生化课后练习答案
- 格式:docx
- 大小:117.62 KB
- 文档页数:13
生化课后练习答案
《生物化学》复习资料
第二章核酸化学
2、试从分子大小、细胞定位以及结构和功能上比较DNA和RNA。DNA由两条互补的脱氧核糖核甘酸亚单元的链组成的双螺旋结构,RNA 仅是比DNA小得多的核糖核苷酸亚单元单链结构;DNA中有胸腺嘧啶(T),但无尿嘧啶(U),但RNA则相反,DNA主要生物的遗传信息的载体,指导蛋白质的合成等,而RNA则在于遗传信息的转录, 翻译与蛋白质的合成等,有时也可以作为一种催化剂在生物的生命活动起一定的作用.DNA主要存在于细胞核与线粒体,RNA主要存在细胞质基质中。
3.试从结构和功能上比较tRNA,rRNA,mRNA.
1.mRNA的结构与功能:mRNA是单链核酸,其在真核生物中的初级产物称为HnRNA。大多数真核成熟的mRNA分子具有典型的5’-端的7-甲基鸟苷三磷酸(m7GTP)帽子结构和3’-端的多聚腺苷酸(polyA)尾巴结构。mRNA的功能是为蛋白质的合成提供模板,分子中带有遗传密码。mRNA分子中每三个相邻的核苷酸组成一组,在蛋白质翻译合成时代表一个特定的氨基酸,这种核苷酸三联体称为遗传密码(coden)。
2.tRNA的结构与功能:tRNA是分子最小,但含有稀有碱基最多的RNA。tRNA的二级结构由于局部双螺旋的形成而表现为“三叶草”形,
故称为“三叶草”结构,可分为五个部分:①氨基酸臂:由tRNA 的5’-端和3’-端构成的局部双螺旋,3’-端都带有-CCA-OH顺序,可与氨基酸结合而携带氨基酸。②DHU臂:含有二氢尿嘧啶核苷,与氨基酰tRNA合成酶的结合有关。③反密码臂:其反密码环中部的三个核苷酸组成三联体,在蛋白质生物合成中,可以用来识别mRNA上相应的密码,故称为反密码(anticoden)。④TψC臂:含保守的TψC 顺序,可以识别核蛋白体上的rRNA,促使tRNA与核蛋白体结
合。⑤可变臂:位于TψC臂和反密码臂之间,功能不详。
3.rRNA的结构与功能:rRNA是细胞中含量最多的RNA,可与蛋白质一起构成核蛋白体,作为蛋白质生物合成的场所。原核生物中的rRNA 有三种:5S,16S,23S。真核生物中的rRNA有四种:5S,5.8S,18S,28S。
4、DNA双螺旋结构模型的要点有哪些?
(1)、天然DNA分子由两条反向平行的多聚脱氧核苷酸链组成,一条的走向为5′-3′,另一条链的走向为3′-5′。两条链沿一个假想的中心轴右旋相互盘绕,形成大沟和小沟。
(2)、磷酸和脱氧核糖作为不变的链骨架成分位于螺旋外侧,作为可变成分的碱基位于螺旋内侧。
(3)、螺旋的直径为2nm,相邻碱基平面的垂直距离为0.34nm。螺旋结构每隔10个碱基重复一次,间距为3.4nm。
(4)、DNA双螺旋结构是十分稳定的。(稳定力量主要有两个:一个是碱基堆积力。一个是碱基配对的氢键。P25)
5.原核生物与真核生物mRNA的结构有哪些区别?
6、正确写出与下列寡核苷酸互补的DNA和RNA序列:
7.从两种不同细菌提取得DNA样品,其腺嘌呤核苷酸残基分别占其核苷酸残基总数的32%和17%,计算这两种不同来源DNA的4种脱
氧核苷酸残基的相对百分组成。两种细菌中有一种是从温泉
(64℃)中分离出来的,该细菌DNA具有何种碱基组成?为什么?
答:第一种细菌腺嘌呤核苷酸占32%,鸟嘌呤核苷酸占18%,胸腺嘧啶核苷酸占32%,胞嘧啶核苷酸占18%;第二种细菌腺嘌呤核苷酸占17%,鸟嘌呤核苷酸占33%,胸腺嘧啶核苷酸占17%,胞嘧啶核苷酸占33%。该种细菌从温泉中分离出来,说明它的DNA结构非常牢固,也就是说碱基之间形成的化学键较牢固,由此可以推知G≡C (三个氢键)在此细菌的DNA组成中较多。
8、解释名词
(1)增色效应与减色效应:核酸变性后,对上紫外光的吸收增加,这种效应称为增色效应。反之则为减色效应。
(2)DNA复性与分子杂交:变性DNA的两条单链的碱基可以重新配对,恢复双螺旋结构,这一过程称为DNA的复性;如果把不同的DNA链放在同一溶液中做变性处理,或把单链DNA与RNA 放
在一起,只要有某些区域(即链的一部分)有碱基配对的可能,它们之间就可以开成局部的双链,这一过程则称为DNA的分子杂交。
(3)回文结构和镜像重复:回文结构是指DNA序列中,以某一中心区域为对称轴,其两侧的碱基序列正读和反读都相同的双螺旋结构。镜像重复是指有些DNA区段的反向重复存在于同一条链上的序列
第三章蛋白质化学
1、什么是氨基酸、蛋白质的等电点?其大小与什么有关?
氨基酸的等电点:阳离子和阴离子数目相等时的溶液PH值,其大小与氨基酸的种类有关,种类不同,等电点也有所不同。
蛋白质的等电点:当溶液在某一特定的PH时,使蛋白质所带的正电荷与负电荷恰好相等,即净电荷为零,这时溶液的PH值,其大小与它所含氨其酸的种类和数量有关。(氨基酸较多,等电点偏高,反之偏低)
2.氨基酸的茚三酮反应,Sanger反应,Edman反应各有何实际应用?茚三酮反应:用于氨基酸的定性测定和定量测定
Sanger反应:用于肽链的N末端分析和蛋白质一级结构的测定Edman反应:用于层析分离鉴定和肽的末端分析和多肽序列分析3.常见的氨基酸分类方法有哪些?
(1)根据R基团的结构分类:可分为脂肪族氨基酸(如丙氨酸、亮氨酸等)、芳香族氨基酸(如苯丙氨酸、酪氨酸等),杂环氨基酸(如组氨酸、色氨酸等)和杂环亚氨基酸(脯氨酸)四类,其中以脂肪族氨基酸为最多。
(2)根据氨基酸的酸碱性质分类:分为中性氨基酸(大多数)、酸性氨基酸(谷氨酸,天冬氨酸)和碱性氨基酸(赖氨酸,精氨酸,组氨酸)三类。
(3)根据R基团的极性分类:分为非极性或疏水性氨基酸,极性但不带电荷氨基酸,pH7时带负电荷氨基酸,pH7时带负电荷氨基酸,pH7时带正电荷氨基酸四类。
6、已知:(1)卵清蛋白PI(等电点)为4.6;(2)B乳球蛋白PI
为5.2;(3)糜蛋白酶原PI为9.1。问:在pH5.2时上列蛋白质在电场中向阳极移动还是向阴极移动或者不移动?(注:当某蛋白质处在pH小于它的等电点的溶液时,带正电荷,在电场中向负极移动;当其处在pH大于它的等电点的溶液时,带负电荷,在电场中向正极移动;相等时则不移动。)
答:卵清蛋白PI〈PH,带负电,向正极移动;B乳球蛋白PI=PH,不移动;糜蛋白酶原PI〉PH,带正电,在电场向负极移动。
7、什么叫蛋白质的变性?哪些因素可以引起蛋白质变性?蛋白质变
性后有何性质和结构上的改变?蛋白质的变性有何实际应用?
蛋白质的变性作用:天然蛋白质因受某些物理因素或化学因素的影响,由氢键、盐键等次级键维系的高级结构遭到破坏,分子空间结构发生改变,致使其物理性质、化学性质、生物活性改变的作用。
引起蛋白质变性的化学因素有:强酸、强碱、脲、胍、重金属盐、三氯已酸、磷钨酸、浓乙醇等;物理因素有:加热、紫外线、X射线、