬币试验,可发现“正面向上”的频率越来越稳定,正确;B、抛掷10000次硬币与抛掷12000次硬币“正面向上”的频率不同,错误;C、抛掷50000次硬币,可得“正面向上”的频率约为0.5,错误;D、若抛掷2000次硬币“正面向上”的频率是0.518,则“正面向下”的频率为0.482,错误;故选:A.【点睛】本题考查的是模拟实验和概率的意义,熟知概率的定义是解答此题的关键.4.A解析:A【分析】分别利用全等三角形的性质以及等腰三角形的性质判断得出即可.【详解】解:A、全等三角形的对应边相等,是真命题;B、面积相等的两个三角形不一定全等,原命题是假命题;C、两个全等三角形不一定成轴对称,原命题是假命题;D、所有等腰三角形不一定都只有一条对称轴,如等边三角形有三条对称轴,原命题是假命题;故选:A.【点睛】本题主要考查了命题与定理,熟练掌握几何性质与判定是解题的关键.5.C解析:C【分析】按照题中所述,进行实际操作,答案就会很直观地呈现.【详解】 解:将图形按三次对折的方式展开,依次为:.故选:C .【点睛】本题主要考查学生的动手能力及空间想象能力,对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.6.D解析:D【分析】过B 点作BM ⊥AD 于M 点,作BN ⊥AC 于N 点,P 点在AD 上运动,,利用三角形的面积求出BN ,进而得到BM ,BM 的长即为BP 的最小值.【详解】如图,过B 点作BM ⊥AD 于M 点,作BN ⊥AC 于N 点,△ABC 面积为24,AC 为6,故可得到BN=24×2÷6=8,因为△ABC 翻转得到ABC ∆',故=A B C C B A ,所以有BM=BN=8,所以BP 的最小值为8,选项中只有D 选项大于8,故选D.【点睛】本题考查翻转的性质,解题关键在于能够合理做出辅助线.7.D解析:D【分析】根据全等三角形的判定与性质,等边对等角的性质对各选项分析判断后利用排除法求解.【详解】解:A 、添加BD =CE ,可以利用“边角边”证明△ABD 和△ACE 全等,再根据全等三角形对应角相等得到∠DAB =∠EAC ,故本选项不符合题意;B 、添加AD =AE ,根据等边对等角可得∠ADE =∠AED ,然后利用三角形的一个外角等于与它不相邻的两个内角的和求出∠DAB =∠EAC ,故本选项不符合题意;C 、添加BE =CD 可以利用“边角边”证明△ABE 和△ACD 全等,再根据全等三角形对应角相等得到∠BAE=∠CAD ,可得∠DAB =∠EAC ,故本选项不符合题意;D 、添加DA =DE 无法求出∠DAB =∠EAC ,故本选项符合题意.故选:D .【点睛】本题考查了等腰三角形等边对等角的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.8.C解析:C【分析】根据三角形的中线将三角形分成面积相等的两个三角形进行解答即可.【详解】解:∵F 是EC 的中点, ∴142AEF AFC AEC S S S ∆∆∆===, ∴8AEC S ∆=,∵ E 是BD 的中点 ,∴ABE AED S S ∆∆=,BEC ECD S S ∆∆=,∵8AED ECD AEC S S S ∆∆∆+==,∴8ABE BEC AEC S S S ∆∆∆+==,∴228=16ABC ABE BEC AEC AEC S S S S S ∆∆∆∆∆=++==⨯,故选:C .【点睛】本题考查了三角形的中线与三角形的面积关系,熟练掌握三角形的中线将三角形分成面积相等的两个三角形是解答的关键. 9.C解析:C【分析】根据题中的已知条件确定有三组边对应相等,由此证明△OMC ≌△ONC(SSS),即可得到结论.【详解】在△OMC 和△ONC 中,OM ON CM CN OC OC =⎧⎪=⎨⎪=⎩, ∴△OMC ≌△ONC(SSS),∴∠MOC=∠NOC ,∴射线OC 即是∠AOB 的平分线,故选:C.【点睛】此题考查了全等三角形的判定及性质,比较简单,注意利用了三边对应相等,熟记三角形全等的判定定理并解决问题是解题的关键.10.C解析:C【分析】观察表格发现,输入的数字是几,输出数就是输入数的平方加1+由此求解.【详解】输入8,输出数就是82+1=64+1=65;故选C.【点睛】解决本题关键是找出输入数据与输出的数据之间的关系,再由此进行求解.11.D解析:D【分析】通过作辅助线,过点C和点D作CG//AB,DH//AB,可得CG//DH//AB,根据AB//EF,可得AB//EF//CG//DH,再根据平行线的性质即可得γ+β-α=90°,进而可得结论.【详解】解:如图,过点C和点D作CG//AB,DH//AB,∵CG//AB,DH//AB,∴CG//DH//AB,∵AB//EF,∴AB//EF//CG//DH,∵CG//AB,∴∠BCG=α,∴∠GCD=∠BCD-∠BCG=β-α,∵CG//DH,∴∠CDH=∠GCD=β-α,∵HD//EF,∴∠HDE=γ,∵∠EDC=∠HDE+∠CDH=90°,∴γ+β-α=90°,∴β=α+90°-γ.故选:D.【点睛】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质.12.C解析:C【分析】根据幂的乘方、积的乘方、同底数幂的乘除法逐项判断即可得.【详解】A 、236()a a =,此项错误;B 、224(2)4a a =,此项错误;C 、347a a a ⋅=,此项正确;D 、34a a a ÷=,此项错误;故选:C .【点睛】本题考查了幂的乘方、积的乘方、同底数幂的乘除法,熟练掌握各运算法则是解题关键.二、填空题13.【分析】根据几何概率的求法:这个点取在阴影部分的概率就是阴影部分的面积与总面面积的比值【详解】共有25个小正方形其中阴影部分的有7个∴其概率为故答案为【点睛】此题考查几何概率解题关键在于掌握计算公式 解析:725【分析】根据几何概率的求法:这个点取在阴影部分的概率就是阴影部分的面积与总面面积的比值.【详解】共有25个小正方形,其中阴影部分的有7个∴其概率为725 故答案为725. 【点睛】此题考查几何概率,解题关键在于掌握计算公式. 14.【解析】【分析】先求出袋子中球的总个数及红球的个数再根据概率公式解答即可【详解】袋子中球的总数为4+3+2=9而红球有4个则从中任摸一球恰为红球的概率为故答案为:【点睛】此题考查概率公式解题关键在于 解析:49【解析】【分析】先求出袋子中球的总个数及红球的个数,再根据概率公式解答即可.【详解】袋子中球的总数为4+3+2=9,而红球有4个, 则从中任摸一球,恰为红球的概率为49. 故答案为: 49. 【点睛】此题考查概率公式,解题关键在于掌握公式运算法则.15.①②【分析】首先利用轴对称的性质分别判断正误即可【详解】①∵Rt △AFC 和Rt △AEB 关于虚线成轴对称∴∠MAD =∠NAD ∠EAD =∠FAD ∴∠EAD ﹣∠MAD =∠FAD ﹣∠NAD 即:∠1=∠2故正解析:①② 【分析】首先利用轴对称的性质分别判断正误即可. 【详解】①∵Rt △AFC 和Rt △AEB 关于虚线成轴对称, ∴∠MAD =∠NAD ,∠EAD =∠FAD , ∴∠EAD ﹣∠MAD =∠FAD ﹣∠NAD , 即:∠1=∠2,故正确;②∵Rt △AFC 和Rt △AEB 关于虚线成轴对称, ∴∠B =∠C ,AC =AB , 在△ANC 与△AMB 中,MAN NAM AC ABB C ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ANC ≌△AMB ,故正确; ③易得:CD =BD ,但在三角形DNB 中,DN 不一定等于BD , 故错误.故答案为:①②. 【点睛】本题考查轴对称的性质,熟练掌握性质是解题的关键.16.110°【解析】【分析】如图因为AB ∥CD 所以∠BEM=∠1(两直线平行内错角相等);根据折叠的性质可知∠3=∠4可以求得∠4的度数;再根据两直线平行同旁内角互补即可求得∠2的度数【详解】∵AB ∥C解析:110° 【解析】 【分析】如图,因为AB ∥CD ,所以∠BEM=∠1(两直线平行,内错角相等);根据折叠的性质可知∠3=∠4,可以求得∠4的度数;再根据两直线平行,同旁内角互补,即可求得∠2的度数. 【详解】 ∵AB ∥CD ,∴∠BEM=∠1=140°,∠2+∠4=180°, ∵∠3=∠4,∴∠4=12∠BEM=70°, ∴∠2=180°−70°=110°. 故答案为:110° 【点睛】此题考查翻折变换(折叠问题),平行线的性质,解题关键在于根据折叠的性质得到∠3=∠417.2或10【分析】由已知条件可推导出;再假设D 点所在的不同位置分别计算即可得到答案【详解】∵是的中线且∴假设点D 在CB 的延长线上如下图∵是的中线且∴∵∴和图形不符∴该假设不成立;假设点D 在点E 和点B 之解析:2或10 【分析】由已知条件,可推导出6EC BE ==;再假设D 点所在的不同位置,分别计算DE ,即可得到答案. 【详解】∵AE 是ABC 的中线,且6BE = ∴6EC BE ==假设点D 在CB 的延长线上,如下图∵AE 是ABC 的中线,且6BE = ∴212BC BE == ∵4CD =∴CD BC <,和图形不符 ∴该假设不成立;假设点D 在点E 和点B 之间,如下图∵4CD =,6EC = ∴CD EC <,和图形不符 ∴该假设不成立;假设点D 在点E 和点C 之间,如下图∴642DE EC CD =-=-=; 假设点D 在点BC 延长线上,如下图∴6410DE EC CD =+=+=; 故答案为:2或10. 【点睛】本题考察了三角形中线和三角形高的知识;求解的关键是熟练掌握三角形中线和三角形高的性质,从而完成求解.18.【分析】根据题目意思将t=4代入计算Q 即可得到答案令Q≥0即可求出最多工作的时间【详解】解:当t=4时Q=40-24=16;根据台拖拉机工作时必须有油得到:Q≥0代入得到:解得:故答案为(1)16( 解析:203【分析】根据题目意思,将t=4代入计算Q 即可得到答案,令Q≥0即可求出最多工作的时间. 【详解】解:当t=4时,Q=40-24=16; 根据台拖拉机工作时必须有油得到: Q≥0,代入得到: 4060Q t =-≥, 解得:203t ≤, 故答案为(1). 16 (2). 203【点睛】本题主要考查了一次函数、一次函数在生活中的应用,做题是要注意自变量的取值范围,例如油量不可以为负数.19.125°45′20″【分析】当两角的和为90°时则两角互余当两个角和为180°则两角互补角度之间的等量关系为:1°=60′1′=60″【详解】根据定义:∵∠α的余角是35°45′20′′∴∠α的度数解析:125°45′20″ 【分析】当两角的和为90°时则两角互余,当两个角和为180°则两角互补,角度之间的等量关系为:1°=60′,1′=60″. 【详解】 根据定义:∵∠α 的余角是 35°45′20′′∴∠α的度数是:90°-35°45′20″=54°14′40″. ∠α的补角度数是: 180°-∠α =180°-54°14′40″ =125°45′20″ 故答案为:125°45′20″ 【点睛】本题考查了余角和补角的知识,属于基础题,解题的关键是掌握当两角的和为90°时则两角互余,当两个角和为180°则两角互补.20.【分析】根据积的乘方与幂的乘方运算法则进行计算即可得到答案【详解】解:故答案为:【点睛】此题主要考查了积的乘方与幂的乘方的运算熟练掌握积的乘方与幂的乘方运算法则是解答此题的关键解析:3618a b -【分析】根据积的乘方与幂的乘方运算法则进行计算即可得到答案. 【详解】解:()33323236111228ab a b a b ⎛⎫⎛⎫-=-⋅=- ⎪ ⎪⎝⎭⎝⎭.故答案为:3618a b -.【点睛】此题主要考查了积的乘方与幂的乘方的运算,熟练掌握积的乘方与幂的乘方运算法则是解答此题的关键.三、解答题21.【解析】试题分析:(1)根据骰子没有7点,所以这种情况不可能发生,可知概率为0; (2)选择题的答案是4选1,因此其概率为14; (3)袋子中摸到红球的概率为23; (4)太阳的东升西落是必然事件,因此其概率为1;(5)由1---100之间有50个偶数可知随机抽取一个数为偶数的概率为5011002=. 试题考点:概率22.(1)120°;(2)60°,90°.(3)∠CBE 不变,是90°. 【分析】(1)根据∠A′BD=180°-2∠1计算即可. (2)由∠A′BD=120°,∠2=∠DBE ,可得∠2=12∠A′BD=60°, (3)由∠1+∠2=12∠ABA′+12∠A′BD=12(∠ABA′+∠A′BD )计算即可. 【详解】解:(1)∵∠1=30°, ∴∠1=∠ABC=30°,. ∴∠A′BD=180°-30°-30°=120° (2)∵∠A′BD=120°,∠2=∠DBE , ∴∠2=12∠A′BD=60°, ∴∠CBE=∠1+∠2=30°+60°=90°. (3)结论:∠CBE 不变.∵∠1=12∠ABA′,∠2=12∠A′BD ,∠ABA′+∠A′BD=180°, ∴∠1+∠2=12∠ABA′+12∠A′BD =12(∠ABA′+∠A′BD ) =12×180° =90°. 即∠CBE=90°. 【点睛】本题考查翻折变换,平角的性质等知识,解题的关键是利用法则不变性解决问题,属于基础题.23.(1)添加一个角有关的条件为BAC EDA ∠=∠,使得ABC DEA ≌,理由见解析;(2)BAE ∠的度数为135︒. 【分析】(1)根据已知条件,选择SAS 原理,可确定添加的角;(2)利用三角形全等,∠B 的度数,可求∠BAC+∠DAE ,问题可解. 【详解】(1)添加一个角方面的条件为BAC EDA ∠=∠,使得ABC DEA ≌. 在ABC 和DEA △中∵AB DE =,BAC EDA ∠=∠,AC DA =,∴()SAS ABC DEA ≌△△; (2)在(1)的条件下∵ABC DEA ≌,∴ACB DAE ∠=∠,若65CAD ∠=︒,110B ∠=︒, 则18070ACB BAC B ∠+∠=︒-∠=︒, ∴70DAE BAC ACB BAC ∠+∠=∠+∠=︒,∴7065135BAE DAE BAC CAD ∠=∠+∠+∠=︒+︒=︒, 即BAE ∠的度数为135︒. 【点睛】本题考查了三角形全等,熟练掌握全等三角形判定原理和性质是解题的关键. 24.答案见解析 【解析】试题分析:(1)将题干中的数据填写在有关气温和音速的2行8列的表格中即可 (2)根据变量的定义分析即可完成;(3)结合表格数据,根据传播速度与温度的变化规律即可得出答案; (4)结合表格数据,通过分析得出两个变量之间的关系. 试题(1)填表如下:x(℃)0510152025…y(米/秒)331334337340343346…(3)当气温是35℃时,估计音速y可能是:352m/s;(4)根据表格中数据可得出:温度每升高5℃,传播的速度增加3,当x=0,y=331,故两个变量之间的关系为:y=331+35 x.25.见解析【分析】先画线段AB=a,再以AB为边画正方形即可.【详解】解:作法如图所示,【点睛】本题考查了正方形的画法,根据正方形的判定,画一个垂直,再画四边相等即可,注意:画法不唯一.26.28ab-【分析】整式的混合运算,先算乘除,然后再算加减,有小括号先算小括号里面的.【详解】解:4a2·(-b)-8ab·(b-12a)=222484--+a b ab a b=28ab-.【点睛】本题考查整式的混合运算,掌握单项式乘单项式以及单项式乘多项式的计算法则正确计算是解题关键.。
华东师大版七年级数学下册期末考试卷及答案【必考题】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若()286m n a b a b =,那么22m n -的值是 ( ) A .10 B .52 C .20 D .322.如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是( )A .B .C .D .3.如图,在△ABC 中,AB=20cm ,AC=12cm ,点P 从点B 出发以每秒3cm 速度向点A 运动,点Q 从点A 同时出发以每秒2cm 速度向点C 运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ 是以PQ 为底的等腰三角形时,运动的时间是( )秒A .2.5B .3C .3.5D .44.已知5x =3,5y =2,则52x ﹣3y =( )A .34B .1C .23D .985.已知点C 在线段AB 上,则下列条件中,不能确定点C 是线段AB 中点的是( )A .AC =BCB .AB =2AC C .AC +BC =ABD .12BC AB = 6.如图,在△ABC 中,∠ABC ,∠ACB 的平分线BE ,CD 相交于点F ,∠ABC =42°,∠A=60°,则∠BFC的度数为()A.118°B.119°C.120°D.121°7.《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问若每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34 685个字,设他第一天读x个字,则下面所列方程正确的是().A.x+2x+4x=34 685 B.x+2x+3x=34 685C.x+2x+2x=34 685 D.x+12x+14x=34 6858.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A.20{3210x yx y+-=--=,B.210{3210x yx y--=--=,C.210{3250x yx y--=+-=,D.20{210x yx y+-=--=,9.如图,在△ABC中,P为BC上一点,PR⊥AB,垂足为R,PS⊥AC,垂足为S,∠CAP=∠APQ,PR=PS,下面的结论:①AS=AR;②QP∥AR;③△BRP≌△CSP.其中正确的是()A .①②B .②③C .①③D .①②③10.若320,a b -++=则a b +的值是( )A .2B .1C .0D .1-二、填空题(本大题共6小题,每小题3分,共18分)1.已知关于x 的代数式()2x -1x 9a ++是完全平方式,则a =_________.2.如图,四边形ACDF 是正方形,CEA ∠和ABF ∠都是直角,且点,,E A B 三点共线,4AB =,则阴影部分的面积是__________.3.已知AB//y 轴,A 点的坐标为(3,2),并且AB=5,则B 的坐标为________.4.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数解析式是y =95x +32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为__ ______℃.5.如图,AD ∥BC ,∠D=100°,CA 平分∠BCD ,则∠DAC=________度.6.已知|x|=3,则x 的值是________.三、解答题(本大题共6小题,共72分)1.解方程:(1)()()371323x x x --=-+ (2)21252x x x +--=-2.先化简,再求值:(x +2y )(x ﹣2y )+(20xy 3﹣8x 2y 2)÷4xy ,其中x =2018,y =2019.3.如图,在平面直角坐标系中,已知点A(-3,3),B(-5,1),C(-2,0),P(a ,b)是△ABC 的边AC 上任意一点,△ABC 经过平移后得到△A 1B 1C 1,点P 的对应点为P 1(a +6,b -2).(1)直接写出点C 1的坐标;(2)在图中画出△A 1B 1C 1;(3)求△AOA 1的面积.4.已知ABN 和ACM △位置如图所示,AB AC =,AD AE =,12∠=∠.(1)试说明:BD CE =;(2)试说明:M N ∠=∠.5.为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.种类 A B C D E出行方式共享单车步行公交车的士私家车根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有人,其中选择B类的人数有人;(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.6.某中学为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买甲种书柜3个、乙种书柜2个,共需资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元.(1)甲、乙两种书柜每个的价格分别是多少元?(2)若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金4320元,请设计几种购买方案供这个学校选择.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、A3、D4、D5、C6、C7、A8、D9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、5或-72、83、(3,7)或(3,-3)4、-405、40°6、±3三、解答题(本大题共6小题,共72分)1、(1)x=5;(2)x=-72、(x﹣y)2;1.3、(1)(4,-2);(2)作图略,(3)6.4、(1)略;(2)略.5、(1)800,240;(2)补图见解析;(3)9.6万人.6、(1)设甲种书柜单价为180元,乙种书柜的单价为240元.(2)学校的购买方案有以下三种:方案一:甲种书柜8个,乙种书柜12个方案二:甲种书柜9个,乙种书柜11个,方案三:甲种书柜10个,乙种书柜10个.。
七年级数学下学期期末测试班级_______姓名_______一、 填空题:(每小题2分,共20分)1.当y=______时,代数式y-2与6-y 的值相等.2.已知方程3x+4y=1,用含y 的代数式表示x 为_______________________.3.请你编制一个解为21x y ==⎧⎨⎩的二元一次方程 组:______________________________4.如果某个直角三角形的一个锐角为300,那么它的另一个锐角为________.5.如果一个等腰三角形其中两边的长分别为3cm 和6cm,那么它的周长为__________.6.如图,△ABC 中,∠ACB =90°,CA =CB,CD ⊥A 于D,则图中有等腰三角形______个.7.如图,在△ABC 中,BC 边上的垂直平分线DE 交BC 于D,交AC 于点E,AB =5cm,AC =8cm,则△ABC 的周长为__________________cm.8.“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”.要解决此问题,如果设鸡有x 只,兔有y 只,则可列方程组________________.二、 选择题:(每小题3分,共24分)11.用“加减法”将方程组535541x y x y -=-+=-⎧⎨⎩中的未知数x 消去后得到的方程是( )A.y=4B.7y=4C.-7y=4D.-7y=1412.有两根长度分别为40cm 和50cm 的直木条,要钉一个三角形木架,应在下面直木条中选取( )A.10cmB.40cmC.90cm D100cm13.如果一个多边形的每个外角为30°,那么它的内角和为( )A.1800°B. 2160°C.1440°D.1620°A B D (第8题图) B A D C E (第9题图)14.小明做抛币实验,连续抛了3次都是反面向上,当他抛第4次时,反面向上是一件( )事件.A.必然B. 不可能C.确定D.随机15.下面属于确定事件的是( )A.灯泡的寿命是一年B.白龟山水库里鱼的总数是20000尾C.你所在班级女同学有48人D.明天会下雪16.下列说法正确的是()A.三角形的内角和和外角和都是3600B.正方形的内角和和外角和都是3600C五边形外角和是7200 D.三角形的内角和和外角和都是180017.如图∠EAB=115°, ∠ABC=45°,下列结果错误的是( )A.∠BAC=65°B.∠ACB=70°C.∠ACD=110°D.∠CBF=145°18.商店里某种服装的标价是200元/件,据了解,该种服装的标价要比进价高出100%,当销售高出进价的20%时,老板便可以盈利,假如你要购买一件该种服装,在不让老板亏损的前提下,最低可以把价还到( )A.110元B.120元C.130元 D140元三、解方程(或方程组):(每小题7分,共14分)19. 25321326x x+--= 20.356415x yx y-=+=-⎧⎨⎩四、解应用题:(第21,22题每题9分,第23题8分,第24题6分,共32分)21.小明三天共自学60页书,其中第二天比第一天多学了4页,第三天自学的页数是第一天的2倍,问小明第一天自学了多少页书?22.从平顶山乘汽车到郑州原来需要3.6小时,开通高速公路后,平均车速可以提高40千米/小时,那时,只需2小时就可以到达郑州,请问原来乘汽车从平顶山到郑州的平均车速是多少?平顶山到郑州的距离是多少千米?23.(6分)某车间每天能生产甲种零件500只,或者乙种零件600只,或者丙种零件750只,甲、乙、丙三种零件各一只配成一套,现要在30天内生产最多的成套产品,问甲、乙、丙三种零件各应生产多少天?24.小明和小方玩掷骰子游戏,如果掷得的数是偶数,小明得一分;如果掷得的数是3的倍数,小方得一分.(1)这个游戏对他们二人公平吗?(2分)(2)请设计一个对他们二人公平的游戏.(4分)五、 解答题:(第25题6分,第26题8分,共14分)25.在△ABC 中,AD 平分∠BAC ,∠B =40°,∠ADC =80°,求∠C 的度数.26.等边△ABC 中,BD 平分∠ABC,延长BC 到E,使CE =CD,连结D 、E.(1)求∠E 的度数;(4分)(2)△BDE 是什么三角形?为什么?(3分)(3)把“BD 平分△ABC ”改成什么条件,也能得到同样的结论?(1分)A B C D (第25题图) DA六、画图题:(共8分)27.如图,小明的家(A点)在一条河流(直线l,宽度忽略不计)的一侧,在河流的同侧有一公园(B点),小方的家恰好与小明的家关于此河流对称.(1) 画出小方家的位置;(3分)(2) 小方要去公园,应在什么地方过河,所走的路程最近?(3分)(3)小明要带着他的狗先到河边喝水,然后去公园找小方,请画出他所走的最短路径.(2分)(以上均要求画图准确,保留画图痕迹)A●B●七、探究题:(8分)28.现有8人分别乘两辆小汽车赶往火车站,其中一辆在距离火车站15千米的地方出了故障,此时离火车停止检票还有42分钟.唯一可用的一辆小汽车连司机在内能乘坐5人,它的平均车速为60千米/小时,如果人的步行速度为5千米/小时,请你为他们设计一些去火车站的方案,把这8人在停止检票之前都送到火车站,这些方案中哪个方案用的时间最少?(设计出一个正确方案即可得满分,在总分不超过120分的情况下,每设计出一个正确方案可多得2分.)。
最新华东师大版七年级数学下册期末综合测试题及答案三套七年级下册数学全册综合检测一姓名:__________ 班级:__________一、选择题(共12小题;每小题3分,共36分)1.下面生活中的物体的运动情况可以看成平移的是()A. 摆动的钟摆B. 在笔直的公路上行驶的汽车C. 随风摆动的旗帜D. 汽车玻璃上雨刷的运动2.下列等式变形错误的是( )A. 由a=b得a+5=b+5;B. 由a=b得;C. 由x+2=y+2得x=y;D. 由-3x=-3y得x=-y3.下列图形中,不是轴对称图形的是()A. B. C. D.4.小明和小刚从相距25千米的两地同时相向而行,3小时后两人相遇,小明的速度是4千米/小时,设小刚的速度为x千米/小时,列方程得()A. 4+3x=25B. 12+x=25C. 3(4+x)=25D. 3(4﹣x)=255.大桥钢架、索道支架、人字梁等为了坚固,都采用三角形结构,这样做的根据是________;生活中的活动铁门是利用四边形的________.6.一个教室有5盏灯,其中有40瓦和60瓦的两种,总的瓦数为260瓦,则40瓦和60瓦的灯泡个数分别是()A. 1,4B. 2,3C. 3,2D. 4,17.一副三角板按如图方式摆放,且∠1比∠2大50°,若设∠1=x°,∠2=y°.则可得到的方程组为()A. B. C. D.8.某品牌手机的进价为1200元,按原价的八折出售可获利14%,则该手机的原售价为()A. 1800元B. 1700元C. 1710元D. 1750元9.如图,已知DE由线段AB平移得到的,且AB=DC=4cm,EC=3cm,则△DCE的周长是()A. 9cmB. 10cmC. 11cmD. 12cm10.甲班有54人,乙班有48人,要使甲班人数是乙班的2倍,设从乙班调往甲班人数x,可列方程()A. 54+x=2(48﹣x)B. 48+x=2(54﹣x)C. 54﹣x=2×48D. 48+x=2×5411.几个人共同种一批树苗,如果每人种5棵,则剩下3棵树苗未种;如果每人种6棵,则缺4棵树苗.若设参与种树的人数为x人,则下面所列方程中正确的是()A. 5x+3=6x﹣4B. 5x+3=6x+4C. 5x﹣3=6x﹣4D. 5x﹣3=6x+412.用代入法解方程组:,下面的变形正确的是()A. 2y﹣3y+3=1B. 2y﹣3y﹣3=1C. 2y﹣3y+1=1D. 2y﹣3y﹣1=1二、填空题(共10题;共30分)13.若x=2是方程k(2x﹣1)=kx+7的解,那么k的值是________14.根据图中提供的信息,可知一个杯子的价格是________元.15.如果3x+5=8,那么3x=8﹣ ________16.为表彰“我爱读书”演讲比赛中获奖同学,老师决定购买笔记本与钢笔作为奖品,已知5个笔记本和2支钢笔共需100元:4个笔记本和7支钢笔共需161元.设每个笔记本z元,每支钢笔y元,根据题意可列方程组为________17.要在台阶上铺设某种红地毯,已知这种红地毯每平方米的售价是40元,台阶宽为3米,侧面如图所示.购买这种红地毯至少需要________元.18.探究:中华人民共和国国旗上的五角星的每个角均相等,小明为了计算每个角的度数,画出了如图①的五角星,每个角均相等,并写出了如下不完整的计算过程,请你将过程补充完整.解:∵∠AFG=∠C+∠E,∠AGF=∠B+∠D.∴∠AFG+∠AGF=∠C+∠E+∠B+∠D.∵∠A+∠AFG+∠AGF=________°,∴∠A+∠B+∠C+∠D+∠E=________°,∴∠A=∠B=∠C=∠D=∠E=________°.拓展:如图②,小明改变了这个五角星的五个角的度数,使它们均不相等,请你帮助小明求∠A、∠B、∠C、∠D、∠E的和.应用:如图③.小明将图②中的点A落在BE上,点C落在BD上,若∠B=∠D=36°,则∠CAD+∠ACE+∠E=________°.19.已知乙组人数是甲组人数的一半,若将乙组人数的调入甲组,则甲组比乙组多15人,甲、乙两组的人数分别为________20.不等式10﹣2x≥2的正整数解为________.21.写出一个满足下列条件的一元一次方程:①某个未知数的系数是3;②方程的解是2;这样的方程是________.22.不等式13﹣3x>0的正整数解是________.三、解答题(共3题;共34分)23.如图所示,有一条宽相等的小路穿过长方形的草地ABCD ,若AB=60m,BC=84m,AE=100m,若要硬化这条小路,且每平方米造价50元,则需要多少元钱?24..25.某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元.则有哪几种购车方案?参考答案一、选择题B D A C5.三角形的稳定性;不稳定性6.B7.D8.C9.C 10.A 11.A 12.A二、填空题13.7 14.9 15.516.17.1200 18.180;180;36;10819.18人、9人20.1,2,3,421.3x﹣6=0 22.1,2,3,4三、解答题23.在矩形ABCD中,AF∥EC ,又∵AF=EC ,∴四边形AECF是平行四边形.在Rt△ABE中,AB=60,AE=100,根据勾股定理得BE=80,∴EC=BC-BE=4,所以这条小路的面积S=EC•AB=4×60=240(m2).240×50=12000元.答:需要12000元钱.24.解:,把①代入②得:3(1﹣2y)﹣2y=11,解得:y=﹣1,把y=﹣1代入①得:x=3,则方程组的解为25.(1)解:每辆A型车和B型车的售价分别是x万元、y万元.则,解得.答:每辆A型车的售价为18万元,每辆B型车的售价为26万元(2)解:设购买A型车a辆,则购买B型车(6﹣a)辆,则依题意得,解得2≤a≤3 .∵a是正整数,∴a=2或a=3.∴共有两种方案:方案一:购买2辆A型车和4辆B型车;方案二:购买3辆A型车和3辆B型车七年级下册数学全册综合检测二姓名:__________ 班级:__________一、选择题(共11小题;每小题3分,共33分)1.运用等式性质进行的变形,不正确的是()A. 如果那么B. 如果那么C. 如果那么D. 如果那么2.若不等式组的解集为,则m的取值范围是()A. m≤2B. m≥2C. m>2D. m<23.若x=2是关于x的方程2x+3m﹣1=0的解,则m的值为()A. -1B. 0C. 1D.4.4辆板车和5辆卡车一次能运27吨货,10辆板车和3车卡车一次能运货20吨,设每辆板车每次可运x 吨货,每辆卡车每次能运y吨货,则可列方程组()A. B. C. D.5.将长方形ABCD沿AE折叠,得到如图所示的图形,已知∠CED′=50°,则∠AED的大小是()A. 50°B. 60°C. 65°D. 70°6.下列图形中对称轴最多的是()A. 等腰三角形B. 正方形C. 圆形D. 线段7.如图,在△ABC中,AD⊥BC于点D,DB=DC,若BC=6,AD=5,则图中阴影部分的面积为( )A. 6B. 7.5C. 15D. 308.某班分两组去两处植树,第一组22人,第二组26人.现第一组在植树中遇到困难,需第二组支援.问从第二组调多少人去第一组才能使第一组的人数是第二组的2倍?设抽调x人,则可列方程()A. 22+x=2×26B. 22+x=2(26-x)C. 2(22+x)=26-xD. 22=2(26-x)9.如图所示,∠1+∠2+∠3+∠4的度数为()A. 100°B. 180°C. 360°D. 无法确定10.由方程组可得出x与y的关系是()A. 2x+y=4B. 2x﹣y=4C. 2x+y=﹣4D. 2x﹣y=﹣411.某班共有学生49人。
华东师大版七年级数学下册期末考试题(完整) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若()286m n a b a b =,那么22m n -的值是 ( ) A .10 B .52 C .20 D .322.如图,点O 在直线AB 上,射线OC 平分∠DOB .若∠COB =35°,则∠AOD 等于( ).A .35°B .70°C .110°D .145°3.如图,在△ABC 中,AB=20cm ,AC=12cm ,点P 从点B 出发以每秒3cm 速度向点A 运动,点Q 从点A 同时出发以每秒2cm 速度向点C 运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ 是以PQ 为底的等腰三角形时,运动的时间是( )秒A .2.5B .3C .3.5D .44.已知5x =3,5y =2,则52x ﹣3y =( )A .34B .1C .23D .985.已知x 是整数,当30x x 的值是( )A .5B .6C .7D .86.如图,在△ABC 中,∠ABC ,∠ACB 的平分线BE ,CD 相交于点F ,∠ABC =42°,∠A =60°,则∠BFC 的度数为( )A .118°B .119°C .120°D .121° 7.把1a a -根号外的因式移入根号内的结果是( ) A .a - B .a -- C .a D .a - 8.如图,将一副三角尺按不同的位置摆放,下列摆放方式中a ∠与β∠互余的是( )A .图①B .图②C .图③D .图④9.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对 10.计算()233a a ⋅的结果是( )A .8aB .9aC .11aD .18a 二、填空题(本大题共6小题,每小题3分,共18分)1.有理数a 、b 、c 在数轴上的位置如图所示,化简|a+b|﹣|c ﹣a|+|b ﹣c|的结果是________.2.如图,四边形ACDF 是正方形,CEA ∠和ABF ∠都是直角,且点,,E A B 三点共线,4AB =,则阴影部分的面积是__________.3.如图,点E 是AD 延长线上一点,如果添加一个条件,使BC ∥AD ,则可添加的条件为__________.(任意添加一个符合题意的条件即可)4.如图,圆柱形玻璃杯高为14cm ,底面周长为32cm ,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的最短距离为_____cm (杯壁厚度不计).5.如图,直线a ,b 与直线c 相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠3=180°;⑤∠6=∠8,其中能判断a ∥b 的是________(填序号)5.若x 的相反数是3,y =5,则x y +的值为_________.三、解答题(本大题共6小题,共72分)1.解下列方程:(1)2(x+3)=5(x-3)2123x-()=435x--x2.已知关于x的方程9x3kx14-=+有整数解,求满足条件的所有整数k的值.3.如图,直线AB,CD相交于点O,OA平分∠EOC.(1)若∠EOC=70°,求∠BOD的度数;(2)若∠EOC:∠EOD=2:3,求∠BOD的度数.4.如图,将两个全等的直角三角形△ABD、△ACE拼在一起(图1).△ABD不动,(1)若将△ACE绕点A逆时针旋转,连接DE,M是DE的中点,连接MB、MC (图2),证明:MB=MC.(2)若将图1中的CE向上平移,∠CAE不变,连接DE,M是DE的中点,连接MB、MC(图3),判断并直接写出MB、MC的数量关系.(3)在(2)中,若∠CAE的大小改变(图4),其他条件不变,则(2)中的MB、MC的数量关系还成立吗?说明理由.5.为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.种类 A B C D E出行方式共享单车步行公交车的士私家车根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有人,其中选择B类的人数有人;(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.6.小明同学三次到某超市购买A、B两种商品,其中仅有一次是有折扣的,购买数量及消费金额如下表:解答下列问题:(1)第次购买有折扣;(2)求A、B两种商品的原价;(3)若购买A、B两种商品的折扣数相同,求折扣数;(4)小明同学再次购买A、B两种商品共10件,在(3)中折扣数的前提下,消费金额不超过200元,求至少购买A商品多少件.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、D4、D5、A6、C7、B8、A9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、-2a2、83、∠A+∠ABC=180°或∠C+∠ADC=180°或∠CBD=∠ADB或∠C=∠CDE4、205、①③④⑤.6、2或-8三、解答题(本大题共6小题,共72分)1、(1)x=7;(2)x=1 2.2、k=26,10,8,-8.3、(1)35°;(2)36°.4、(1)略;(2)MB=MC.略;(3)MB=MC还成立,略.5、(1)800,240;(2)补图见解析;(3)9.6万人.6、(1)三(2)A:30元/件,B:40元/件(3)6 (4)7件。
华东师大版七年级数学下册期末试卷含答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为( ) A .﹣4 B .4 C .﹣2 D .22.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .803.如图,在△ABC 中,AB=20cm ,AC=12cm ,点P 从点B 出发以每秒3cm 速度向点A 运动,点Q 从点A 同时出发以每秒2cm 速度向点C 运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ 是以PQ 为底的等腰三角形时,运动的时间是( )秒A .2.5B .3C .3.5D .44.已知5x =3,5y =2,则52x ﹣3y =( )A .34B .1C .23D .985.实效m ,n 在数轴上的对应点如图所示,则下列各式子正确的是( )A .m n >B .||n m ->C .||m n ->D .||||m n <6.实数a ,b 在数轴上对应点的位置如图所示,化简2()a b +( )A.﹣2a-b B.2a﹣b C.﹣b D.b7.如图,△ABC的面积为3,BD:DC=2:1,E是AC的中点,AD与BE相交于点P,那么四边形PDCE的面积为()A.1 3B.710C .35D.13208.在平面直角坐标系中,点P(-2,2x+1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限9.如图是一个切去了一个角的正方体纸盒,切面与棱的交点A,B,C均是棱的中点,现将纸盒剪开展成平面,则展开图不可能是()A.B. C. D.10.已知2,1=⎧⎨=⎩xy是二元一次方程组7,{1ax byax by+=-=的解,则a b-的值为A.-1 B.1 C.2 D.3二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:x3﹣4x=________.2.通过计算几何图形的面积,可表示一些代数恒等式,如图所示,我们可以得到恒等式:2232a ab b++=________.3.如图,有两个正方形夹在AB 与CD 中,且AB//CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为________度(正方形的每个内角为90°)4.方程()()()()32521841x x x x +--+-=的解是_________.5.A 、B 两地相距450千米,甲、乙两车分别从A 、B 两地同时出发,相向而行.已知甲车的速度为120千米/时,乙车的速度为80千米/时,t 时后两车相距50千米,则t 的值为____________.5.若x 的相反数是3,y =5,则x y +的值为_________.三、解答题(本大题共6小题,共72分)1.解方程:(1)5(8)6(27)22m m m +--=-+ (2)2(3)7636x x x --+=-2.已知方程组137x y a x y a-=+⎧⎨+=--⎩中x 为非正数,y 为负数. (1)求a 的取值范围;(2)在a 的取值范围中,当a 为何整数时,不等式221ax x a ++>的解集为1x <?3.如图,直线AB //CD ,BC 平分∠ABD ,∠1=54°,求∠2的度数.4.在△ABC 中,AB=AC ,点D 是直线BC 上一点(不与B 、C 重合),以AD 为一边在AD 的右侧..作△ADE ,使AD=AE ,∠DAE =∠BAC ,连接CE . (1)如图1,当点D 在线段BC 上,如果∠BAC=90°,则∠BCE=________度;(2)设BAC α∠=,BCE β∠=.①如图2,当点在线段BC 上移动,则α,β之间有怎样的数量关系?请说明理由;②当点在直线BC 上移动,则α,β之间有怎样的数量关系?请直接写出你的结论.5.为弘扬中华传统文化,我市某中学决定根据学生的兴趣爱好组建课外兴趣小组,因此学校随机抽取了部分同学的兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)学校这次调查共抽取了 名学生;(2)补全条形统计图;(3)在扇形统计图中,“戏曲”所在扇形的圆心角度数为 ;(4)设该校共有学生2000名,请你估计该校有多少名学生喜欢书法?6.某商贸公司有A、B两种型号的商品需运出,这两种商品的体积和质量分别如下表所示:体积(立方米/件)质量(吨/件)A型商品0.8 0.5B型商品 2 1(1)已知一批商品有A、B两种型号,体积一共是20立方米,质量一共是10.5吨,求A、B两种型号商品各有几件?(2)物资公司现有可供使用的货车每辆额定载重3.5吨,容积为6立方米,其收费方式有以下两种:①按车收费:每辆车运输货物到目的地收费600元;②按吨收费:每吨货物运输到目的地收费200元.现要将(1)中商品一次或分批运输到目的地,如果两种收费方式可混合使用,商贸公司应如何选择运送、付费方式,使其所花运费最少,最少运费是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、D4、D5、C6、A7、B8、B9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)1、x (x+2)(x ﹣2)2、()()2a b a b ++.3、70.4、3x =.5、2或2.56、2或-8三、解答题(本大题共6小题,共72分)1、(1)10m =;(2)5x =2、(1)a 的取值范围是﹣2<a ≤3;(2)当a 为﹣1时,不等式2ax+x >2a+1的解集为x <1.3、72°4、(1)90;(2)①180αβ+=︒,理由略;②当点D 在射线BC.上时,a+β=180°,当点D 在射线BC 的反向延长线上时,a=β.5、(1)100;(2)补全图形见解析;(3)36°;(4)估计该校喜欢书法的学生人数为500人.6、(1)A 种型号商品有5件,B 种型号商品有8件;(2)先按车收费用3辆车运送18m 3,再按吨收费运送1件B 型产品,运费最少为2000元。
七年级(下)期末数学试卷一、选择题(每小题3分,共21分).在答题卡上相应题目的答题区域内作答.1.方程3x=﹣6的解是()A.x=﹣2 B.x=﹣6 C.x=2 D.x=﹣122.若a>b,则下列结论正确的是()A.a﹣5<b﹣5 B.3a>3b C.2+a<2+b D.<3.下列图案既是中心对称图形,又是轴对称图形的是()A.B.C.D.4.现有3cm、4cm、5cm、7cm长的四根木棒,任选其中三根组成一个三角形,那么可以组成三角形的个数是()A.1 B.2 C.3 D.45.商店出售下列形状的地砖:①长方形;②正方形;③正五边形;④正六边形.若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有()A.1种B.2种C.3种D.4种6.一副三角板按如图方式摆放,且∠1比∠2大50°.若设∠1=x°,∠2=y°,则可得到的方程组为()A.B.C.D.7.已知,如图,△ABC中,∠B=∠DAC,则∠BAC和∠ADC的关系是()A.∠BAC<∠ADC B.∠BAC=∠ADC C.∠BAC>∠ADC D.不能确定二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答.8.若﹣2x+y=5,则y=______(用含x的式子表示).9.一个n边形的内角和是其外角和的2倍,则n=______.10.不等式3x﹣9<0的最大整数解是______.11.三元一次方程组的解是______.12.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为______.13.如图,在△ABC中,∠B=90°,AB=10.将△ABC沿着BC的方向平移至△DEF,若平移的距离是3,则图中阴影部分的面积为______.14.如图,CD、CE分别是△ABC的高和角平分线,∠A=30°,∠B=60°,则∠DCE=______度.15.一次智力竞赛有20题选择题,每答对一道题得5分,答错一道题扣2分,不答题不给分也不扣,小亮答完全部测试题共得65分,那么他答错了______道题.16.如图,将矩形ABCD绕点A顺时针旋转到矩形A′B′C′D′的位置,旋转角为a (0°<a <90°).若∠1=110°,则a=______.17.如图所示,小明从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样下去,他第一次回到出发地A点时,(1)左转了______次;(2)一共走了______米.三、解答题(9小题,共89分)在答题卡上相应题目的答题区域内作答.18.y﹣=2﹣19.解不等式5x﹣1≤3x+3,并把解集在数轴上表示出来.20.解方程组:.21.解不等式组:(注:必须通过画数轴求解集)22.如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD 折叠得到△AED,AE与BC交于点F.(1)填空:∠AFC=______度;(2)求∠EDF的度数.23.如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC的三个顶点都在格点上.(1)在网格中画出△ABC向下平移3个单位得到的△A1B1C1;(2)在网格中画出△ABC关于直线m对称的△A2B2C2;(3)在直线m上画一点P,使得|PA﹣PC2|的值最大.24.为了美化环境,在一块正方形空地上分别种植四种不同的花草.现将这块空地按下列要求分成四块:(1)分割后的整个图形必须是轴对称图形;(2)四块图形形状相同;(3)四块图形面积相等.现已有两种不同的分法:(1)分别作两条对角线(如图中的图(1));(2)过一条边的四等分点作这边的垂线段(图(2))(图(2)中两个图形的分割看作同一方法).请你按照上述三个要求,分别在图(3)、图(4)两个正方形中画出另外两种不同的分割方法.(正确画图,不写画法)25.小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:营业员A:月销售件数200件,月总收入2400元;营业员B:月销售件数300件,月总收入2700元;假设营业员的月基本工资为x元,销售每件服装奖励y元.(1)求x、y的值;(2)若某营业员的月总收入不低于3100元,那么他当月至少要卖服装多少件?(3)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲3件,乙2件,丙1件共需350元;如果购买甲1件,乙2件,丙3件共需370元.某顾客想购买甲、乙、丙各一件共需多少元?26.在△ABC中,已知∠A=α.(1)如图1,∠ABC、∠ACB的平分线相交于点D.①当α=70°时,∠BDC度数=______度(直接写出结果);②∠BDC的度数为______(用含α的代数式表示);(2)如图2,若∠ABC的平分线与∠ACE角平分线交于点F,求∠BFC的度数(用含α的代数式表示).(3)在(2)的条件下,将△FBC以直线BC为对称轴翻折得到△GBC,∠GBC的角平分线与∠GCB的角平分线交于点M(如图3),求∠BMC的度数(用含α的代数式表示).七年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共21分).在答题卡上相应题目的答题区域内作答. 1.方程3x=﹣6的解是()A.x=﹣2 B.x=﹣6 C.x=2 D.x=﹣12【考点】解一元一次方程.【分析】根据解方程的方法两边同时除以3求解.【解答】解:3x=﹣6两边同时除以3,得x=﹣2故选:A.2.若a>b,则下列结论正确的是()A.a﹣5<b﹣5 B.3a>3b C.2+a<2+b D.<【考点】不等式的性质.【分析】根据不等式的性质逐一判断,判断出结论正确的是哪个即可.【解答】解:∵a>b,∴a﹣5>b﹣5,∴选项A不正确;∵a>b,∴3a>3b,∴选项B正确;∵a>b,∴2+a>2+b,∴选项C不正确;∵a>b,∴>,∴选项D不正确.故选:B.3.下列图案既是中心对称图形,又是轴对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选:D.4.现有3cm、4cm、5cm、7cm长的四根木棒,任选其中三根组成一个三角形,那么可以组成三角形的个数是()A.1 B.2 C.3 D.4【考点】三角形三边关系.【分析】从4条线段里任取3条线段组合,可有4种情况,看哪种情况不符合三角形三边关系,舍去即可.【解答】解:四条木棒的所有组合:3,4,5和3,4,7和3,5,7和4,5,7;只有3,4,7不能组成三角形.故选:C.5.商店出售下列形状的地砖:①长方形;②正方形;③正五边形;④正六边形.若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有()A.1种B.2种C.3种D.4种【考点】平面镶嵌(密铺).【分析】几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.【解答】解:①长方形的每个内角是90°,4个能组成镶嵌;②正方形的每个内角是90°,4个能组成镶嵌;③正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能镶嵌;④正六边形的每个内角是120°,能整除360°,3个能组成镶嵌;故若只选购其中某一种地砖镶嵌地面,可供选择的地砖有①②④.故选C.6.一副三角板按如图方式摆放,且∠1比∠2大50°.若设∠1=x°,∠2=y°,则可得到的方程组为()A.B.C.D.【考点】由实际问题抽象出二元一次方程组;余角和补角.【分析】此题中的等量关系有:①三角板中最大的角是90度,从图中可看出∠α度数+∠β的度数+90°=180°;②∠1比∠2大50°,则∠1的度数=∠2的度数+50度.【解答】解:根据平角和直角定义,得方程x+y=90;根据∠α比∠β的度数大50°,得方程x=y+50.可列方程组为.故选:D.7.已知,如图,△ABC中,∠B=∠DAC,则∠BAC和∠ADC的关系是()A.∠BAC<∠ADC B.∠BAC=∠ADC C.∠BAC>∠ADC D.不能确定【考点】三角形的外角性质.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ADC=∠B+∠BAD,再根据∠BAC=∠BAD+∠DAC即可得解.【解答】解:由三角形的外角性质,∠ADC=∠B+∠BAD,∵∠BAC=∠BAD+∠DAC,∠B=∠DAC,∴∠BAC=∠ADC.故选B.二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答.8.若﹣2x+y=5,则y=2x+5(用含x的式子表示).【考点】解二元一次方程.【分析】将x看做已知数求出y即可.【解答】解:方程﹣2x+y=5,解得:y=2x+5.故答案为:2x+5.9.一个n边形的内角和是其外角和的2倍,则n=6.【考点】多边形内角与外角.【分析】根据多边形内角和公式:(n﹣2)•180 (n≥3且n为整数)结合题意可列出方程180(n﹣2)=360×2,再解即可.【解答】解:由题意得:180(n﹣2)=360×2,解得:n=6,故答案为:6;10.不等式3x﹣9<0的最大整数解是2.【考点】一元一次不等式的整数解.【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的最大整数即可.【解答】解:不等式的解集是x<3,故不等式3x﹣9<0的最大整数解为2.故答案为2.11.三元一次方程组的解是.【考点】解三元一次方程组.【分析】将方程组三个方程相加求出x+y+z的值,进而将每一个方程代入即可求出x,y,z 的值.【解答】解:,①+②+③得:2(x+y+z)=22,即x+y+z=11④,将①代入④得:z=6,将②代入④得:x=2,将③代入④得:y=3,则方程组的解为.故答案为:12.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为4.【考点】全等三角形的性质.【分析】根据△ABC≌△ADE,得到AE=AC,由AB=7,AC=3,根据BE=AB﹣AE即可解答.【解答】解:∵△ABC≌△ADE,∴AE=AC,∵AB=7,AC=3,∴BE=AB﹣AE=AB﹣AC=7﹣3=4.故答案为:4.13.如图,在△ABC中,∠B=90°,AB=10.将△ABC沿着BC的方向平移至△DEF,若平移的距离是3,则图中阴影部分的面积为30.【考点】平移的性质.【分析】先根据平移的性质得AC=DF,AD=CF=3,于是可判断四边形ACFD为平行四边形,然后根据平行四边形的面积公式计算即可.【解答】解:∵直角△ABC沿BC边平移3个单位得到直角△DEF,∴AC=DF,AD=CF=3,∴四边形ACFD为平行四边形,=CF•AB=3×10=30,∴S平行四边形ACFD即阴影部分的面积为30.故答案为:30.14.如图,CD、CE分别是△ABC的高和角平分线,∠A=30°,∠B=60°,则∠DCE=15度.【考点】三角形内角和定理;三角形的角平分线、中线和高.【分析】先根据三角形内角和定理,计算出∠ACB=180°﹣∠A﹣∠B=90°,再根据三角形的高和角平分线的定义,得到∠BCE=∠ACB=45°,∠BDC=90°,于是可计算出∠BCD=30°,然后利用∠DCE=∠BCE﹣∠BCD进行计算即可.【解答】解:∵∠A=30°,∠B=60°,∴∠ACB=180°﹣∠A﹣∠B=90°,∵CD、CE分别是△ABC的高和角平分线,∴∠BCE=∠ACB=45°,∠BDC=90°,∴∠BCD=90°﹣∠B=30°,∴∠DCE=∠BCE﹣∠BCD=45°﹣30°=15°.故答案为:15°.15.一次智力竞赛有20题选择题,每答对一道题得5分,答错一道题扣2分,不答题不给分也不扣,小亮答完全部测试题共得65分,那么他答错了5道题.【考点】二元一次方程的应用.【分析】设答对x道题,答错了y道题,根据对1题给5分,错1题扣2分,不答题不给分也不扣分,总分为65分和有20题选择题可分别列等式求解.【解答】解:设答对x道题,答错了y道题,根据题意可得:,解得:,故他答错了5道题.故答案为:5.16.如图,将矩形ABCD绕点A顺时针旋转到矩形A′B′C′D′的位置,旋转角为a (0°<a <90°).若∠1=110°,则a=20°.【考点】旋转的性质.【分析】先利用旋转的性质得到∠ADC=∠D=90°,∠DAD′=α,再利用四边形内角和计算出∠BAD=70°,然后利用互余计算出∠DAD′,从而得到α的值.【解答】解:∵矩形ABCD绕点A顺时针旋转到矩形A′B′C′D′的位置,∴∠ADC=∠D=90°,∠DAD′=α,∵∠ABC=90°,∴∠BAD=180°﹣∠2,而∠2=∠21=110°,∴∠BAD=180°﹣110°=70°,∴∠DAD′=90°﹣70°=20°,即α=20°.故答案为20°.17.如图所示,小明从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样下去,他第一次回到出发地A点时,(1)左转了11次;(2)一共走了132米.【考点】多边形内角与外角.【分析】根据多边形的外角和即可求出答案.【解答】解:∵360÷30=12,∴他需要走12﹣1=11次才会回到原来的起点,即一共走了12×11=132米.故答案为11,1132.三、解答题(9小题,共89分)在答题卡上相应题目的答题区域内作答.18.y﹣=2﹣【考点】解一元一次方程.【分析】这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.【解答】解:去分母得:6y﹣3(y﹣1)=12﹣(y+2)去括号得:6y﹣3y+3=12﹣y﹣2移项得:6y﹣3y+y=12﹣2﹣3合并得:4y=7系数化为1得:.19.解不等式5x﹣1≤3x+3,并把解集在数轴上表示出来.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】先移项,再合并同类项,把x的系数化为1,把不等式的解集在数轴上表示出来即可.【解答】解:移项得,5x﹣3x≤3+1,合并同类项得,2x≤4,x的系数化为1得,x≤2.在数轴上表示为:.20.解方程组:.【考点】解二元一次方程组.【分析】先用加减消元法求出x的值,再用代入消元法求出y的值即可.【解答】解:,①×3+②得,5x=25,解得x=5,把x=5代入①得,5﹣y=3,解得y=2,故方程组的解为.21.解不等式组:(注:必须通过画数轴求解集)【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】根据一元一次不等式的解法分别解出两个不等式,根据不等式的解集的确定方法得到不等式组的解集.【解答】解:,由①得x≥13,由②得x>﹣2,所以原不等式组的解是:x≥13.22.如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD 折叠得到△AED,AE与BC交于点F.(1)填空:∠AFC=110度;(2)求∠EDF的度数.【考点】三角形内角和定理;三角形的外角性质;翻折变换(折叠问题).【分析】(1)根据折叠的特点得出∠BAD=∠DAF,再根据三角形一个外角等于它不相邻两个内角之和,即可得出答案;(2)根据已知求出∠ADB的值,再根据△ABD沿AD折叠得到△AED,得出∠ADE=∠ADB,最后根据∠EDF=∠EDA+∠BDA﹣∠BDF,即可得出答案.【解答】解:(1)∵△ABD沿AD折叠得到△AED,∴∠BAD=∠DAF,∵∠B=50°∠BAD=30°,∴∠AFC=∠B+∠BAD+∠DAF=110°;故答案为110.(2)∵∠B=50°,∠BAD=30°,∴∠ADB=180°﹣50°﹣30°=100°,∵△ABD沿AD折叠得到△AED,∴∠ADE=∠ADB=100°,∴∠EDF=∠EDA+∠BDA﹣∠BDF=100°+100°﹣180°=20°.23.如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC的三个顶点都在格点上.(1)在网格中画出△ABC向下平移3个单位得到的△A1B1C1;(2)在网格中画出△ABC关于直线m对称的△A2B2C2;(3)在直线m上画一点P,使得|PA﹣PC2|的值最大.【考点】作图-轴对称变换;作图-平移变换.【分析】(1)根据图形平移的性质画出△A1B1C1即可;(2)画出△ABC关于直线m对称的△A2B2C2即可;(3)过点A2B2作直线,此直线与直线m的交点即为所求.【解答】解:作图如下:(1)如图,△A1B1C1.(2)如图,△A2B2C2.(3)如图,点P即为所求.24.为了美化环境,在一块正方形空地上分别种植四种不同的花草.现将这块空地按下列要求分成四块:(1)分割后的整个图形必须是轴对称图形;(2)四块图形形状相同;(3)四块图形面积相等.现已有两种不同的分法:(1)分别作两条对角线(如图中的图(1));(2)过一条边的四等分点作这边的垂线段(图(2))(图(2)中两个图形的分割看作同一方法).请你按照上述三个要求,分别在图(3)、图(4)两个正方形中画出另外两种不同的分割方法.(正确画图,不写画法)【考点】利用轴对称设计图案.【分析】做本题的关键是利用轴对称图形,作出轴对称图案.这里的答案不唯一,只要是轴对称图形就行.做时可以思考先把正方形变成两个面积相等,图形相同的两部分,再分这两部分为相同的轴对称图形.【解答】解:如图所示:.25.小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:营业员A:月销售件数200件,月总收入2400元;营业员B:月销售件数300件,月总收入2700元;假设营业员的月基本工资为x元,销售每件服装奖励y元.(1)求x、y的值;(2)若某营业员的月总收入不低于3100元,那么他当月至少要卖服装多少件?(3)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲3件,乙2件,丙1件共需350元;如果购买甲1件,乙2件,丙3件共需370元.某顾客想购买甲、乙、丙各一件共需多少元?【考点】三元一次方程组的应用.【分析】(1)根据题意可以列出相应的二元一次方程组,从而可以得到x、y的值;(2)由题意可以列出相应的不等式,从而可以得到某营业员至少需要卖出服装的件数;(3)由题意可得相应的三元一次方程组,通过变形即可得到问题的答案.【解答】解:(1)由题意,得,解得即x的值为1800,y的值为3;(2)设某营业员当月卖服装m件,由题意得,1800+3m≥3100,解得,,∵m只能为正整数,∴m最小为434,即某营业员当月至少要卖434件;(3)设一件甲为a元,一件乙为b元,一件丙为c元,则,将两等式相加得,4a+4b+4c=720,则a+b+c=180,即购买一件甲、一件乙、一件丙共需180元.26.在△ABC中,已知∠A=α.(1)如图1,∠ABC、∠ACB的平分线相交于点D.①当α=70°时,∠BDC度数=125度(直接写出结果);②∠BDC的度数为90°+α(用含α的代数式表示);(2)如图2,若∠ABC的平分线与∠ACE角平分线交于点F,求∠BFC的度数(用含α的代数式表示).(3)在(2)的条件下,将△FBC以直线BC为对称轴翻折得到△GBC,∠GBC的角平分线与∠GCB的角平分线交于点M(如图3),求∠BMC的度数(用含α的代数式表示).【考点】三角形综合题.【分析】(1)①根据角平分线定义以及三角形内角和定理计算即可解决问题.②根据角平分线定义以及三角形内角和定理计算即可解决问题.(2)由∠BFC=∠FCE﹣∠FBC=由此即可解决问题.(3)利用(2)的结论即可解决问题.【解答】解:(1)①125°;②结论:,理由:∵∠ABC,∠DCB=∠ACB,∴∠BDC=180°﹣∠DBC﹣∠DCB=180°﹣(∠ABC+∠ACB)=180°﹣=90°+∠A=90°+α.故答案分别为125°,90°+α.(2)∵BF和CF分别平分∠ABC和∠ACE∴,,∴∠BFC=∠FCE﹣∠FBC)==即.(3)由轴对称性质知:,由(1)②可得,∴.。
华东师大版七年级数学下册期末考试及答案【A4打印版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a=255,b=344,c=533,d=622 ,那么a,b,c,d大小顺序为()A.a<b<c<d B.a<b<d<c C.b<a<c<d D.a<d<b<c2.如图,直线AB∥CD,则下列结论正确的是()A.∠1=∠2 B.∠3=∠4 C.∠1+∠3=180° D.∠3+∠4=180°3.已知x+y=﹣5,xy=3,则x2+y2=()A.25 B.﹣25 C.19 D.﹣194.点C在x轴上方,y轴左侧,距离x轴2个单位长度,距离y轴3个单位长度,则点C的坐标为()A.(2,3)B.(-2,-3)C.(-3,2)D.(3,-2)5.如图在正方形网格中,若A(1,1),B(2,0),则C点的坐标为()A.(-3,-2) B.(3,-2) C.(-2,-3) D.(2,-3) 6.如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是()A.点M B.点N C.点P D.点Q7.下列各组数中,能作为一个三角形三边边长的是()A.1,1,2 B.1,2,4 C.2,3,4 D.2,3,58.如图,将一副三角尺按不同的位置摆放,下列摆放方式中a ∠与β∠互余的是( )A .图①B .图②C .图③D .图④9.若|abc |=-abc ,且abc ≠0,则||||b a c a b c ++=( ) A .1或-3 B .-1或-3 C .±1或±3 D .无法判断10.如图,在菱形ABCD 中,AC=62,BD=6,E 是BC 边的中点,P ,M 分别是AC ,AB 上的动点,连接PE ,PM ,则PE+PM 的最小值是( )A .6B .33C .26D .4.5二、填空题(本大题共6小题,每小题3分,共18分)1.已知关于x 的代数式()2x -1x 9a ++是完全平方式,则a =_________.2.如图,DA ⊥CE 于点A ,CD ∥AB ,∠1=30°,则∠D=________.3.若|a|=5,b=﹣2,且ab >0,则a+b=________.4.若关于x 、y 的二元一次方程组34355x y m x y -=+⎧⎨+=⎩的解满足0x y +≤,则m 的取值范围是________.5.对于任意实数a 、b ,定义一种运算:a ※b=ab ﹣a+b ﹣2.例如,2※5=2×5﹣2+5﹣2=ll .请根据上述的定义解决问题:若不等式3※x <2,则不等式的正整数解是________.6.已知13a a +=,则221+=a a__________; 三、解答题(本大题共6小题,共72分)1.解方程:223124x x x --=+-.2.已知关于x 、y 的方程组354526x y ax by -=⎧⎨+=-⎩与2348x y ax by +=-⎧⎨-=⎩有相同的解,求a 、b 的值.3.如图,将边长为m 的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿掉边长为n 的小正方形纸板后,将剩下的三块拼成新的矩形.(1)用含m 或n 的代数式表示拼成矩形的周长;(2)m=7,n=4,求拼成矩形的面积.4.如图,已知A 、O 、B 三点共线,∠AOD=42°,∠COB=90°.(1)求∠BOD 的度数;(2)若OE 平分∠BOD ,求∠COE 的度数.5.随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?6.为支援灾区,某校爱心活动小组准备用筹集的资金购买A、B两种型号的学习用品共1000件.已知B型学习用品的单价比A型学习用品的单价多10元,用180元购买B型学习用品的件数与用120元购买A型学习用品的件数相同.(1)求A、B两种学习用品的单价各是多少元?(2)若购买这批学习用品的费用不超过28000元,则最多购买B型学习用品多少件?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、D3、C4、C5、B6、C7、C8、A9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、5或-72、60°3、-74、2m≤-5、16、7三、解答题(本大题共6小题,共72分)1、54 x=2、149299 ab⎧=⎪⎪⎨⎪=⎪⎩3、(1)矩形的周长为4m;(2)矩形的面积为33.4、(1)∠BOD =138°;(2)∠COE=21°.5、(1)30;(2)①补图见解析;②120;③70人.6、(1)A型学习用品20元,B型学习用品30元;(2)800.。
期末测试题(一)一、选择题(本大题共10小题,每小题3分,共30分) 1.下列地铁标志图形中属于轴对称图形的是( )青岛地铁 北京地铁 广州地铁 上海地铁A B C D2.下列设计原理不是利用三角形稳定性的是( ) A .由四边形组成的伸缩门 B .自行车的三角形车架C .斜钉一根木条的长方形窗框D .三角形房架3.下列选项中,平移三角形A 能与三角形B 重合的是( )A B CD4.若关于x 的方程mx-2=x+1的解是x=3,则m 的值为( ) A .32B .2C .1D .21 5.以下列长度的各组线段为边,能组成三角形的是( ) A .2cm ,3cm ,6cmB .3cm ,4cm ,8cmC .5cm ,6cm ,10cmD .5cm ,6cm ,11cm6.数学课上,老师让同学们观察图1所示的图形,问:它绕着点O 旋转多少度后和它自身重合?甲同学说:45°;乙同学说:60°;丙同学说:90°;丁同学说:135°.以上四位同学的回答中,正确的是( ) A .甲B .乙C .丙D .丁图1图27.如图2,△ABC 和△AB'C'关于直线l 对称,l 交CC'于点D ,若AB=4,B'C'=2,CD=0.5,则五边形ABCC′B'的周长为( ) A .14B .13C .12D .118.一个多边形截去一个角后,形成的另一个多边形的内角和是1620°,则原来多边形的边数是( ) A .10B .11C .12D .10,11或129.若关于x 的一元一次不等式组⎩⎨⎧<+>-mx x x ,2312的解集是x <-3,则m 的取值范围是( )A .m≥-3B .m >-3C .m≤-3D .m <-310.小江去商店购买签字笔和笔记本(签字笔的单价相同,笔记本的单价相同).若购买20 支签字笔和15本笔记本,则他身上的钱会差25元;若购买19支签字笔和13本笔记本,则 他身上的钱会剩下15元.若小江购买17支签字笔和9本笔记本,则( ) A .他身上的钱会不足95元 B .他身上的钱会剩下95元C .他身上的钱会不足105元D .他身上的钱会剩下105元二、填空题(本大题共6小题,每小题4分,共24分) 11.列等式表示“x 的2倍与10的和等于8”_______.12.如图3,已知△ABC ≌△DEF ,∠B =57°,∠D =77°,则∠F = .图3图4 13.已知方程组34,21,a b a b +=⎧⎨-=⎩则2a+3b 的值是 .14.如图4,已知AD 是△ABC 的中线,CE 是△ADC 的中线,△ABC 的面积为8,则△CDE 的面积为 .15.已知关于x 的不等式组320,1x a x --≥≥-⎧⎨⎩恰有3个整数解,则a 的取值范围是 .16.有两个直角三角尺,其中∠E=45°,∠C=30°,按图5-①的方式叠放,先将△ABC 固定,再将△AED 绕顶点A 顺时针旋转,使BC ∥DE (如图5-②),则旋转角∠BAD 的度数为 .图5三、解答题(本大题共7小题,共66分)17.(6分) 解方程:312-x =423+x -1.18. (8分)解不等式组32,121,25x x x x <+⎧⎪⎨++≥⎪⎩①②并把解集在数轴上表示出来.19.(8分)如图6,在正方形网格上有一个△ABC ,且每个小正方形的边长为1(其中点A ,B ,C 均在网格上).(1)作△ABC 关于直线MN 对称的图形△A′B′C′; (2)在MN 上找一点P ,使得PA+PC 最短.图620.(10分)若一个三角形的三边长分别是a ,b ,c ,其中a 和b 满足方程组29,2 2.a b a b +=⎧⎨-=⎩若这个三角形的周长为整数,求这个三角形的周长.21.(10分)如图7,将六边形纸片ABCDEF 沿虚线剪去一个角(∠BCD )后,得到∠1+ ∠2+∠3+∠4+∠5=460°.(1)求六边形ABCDEF 的内角和; (2)求∠BGD 的度数.图722.(12分)如图8,D,E分别是△ABC的边AB,AC上的点,把△ADE沿DE折叠,使点A落在四边形BCED所在的平面上,点A的对应点为A',已知∠B=80°,∠C=70°.(1)求∠A的度数;(2)在图①,图②,图③中,写出∠1,∠2的数量关系,并选择一种情况说明理由.图823.(12分)某服装店销售一批进价分别为200元、170元的A,B两款T恤衫,下表是近(进价、售价均保持不变,利润=销售收入-进货成本)(1)求A,B两款T恤衫的销售单价;(2)若该服装店老板准备用不多于5400元的金额再购进这两款T恤衫共30件,则A款T 恤衫最多能购进多少件?(3)在(2)的条件下,在销售完这30件T恤衫能否实现利润为1300元的目标?若能,直接写出相应的采购方案;若不能,请说明理由.(山东于秀坤)(参考答案见答案页第11期)期末测试题(一)一、1.C 2.A3.B 4.B 5.C 6.B 7.B 8.D 9.A10.B提示:设签字笔的单价为x元,笔记本的单价为y元.根据题意,得20x+15y-25=19x+13y+15,整理,得x+2y=40.因为小江购买17支签字笔和9本笔记本的钱为17x+9y,所以小江身上的钱会剩下19x+13y+15-(17x+9y)=2x+4y+15=2(x+2y)+15=2×40+15=95(元).二、11.2x+10=812.46°13.3 14.2 15.-1<a≤016.30°三、17.解:去分母,得4(2x-1)=3(3x+2)-12.去括号,得8x-4=9x+6-12.移项,得8x-9x=6-12+4.合并同类项,得-x=-2.系数化为1,得x=2.18.解:解不等式①,得x<1;解不等式②,得x≥-3.在数轴上表示解集如图1所示:图1所以原不等式组的解集为-3≤x<1.19.解:(1)如图2,△A′B′C′为所作;(2)如图2,点P为所作.图220.解:解29,22,a ba b+=⎧⎨-=⎩得4,1,ab=⎧⎨=⎩所以3<c<5.因为周长为整数,所以c=4.所以这个三角形的周长是4+4+1=9.21.解:(1)六边形ABCDEF的内角和为(6-2)×180°=720°.(2)因为六边形ABCDEF的内角和为720°,∠1+∠2+∠3+∠4+∠5=460°,所以∠GBC+∠C+∠CDG=720°-460°=260°.因为四边形BCDG的内角和为360°,所以∠BGD=360°-(∠GBC+∠C+∠CDG)=360°-260°=100°.22.解:(1)因为∠B=80°,∠C=70°,所以∠A=180°-(∠B+∠C)=180°-(80°+70°)=30°.(2)题图①中,∠1-∠2=60°,理由如下:如图3,因为△ADE沿DE折叠得到△A'DE,所以∠A′=∠A=30°.所以∠4=∠3=180°-∠A′-∠2=180°-30°-∠2=150°-∠2.因为∠1+∠4+∠B+∠C=360°,所以∠1+150°-∠2+80°+70°=360°,所以∠1-∠2=60°.图3题图②中,∠1+∠2=60°,理由如下:因为△ADE沿DE折叠得到△A'DE,所以∠A′=∠A=30°.所以∠AEA′+∠ADA′=360°-∠A-∠A′=300°.所以∠1+∠2=360°-∠AEA′-∠ADA′=60°.题图③中,方法同题图①,可得∠2-∠1=60°.23.解:(1)设A款T恤衫的销售单价为x元,B款T恤衫的销售单价为y元.根据题意,得351800,4103100.x yx y+=⎧⎨+=⎩解得250,210.xy=⎧⎨=⎩答:A款T恤衫的销售单价为250元,B款T恤衫的销售单价为210元.(2)设A款T恤衫能购进m件,则B款T恤衫能购进(30-m)件.根据题意,得200m+170(30-m)≤5400.解得m≤10.答:A款T恤衫最多能购进10件.(3)根据题意,得(250-200)m+(210-170)(30-m)=1300.解得m=10.答:当A款T恤衫购进10件,B款T恤衫购进20件时,销售完这30件T恤衫的利润为1300元.。
华东师大版七年级数学下册期末考试(完美版)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若分式211xx-+的值为0,则x的值为()A.0B.1C.﹣1D.±12.如图,点O在直线AB上,射线OC平分∠DOB.若∠COB=35°,则∠AOD等于( ).A.35° B.70° C.110° D.145°3.在平面直角坐标系中,点A(﹣3,2),B(3,5),C(x,y),若AC∥x 轴,则线段BC的最小值及此时点C的坐标分别为()A.6,(﹣3,5) B.10,(3,﹣5)C.1,(3,4) D.3,(3,2)4.一5的绝对值是()A.5 B.15C.15-D.-55.如图,AB∥CD,∠1=58°,FG平分∠EFD,则∠FGB的度数等于()A.122°B.151°C.116°D.97°6.如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是()A .点MB .点NC .点PD .点Q7.如图,△ABC 的面积为3,BD :DC =2:1,E 是AC 的中点,AD 与BE 相交于点P ,那么四边形PDCE 的面积为( )A .13B .710C .35D .13208.如图,将一副三角尺按不同的位置摆放,下列摆放方式中a ∠与β∠互余的是( )A .图①B .图②C .图③D .图④9.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对10.如图,在菱形ABCD 中,2BD=6,E 是BC 边的中点,P ,M 分别是AC ,AB 上的动点,连接PE ,PM ,则PE+PM 的最小值是( )A .6B .33 C .26 D .4.5二、填空题(本大题共6小题,每小题3分,共18分)1.已知(a +1)2+|b +5|=b +5,且|2a -b -1|=1,则ab =___________.2.如图,四边形ACDF 是正方形,CEA ∠和ABF ∠都是直角,且点,,E A B 三点共线,4AB =,则阴影部分的面积是__________.3.分解因式:32x 2x x -+=_________.4.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数解析式是y =95x +32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为__ ______℃.5.若264a =3a =________.6.已知一组从小到大排列的数据:2,5,x ,y ,2x ,11的平均数与中位数都是7,则这组数据的众数是________.三、解答题(本大题共6小题,共72分)1.解方程组:12433313412x y x y ++⎧=⎪⎪⎨--⎪-=⎪⎩2.已知A-B=7a2-7ab,且B=-4a2+6ab+7.(1)求A等于多少?(2)若|a+1|+(b-2)2=0,求A的值.3.如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.4.如图,已知AB∥CD,CN是∠BCE的平分线.(1)若CM平分∠BCD,求∠MCN的度数;(2)若CM在∠BCD的内部,且CM⊥CN于C,求证:CM平分∠BCD;(3)在(2)的条件下,连结BM,BN,且BM⊥BN,∠MBN绕着B点旋转,∠BMC+∠BNC是否发生变化?若不变,求其值;若变化,求其变化范围.5.为丰富学生的课余生活,陶冶学生的情趣,促进学生全面发展,其中七年级开展了学生社团活动.学校为了解学生参加情况,进行了抽样调查,制作如下的统计图:请根据上述统计图,完成以下问题:(1)这次共调查了______名学生;扇形统计图中,表示“书法类”所在扇形的圆心角是______度;(2)请把统计图1补充完整;(3)若七年级共有学生1100名,请估算有多少名学生参加文学类社团?6.我校组织一批学生开展社会实践活动,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元.(1)这批学生的人数是多少?原计划租用45座客车多少辆?(2)若租用同一种客车,要使每位学生都有座位,应该怎样租用合算?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、D4、A5、B6、C7、B8、A9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2或4.2、83、()2 x x1-.4、-405、±26、5三、解答题(本大题共6小题,共72分)1、178 y7 x⎧=⎪⎪⎨⎪=-⎪⎩2、(1)3a2-ab+7;(2)12.3、(1) 65°;(2) 25°.4、(1)90°;(2)略;(3)∠BMC+∠BNC=180°不变,理由略5、(1)50;72;(2)详见解析;(3)330.6、(1)240人,原计划租用45座客车5辆;(2)租4辆60座客车划算.。
一、选择题1.下列四组数值中,方程组02534a b c a b c a b c ++=⎧⎪-+=-⎨⎪--=-⎩的解是( )A .011a b c =⎧⎪=⎨⎪=-⎩B .121a b c =-⎧⎪=⎨⎪=-⎩C .112a b c =-⎧⎪=⎨⎪=-⎩D .123a b c =⎧⎪=-⎨⎪=⎩2.已知x ,y 满足方程组4,5,x m y m +=⎧⎨-=⎩则无论m 取何值,x ,y 恒有的关系式是( )A .1x y +=B .1x y +=-C .9x y +=D .9x y -=-3.小明去商店购买A B 、两种玩具,共用了10元钱,A 种玩具每件1元,B 种玩具每件2元.若每种玩具至少买一件,且A 种玩具的数量多于B 种玩具的数量.则小明的购买方案有( ) A .5种B .4种C .3种D .2种4.若关于x 的不等式组255332x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩只有5个整数解,则a 的取值范围( )A .1162a -<- B .116a 2-<<-C .1162a -<-D .1162a --5.若方程组21322x y kx y +=-⎧⎨+=⎩的解满足0x y +=,则k 的值为( )A .1-B .1C .0D .不能确定6.象棋在中国有三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图是一局象棋残局,已知棋子“马”和“车”表示的点的坐标分别为(4,1),(2,1)--,则在第三象限的棋子有( )A .1颗B .2颗C .3颗D .4颗7.一只跳蚤在第一象限及x 轴、y 轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是( )A .(4,0)B .(5,0)C .(0,5)D .(5,5) 8.下列实数是无理数的是( ) A . 5.1-B .0C .1D .π9.下列命题是真命题的是( )A .如果一个数的相反数等于这个数本身,那么这个数一定是0B .如果一个数的倒数等于这个数本身,那么这个数一定是1C .如果一个数的平方等于这个数本身,那么这个数一定是0D .如果一个数的算术平方根等于这个数本身,那么这个数一定是0 10.不等式组36030x x +>⎧⎨-≤⎩的解集在数轴上表示正确的是( )A .B .C .D .11.若01x <<,则下列选项正确的是( )A .21x x x<< B .21x x x<<C .21x x x<<D .21x x x<< 12.如果a 、b 两个数在数轴上的位置如图所示,则下列各式正确的是( )A .0a b +>B .0ab <C .0b a -<D .0ab> 二、填空题13.关于x ,y 的二元一次方程组23224x y m x y +=-+⎧⎨+=⎩的解满足x +y >﹣1,则m 的取值范围是_____.14.令a 、b 两个数中较大数记作{}max ,a b 如{}max 2,33=,已知k 为正整数且使不等式{}max 21,33k k +-+≤成立,则关于x 方程21136x k x---=的解是_____________. 15.若点(2,2)A m n m n ++在y 轴的负半轴上,且点A 到x 轴的距离为6,则m n +=___________.16.已知2353210x y x y +=⎧⎨+=⎩,则x +y ﹣2020=_____.17.如图所示,点1,0A 、B(-1,1)、()2,2C ,则ABC 的面积是_________.18.若不在第一象限的点(),22A x x -+到两坐标轴距离相等,则A 点坐标为 _________. 19.定义一种新运算“”规则如下:对于两个有理数a ,b ,ab ab b =-,若()()521x -=-,则x =______20.如图,已知∠1=(3x +24)°,∠2=(5x +20)°,要使m ∥n ,那么∠1=_____(度).三、解答题21.某校计划安排初三年级全体师生参观黄石矿博园.现有36座和48座两种客车供选择租用,若只租用36座客车若干辆,则正好坐满;若只租用48座客车,则能少租一辆,且有一辆车没有坐满,但超过了30人;已知36座客车每辆租金400元,48座客车每辆租金480元.(1)该校初三年级共有师生多少人参观黄石矿博园? (2)请你帮该校设计一种最省钱的租车方案.22.某企业在疫情复工准备工作中,为了贯彻落实“生命重于泰山,疫情就是命令,防控就是责任”的思想.计划购买300瓶消毒液,已知甲种消毒液每瓶30元,乙种消毒液每瓶18元.(1)若该企业购买两种消毒液共花费7500元,则购买甲、乙两种消毒液各多少瓶? (2)若计划购买两种消毒液的总费用不超过9600元,则最多购买甲种消毒液多少瓶? 23.“滴滴打车”深受大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按p 元/千米计算,耗时费按q 元/分钟计算,小明、小亮两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与车速如表:时间(分钟) 里程数(千米) 车费(元)小明 7 5 12.1 小亮 64.510.8(1)求p ,q 的值;(2)“滴滴”推出新政策,在原有付费基础上,当里程数超过8千米后,超出的部分要加收0.6元/千米的里程费.某天,小丽两次使用“滴滴打车”共花费52元,总里程20千米,已知两次“滴滴打车”行驶的平均速度为40千米/小时,求小丽第一次“滴滴打车”的里程数? 24.在如图的平面直角坐标系中表示下面各点,并在图中标上字母:A (0,3);B (﹣2,4);C (3,﹣4);D (﹣3,﹣4).(1)点A 到原点O 的距离是 ,点B 到x 轴的距离是 ,点B 到y 轴的距离是 ;(2)连接CD ,则线段CD 与x 轴的位置关系是 . 25.计算:(1)37|2|27--+-(2)23115422⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭26.如图,已知:∠DGA=∠FHC ,∠A=∠F .求证:DF ∥AC .(注:证明时要求写出每一步的依据)【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】分析:首先利用②-①和②+③得出关于a 和b 的二元一次方程组,从而求出a 和b 的值,然后将a 和b 代入任何一个式子得出c 的值,从而得出方程组的解.详解:0?25?34? a b c a b c a b c ++=⎧⎪-+=-⎨⎪--=-⎩①②③,②-①可得:a -2b=-5 ④, ②+③可得:5a -2b=-9 ⑤,④-⑤可得:-4a=4,解得:a=-1, 将a=-1代入④可得:b=2,将a=-1,b=2代入①可得:c=-1,∴方程组的解为:121a b c =-⎧⎪=⎨⎪=-⎩,故选B .点睛:本题主要考查的是三元一次方程组的解法,属于基础题型.消元法的使用是解决这个问题的关键.2.C解析:C 【分析】由方程组消去m ,得到一个关于x ,y 的方程,化简这个方程即可. 【详解】解:将5m y =-代入4x m +=,得54x y +-=,所以9x y +=. 故选C. 【点睛】解二元一次方程组的基本思想是“消元”,基本方法是代入法和加减法,此题实际是消元法的考核.3.C解析:C 【分析】设A 种玩具的数量为x ,B 种玩具的数量为y ,根据共用10元钱,可得关于x 、y 的二元一次方程,继而根据11x y x y ≥≥,,>以及x 、y 均为正整数进行讨论即可得. 【详解】设A 种玩具的数量为x ,B 种玩具的数量为y , 则210x y +=, 即52xy =-, 又x 、y 均为正整数,且11x y x y ≥≥,,>, 当2x =时,4y =,不符合; 当4x =时,3y =,符合; 当6x =时,2y =,符合; 当8x =时,1y =,符合,共3种购买方案, 故选C. 【点睛】本题考查了二元一次方程的应用——方案问题,弄清题意,正确进行分析是解题的关键.4.A解析:A 【分析】分别解两个不等式得到得x <20和x >3-2a ,由于不等式组只有5个整数解,则不等式组的解集为3-2a <x <20,且整数解为15、16、17、18、19,得到14≤3-2a <15,然后再解关于a 的不等式组即可. 【详解】255332x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩①② 解①得x <20 解②得x >3-2a ,∵不等式组只有5个整数解, ∴不等式组的解集为3-2a <x <20, ∴14≤3-2a <15,1162a ∴-<-故选A 【点睛】本题主要考查对不等式的性质,解一元一次不等式,一元一次不等式组的整数解等知识点的理解和掌握,能求出不等式14≤3-2a <15是解此题的关键.5.B解析:B 【分析】方程组中两方程相加得到以k 为未知数的方程,解方程即可得答案. 【详解】 解:①+②,得 3(x+y )=3-3k , 由x+y=0,得 3-3k=0, 解得k=1, 故选:B . 【点睛】本题考查了二元一次方程组的解,利用等式的性质是解题关键.6.A解析:A 【分析】根据题意可以画出相应的平面直角坐标系,从而可以解答本题. 【详解】由题意可得,建立的平面直角坐标系如图所示,则在第三象限的棋子有“车”(21)--,一个棋子, 故选:A . 【点睛】本题考查了坐标确定位置,解答本题的关键是明确题意,画出相应的平面直角坐标系.注意:第三象限点的坐标特征()--, . 7.B解析:B 【分析】根据题意,找出其运动规律,质点每秒移动一个单位,质点到达(1,0)时,共用3秒;质点到达(2,0)时,共用4秒;质点到达(0,2)时,共用4+4=8秒;质点到达(0,3)时,共用9秒;质点到达(3,0)时,共用9+6=15秒;以此类推, 即可得出答案. 【详解】解:由题意可知,质点每秒移动一个单位 质点到达(1,0)时,共用3秒; 质点到达(2,0)时,共用4秒; 质点到达(0,2)时,共用4+4=8秒; 质点到达(0,3)时,共用9秒; 质点到达(3,0)时,共用9+6=15秒; 以此类推,质点到达(4,0)时,共用16秒; 质点到达(0,4)时,共用16+8=24秒; 质点到达(0,5)时,共用25秒; 质点到达(5,0)时,共用25+10=35秒 故答案为:B . 【点睛】本题考查整式探索与表达规律,根据题意找出规律是解题的关键.8.D解析:D 【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项. 【详解】解:A 、 5.1-是分数,是有理数,故选项不符合题意; B 、0是整数,是有理数,故选项不符合题意; C 、1是整数,是有理数,故选项不符合题意; D 、π是无理数,故选项符合题意. 故选:D . 【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.9.A解析:A 【分析】根据相反数是它本身的数为0;倒数等于这个数本身是±1;平方等于它本身的数为1和0;算术平方根等于本身的数为1和0进行分析即可. 【详解】A 、如果一个数的相反数等于这个数本身,那么这个数一定是0,是真命题;B 、如果一个数的倒数等于这个数本身,那么这个数一定是1,是假命题;C 、如果一个数的平方等于这个数本身,那么这个数一定是0,是假命题;D 、如果一个数的算术平方根等于这个数本身,那么这个数一定是0,是假命题; 故选A . 【点睛】此题主要考查了命题与定理,关键是掌握正确的命题为真命题,错误的命题为假命题.10.C解析:C 【分析】先分别求出各不等式的解集,再求其公共解集即可. 【详解】36030x x +>⎧⎨-≤⎩①②, 解①得:2x >-, 解②得:3x ≤, 在数轴上表示如图所示:不等式组的解集为23x -<≤. 故选:C . 【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.11.C解析:C 【分析】利用不等式的基本性质,分别求得x 、x 2及1x的取值范围,然后比较,即可做出选择. 【详解】 解:∵0<x <1,∴0<x 2<x (不等式两边同时乘以同一个大于0的数x ,不等号方向不变); 0<1<1x(不等式两边同时除以同一个大于0的数x ,不等号方向不变); ∴x 2<x <1x. 故选:C . 【点睛】考查了有理数大小比较,解答此题的关键是熟知不等式的基本性质: 基本性质1:不等式两边同时加或减去同一个数或式子,不等号方向不变;基本性质2:不等式两边同时乘以(或除以)同一个大于0的数或式子,不等号方向不变;基本性质3:不等式两边同时乘以(或除以)同一个小于0的数或式子,不等号方向改变.12.B解析:B 【分析】由题意可得a 、b 的大小关系和符号关系,从而根据不等式的基本性质和有理数乘除法的符号法则可以得到正确解答. 【详解】解:由题意可得:a<b ,-a>b ,所以由不等式的性质可得:b-a>0,a+b<0,故A 、C 错误; 又由题意可得a 、b 异号,所以B 正确,D 错误; 故选B . 【点睛】本题考查数轴的应用,利用数形结合的思想方法、不等式的性质和有理数乘除法的符号法则求解是解题关键.二、填空题13.【分析】先将方程组中的两个方程相加化简可得再代入可得一个关于m 的一元一次不等式然后解不等式即可得【详解】两个方程相加得:即由题意得:解得故答案为:【点睛】本题考查了二元一次方程组一元一次不等式熟练掌 解析:3m <【分析】先将方程组中的两个方程相加化简可得2x y m +=-+,再代入1x y +>-可得一个关于m 的一元一次不等式,然后解不等式即可得. 【详解】23224x y m x y +=-+⎧⎨+=⎩, 两个方程相加得:3336x y m +=-+,即2x y m +=-+,由题意得:21m -+>-, 解得3m <, 故答案为:3m <. 【点睛】本题考查了二元一次方程组、一元一次不等式,熟练掌握二元一次方程组的特殊解法是解题关键.14.【分析】根据新定义分两种情况分别列出不等式求解得出k 的值代入分别求解可得【详解】①当时解得:;②当时解得:;∵为正整数解析:95【分析】根据新定义分213213k k k +>-+⎧⎨+≤⎩、21333k k k +≤-+⎧⎨-+≤⎩两种情况,分别列出不等式求解得出k的值,代入分别求解可得. 【详解】①当213213k k k +>-+⎧⎨+≤⎩时,解得:213k <≤;②当21333k k k +≤-+⎧⎨-+≤⎩时,解得:203k ≤≤;∵k 为正整数,15.-2【分析】根据题意列出方程组求得mn 的值即可求解【详解】根据题意得:①+②得:∴故答案为:【点睛】本题考查了坐标与图形坐标轴上点的坐标特征二元一次方程组的应用解此题的关键是列出关于的方程组解析:-2【分析】根据题意列出方程组,求得m 、n 的值,即可求解.【详解】根据题意,得:2026m n m n +=⎧⎨+=-⎩①②, ①+②得:336m n +=-,∴2m n +=-,故答案为:2-.【点睛】本题考查了坐标与图形,坐标轴上点的坐标特征,二元一次方程组的应用,解此题的关键是列出关于m 、n 的方程组.16.-2017【分析】先将两式相加求出x+y 然后代入求解即可【详解】解:①+②得5x+5y =15即x+y =3所以x+y ﹣2020=3﹣2020=﹣2017故答案为﹣2017【点睛】本题考查了二元一次方程解析:-2017【分析】先将两式相加求出x+y ,然后代入求解即可.【详解】解:2353210x y x y +=⎧⎨+=⎩①②, ①+②得,5x +5y =15,即x +y =3,所以,x +y ﹣2020=3﹣2020=﹣2017.故答案为﹣2017.【点睛】本题考查了二元一次方程组的解法,发现两式相加可求出x+y 是解答本题的关键. 17.5【分析】作BD ⊥x 轴于DCE ⊥x 轴于E 则∠ADB=∠AEC=根据点B(-11)得到BD=1CE=2OA=1OD=1OE=2求得AD=2AE=1根据代入数值计算即可【详解】作BD ⊥x 轴于DCE ⊥x 轴解析:5【分析】作BD ⊥x 轴于D ,CE ⊥x 轴于E ,则∠ADB=∠AEC=90︒,根据点1,0A 、B(-1,1)、()2,2C ,得到BD=1,CE=2,OA=1,OD=1,OE=2,求得AD=2,AE=1,根据BDEC ABD A ABC CE SS S S =--△梯形代入数值计算即可.【详解】 作BD ⊥x 轴于D ,CE ⊥x 轴于E ,则∠ADB=∠AEC=90︒,∵点1,0A 、B(-1,1)、()2,2C ,∴BD=1,CE=2,OA=1,OD=1,OE=2,∴AD=2,AE=1,∴BDEC ABD A ABC CE S S S S =--△梯形 =11()2212B AD DC B ED CE D AE E -⋅-⋅+⋅ 11(12)321221122=--+⨯⨯⨯⨯⨯ =2.5,故答案为:2.5..【点睛】此题考查直角坐标系中图形面积计算,点到坐标轴的距离,理解点到坐标轴的距离得到线段长度由此利用公式计算面积是解题的关键.18.或或【分析】根据点不在第一象限内利用平面直角坐标系内点的坐标的几何意义分别讨论在第二第三第四象限的情况即可解答【详解】解:∵点不在第一象限内则点在第二第三第四象限内∵点到两坐标轴距离相等∴解之得:或 解析:()2,2-或()2,2-或22,33⎛⎫-- ⎪⎝⎭. 【分析】 根据点(),22A x x -+不在第一象限内,利用平面直角坐标系内点的坐标的几何意义,分别讨论在第二、第三、第四象限的情况即可解答.【详解】解:∵点(),22A x x -+不在第一象限内,则点(),22A x x -+在第二、第三、第四象限内,∵点(),22A x x -+到两坐标轴距离相等,∴22x x =-+,解之得:2x =或2x =-,23x =,∴点A 的坐标是:()2,2-或()2,2-或22,33⎛⎫-- ⎪⎝⎭ 故答案是:()2,2-或()2,2-或22,33⎛⎫-- ⎪⎝⎭. 【点睛】 本题主要考查了平面直角坐标系内各象限内点的坐标的符号及点的坐标的几何意义,注意横坐标的绝对值就是到y 轴的距离,纵坐标的绝对值就是到x 轴的距离.19.【分析】根据给定新运算的运算法则可以得到关于x 的方程解方程即可得到解答【详解】解:由题意得:(5x-x )⊙(−2)=−1∴-2(5x-x )-(-2)=-1∴-8x+2=-1解之得:故答案为【点睛】本解析:38【分析】根据给定新运算的运算法则可以得到关于x 的方程,解方程即可得到解答.【详解】解:由题意得:(5x-x )⊙(−2)=−1,∴-2(5x-x )-(-2)=-1,∴-8x+2=-1,解之得:38x =, 故答案为38. 【点睛】 本题考查新定义下的实数运算,通过阅读题目材料找出有关定义和运算法则并应用于新问题的解决是解题关键 .20.75【分析】直接利用邻补角的定义结合平行线的性质得出答案【详解】如图所示:∠1+∠3=180°∵m ∥n ∴∠2=∠3∴∠1+∠2=180°∴3x+24+5x+20=180解得:x=17则∠1=(3x+解析:75【分析】直接利用邻补角的定义结合平行线的性质得出答案.【详解】如图所示:∠1+∠3=180°,∵m ∥n ,∴∠2=∠3,∴∠1+∠2=180°,∴3x+24+5x+20=180,解得:x=17,则∠1=(3x+24)°=75°.故答案为75.【点睛】此题主要考查了平行线的判定与性质,正确得出∠1+∠2=180°是解题关键.三、解答题21.(1)180,(2)租36座车1辆,48座3辆最省钱.【分析】(1)设租36座的车x 辆,则租48座的客车(x ﹣1)辆.根据不等关系:租48座客车,则能少租一辆,且有一辆车没有坐满,但超过30人,列不等式组即可.(2)根据(1)中求得的人数,进一步计算不同方案的费用:①只租36座客车;②只租42座客车;③合租两种车.再进一步比较得到结论即可.【详解】解:(1)设租36座的车x 辆.据题意得:3648(2)303648(2)48x x x x --⎧⎨--⎩><, 解得:1124x x ⎧⎪⎨⎪⎩<>.∴不等式组的解集为4112x <<. ∵x 是整数,∴x =5.36×5=180(人),答:该校初三年级共有师生180人参观黄石矿博园.(2)设租36座车m 辆,租48座车n 辆,根据题意得,36m+48n≥180,∵m 、n 为非负整数,方案①:租36座车5辆,费用为:5×400=2000元;方案②:租36座车4辆,48座至少1辆,最低费用为:4×400+480=2080元; 方案③:租36座车3辆,48座至少2辆,最低费用为:3×400+2×480=2160元; 方案④:租36座车2辆,48座至少3辆,最低费用为:2×400+3×480=2240元; 方案⑤:租36座车1辆,48座至少3辆,最低费用为:1×400+3×480=1840元; 方案⑥:租48座车4辆,费用为:4×480=1920元;∴选择方案⑤:租36座车1辆,48座3辆最省钱.本题考查了不等式组的应用和方案选择问题,正确设未知数,准确把握不等关系,列出不等式或不等式组,是解决问题的关键.22.(1)175,125;(2)350【分析】(1)设购买甲种消毒液x瓶,购买乙种消毒液y瓶,根据题意列出方程组求解;(2)设购买甲种消毒液a瓶,根据总费用不超过9600元,列不等式求解.【详解】解:(1)设购买甲种消毒液x瓶,购买乙种消毒液y瓶,依题意得:30030187500x yx y+=⎧⎨+=⎩,解得175125xy=⎧⎨=⎩,答:购买甲种消毒液175瓶,购买乙种消毒液125瓶;(2)设购买甲种消毒液a瓶,依题意得:30a+18(300-a)≤9600 ,解得a≤350 ,答:最多购买甲种消毒液350瓶.【点睛】本题考查二元一次方程组和不等式的应用,解题的关键是根据题意列出方程组和不等式进行求解.23.(1)p=2;q=0.3;(2)7或13.【分析】(1)利用表格中信息列出方程组即可;(2)不妨设第一次的路程为x千米,有三种可能:分别列出方程即可解决问题.【详解】解:(1)由题意5712.1 4.5610.8p qp q+⎧⎨+⎩==,解得20.3 pq⎧⎨⎩==;(2)不妨设第一次的路程为x千米,有三种可能:①第一次路程不超过8千米,第二次的路程超过8千米,2×20+0.3(20÷40)×60+(20-x-8)×0.6=52,解得x=7;②第一次路程超过8千米,第二次的路程也超过8千米,2×20+0.3(20÷40)×60+(x-8)×0.6+(20-x-8)×0.6=52,不存在;③第一次路程超过8千米,第二次的路程不超过8千米,2×20+0.3(20÷40)×60+(x-8)×0.6=52,解得x=13.本题考查了二元一次方程组的应用.解题关键是弄清题意,合适的等量关系,列出方程组.24.(1)3,4,2;(2)平行【分析】(1)根据坐标得表示方法可得到点到x 轴的距离是纵坐标的绝对值,点到y 轴的距离是横坐标的绝对值,根据点A 坐标即可求得点A 到原点O 的距离;(2)因为点C 与点D 的纵坐标相等,所以线段CD 与x 轴平行.【详解】(1)点A 到原点O 的距离是3,点B 到x 轴的距离是4,点B 到y 轴的距离是2; (2)因为点C 与点D 的纵坐标相等,所以线段CD 与x 轴平行.【点睛】本题考查点的坐标,熟练掌握利用平面直角坐标系写出点的坐标和确定点的位置是解题的关键.25.(1)2;(2)5【分析】(1)先计算绝对值及开立方,再计算加减法;(2)先计算括号中的减法及乘方,再按顺序计算乘除法.【详解】解:(1)37|2|27---=7-2-3=2;(2)23115422⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭=15144⨯÷ =5.【点睛】 此题考查实数的混合运算,掌握运算法则及运算顺序是解题的关键.26.见解析.【分析】先根据∠DGA=∠EGC证出AE∥BF,再根据平行证明出∠F=∠FBC即可求证出结论.【详解】证明:∵∠DGA=∠EGC(对顶角相等)又∵∠DGA=∠FHC(已知)∴∠EGC=∠FHC(等量代换)∴AE∥BF (同位角相等,两直线平行)∴∠A=∠FBC (两直线平行,同位角相等)又∵∠A=∠F(已知)∴∠F=∠FBC (等量代换)∴DF∥AC (内错角相等,两直线平行).【点睛】此题考查平行线的判定与性质:同位角相等,两直线平行;两直线平行,同位角相等;内错角相等,两直线平行.。
七下期末测试题
一、选择题
1、正五边形的对称轴共有( ) A .2条
B .4条
C .5条
D .10条
2、有一个两位数,它的十位数字与个位数字之和为5,则符合条件的数有( )个 A .4
B .5
C .6
D .无数
3、为了搞活经济,某商场将一种商品A 按标价9折出售,仍获利润10%,若商品A 标价为33元,那么商品进货价为( ) A .31元
B .30.2元
C .29.7元
D .27元
4、已知15 5-2x m y m =+=,若3m >-,则x 与y 的关系为( ) A .x y =
B .x y <
C .x y >
D .不能确定
5、一个多边形除了一个内角外,其余内角之和为257°,则这一内角等于( ) A .90°
B .105°
C .130°
D .120°
6、如图2,已知:在△ABC 中,AB=AC ,D 是BC 边上任意一点,DF△AC 于点F ,E 在AB 边上,ED△BC 于D ,△AED=155°,则△EDF 等于( ) A .50° B .65° C .70° D .75°
7、有一种足球是由32块黑白相间的牛皮缝制而成的(如图),黑皮可看作正五边形,白皮可看作正六边形,设白皮有x 块,则黑皮有()32x -块,每块白皮有六条边,共6x 边,因每块白皮有三条边和黑皮连在一起,故黑皮有3x 条边.要求出白皮、黑皮的块数,列出的方程正确的是( ) A .332x x =-
B .()3532x x =-
C .()5332x x =-
D .632x x =-
A
B
C
F
E
D
图2
8、如图,将正方形ABCD 的一角折叠,折痕为AE ,△B′AD 比△B′AE 大48°,设△B′AE 和△B′AD 的度数分别为x 、y ,那么x 、y 所适合的一个方程组是( )
A .4890y x y x -=⎧⎨+=⎩
B .48
2y x y x -=⎧⎨=⎩
C .48290y x y x -=⎧⎨+=⎩
D .48290x y y x -=⎧⎨+=⎩
9、一个两位数的十位数字与个位数字之和是7,如果把这个两位数加上45,那么恰好成为个位数字与十位数字对调后的两位数,则这个两位数是( ) A .16
B .25
C .38
D .49
10、等腰三角形的腰长是4cm ,则它的底边长不可能是( ) A .1cm B .3cm
C .6cm
D .9cm
二、填空题
11、五边形中,前四个角的比为1△2△3△4,第五个角比最小角多100°,则五边形的五个内角分别为_____________________.
12、本学期,我们做过“抢30”的游戏,如果将游戏规则中“不可以连说三个数,谁先抢到30谁就获胜”,改为“每次可以连说三个数,谁先抢到33谁就获胜”,那么采取适当策略,其结果_________者胜. 13、如图1,在△ABC ,△A=36°,D 为AC 边上的一点,AD=BD=BC ,则图中的等腰三角形共有_______个.
14、已知△ABC 的边长a 、b 、c 满足(1)()2
240a b -+-=,(2)c 为偶数,则c 的值为________. 15、已知不等式523x a <+的解集是3
2
x <
,则a 的值是________. 16、方程34x y -=中,有一组解x 与y 互为相反数,则3________x y += 17.一个正方形有_____条对角线.
18、一个三角形有两条边相等,周长为18cm ,三角形的一边长为4cm ,则其他两边长分别为________. 19、将一筐橘子分给若干个小朋友,如果每人分4个橘子,剩下9个;如果每人分6个橘子,则最后一个小朋友分得的橘子将少于3个,由以上可知共有________个小朋友分________个橘子.
A
B C D B C
D
E B
20、根据x 的2倍与5的和比x 的1
2
小10,可列方程为________________. 三、解答题
21、如图5,在△ABC 中,BO 平分△ABC ,CO 平分△ACB ,DE 过O 且平行于BC ,已知△ADE 的周长为10cm ,BC 的长为5cm ,求△ABC 的周长.
22、儿童公园的门票价格规定如下表:
购票人数 1~50人 51~100人 100人以上 每人门票价
13元
11元
9元
某校七(1)、(2)两个班共104人去游儿童公园,其中(1)班人数较少,不到50人,(2)班人数较多,经估算,如果两班都以班为单位分别购票,则一共应付1240元,问:(1)两班名有多少学生?(2)如果两联合起来,作为一个团体购票,可以省多少钱?
23、已知3
1x y =⎧⎨=-⎩
是方程组3108x ky mx y +=⎧⎨+=⎩的解,求k 和m 的值.
24、已知一个等腰三角形的三边长分别为x 、2x 、5x -3,求这个三角形的周长.
A B
C
E D
O
图5
25、某校七(2)班40名同学为“希望工程”捐款,共捐款100元,捐款情况如表:
表格中捐款2元和3元的人数不小心被墨水污染已看不清楚,你有办法弄清这两个被污染的两个数字吗?
说明你的理由.
26、某商场准备进一批两种不同型号的衣服,已知购进A种型号衣服9件,B种型号衣服10件,则共需1810元;若购进A种型号衣服12件,B种型号衣服8件,共需1880元;已知销售一件A型号衣服可获利18元,销售一件B型号衣服可获利30元,要使在这次销售中获利不少于699元,且A型号衣服不多于28件.
(1)求A、B型号衣服进价各是多少元?
(2)若已知购进A型号衣服是B型号衣服的2倍还多4件,则商店在这次进货中可有几种方案?并简述购货方案.
华师七下期末能力测试题三参考答案
一、填空题
1、40°,80°,120°,160°,140°
2、先报
3、3
4、4
5、答案不惟一
6、2
7、答案不惟一
8、7,7
9、1800° 10、1
25102
x +=- 二、选择题
11、C 12、B 13、D 14、B 15、C 16、B 17、B 18、C 19、A 20、D 三、解答题 21、15cm
22、(1)班有48人,(2)班有56人,合买可省304元 23、解:把31x y =⎧⎨
=-⎩代入方程组()33110318
k m ⨯+-⨯=⎧⎪
⎨-=⎪⎩得,解得:k =-1,m =3.
24、显然2x x ≠,又若53x x =-,则532x x x +-=不合题意. 所以:253x x =-,解得:1x =,所以三角形周长为1225++=. 25、解:设捐款2元的有x 人,捐款3元的有y 人,则
6740
162347100x y x y +++=⎧⎨
⨯+++⨯=⎩
解之得:32x y =⎧⎨=⎩ 答:捐款2元的有3人,捐款3元的有20人.
26、(1)设A 种型号的衣服每件x 元,B 种型号的衣服y 元,则:
91018101281880x y x y +=⎧⎨+=⎩,解之得90
100x y =⎧⎨
=⎩
(2)设B 型号衣服购进m 件,则A 型号衣服购进()24m +件,可得:
()182430699
19 22428
m m m m ++⎧⎪⎨
+⎪⎩≥解之得≤≤12≤ △m 为正整数,
△m =10、11、12,2m +4=24、26、28.
答:有三种进货方案:(1) B 型号衣服购买10件,A 型号衣服购进24件;
(2) B 型号衣服购买11件,A 型号衣服购进26件;(3) B 型号衣服购买12件,A 型号衣服购进28件.。