2014高考试题理科数学分类汇编-集合与常用逻辑用语
- 格式:doc
- 大小:237.00 KB
- 文档页数:3
历年高考集合与常用逻辑用语(含答案解析)(理科)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN(2013山东, 2,5分) 已知集合A={0,1, 2}, 则集合B={x-y|x∈A, y∈A}中元素的个数是()A. 1B. 3C. 5D. 9(2014课标Ⅰ, 1,5分) 已知集合A={x|x2-2x-3≥0}, B={x|-2≤x< 2}, 则A∩B=() A. [-2, -1] B. [-1,2) C. [-1,1] D. [1,2)(2012江西, 1,5分) 若集合A={-1,1}, B={0,2}, 则集合{z|z=x+y, x∈A, y∈B}中的元素的个数为()A. 5B. 4C. 3D. 2(2014课标Ⅱ, 1,5分) 设集合M={0,1, 2}, N={x|x2-3x+2≤0}, 则M∩N=() A. {1} B. {2} C. {0,1} D. {1,2}(2011广东, 2,5分) 已知集合A={(x, y) |x, y为实数, 且x2+y2=1}, B={(x, y) |x, y为实数, 且y=x}, 则A∩B的元素个数为()A. 0B. 1C. 2D. 3(2014北京, 1,5分) 已知集合A={x|x2-2x=0}, B={0,1, 2}, 则A∩B=()A. {0}B. {0,1}C. {0,2}D. {0,1, 2}(2011福建, 1,5分) i是虚数单位, 若集合S={-1,0, 1}, 则()A. i∈SB. i2∈SC. i3∈SD. ∈S(2014山东, 2,5分) 设集合A={x||x-1|< 2}, B={y|y=2x, x∈[0,2]}, 则A∩B=() A. [0,2] B. (1,3) C. [1,3) D. (1,4)(2011北京, 1,5分) 已知集合P={x|x2≤1}, M={a}. 若P∪M=P, 则a的取值范围是()A. (-∞, -1]B. [1, +∞)C. [-1,1]D. (-∞, -1]∪[1, +∞)(2014辽宁, 1,5分) 已知全集U=R, A={x|x≤0}, B={x|x≥1}, 则集合∁U(A∪B)=()A. {x|x≥0}B. {x|x≤1}C. {x|0≤x≤1}D. {x|0< x< 1}(2011辽宁, 2,5分) 已知M, N为集合I的非空真子集, 且M, N不相等, 若N∩∁I M=⌀, 则M∪N=()A. MB. NC. ID. ⌀(2014浙江, 1,5分) 设全集U={x∈N|x≥2}, 集合A={x∈N|x2≥5}, 则∁U A=() A. ⌀ B. {2} C. {5} D. {2,5}(2013江苏, 4,5分) 集合{-1,0, 1}共有个子集.(2014广东, 1,5分) 已知集合M={-1,0, 1}, N={0,1, 2}, 则M∪N=()A. {0,1}B. {-1,0, 2}C. {-1,0, 1,2}D. {-1,0, 1}(2014四川, 1,5分) 已知集合A={x|x2-x-2≤0}, 集合B为整数集, 则A∩B=() A. {-1,0, 1,2} B. {-2, -1,0, 1} C. {0,1} D. {-1,0}(2014陕西, 1,5分) 设集合M={x|x≥0, x∈R}, N={x|x2< 1, x∈R}, 则M∩N=() A. [0,1] B. [0,1) C. (0,1] D. (0,1)(2014大纲全国, 2,5分) 设集合M={x|x2-3x-4< 0}, N={x|0≤x≤5}, 则M∩N=() A. (0,4] B. [0,4) C. [-1,0) D. (-1,0](2013广东, 1,5分) 设集合M={x|x2+2x=0, x∈R}, N={x|x2-2x=0, x∈R}, 则M∪N=()A. {0}B. {0,2}C. {-2,0}D. {-2,0, 2}(2013浙江, 2,5分) 设集合S={x|x> -2}, T={x|x2+3x-4≤0}, 则(∁R S) ∪T=() A. (-2,1] B. (-∞, -4] C. (-∞, 1] D. [1, +∞)(2013辽宁, 2,5分) 已知集合A={x|0< log4x< 1}, B={x|x≤2}, 则A∩B=()A. (0,1)B. (0,2]C. (1,2)D. (1,2](2013北京, 1,5分) 已知集合A={-1,0, 1}, B={x|-1≤x< 1}, 则A∩B=()A. {0}B. {-1,0}C. {0,1}D. {-1,0, 1}(2013课标全国Ⅱ, 1,5分) 已知集合M={x|(x-1) 2< 4, x∈R}, N={-1,0, 1,2, 3}, 则M∩N=()A. {0,1, 2}B. {-1,0, 1,2}C. {-1,0, 2,3}D. {0,1, 2,3}(2013重庆, 1,5分) 已知全集U={1,2, 3,4}, 集合A={1,2}, B={2,3}, 则∁U(A∪B) =()A. {1,3, 4}B. {3,4}C. {3}D. {4}(2012山东, 2,5分) 已知全集U={0,1, 2,3, 4}, 集合A={1,2, 3}, B={2,4}, 则(∁U A) ∪B为()A. {1,2, 4}B. {2,3, 4}C. {0,2, 4}D. {0,2, 3,4}(2012浙江, 1,5分) 设集合A={x|1< x< 4}, 集合B={x|x2-2x-3≤0}, 则A∩(∁R B)=()A. (1,4)B. (3,4)C. (1,3)D. (1,2) ∪(3,4)(2012北京, 1,5分) 已知集合A={x∈R|3x+2> 0}, B={x∈R|(x+1) (x-3) > 0}, 则A∩B=()A. (-∞, -1)B.C.D. (3, +∞)(2011山东, 1,5分) 设集合M={x|x2+x-6< 0}, N={x|1≤x≤3}, 则M∩N=()A. [1,2)B. [1,2]C. (2,3]D. [2,3](2014江苏, 1,5分) 已知集合A={-2, -1,3, 4}, B={-1,2, 3}, 则A∩B=.(2014重庆, 11,5分) 设全集U={n∈N|1≤n≤10}, A={1,2, 3,5, 8}, B={1,3, 5,7, 9}, 则(∁U A) ∩B=.(2011天津, 13,5分) 已知集合A={x∈R||x+3|+|x-4|≤9},B=, 则集合A∩B=.答案和解析[答案] C[解析]①当x=0时, y=0,1, 2, 此时x-y的值分别为0, -1, -2;②当x=1时, y=0,1, 2, 此时x-y的值分别为1,0, -1;③当x=2时, y=0,1, 2, 此时x-y的值分别为2,1, 0.综上可知, x-y的可能取值为-2, -1,0, 1,2, 共5个, 故选C.[答案] A[解析]由不等式x2-2x-3≥0解得x≥3或x≤-1, 因此集合A={x|x≤-1或x≥3}, 又集合B={x|-2≤x< 2}, 所以A∩B={x|-2≤x≤-1}, 故选A.[答案] C[解析]集合{z|z=x+y, x∈A, y∈B}={-1,1, 3}, 故选C.[答案] D[解析]由已知得N={x|1≤x≤2}, ∵M={0,1, 2}, ∴M∩N={1,2}, 故选D.[答案] C[解析]解法一: A为圆心在原点的单位圆, B为过原点的直线, 故有2个交点, 故选C.解法二: 由可得或故选C.[答案] C[解析]A={0,2}, B={0,1, 2}, ∴A∩B={0,2}. 故选C.[答案] B[解析]i2=-1, -1∈S, 故选B.[答案] C[解析]A={x||x-1|< 2}={x|-1< x< 3}, B={y|y=2x, x∈[0,2]}={y|1≤y≤4},∴A∩B={x|-1< x< 3}∩{y|1≤y≤4}={x|1≤x< 3}.[答案] C[解析]由P∪M=P, 有M⊆P, ∴a2≤1, ∴-1≤a≤1, 故选C.[答案] D[解析]A∪B={x|x≥1或x≤0}, 因此∁U(A∪B) ={x|0< x< 1}. 故选D.[答案] A[解析]∵N∩∁I M=⌀, ∴N⊆M. 又M≠N, ∴N⫋M, ∴M∪N=M. 故选A.[答案] B[解析]∵A={x∈N|x≥}={x∈N|x≥3},∴∁U A={x∈N|2≤x< 3}={2}, 故选B.[答案]8[解析]集合{-1,0, 1}的子集有⌀, {-1}, {0}, {1}, {-1,0}, {-1,1}, {0,1}, {-1,0, 1}, 共8个.[答案] C[解析]由集合的并集运算可得, M∪N={-1,0, 1,2}, 故选C.[答案] A[解析]由x2-x-2≤0得-1≤x≤2, 故集合A中的整数为-1,0, 1,2. 所以A∩B={-1,0, 1,2}.[答案] B[解析]∵N=(-1,1), ∴M∩N=[0,1), 故选B.[答案] B[解析]M={x|x2-3x-4< 0}={x|-1< x< 4}, 则M∩N={x|0≤x< 4}. 故选B.[答案] D[解析]化简两个集合, 得M={-2,0}, N={0,2}, 则M∪N={-2,0, 2}, 故选D.[答案] C[解析]∁R S={x|x≤-2}, 又T={x|-4≤x≤1}, 故(∁R S) ∪T={x|x≤1}, 选C.[答案] D[解析]A={x|0< log4x< 1}={x|log41< log4x< log44}={x|1< x< 4}, A∩B=(1,2], 故选D.[答案] B[解析]∵A={-1,0, 1}, B={x|-1≤x< 1}, ∴A∩B={-1,0}, 故选B.[答案] A[解析]化简得M={x|-1< x< 3}, 所以M∩N={0,1, 2}, 故选A.[答案] D[解析]A∪B={1,2, 3}, ∁U(A∪B) ={4}. 故选D.[答案] C[解析]由题意知∁U A={0,4}, 又B={2,4},∴(∁U A) ∪B={0,2, 4}, 故选C.[答案] B[解析]B={x|-1≤x≤3}, A∩(∁R B) ={x|3< x< 4}, 故选B.[答案] D[解析]∵A=x x> -, B={x|x< -1或x> 3}, ∴A∩B={x|x> 3}, 故选D.[答案] A[解析]∵M={x|-3< x< 2}, N={x|1≤x≤3}, ∴M∩N={x|1≤x< 2}.[答案]{-1,3}[解析]由集合的交集定义知A∩B={-1,3}.[答案]{7,9}[解析]∵U={n∈N|1≤n≤10}, A={1,2, 3,5, 8}, ∴∁U A={4,6, 7,9, 10}, 又∵B={1,3, 5,7, 9}, ∴(∁U A) ∩B={7,9}.[答案]{x|-2≤x≤5}[解析]由|x+3|+|x-4|≤9得或或∴A={x|-4≤x≤5}. 又当t> 0时, x=4t+-6≥2-6=-2, 当且仅当t=时取等号,∴B={x|x≥-2}, 故A∩B={x|-2≤x≤5}.。
A 单元 集合与常用逻辑用语目录A1 集合及其运算 ............................................................................................................................ 1 A2 命题及其关系、充分条件、必要条件 .................................................................................... 4 A3 基本逻辑联结词及量词 .......................................................................................................... 14 A4 单元综合 . (14)A1 集合及其运算【数学(理)卷·2015届浙江省重点中学协作体高考摸底测试(201408)】A11.已知全集R U =,集合},12|{},0|{2Z n n x x N x x x M ∈+===-=,则N M( )。
A .{0}B .{1}C .{0,1}D .φ 【知识点】集合的交集.【答案解析】B 解析 :解:由题意可知集合{}0,1M =,集合{}N =奇数,所以{}1MN =,故选B.【思路点拨】先求出两个集合在求交集即可.【数学(文)卷·2015届湖北省部分重点中学高三上学期起点考试(201408)】A11.若全集U ={1,2,3,4,5,6},M ={1,4},N ={2,3},则集合{5,6}等于( ) A .M ∪N B .M∩N C .(∁UM)∪(∁UN) D .(∁UM)∩(∁UN) 【知识点】补集及其运算;并集及其运算. 【答案解析】D 解析 :解:由题意全集{}1,2,3,4,5,6{1,4}{2,3}U M N =,=,=,观察知,集合(){56}U C M N =?,,又()()()U UUC M N C M C N ?∴()(){56}UUC M C N =,.故选D .【思路点拨】利用直接法求解.观察发现,集合{56},恰是M N È的补集,再由()()()U UUC M N C M C N ?选出答案.【数学(文)卷·2015届浙江省重点中学协作体高考摸底测试(201408)】A11.已知集合{}{}()12,1R A x x B x x A C B =-≤≤=<⋂,则=( )。
2014年高考数学(理)试题分项版解析:专题01-集合与常用逻辑用语(分类汇编)Word版含解析D【解析】由题意得{1,3}A B =-.【考点】集合的运算8. 【2014辽宁高考理第1题】已知全集,{|0},{|1}U R A x x B x x ==≤=≥,则集合()U C A B =( )A .{|0}x x ≥B .{|1}x x ≤C .{|01}x x ≤≤D .{|01}x x <<9. 【2014全国1高考理第1题】已知集合{}{}22|,032|2<≤-=≥--=x x B x x x A ,则=B A ( )A .]1,2[--B . )2,1[- C..]1,1[- D .)2,1[10. 【2014全国2高考理第1题】设集合M={0,1,2},N={}2|320x x x -+≤,则M N ⋂=( )A. {1}B. {2}C. {0,1}D. {1,2}题目的关键。
11. 【2014山东高考理第2题】设集合{}{}]2,0[,2|,2|1||∈==<-=x y y B x x A x ,则=B A ( )A.]2,0[B. )3,1(C. )3,1[D. )4,1(12. 【2014四川高考理第1题】已知集合2{|20}A x xx =--≤,集合B 为整数集,则A B ⋂=( ) A .{1,0,1,2}- B .{2,1,0,1}-- C .{0,1} D .{1,0}-13. 【2014浙江高考理第1题】设全集{}2|≥∈=x N x U ,集合{}5|2≥∈=x N x A ,则=A C U ( )A. ∅B. }2{C. }5{D. }5,2{14. 【2014重庆高考理第6题】已知命题:p 对任意x R ∈,总有20x >;:"1"q x >是"2"x >的充分不必要条件则下列命题为真命题的是( ) .A p q ∧ .B p q ⌝∧⌝.C p q ⌝∧.D p q ∧⌝15. 【2014重庆高考理第11题】设全集{|110},{1,2,3,5,8},{1,3,5,7,9},()U U n N n A B A B =∈≤≤===则______.16. 【2014陕西高考理第1题】已知集合2{|0,},{|1,}M x x x R N x x x R =≥∈=<∈,则M N =( ).[0,1]A .[0,1)B .(0,1]C .(0,1)D17. 【2014陕西高考理第8题】原命题为“若12,z z 互为共轭复数,则12z z =”,关于逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )(A)真,假,真(B)假,假,真(C)真,真,假(D)假,假,假18.【2014天津高考理第7题】设,a b R,则|“a b”是“a a b b”的()(A)充要不必要条件(B)必要不充分条件(C)充要条件(D)既不充要也不必要条件19.【2014大纲高考理第2题】设集合2=--<,M x x x{|340}=≤≤,则M N=()N x x{|05}A.(0,4]B.[0,4)C.[1,0)--D.(1,0]。
第1讲集合与常用逻辑用语考情解读(1)集合是高考必考知识点,经常以不等式解集、函数的定义域、值域为背景考查集合的运算,近几年也出现一些集合的新定义问题.(2)高考中考查命题的真假判断或命题的否定或充要条件的判断.1.集合的概念、关系(1)集合中元素的特性:确定性、互异性、无序性,求解含参数的集合问题时要根据互异性进行检验.(2)集合与集合之间的关系:A⊆B,B⊆C⇒A⊆C,空集是任何集合的子集,含有n个元素的集合的子集数为2n,真子集数为2n-1,非空真子集数为2n-2.2.集合的基本运算(1)交集:A∩B={x|x∈A,且x∈B}.(2)并集:A∪B={x|x∈A,或x∈B}.(3)补集:∁U A={x|x∈U,且x∉A}.重要结论:A∩B=A⇔A⊆B;A∪B=A⇔B⊆A.3.四种命题及其关系四种命题中原命题与逆否命题同真同假,逆命题与否命题同真同假,遇到复杂问题正面解决困难的,采用转化为反面情况处理.4.充分条件与必要条件若p⇒q,则p是q的充分条件,q是p的必要条件;若p⇔q,则p,q互为充要条件.5.基本逻辑联结词(1)命题p∨q,只要p,q有一真,即为真;命题p∧q,只有p,q均为真,才为真;綈p和p为真假对立的命题.(2)命题p∨q的否定是(綈p)∧(綈q);命题p∧q的否定是(綈p)∨(綈q).6.全称量词与存在量词“∀x∈M,p(x)”的否定为“∃x0∈M,綈p(x0)”;“∃x0∈M,p(x0)”的否定为“∀x∈M,綈p(x)”.热点一集合的关系及运算例1(1)(2014·四川改编)已知集合A={x|x2-x-2≤0},集合B为整数集,则A∩B=________.(2)(2013·广东改编)设整数n≥4,集合X={1,2,3,…,n},令集合S={(x,y,z)|x,y,z∈X,且三条件x<y<z,y<z<x,z<x<y恰有一个成立}.若(x,y,z)和(z,w,x)都在S中,则下列命题正确的是________.①(y,z,w)∈S,(x,y,w)∉S;②(y,z,w)∈S,(x,y,w)∈S;③(y,z,w)∉S,(x,y,w)∈S;④(y,z,w)∉S,(x,y,w)∉S.思维启迪明确集合的意义,理解集合中元素的性质特征.答案(1){-1,0,1,2}(2)②解析(1)因为A={x|x2-x-2≤0}={x|-1≤x≤2},又因为集合B为整数集,所以集合A∩B ={-1,0,1,2}.(2)因为(x,y,z)和(z,w,x)都在S中,不妨令x=2,y=3,z=4,w=1,则(y,z,w)=(3,4,1)∈S,(x,y,w)=(2,3,1)∈S,故(y,z,w)∉S,(x,y,w)∉S的说法均错误,可以排除①③④,故②正确.思维升华(1)对于集合问题,抓住元素的特征是求解的关键,要注意集合中元素的三个特征的应用,要注意检验结果.(2)对集合的新定义问题,要紧扣新定义集合的性质探究集合中元素的特征,将问题转化为熟悉的知识进行求解,也可利用特殊值法进行验证.(1)已知集合M={1,2,3},N={x∈Z|1<x<4},则M∩N=________.(2)(2013·山东改编)已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是________.答案(1){2,3}(2)5解析(1)集合N是要求在(1,4)范围内取整数,所以N={x∈Z|1<x<4}={2,3},所以M∩N={2,3}.-2,-1,0,1,2.(2)x-y∈{}热点二四种命题与充要条件例2(1)(2014·天津改编)设a,b∈R,则“a>b”是“a|a|>b|b|”的________条件.(2)(2014·江西改编)下列叙述中正确的是________.①若a,b,c∈R,则“ax2+bx+c≥0”的充分条件是“b2-4ac≤0”;②若a,b,c∈R,则“ab2≥cb2”的充要条件是“a>c”;③命题“对任意x∈R,有x2≥0”的否定是“存在x∈R,有x2≥0”;④l是一条直线,α,β是两个不同的平面,若l⊥α,l⊥β,则α∥β.思维启迪要明确四种命题的真假关系;充要条件的判断,要准确理解充分条件、必要条件的含义.答案(1)充要(2)④解析(1)当b<0时,显然有a>b⇔a|a|>b|b|;当b=0时,显然有a>b⇔a|a|>b|b|;当b>0时,a>b有|a|>|b|,所以a>b⇔a|a|>b|b|.综上可知a>b⇔a|a|>b|b|.(2)由于“若b2-4ac≤0,则ax2+bx+c≥0”是假命题,所以“ax2+bx+c≥0”的充分条件不是“b2-4ac≤0”,①错;因为ab2>cb2,且b2>0,所以a>c.而a>c时,若b2=0,则ab2>cb2不成立,由此知“ab2>cb2”是“a>c”的充分不必要条件,②错;“对任意x∈R,有x2≥0”的否定是“存在x∈R,有x2<0”,③错;由l⊥α,l⊥β,可得α∥β,理由:垂直于同一条直线的两个平面平行,④正确.思维升华(1)四种命题中,原命题与逆否命题等价,逆命题与否命题等价;(2)充要条件的判断常用“以小推大”的技巧,即小范围推得大范围,判断一个命题为假可以借助反例.(1)命题“若a,b都是偶数,则a+b是偶数”的逆否命题是________.(2)“log3M>log3N”是“M>N成立”的________条件.(从“充要”、“充分不必要”、“必要不充分”中选择一个正确的填写)答案(1)若a+b不是偶数,则a,b不都是偶数(2)充分不必要解析(1)判断词“都是”的否定是“不都是”.(2)由log3M>log3N,又因为对数函数y=log3x在定义域(0,+∞)单调递增,所以M>N;当M>N 时,由于不知道M、N是否为正数,所以log3M、log3N不一定有意义.故不能推出log3M>log3N,所以“log3M>log3N”是“M>N成立”的充分不必要条件.热点三逻辑联结词、量词例3(1)已知命题p:∃x∈R,x-2>lg x,命题q:∀x∈R,sin x<x,则下列命题正确的是________.①命题p∨q是假命题②命题p∧q是真命题③命题p ∧(綈q )是真命题 ④命题p ∨(綈q )是假命题(2)已知p :∃x ∈R ,mx 2+2≤0,q :∀x ∈R ,x 2-2mx +1>0,若p ∨q 为假命题,则实数m 的取值范围是_________________________________________________________________.思维启迪 (1)先判断命题p 、q 的真假,再利用真值表判断含逻辑联结词命题的真假;(2)含量词的命题要理解量词含义,确定参数范围.答案 (1)③ (2)[1,+∞)解析 (1)对于命题p ,取x =10,则有10-2>lg 10,即8>1,故命题p 为真命题;对于命题q ,取x =-π2,则sin x =sin(-π2)=-1,此时sin x >x ,故命题q 为假命题,因此命题p ∨q 是真命题,命题p ∧q 是假命题,命题p ∧(綈q )是真命题,命题p ∨(綈q )是真命题,故③正确.(2)∵p ∨q 为假命题,∴p 和q 都是假命题.由p :∃x ∈R ,mx 2+2≤0为假命题,得綈p :∀x ∈R ,mx 2+2>0为真命题,∴m ≥0.①由q :∀x ∈R ,x 2-2mx +1>0为假命题,得綈q :∃x ∈R ,x 2-2mx +1≤0为真命题,∴Δ=(-2m )2-4≥0⇒m 2≥1⇒m ≤-1或m ≥1.②由①和②,得m ≥1.思维升华 (1)命题的否定和否命题是两个不同的概念:命题的否定只否定命题的结论,真假与原命题相对立;(2)判断命题的真假要先明确命题的构成.由命题的真假求某个参数的取值范围,还可以考虑从集合的角度来思考,将问题转化为集合间的运算.(1)已知命题p :在△ABC 中,“C >B ”是“sin C >sin B ”的充分不必要条件;命题q :“a >b ”是“ac 2>bc 2”的充分不必要条件,则下列命题中正确的是________.①p 真q 假 ②p 假q 真③“p ∧q ”为假 ④“p ∧q ”为真(2)已知命题p :“∀x ∈[1,2],x 2-a ≥0”,命题q :“∃x 0∈R ,x 20+2ax 0+2-a =0”.若命题“(綈p )∧q ”是真命题,则实数a 的取值范围是________.答案 (1)③ (2)(1,+∞)解析 (1)△ABC 中,C >B ⇔c >b ⇔2R sin C >2R sin B (R 为△ABC 外接圆半径),所以C >B ⇔sin C >sin B .故“C >B ”是“sin C >sin B ”的充要条件,命题p 是假命题.若c =0,当a >b 时,则ac 2=0=bc 2,故a >b ac 2>bc 2,若ac 2>bc 2,则必有c ≠0,则c 2>0,则有a >b ,所以ac 2>bc 2⇒a >b ,故“a >b ”是“ac 2>bc 2”的必要不充分条件,故命题q 也是假命题.(2)命题p为真时a≤1;“∃x0∈R,x20+2ax0+2-a=0”为真,即方程x2+2ax+2-a=0有实根,故Δ=4a2-4(2-a)≥0,解得a≥1或a≤-2.(綈p)∧q为真命题,即綈p真且q真,即a>1.1.解答有关集合问题,首先正确理解集合的意义,准确地化简集合是关键;其次关注元素的互异性,空集是任何集合的子集等问题,关于不等式的解集、抽象集合问题,要借助数轴和Venn图加以解决.2.判断充要条件的方法,一是结合充要条件的定义;二是根据充要条件与集合之间的对应关系,把命题对应的元素用集合表示出来,根据集合之间的包含关系进行判断,在以否定形式给出的充要条件判断中可以使用命题的等价转化方法.3.含有逻辑联结词的命题的真假是由其中的基本命题决定的,这类试题首先把其中的基本命题的真假判断准确,再根据逻辑联结词的含义进行判断.4.一个命题的真假与它的否命题的真假没有必然的联系,但一个命题与这个命题的否定是互相对立的、一真一假的.真题感悟1.(2014·浙江改编)设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁U A=________.答案{2}解析因为A={x∈N|x≤-5或x≥5},所以∁U A={x∈N|2≤x<5},故∁U A={2}.2.(2014·重庆改编)已知命题p:对任意x∈R,总有2x>0;q:“x>1”是“x>2”的充分不必要条件.则下列命题为真命题的是________.①p∧q②綈p∧綈q③綈p∧q④p∧綈q答案④解析因为指数函数的值域为(0,+∞),所以对任意x∈R,y=2x>0恒成立,故p为真命题;因为当x>1时,x>2不一定成立,反之当x>2时,一定有x>1成立,故“x>1”是“x>2”的必要不充分条件,故q为假命题,则p∧q、綈p为假命题,綈q为真命题,綈p∧綈q、綈p∧q为假命题,p∧綈q为真命题,故④为真命题.押题精练1.已知集合A ={x |y =lg(x -x 2)},B ={x |x 2-cx <0,c >0},若A ⊆B ,则实数c 的取值范围是________.答案 [1,+∞)解析 A ={x |y =lg(x -x 2)}={x |x -x 2>0}=(0,1),B ={x |x 2-cx <0,c >0}=(0,c ),因为A ⊆B ,画出数轴,如图所示,得c ≥1.2.已知下列命题:①命题“∃x ∈R ,x 2+1>3x ”的否定是“∀x ∈R ,x 2+1<3x ”;②已知p ,q 为两个命题,若“p ∨q ”为假命题,则“(綈p )∧(綈q )”为真命题;③“a >2”是“a >5”的充分不必要条件;④“若xy =0,则x =0且y =0”的逆否命题为真命题.其中正确的命题是________.答案 ②解析 命题“∃x ∈R ,x 2+1>3x ”的否定是“∀x ∈R ,x 2+1≤3x ”,故①错;“p ∨q ”为假命题说明p 假q 假,则(綈p )∧(綈q )为真命题,故②正确;a >5⇒a >2,但a >2a >5,故“a >2”是“a >5”的必要不充分条件,故③错;因为“若xy =0,则x =0或y =0”,所以原命题为假命题,故其逆否命题也为假命题,故④错.3.已知p :x +210-x≥0,q :x 2-2x +1-m 2≤0(m <0),且p 是q 的必要不充分条件,求实数m 的取值范围.解 由x +210-x≥0,得-2≤x <10,即p :-2≤x <10; 由x 2-2x +1-m 2≤0(m <0),得[x -(1+m )]·[x -(1-m )]≤0,所以1+m ≤x ≤1-m ,即q :1+m ≤x ≤1-m .又因为p 是q 的必要条件,所以⎩⎪⎨⎪⎧m +1≥-2,1-m <10,解得m ≥-3, 又m <0,所以实数m 的取值范围是-3≤m <0.(推荐时间:40分钟)1.(2014·陕西改编)设集合M ={x |x ≥0,x ∈R },N ={x |x 2<1,x ∈R },则M ∩N =________. 答案 [0,1)解析 N ={x |-1<x <1},M ∩N =[0,1).2.已知集合A ={1,2,3,4,5},B ={5,6,7},C ={(x ,y )|x ∈A ,y ∈A ,x +y ∈B },则C 中所含元素的个数为_______________________________________________________________. 答案 13解析 若x =5∈A ,y =1∈A ,则x +y =5+1=6∈B ,即点(5,1)∈C ;同理,(5,2)∈C ,(4,1)∈C ,(4,2)∈C ,(4,3)∈C ,(3,2)∈C ,(3,3)∈C ,(3,4)∈C ,(2,3)∈C ,(2,4)∈C ,(2,5)∈C ,(1,4)∈C ,(1,5)∈C .所以C 中所含元素的个数为13.3.设全集U 为整数集,集合A ={x ∈N |y =7x -x 2-6},B ={x ∈Z |-1<x ≤3},则图中阴影部分表示的集合的真子集的个数为________.答案 7解析 因为A ={x ∈N |y =7x -x 2-6}={x ∈N |7x -x 2-6≥0}={x ∈N |1≤x ≤6},由题意,知题图中阴影部分表示的集合为A ∩B ={1,2,3},所以其真子集有:∅,{1},{2},{3},{1,2},{1,3},{2,3},共7个.4.“(m -1)(a -1)>0”是“log a m >0”的________条件.答案 必要不充分解析 (m -1)(a -1)>0等价于⎩⎪⎨⎪⎧ m >1,a >1或⎩⎪⎨⎪⎧ m <1,a <1.log a m >0等价于⎩⎪⎨⎪⎧ m >1,a >1或⎩⎪⎨⎪⎧0<m <1,0<a <1,所以前者是后者的必要不充分条件.5.已知命题p :∃x ∈(0,π2),使得cos x ≤x ,则该命题的否定是________. 答案 ∀x ∈(0,π2),使得cos x >x 解析 原命题是一个特称命题,其否定是一个全称命题.而“cos x ≤x ”的否定是“cos x >x ”.6.在△ABC 中,“A =60°”是“cos A =12”的________条件. 答案 充要解析 在A =60°时,有cos A =12,因为角A 是△ABC 的内角,所以,当cos A =12时,也只有A =60°,因此,是充要条件.7.(2013·湖北改编)已知全集为R ,集合A =⎩⎨⎧⎭⎬⎫x |(12)x ≤1,B ={}x |x 2-6x +8≤0,则A ∩∁R B =________.答案 {x |0≤x <2或x >4}解析 ∵A ={x |x ≥0},B ={x |2≤x ≤4},∴A ∩∁R B ={x |x ≥0}∩{x |x >4或x <2}={x |0≤x <2或x >4}.8.已知集合A ={(x ,y )|x +y -1=0,x ,y ∈R },B ={(x ,y )|y =x 2+1,x ,y ∈R },则集合A ∩B 的元素个数是_________________________________________________________________.答案 2解析 集合A 表示直线l :x +y -1=0上的点的集合,集合B 表示抛物线C :y =x 2+1上的点的集合.由⎩⎪⎨⎪⎧x +y -1=0,y =x 2+1消去y 得x 2+x =0, 由于Δ>0,所以直线l 与抛物线C 有两个交点.即A ∩B 有2个元素.9.设命题p :函数y =sin 2x 的最小正周期为π2;命题q :函数y =cos x 的图象关于直线x =π2对称.则下列判断正确的是________.①p 为真;②綈q 为假;③p ∧q 为假;④p ∨q 为真.答案 ③解析 p 是假命题,q 是假命题,因此只有③正确.10.已知集合A ={(x ,y )|y =a },B ={(x ,y )|y =b x +1,b >0,b ≠1},若集合A ∩B 只有一个真子集,则实数a 的取值范围是________.答案 (1,+∞)解析 由于集合B 中的元素是指数函数y =b x 的图象向上平移一个单位长度后得到的函数图象上的所有点,要使集合A ∩B 只有一个真子集,那么y =b x +1(b >0,b ≠1)与y =a 的图象只能有一个交点,所以实数a 的取值范围是(1,+∞).11.已知集合P ={x |x (x -1)≥0},Q ={x |y =ln(x -1)},则P ∩Q =__________.答案 (1,+∞)解析 由x (x -1)≥0可得x ≤0或x ≥1,则P =(-∞,0]∪[1,+∞);又由x -1>0可得x >1,则Q =(1,+∞),所以P ∩Q =(1,+∞).12.已知集合A ={x |x >2或x <-1},B ={x |a ≤x ≤b },若A ∪B =R ,A ∩B ={x |2<x ≤4},则b a=________.答案 -4解析 由A ={x |x >2或x <-1},A ∪B =R ,A ∩B ={x |2<x ≤4},可得B ={x |-1≤x ≤4},则a=-1,b =4,故b a=-4. 13.由命题“∃x ∈R ,x 2+2x +m ≤0”是假命题,求得实数m 的取值范围是(a ,+∞),则实数a =________.答案 1解析 根据题意可得:∀x ∈R ,x 2+2x +m >0是真命题,则Δ<0,即22-4m <0,m >1,故a =1.14.给出下列四个命题:①命题“若α=β,则cos α=cos β”的逆否命题;②“∃x 0∈R ,使得x 20-x 0>0”的否定是:“∀x ∈R ,均有x 2-x <0”;③命题“x 2=4”是“x =-2”的充分不必要条件;④p :a ∈{a ,b ,c },q :{a }⊆{a ,b ,c },p 且q 为真命题.其中真命题的序号是________.(填写所有真命题的序号)答案 ①④解析 对①,因命题“若α=β,则cos α=cos β”为真命题,所以其逆否命题亦为真命题,①正确;对②,命题“∃x 0∈R ,使得x 20-x 0>0”的否定应是:“∀x ∈R ,均有x 2-x ≤0”,故②错;对③,因由“x 2=4”得x =±2,所以“x 2=4”是“x =-2”的必要不充分条件,故③错;对④,p ,q 均为真命题,由真值表判定p 且q 为真命题,故④正确.15.已知集合M 为点集,记性质P 为“对∀(x ,y )∈M ,k ∈(0,1),均有(kx ,ky )∈M ”.给出下列集合:①{(x ,y )|x 2≥y },②{(x ,y )|2x 2+y 2<1},③{(x ,y )|x 2+y 2+x +2y =0},④{(x ,y )|x 3+y 3-x 2y =0},其中具有性质P 的点集序号是________.答案 ②④解析 对于①:取k =12,点(1,1)∈{(x ,y )|x 2≥y },但(12,12)∉{(x ,y )|x 2≥y },故①是不具有性质P 的点集.对于②:∀(x ,y )∈{(x ,y )|2x 2+y 2<1},则点(x ,y )在椭圆2x 2+y 2=1内部,所以对0<k <1,点(kx ,ky )也在椭圆2x 2+y 2=1的内部,即(kx ,ky )∈{(x ,y )|2x 2+y 2<1},故②是具有性质P 的点集.对于③:(x +12)2+(y +1)2=54,点(12,-12)在此圆上,但点(14,-14)不在此圆上,故③是不具有性质P 的点集.对于④:∀(x,y)∈{(x,y)|x3+y3-x2y=0},对于k∈(0,1),因为(kx)3+(ky)3-(kx)2·(ky)=0⇒x3+y3-x2y=0,所以(kx,ky)∈{(x,y)|x3+y3-x2y=0},故④是具有性质P的点集.综上,具有性质P的点集是②④.。
集合、常用逻辑用语、不等式、函数与导数本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟.第Ⅰ卷一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2013·北京高考)“φ=π”是“曲线y=sin(2x+φ)过坐标原点”的() A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解析】当φ=π时,y=sin(2x+φ)=sin(2x+π)=-sin 2x,此时曲线y=sin(2x+φ)必过原点,但曲线y=sin(2x+φ)过原点时,φ可以取其他值,如φ=0.因此“φ=π”是“曲线y=sin(2x+φ)过坐标原点”的充分而不必要条件.【答案】 A2.(2013·韶关模拟)设a=log0.32,b=log0.33,c=20.3,d=0.32,则这四个数的大小关系是()A.a<b<c<d B.b<a<d<cC.b<a<c<d D.d<c<a<b【解析】由函数y=log0.3x是减函数知,log0.33<log0.32<0.又20.3>1,0<0.32<1,所以b<a<d<c.【答案】 B3.下列函数中,既是偶函数,又在区间(1,2)内是增函数的为()A.y=cos 2x,x∈RB.y=log2|x|,x∈R且x≠0C.y=e x-e-x2,x∈RD.y=x3+1,x∈R【解析】 A 中,y =cos 2x 在(0,π2)上递减,A 不满足题意. C 中函数为奇函数,D 中函数非奇非偶.对于B :y =log 2|x |(x ≠0)是偶函数,在(1,2)内是增函数. 【答案】 B4.设f (x )=⎩⎨⎧2e x -1, x <2,log 3(x 2-1),x ≥2,则不等式f (x )<2的解集为( ) A .(10,+∞) B .(-∞,1)∪[2,10) C .(1,2]∪(10,+∞)D .(1,10)【解析】 原不等式等价于⎩⎨⎧ x ≥2,log 3(x 2-1)<2,或⎩⎨⎧x <2,2e x -1<2, 即⎩⎨⎧ x ≥2,0<x 2-1<9,或⎩⎨⎧x <2,x -1<0, 解得2≤x <10或x <1. 【答案】 B5.(2013·山东高考)函数y =x cos x +sin x 的图象大致为( )【解析】 函数y =x cos x +sin x 为奇函数,则排除B ;当x =π2时,y =1>0,排除C ;当x =π时,y =-π<0,排除A ,故选D.【答案】 D6.(2013·江西高考)若S 1=⎠⎛12x 2d x ,S 2=⎠⎛121x d x ,S 3=⎠⎛12e x d x ,则S 1,S 2,S 3的大小关系为( )A .S 1<S 2<S 3B .S 2<S 1<S 3C .S 2<S 3<S 1D .S 3<S 2<S 1【解析】 S 1=⎠⎛12x 2d x =13x 3⎪⎪⎪21=13×23-13=73,S 2=⎠⎛121x d x =ln x ⎪⎪⎪21=ln 2,S 3=⎠⎛12e x d x =e x ⎪⎪⎪21=e 2-e =e(e -1),ln 2<ln e =1,且73<2.5<e(e -1),所以ln 2<73<e(e -1),即S 2<S 1<S 3.【答案】 B7.小王从甲地到乙地往返的时速分别为a 和b (a <b ),其全程的平均时速为v ,则( )A .a <v <abB .v =ab C.ab <v <a +b2D .v =a +b2【解析】 设甲、乙两地之间的距离为s . ∵a <b ,∴v =2s sa +s b=2sab (a +b )s =2ab a +b <2ab2ab=ab .又v -a =2aba +b -a =ab -a 2a +b >a 2-a 2a +b =0,∴v >a .【答案】 A8.(2012·重庆高考)设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1-x )f ′(x)的图象如图1所示,则下列结论中一定成立的是( )图1A .函数f (x )有极大值f (2)和极小值f (1)B .函数f (x )有极大值f (-2)和极小值f (1)C .函数f (x )有极大值f (2)和极小值f (-2)D .函数f (x )有极大值f (-2)和极小值f (2)【解析】 当x <-2时,y =(1-x )f ′(x )>0,得f ′(x )>0;当-2<x <1时,y =(1-x )f ′(x )<0,得f ′(x )<0; 当1<x <2时,y =(1-x )f ′(x )>0,得f ′(x )<0; 当x >2时,y =(1-x )f ′(x )<0,得f ′(x )>0,∴f (x )在(-∞,-2)上是增函数,在(-2,1)上是减函数,在(1,2)上是减函数,在(2,+∞)上是增函数,∴函数f (x )有极大值f (-2)和极小值f (2). 【答案】 D第Ⅱ卷二、填空题(本大题共7小题,每小题5分,共35分,把答案填在题中横线上)9.(2013·山东高考)已知函数f (x )为奇函数,且当x >0时,f (x )=x 2+1x ,则f (-1)=________.【解析】 当x >0时,f (x )=x 2+1x ,∴f (1)=12+11=2.∵f (x )为奇函数,∴f (-1)=-f (1)=-2. 【答案】 -210.设变量x ,y 满足约束条件⎩⎨⎧x +2y -5≤0,x -y -2≤0,x ≥0,则目标函数z =2x +3y +1的最大值为________.【解析】 作出不等式组表示的可行域,如图阴影部分所示.又z =2x +3y +1可化为y =-23x +z 3-13,结合图形可知z =2x +3y +1在点A 处取得最大值.由⎩⎨⎧ x +2y -5=0,x -y -2=0,得⎩⎨⎧x =3,y =1,故A (3,1). 此时z =2×3+3×1+1=10.【答案】 1011.(2013·孝感模拟)已知符号函数sgn(x )=⎩⎨⎧1,x >0,0,x =0,-1,x <0,则函数f (x )=sgn(ln x )-ln 2x 的零点个数为________.【解析】 当x >1时,ln x >0,sgn(ln x )=1, ∴f (x )=1-ln 2x ,令f (x )=0,得x =e. 当x =1时,ln x =0,sgn(ln x )=0, ∴f (x )=-ln 2x ,令f (x )=0,得x =1满足. 当0<x <1时,ln x <0,sgn(ln x )=-1, ∴f (x )=-1-ln 2x <0,f (x )=0无解. ∴函数f (x )的零点为x =1与x =e. 【答案】 212.(2013·烟台模拟)已知第一象限的点(a ,b )在直线2x +3y -1=0上,则代数式2a +3b 的最小值为________.【解析】 由题意知2a +3b =1,a >0,b >0,则2a +3b =⎝ ⎛⎭⎪⎫2a +3b (2a +3b )=4+9+6b a +6ab ≥13+26b a ·6a b =25,当且仅当a =b =15时取等号,即2a +3b 的最小值为25.【答案】 2513.已知y =f (x )+x 2是奇函数,且f (1)=1,若g (x )=f (x )+2,则g (-1)=________.【解析】 ∵y =f (x )+x 2是奇函数,且f (1)=1, ∴f (-1)+(-1)2=-[f (1)+12],∴f (-1)=-3. 因此g (-1)=f (-1)+2=-1. 【答案】 -114.定义在R 上的函数f (x )满足f (x )=⎩⎨⎧log 2(1-x ),x ≤0,f (x -1)-f (x -2),x >0,则f (2 013)=________.【解析】当x>0时,∵f(x)=f(x-1)-f(x-2),∴f(x+1)=f(x)-f(x-1),∴f(x+1)=-f(x-2),即f(x+3)=-f(x),∴f(x+6)=f(x),即当x>0时,函数f(x)的周期是6.又∵f(2 013)=f(335×6+3)=f(3),由已知得f(-1)=log22=1,f(0)=0,f(1)=f(0)-f(-1)=0-1=-1,f(2)=f(1)-f(0)=-1-0=-1,f(3)=f(2)-f(1)=-1-(-1)=0,∴f(2 013)=0.【答案】015.已知函数f(x)的导数f′(x)=a(x+1)(x-a),若f(x)在x=a处取得极大值,则a的取值范围是________.【解析】若a=0,则f′(x)=0,函数f(x)不存在极值;若a=-1,则f′(x)=-(x+1)2≤0,函数f(x)不存在极值;若a>0,当x∈(-1,a)时,f′(x)<0,当x∈(a,+∞)时,f′(x)>0,所以函数f(x)在x=a处取得极小值;若-1<a<0,当x∈(-1,a)时,f′(x)>0,当x∈(a,+∞)时,f′(x)<0,所以函数f(x)在x=a处取得极大值;若a<-1,当x∈(-∞,a)时,f′(x)<0,当x∈(a,-1)时,f′(x)>0,所以函数f(x)在x=a处取得极小值,所以a∈(-1,0).【答案】(-1,0)三、解答题(本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤)16.(本小题满分12分)已知集合A={y|y2-(a2+a+1)y+a(a2+1)>0},B={y|y=12x2-x+52,0≤x≤3}.(1)若A∩B=∅,求a的取值范围;(2)当a取使不等式x2+1≥ax恒成立的a的最小值时,求(∁R A)∩B. 【解】A={y|y<a或y>a2+1},B={y|2≤y≤4}.(1)当A ∩B =∅时,⎩⎨⎧a 2+1≥4,a ≤2,∴3≤a ≤2或a ≤- 3.∴a 的取值范围是(-∞,-3]∪[3,2]. (2)由x 2+1≥ax ,得x 2-ax +1≥0, 依题意Δ=a 2-4≤0, ∴-2≤a ≤2. ∴a 的最小值为-2.当a =-2时,A ={y |y <-2或y >5}. ∴∁R A ={y |-2≤y ≤5}. ∴(∁R A )∩B ={y |2≤y ≤4}.17.(本小题满分12分)已知函数f (x )=2x +k ·2-x ,k ∈R . (1)若函数f (x )为奇函数,求实数k 的值;(2)若对任意的x ∈[0,+∞)都有f (x )>2-x 成立,求实数k 的取值范围. 【解】 (1)∵f (x )=2x +k ·2-x 是奇函数, ∴f (-x )=-f (x ),x ∈R , 即2-x +k ·2x =-(2x +k ·2-x ),∴(1+k )+(k +1)·22x =0对一切x ∈R 恒成立, ∴k =-1.(2)∵x ∈[0,+∞),均有f (x )>2-x , 即2x +k ·2-x >2-x 成立, ∴1-k <22x 对x ≥0恒成立, ∴1-k <(22x )min ,∵y =22x 在[0,+∞)上单调递增, ∴(22x )min =1, ∴k >0.∴实数k 的取值范围是(0,+∞).18.(本小题满分12分)(2013·北京高考)设L 为曲线C :y =ln x x 在点(1,0)处的切线.(1)求L 的方程;(2)证明:除切点(1,0)之外,曲线C 在直线L 的下方. 【解】 (1)设f (x )=ln xx ,则f ′(x )=1-ln x x 2. 所以f ′(1)=1,所以L 的方程为y =x -1.(2)证明:令g (x )=x -1-f (x ),则除切点之外,曲线C 在直线L 的下方等价于g (x )>0(∀x >0,x ≠1).g (x )满足g (1)=0,且g ′(x )=1-f ′(x )=x 2-1+ln xx 2.当0<x <1时,x 2-1<0,ln x <0,所以g ′(x )<0,故g (x )单调递减; 当x >1时,x 2-1>0,ln x >0,所以g ′(x )>0,故g (x )单调递增. 所以,g (x )>g (1)=0(∀x >0,x ≠1). 所以除切点之外,曲线C 在直线L 的下方. 19.(本小题满分13分)(2013·济南图2模拟)已知函数f (x )=13ax 3+(a -2)x +c 的图象如图2所示. (1)求函数y =f (x )的解析式; (2)若g (x )=kf ′(x )x -2ln x 在其定义域内为增函数,求实数k 的取值范围.【解】 (1)∵f ′(x )=ax 2+a -2,由图可知函数f (x )的图象过点(0,3),且f ′(1)=0. 得⎩⎨⎧ c =3,2a -2=0,即⎩⎨⎧c =3,a =1. ∴f (x )=13x 3-x +3. (2)∵g (x )=kf ′(x )x -2ln x =kx -kx -2ln x ,∴g ′(x )=k +k x 2-2x =kx 2+k -2xx 2.∵函数y =g (x )的定义域为(0,+∞),∴若函数y =g (x )在其定义域内为单调增函数,则函数g ′(x )≥0在(0,+∞)上恒成立,即kx 2+k -2x ≥0在区间(0,+∞)上恒成立.即k ≥2x x 2+1在区间(0,+∞)上恒成立.令h (x )=2xx 2+1,x ∈(0,+∞),则h (x )=2x x 2+1=2x +1x ≤1(当且仅当x =1时取等号).∴k ≥1.∴实数k 的取值范围是[1,+∞).20.(本小题满分13分)(2013·烟台模拟)某幼儿园准备建一个转盘,转盘的外围是一个周长为k 米的圆.在这个圆上安装座位,且每个座位和圆心处的支点都有一根直的钢管相连经预算,转盘上的每个座位与支点相连的钢管的费用为3k 元/根,且当两相邻的座位之间的圆弧长为x 米时,相邻两座位之间的钢管和其中一个座位的总费用为⎣⎢⎡⎦⎥⎤2+(128x +20)x 25k 元.假设座位等距分布,且至少有两个座位,所有座位都视为点,且不考虑其他因素,记转盘的总造价为y 元.(1)试写出y 关于x 的函数关系式,并写出定义域; (2)当k =50米时,试确定座位的个数,使得总造价最低? 【解】 (1)设转盘上总共有n 个座位,则x =k n 即n =kx , y =3k 2x +⎣⎢⎡⎦⎥⎤2+(128x +20)x 25k 2x, 定义域⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪0<x ≤k 2,kx ∈Z . (2)y =f (x )=k 2⎝ ⎛⎭⎪⎫5x+(128x +20)25,y ′=-125+64x 3225x2k 2,令y ′=0得x =2516.当x ∈⎝ ⎛⎭⎪⎫0,2516时,f ′(x )<0,即f (x )在x ∈⎝ ⎛⎭⎪⎫0,2516上单调递减,当x ∈⎝ ⎛⎭⎪⎫2516,25时,f ′(x )>0,即f (x )在x ∈⎝ ⎛⎭⎪⎫2516,25上单调递增,y 的最小值在x =2516时取到,此时座位个数为502516=32个.21.(本小题满分13分)(2013·鄂州模拟)已知函数f (x )=13x 3-ax +1. (1)求x =1时,f (x )取得极值,求a 的值; (2)求f (x )在[0,1]上的最小值;(3)若对任意m ∈R ,直线y =-x +m 都不是曲线y =f (x )的切线,求a 的取值范围.【解】 (1)因为f ′(x )=x 2-a ,当x =1时,f (x )取得极值,所以f ′(1)=1-a =0,a =1. 又当x ∈(-1,1)时,f ′(x )<0,x ∈(1,+∞)时,f ′(x )>0, 所以f (x )在x =1处取得极小值,即a =1符合题意. (2)当a ≤0时,f ′(x )>0对x ∈(0,1)成立,所以f (x )在[0,1]上单调递增,f (x )在x =0处取最小值f (0)=1, 当a >0时,令f ′(x )=x 2-a =0,x 1=-a ,x 2=a , 当0<a <1时,a <1,x ∈(0,a )时,f ′(x )<0,f (x )单调递减, x ∈(a ,1)时,f ′(x )>0,f (x )单调递增, 所以f (x )在x =a 处取得最小值f (a )=1-2a a 3. 当a ≥1时,a ≥1,x ∈[0,1]时,f ′(x )<0,f (x )单调递减, 所以f (x )在x =1处取得最小值f (1)=43-a . 综上所述,当a ≤0时,f (x )在x =0处取最小值f (0)=1;当0<a <1时,f (x )在x =a 处取得最小值f (a )=1-2a a3;当a≥1时,f(x)在x=1处取得最小值f(1)=43-a.(3)因为∀m∈R,直线y=-x+m都不是曲线y=f(x)的切线,所以f′(x)=x2-a≠-1对x∈R成立,只要f′(x)=x2-a的最小值大于-1即可,而f′(x)=x2-a的最小值为f(0)=-a,所以-a>-1,即a<1.所以a的取值范围是(-∞,-1).。
第一讲 集合与常用逻辑用语集合元素与集合的关系集合的概念集合的表示方法集合与集合的关系包含关系子集真子集相等集合的运算交集补集并集常用逻辑用语四种命题及其相互关系逻辑联结词充分、必要条件全称量词与存在量词1.(集合的运算)设集合A ={x |1<x <4},集合B ={x |x 2-2x -3≤0},则A ∩(∁R B )=( ) A .(1,4) B .(3,4) C .(1,3)D .(1,2)∪(3,4)【解析】 由x 2-2x -3≤0,得-1≤x ≤3. ∴B =[-1,3],则∁R B =(-∞,-1)∪(3,+∞), 因此A ∩(∁R B )=(3,4). 【答案】 B2.(四种命题)命题“若α=π4,则tan α=1”的逆否命题是________.【解析】 互换条件与结论,并进行否定. 逆否命题为:若tan α≠1,则α≠π4.【答案】 若tan α≠1,则α≠π43.(充要条件)已知p :x 2>9,q :x 2-56x +16>0,则p 是q 的__________条件.【解析】 ∵x 2>9⇒x >3或x <-3,x 2-56x +16>0⇒x <13或x >12.∴p ⇒q ,而q p ,故p 是q 的充分不必要条件.【答案】 充分不必要4.(逻辑联结词)设命题p :函数y =sin 2x 的最小正周期为π2;命题q :函数y =cos x 的图象关于直线x =π2对称.则命题p ∨(綈q )是________命题(填“真”、“假”)【解析】 函数y =sin 2x 的最小正周期为π,p 假.又x =π2不是函数y =cos x 的图象的对称轴,q 假,从而綈q 为真,故p ∨(綈q )是真命题.【答案】 真5.(命题的否定)已知命题p:∃n∈N*,2n>1 000,则綈p为________.【解析】由于特称命题的否定是全称命题,因而綈p为∀n∈N*,2n≤1 000.【答案】∀n∈N*,2n≤1 000(1)(2013·山东高考)已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是()A.1B.3C.5D.9(2)(2013·宝鸡模拟)设集合M={y|y=|cos2x-sin2x|,x∈R},N={x||x-1i|<2,i为虚数单位,x∈R},则M∩N为() A.(0,1) B.(0,1]C.[0,1) D.[0,1]【思路点拨】 1.弄清集合B中元素的构成,用列举法把集合B中的元素一一列举出来.2.求函数y=|cos2x-sin2x|的值域得集合M,解不等式|x-1i|<2,得集合N.【自主解答】(1)当x=0,y=0时,x-y=0;当x=0;y=1时,x-y=-1;当x=0,y=2时,x-y=-2;当x=1,y=0时,x-y=1;当x=1,y=1时,x-y=0;当x=1,y=2时,x-y=-1;当x=2,y=0时,x-y=2;当x=2,y=1时,x-y=1;当x=2,y=2时,x-y=0.根据集合中元素的互异性知,B中元素有0,-1,-2,1,2,共5个.专题一集合、常用逻辑用语、不等式、函数与导数(2)∵y=|cos2x-sin2x|=|cos2x |,则M =[0,1]. 又|x -1i |<2,得x 2+1<2,∴-1<x <1,则N =(-1,1), 因此 M ∩N =[0,1). 【答案】 (1)C (2)C1.解答第(1)题一定要注意集合元素的互异性.2.进行集合运算,判定集合间关系,一定要重视数形结合思想方法的应用:(1)若给定集合涉及不等式的解集,要借助数轴;(2)若涉及抽象集合,要充分利用Venn 图;(3)若给定集合是点集,要注意借助函数图象.变式训练1 (1)(2013·济南模拟) 已知集合A ={x ||x -1|<2},B ={x |log 2x <2},则A ∩B =( )A .(-1,3)B .(0,4)C .(0,3)D .(-1,4)(2)(2013·浙江高考)设集合S ={x |x >-2},T ={x |x 2+3x -4≤0},则(∁R S )∪T =( ) A .(-2,1]B .(-∞,-4]C .(-∞,1]D .[1,+∞)【解析】 (1)由|x -1|<2得-1<x <3,∴A =(-1,3). 由log 2x <2得0<x <4,∴B =(0,4) ∴A ∩B =(0,3).(2)因为S ={x |x >-2},所以∁R S ={x |x ≤-2}.而T ={x |-4≤x ≤1},所以(∁R S )∪T ={x |x ≤-2}∪{x |-4≤x ≤1}={x |x ≤1}.【答案】 (1)C (2)C错误!(1)(2013·武汉模拟)设m ,n 是空间两条直线,α,β是空间两个平面,则下列选项中不正确...的是( ) A .当m ⊂α时,“n ∥α”是“m ∥n ”的必要不充分条件 B .当m ⊂α时,“m ⊥β”是“α⊥β”的充分不必要条件 C .当n ⊥α时,“n ⊥β”是“α∥β”成立的充要条件 D .当m ⊂α时,“n ⊥α”是“m ⊥n ”的充分不必要条件(2)(2013·安徽高考)“a≤0”是“函数f(x)=|(ax-1)x|在区间(0,+∞)内单调递增”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【思路点拨】(1)利用线面、面面平行与垂直的判定、性质定理逐一判定p⇒q与q⇒p 是否成立.(2)利用函数的图象确定字母的取值范围,再利用充要条件的定义进行判断.【自主解答】(1)对于选项A,当m⊂α时,n∥αm∥n,且m∥n n∥α.故A 错;对于选项B,当m⊂α时,m⊥β⇒α⊥β,但α⊥βm⊥β.故B正确;对于选项C,当n⊥α时,n⊥β⇒α∥β,且α∥β⇒n⊥β.故C正确;对于选项D,当m⊂α时,n⊥α⇒m⊥n,但m⊥n n⊥α.故D正确.(2)当a=0时,f(x)=|(ax-1)x|=|x|在区间(0,+∞)上单调递增;当a<0时,结合函数f(x)=|(ax-1)x|=|ax2-x|的图象知函数在(0,+∞)上单调递增,如图(1)所示:当a>0时,结合函数f(x)=|(ax-1)x|=|ax2-x|的图象知函数在(0,+∞)上先增后减再增,不符合条件,如图(2)所示.所以,要使函数f(x)=|(ax-1)x|在(0,+∞)上单调递增只需a≤0.即“a≤0”是“函数f(x)=|(ax-1)x|在(0,+∞)上单调递增”的充要条件.【答案】(1)A(2)C1.判定充要条件应注意:(1)首先弄清条件p和结论q分别是什么,然后再判断“p⇒q”及“q⇒p”的真假;(2)要善于举反例.2.判定p⇔q常用的方法:(1)定义;(2)等价的逆否命题的判定;(3)运用集合的包含关系.变式训练2 若实数a ,b 满足a ≥0,b ≥0,且ab =0,则称a 与b 互补,记φ(a ,b )=a 2+b 2-a -b ,那么φ(a ,b )=0是a 与b 互补的( )A .必要而不充分的条件B .充分而不必要的条件C .充要条件D .既不充分也不必要的条件【解析】 若φ(a ,b )=0,则a 2+b 2=a +b ,两边平方整理,得ab =0,且a ≥0,b ≥0,∴a ,b 互补.若a ,b 互补,则a ≥0,b ≥0,且ab =0, 即a =0,b ≥0或b =0,a ≥0, 此时都有φ(a ,b )=0,∴φ(a ,b )=0是a 与b 互补的充要条件. 【答案】 C(1)(2013·湖北高考)在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( )A .(綈p )∨(綈q )B .p ∨(綈q )C .(綈p )∧(綈q )D .p ∨q(2)(2013·济宁模拟)已知命题“∀x ∈R,2x 2+(a -1)x +12>0”是假命题,则实数a 的取值范围是________.【思路点拨】 (1)根据逻辑联结词“或”“且”“非”的含义判断. (2)命题的否定是真命题,由此可求a 的取值范围.【自主解答】 (1)依题意得綈p :“甲没有降落在指定范围”,綈q :“乙没有降落在指定范围”,因此“至少有一位学员没有降落在指定范围”可表示为(綈p )∨(綈q ).(2)由题意知命题“∃x ∈R,2x 2+(a -1)x +12≤0”是真命题.从而Δ=(a -1)2-4≥0,∴a ≥3或a ≤-1. 【答案】 (1)A (2)(-∞,-1]∪[3,+∞)1.命题真假的判断主要有以下几种方法:(1)涉及一个命题p 的真假,可根据命题特征进行判断.(2)关于四种命题真假的判断,可根据互为逆否命题的两个命题同真同假判断. (3)形如p ∧q ,p ∨q ,綈p 命题真假用真值表判断.(4)判断一个全称命题和特称命题的真假,要注意举特例方法的应用.2.利用命题的真假求参数的取值范围的方法: (1)对命题进行合理转化,求出命题为真时参数的范围. (2)根据真值表确定命题的真假,从而确定相应参数的范围.变式训练3 (2013·四川高考)设x ∈Z ,集合A 是奇数集,集合B 是偶数集.若命题p :∀x ∈A,2x ∈B ,则( )A .綈p :∀x ∈A,2x ∉B B .綈p :∀x ∉A,2x ∉BC .綈p :∃x ∉A,2x ∈BD .綈p :∃x ∈A,2x ∉B【解析】 命题p 是全称命题: ∀x ∈A,2x ∈B ,则綈p 是特称命题:∃x ∈A,2x ∉B .故选D.【答案】 D全称命题和特称命题是新课标新增内容,其命题的否定和真假判断,体现了数学的两种思维方式,是高考重点考查的内容,2013年,山东、辽宁、安徽等省份对此作了考查,预测2014年高考,根据命题的真假求参数的取值范围,是命题的一个方向,应引起高度重视.用等价转化的方法求参数的取值范围(12分)已知函数f (x )=m (x -2m )·(x +m +3),g (x )=2x -2,若同时满足条件:①∀x ∈R ,f (x )<0或g (x )<0;②∃x ∈(-∞,-4),f (x )g (x )<0.求m 的取值范围.【规范解答】 由g (x )=2x -2<0,得x <1, 在条件①中,∀x ∈R ,f (x )<0或g (x )<0, 当x ≥1时,必有f (x )<0恒成立,则m <0.3分 因此⎩⎪⎨⎪⎧2m <0,-(m +3)<1.解之得-4<m <0(*).5分在条件②中,∃x ∈(-∞,-4),f (x )g (x )<0. ∵g (x )=2x -2<0恒成立,因此,问题转化为∃x ∈(-∞,-4)时,f (x )>0, ∴f (x )=0的最小实根小于-4.8分(i)当-1<m <0时,有-m -3<2m ,∴-m-3<-4,m>1与m<0矛盾,舍去.(ii)当m<-1时,有2m<-m-3,∴应有2m<-4,∴m<-2.(iii)当m=-1时,f(x)=-(x+2)2≤0恒成立,不满足条件②,所以由(i)、(ii)、(iii)知,满足条件②,应有m<-2(**).11分根据(*)、(**)知-4<m<-2.故实数m的取值范围为(-4,-2). 12分【阅卷心语】易错提示(1)全称命题,特称命题理解不清,难以把条件转化为判定f(x)与0大小关系.(2)数形结合与化归能力差.不能判定m<0,将条件①化为f(x)=0的较大根小于1,条件②中的较小根小于-4.防范措施(1)全称命题强调的是“任意性”,从而可把问题转化为恒成立问题解决;特称命题强调的是“存在性”,从而可把问题转化为方程f(x)=0在(-∞,-4)上有一个实根.(2)结合二次函数的图象,形象直观进行不等式与方程之间相互转化;对于f(x)=0的最小实根小于-4,一定要根据m的取值范围,确定2m与-m-3的大小.1.下列有关命题的说法正确的是()A.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”B.“x=-1”是“x2-5x-6=0”的必要不充分条件C.命题“∃x∈R,使得:x2+x+1<0”的否定是:“∀x∈R,均有x2+x+1<0”D.命题“若x=y,则sin x=sin y”的逆否命题为真命题【解析】对于选项A,命题的否命题为“若x2≠1,则x≠1”,故A错;对于选项B,x=-1⇒x2-5x-6=0但x2-5x-6=0x=-1,故B错;对于选项C,命题的否定是“∀x∈R,均有x2+x+1≥0”,故C错;对于选项D,命题“若x=y,则sin x=sin y”是真命题,从而其逆否命题也是真命题,故D正确.【答案】 D2.设集合A={5,log2(a+3)},B={a,b},若A∩B={2},则A∪B=________.【解析】由A∩B={2}知,log2(a+3)=2,∴a=1,b=2.从而A={2,5},B={1,2},∴A∪B={1,2,5}.【答案】{1,2,5}。
集合与常用逻辑用语一、选择题.1.(2014 安徽理 2)“0x <”是“()ln 10x +<”的( ).A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件2.(2014 北京理 1)已知集合{}{}220,0,1,2A x x x B =-==,则AB =( ). A.{}0 B.{}0,1 C.{}0,2 D.{}0,1,23.(2014 北京理 8)有语文、数学两学科,成绩评定为“优秀”“合格”“不合格”三种.若A 同学每科成绩不低于B 同学,且至少有一科成绩比B 高,则称“A 同学比B 同学成绩好”.现有若干同学,他们之间没有一个人比另一个成绩好,且没有任意两个人语文成绩一样,数学成绩也一样的.问满足条件的最多有学生( ).A.2人B.3人C.4人D.5人4.(2014 大纲理 2)设集合{}2340M x x x =--<,{}05N x x =剟,则M N =( ).A .(]04,B .[)04,C .[)10-,D .(]10-,5.(2014 福建理 6)直线:1l y kx =+与圆22:1O x y +=相交于,A B 两点,则“1k =”是“ABC △的面积为12”的( ). A. 充分而不必要条件 B. 必要而不充分条件C. 充分必要条件D. 既不充分又不必要条件6.(2014 广东理 1)已知集合{}{}1,0,1,0,1,2,M N =-=则MN =( ). A .{}1,0,1- B. {}1,0,1,2- C. {}1,0,2- D. {}0,17.(2014 广东理 8)设集合(){}{}12345=,,,,1,0,1,1,2,3,4,5iA x x x x x x i ∈-=,那么集合A 中满足条件“1234513x x x x x ++++剟”的元素个数为( ).A .60 B.90 C. 120 D. 130 8.(2014 湖北理 3) 设U 为全集,,AB 是集合,则“存在集合C 使得,U A C B C ⊆⊆ð是“A B =∅”的( ).A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件9.(2014 湖南理 5)已知命题:p 若x y >,则x y -<-;命题:q 若x y <,则22x y >.在命题①p q ∧;②p q ∨;③()p q ∨⌝;④()p q ⌝∨中,真命题是( ).A.①③B.①④C.②③D. ②④10.(2014 辽宁理1)已知全集U =R ,{}0A x x =…,{}1B x x =…,则集合()U AB =ð( ). A .{}0x x … B .{}1x x … C .{}01x x 剟 D .{}01x x << 11.(2014 辽宁理5)设,,a b c 是非零向量,已知命题p :若0⋅=a b ,0⋅=b c ,则0⋅=a c ;命题q :若//a b ,//b c ,则//a c ,则下列命题中真命题是( ).A .p q ∨B .p q ∧C .()()p q ⌝∧⌝D .()p q ∨⌝12.(2014 山东理2)设集合{}[]{}12,2,0,2x A x x B y y x =-<==∈,则=B A ( ).A. []0,2B.()1,3C.[)1,3 D. ()1,413.(2014 山东理4)用反证法证明命题“设,a b ∈R ,则方程02=++b ax x 至少有一个实根”时要做的假设是( ).A.方程02=++b ax x 没有实根B.方程02=++b ax x 至多有一个实根C.方程02=++b ax x 至多有两个实根D.方程02=++b ax x 恰好有两个实根 14.(2014 陕西理1) 已知集合{}0,M x x x =∈R …,{}21,N x x x =<∈R ,则MN =( ).A. []0,1 B. [)0,1 C. (]0,1 D. ()0,1 15.(2014 陕西理8)原命题为若12,z z 互为共轭复数,则“12z z =”,关于逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( ). A. 真,假,真 B. 假,假,真 C. 真,真,假 D. 假,假,假16.(2014 四川理1)已知集合{}220A x x x =--…,集合B 为整数集,则AB =( ).A .{}1,0,1,2-B .{}2,1,0,1--C .{}0,1D .{}1,0-17.(2014 天津理7)设,a b R Î,则“a b >”是“a a b b >”的( ).A.充要不必要条件B.必要不充分条件C.充要条件D.既不充要也不必要条件18.(2014 新课标1理1)已知集合{}2230A x x x =--…,{}22B x x =-<…,则A B =( ).A.[]2,1--B.[)1,2-C.[]1,1-D. [)1,219.(2014 新课标1理9)不等式组124x y x y +⎧⎨-⎩……的解集记为D .有下面四个命题:1p :(),x y D ∀∈,22x y +-…;2p :(),x y D ∃∈,22x y +…;3p :(),x y D ∀∈,23x y +…; 4p :(),x y D ∃∈,21x y +-….其中真命题是( ).A. 2p ,3pB. 1p ,4pC. 1p ,2pD. 1p ,3p20.(2014 新课标2理1)设集合{}0,1,2M =,{}2320x x x N -+=…,则M N =( ).A.{}1B.{}2C.{}0,1D. {}1,221.(2014 浙江理1)设全集{}2U x x =∈N …,集合{}25A x x =∈N …,则U A =ð( ). A.∅ B. {}2 C. {}5 D. {}2,522.(2014 浙江理 2)已知i 是虚数单位, ,a b ∈R ,则“1a b ==”是“()2i 2i a b +=”的( ).A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件23.(2014 重庆理 6)已知命题:p 对x ∀∈R ,总有20x >;:q “1x >”是“2x >”的充分不必要条件则下列命题为真命题的是( ).A. p q ∧B. p q ⌝∧⌝C. p q ⌝∧D. p q ∧⌝ 二、填空题.1.(2014 福建理 15)若集合{}{},,,1,2,3,4a b c d =,且下列四个关系:①1=a ;②1≠b ;③2=c ;④4≠d 有且只有一个是正确的,则符合条件的有序数组(),,,a b c d 的个数是_________.2.(2014 江苏理 1) 已知集合{}2,1,3,4A =--,{}1,2,3B =-,则A B = .3.(2014 重庆理11)设全集{}{}{}110,1,2,3,5,8,1,3,5,7,9U n n A B =∈==N 剟,则()U A B =ð______.4.(2014 四川理 15)以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数()x ϕ组成的集合:对于函数()x ϕ,存在一个正数M ,使得函数()x ϕ的值域包含于区间[],M M -.例如,当()31x x ϕ=,()2sin x x ϕ=时,()1x A ϕ∈,()2x B ϕ∈.现有如下命题: ①设函数()f x 的定义域为D ,则“()f x A ∈”的充要条件是“b ∀∈R ,a D ∃∈,()f a b =”; ②函数()f x B ∈的充要条件是()f x 有最大值和最小值;③若函数()f x ,()g x 的定义域相同,且()f x A ∈,()g x B ∈,则()()f x g x B +∉; ④若函数()()2ln 21x f x a x x =+++()2,x a >-∈R 有最大值,则()f x B ∈. 其中的真命题有 .(写出所有真命题的序号)5.(2014 重庆理 11)设全集{}{}{}110,1,2,3,5,8,1,3,5,7,9U n n A B =∈==N 剟,则()U A B =ð______.三、解答题1.(2014 辽宁理 24)(本小题满分10分)选修4-5:不等式选讲设函数()211f x x x =-+-,()21681g x x x =-+,记()1f x …的解集为M ,()4g x …的解集为N .(1)求M ;(2)当x M N ∈时,证明:()()2214x f x x f x +⎡⎤⎣⎦….2. (2014 天津理 19)(本小题满分14分)已知q 和n 均为给定的大于1的自然数.设集合{}0,1,2,,1M q =-,集合{}112,,1,2,,n n i A x x x x q x q x M i n -+∈===++. (1)当2q =,3n =时,用列举法表示集合A ;(2)设,s t A Î,112n n s a a q a q -=+++,112n n t b b q b q -=+++,其中 ,i i a b M ∈,1,2,i n =.证明:若n n a b <,则s t <.。
2014年高考试题分类汇编(集合部分)考点1 集合的基本概念1.(2014·全国大纲卷·文科)设集合{1,2,4,6,8}M =,{1,2,3,5,6,7}N =,则 M N 中元素的个数为A .2B .3C .5D .7考点2 集合的基本关系1.(2014·湖北卷·理科)设U 为全集,,A B 是集合,则“存在集合C 使得 A C ⊆,()U B C C ⊆”是“A B =∅I ”的A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件考点3 集合的基本运算考法1 交集考向1 离散型(列举法)1.(2014·北京卷·文科)若集合{}0,1,2,4A =,{}1,2,3B =,则A B =A.{}0,1,2,3,4B.{}0,4C.{}1,2D.{}32.(2014·广东卷·文科)已知集合{}2,3,4M =,{}0,2,3,5N =,则MN =A. {}0,2B. {}2,3C. {}3,4D.{}3,5 3.(2014·重庆卷·文科)已知集合{1,2,3,5,8}A =,{1,3,5,8,13}B =,则 A B =______.4.(2014·江苏卷)已知集合{}2,1,3,4A =--,{}1,2,3B =-,则A B = . 考向2 一次不等式型(描述法)1.(2014·浙江卷·文科)设集合{}2S x x =≥,{}5S x x =≤,则S T =A. ]5,(-∞B. ),2[+∞C. )5,2(D.]5,2[2.(2014·全国卷Ⅰ·文科)已知集合{}13M x x =-<<,{}21N x x =-≤≤,则M N =A. (2,1)-B. (1,1)-C. (1,3)D. (2,3)-3.(2014·福建卷·文科)若集合}{24P x x =≤<,}{3,Q x x =≥则P Q =A. }{34x x ≤<B. }{34x x <<C. }{23x x ≤<D. }{23x x ≤≤4.(2014·湖南卷·文科)已知集合{|2},{|13}A x x B x x =>=<<,则A B =A.{|2}x x >B.{|1}x x >C. {|23}x x <<D. {|13}x x << 考向3 二次方程1.(2014·全国卷Ⅱ·文科)已知集合{2,0,2}A =-,2{|20}B x x x =--=,则 A B = A . ∅ B.{}2 C.{}0 D. {}2-2.(2014·北京卷·理科)已知集合2{|20},{0,1,2}A x x x B =-==,则A B =A.{0}B.{0,1}C.{0,2}D.{0,1,2}考向4 二次不等式1.(2014·全国卷Ⅱ·理科)设集合{}0,1,2M =,{}2|320N x x x =-+≤,则 M N =A. {}1B. {}2C. {}01,D. {}1,22.(2014·四川卷·文科)已知集合{|(1)(2)0}A x x x =+-≤,集合B 为整数集,则A B =A.{1,0}-B.{0,1}C.{2,1,0,1}--D.{1,0,1,2}-3.(2014·四川卷·理科)已知集合2{|20}A x x x =--≤,集合B 为整数集,则A B =A .{1,0,1,2}-B .{2,1,0,1}--C .{0,1}D .{1,0}-4.(2014·陕西卷·理科)已知集合2{|0},{|1,}M x x N x x x R =≥=<∈,则 M N =A.[0,1]B. [0,1)C. (0,1]D. (0,1)5.(2014·山东卷·文科)设集合2{|20},{|14}A x x x B x x =-<=≤≤,则A B =A.(0,2]B. (1,2)C. [1,2)D. (1,4)6.(2014·全国大纲卷·理科)设集合2{|340}M x x x =--<,{|05}N x x =≤≤,则M N =A .(0,4]B .[0,4)C .[1,0)-D .(1,0]-7.(2014·全国卷Ⅰ·理科)已知集合{}2230A x x x =--≥,B={}22x x -≤<, 则A B =A.[]2,1--B.[)1,2-C.[]1,1-D.[)1,2 考法2 并集1.(2014·广东卷·理科)已知集合{1,0,1}M =-,{0,1,2}N =,则M N = A .{1,0,1}- B. {1,0,1,2}- C. {1,0,2}- D. {0,1} 考法3 补集1.(2014·湖北卷·文科)已知全集{}1,2,3,4,5,6,7U =,集合{}1,3,5,6A =, 则U C A =A .{}1,3,5,6B .{}2,3,7C .{}2,4,7D .{}2,5,72.(2014·浙江卷·理科)设全集{}2U x N x =∈≥,集合{}25A x N x =∈≥, 则U C A =A. ∅B. {}2C. {}5D. {}2,5 考法4 交、并、补混合运算1.(2014·江西卷·理科)设全集为R ,集合2{|90}A x x =-<,{|1B x =-< 5}x ≤,则()R A C B = A.(3,0)- B.(3,1)-- C.(3,1]-- D.(3,3)-2.(2014·山东卷·理科)已知全集U R =,{|0}A x x =≤,{|1}B x x =≥,则集合()U C A B =A .{|0}x x ≥B .{|1}x x ≤C .{|01}x x ≤≤D .{|01}x x <<3.(2014·重庆卷·理科)设全集{}110U n N n =∈≤≤,{}1,2,3,5,8A =,{}1,3,5,7,9B =,则()U C A B =I .。
一.基础题组1. 【江苏省灌云高级中学2013-2014学年度高三第一学期期中考试】若集合{23},{14}A x x B x x x =-≤≤=<->或,则集合A B = .2. 【南京市、盐城市2014届高三第一次模拟考试】“p q ∨为真命题”是“p ⌝为假命题”成立的 条件.3. 【江苏省诚贤中学2014届高三数学月考试题】已知集合{}(1)0P x x x =-≥,Q ={})1ln(|-=x y x ,则P Q = .4. 【南京市、盐城市2014届高三第一次模拟考试】已知集合{3,1,1,2}A =--,集合[0,)B =+∞,则______A B = .5. 【江苏省扬州中学2013—2014学年第一学期月考】已知集合⎭⎬⎫⎩⎨⎧∈==R x y y A x ,21|,{}R x x y y B ∈-==),1(log |2,则=⋂B A .6. 【苏州市2014届高三调研测试】已知集合A = { x | x < 2 },B = { -1,0,2,3 },则A∩B = ▲ .7. 【江苏省兴化市安丰高级中学2014届高三12月月考】设集合{}4,3,2,1=U ,{}2,1=A ,{}4,2=B ,则U AB = ()ð .8. 【江苏省扬州中学2013—2014学年第一学期月考】已知命题:p “若=,则||||=”,则命题p 及其逆命题、否命题、逆否命题中,正确命题的个数是 .二.能力题组1. 【江苏省诚贤中学2014届高三数学月考试题】由命题“02,2≤++∈∃m x x R x ”是假命题,求得实数m 的取值范围是),(+∞a ,则实数a 的值是 .2. 【南京市、盐城市2014届高三第一次模拟考试】设函数()cos(2)f x x ϕ=+,则“()f x 为奇函数”是“2πϕ=”的 条件.(选填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”)3. 【江苏省通州高级中学2013-2014学年度秋学期期中考试】已知集合A ={x |x >2,或x <-1},B ={x |a x b ≤≤},若A B R = ,A B ={x |24x <≤},则ba=_ ▲__ .【答案】-4 【解析】试题分析:由{}{}|x 2x 1,|2<x 4A x A B R A B x =><-==≤ 或,可得{}|14B x x =-≤≤ ,则1,4a b =-= ,故4ba=-. 考点:集合的运算4. 【苏北四市2014届高三第一次质量检测】已知集合{2}A a =+,{1,1,3}B =-,且A B ⊆,则实数a 的值是 .5.【江苏省兴化市安丰高级中学2014届高三12月月考】 已知命题:“{}|11x x x ∃∈-<<,使等式20x x m --=成立”是真命题. (1)求实数m 的取值集合M ;(2)设不等式()(2)0x a x a -+-<的解集为N ,若x N ∈是x M ∈的必要条件,求a 的取值范围.试题解析:(1) 由题意知,方程20x x m --=在()1,1-上有解,即m 的取值范围就为函数x x y -=2在()1,1-上的值域,易得124M m m ⎧⎫=-≤<⎨⎬⎩⎭(2) 因为x N ∈是x M ∈的必要条件,所以N M ⊆当1=a 时,解集N 为空集,不满足题意当1>a 时,a a ->2,此时集合{}a x a x N <<-=2|则⎪⎩⎪⎨⎧≥-<-2412a a ,解得49>a当1<a 时,a a -<2,此时集合{}a x a x N -<<=2|。
2014年高考数学分类汇编(一) 集合与常用逻辑用语1、【2014安徽2】命题“0||,2≥+∈∀x x R x ”的否定是( )A.0||,2<+∈∀x x R xB. 0||,2≤+∈∀x x R xC. 0||,2000<+∈∃x x R xD. 0||,2000≥+∈∃x x R x2、【2014安徽理2】“0<x ”是“0)1ln(<+x ”的( )A 、 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分也不必要条件3、【北京理5】.设{}n a 是公比为q 的等比数列,则"1"q >是"{}"n a 为递增数列的( ).A 充分且不必要条件 .B 必要且不充分条件 .C 充分必要条件.D 既不充分也不必要条件4、【大纲理2】.设集合2{|340}M x x x =--<,{|05}N x x =≤≤,则M N =A .(0,4]B .[0,4)C .[1,0)-D .(1,0]-5、【福建理6】.直线:1l y kx =+与圆22:1O x y +=相交于,A B 两点,则"1"k =是“ABC ∆的面积为12”的( ) .A 充分而不必要条件.B 必要而不充分条件 .C 充分必要条件.D 既不充分又不必要条件6、【福建理14】若集合},4,3,2,1{},,,{=d c b a 且下列四个关系:①1=a ;②1≠b ;③2=c ;④4≠d 有且只有一个是正确的,则符合条件的有序数组),,,(d c b a 的个数是_________.8、【湖北理3】. 设U 为全集,B A ,是集合,则“存在集合C 使得C C B C A U ⊆⊆,是“∅=B A ”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件9、【湖南理5】.已知命题22:,;:,.p x y x y q x y x y >-<->>若则命题若则在命题①p q ∧②p q ∨③()p q ∧⌝④()p q ⌝∨中,真命题是A .①③B .①④C .②③D .②④10、【江西文2】.设全集为R ,集合2{|90},{|15}A x x B x x =-<=-<≤,则()R A C B =( ).(3,0)A - .(3,1)B -- .(3,1]C -- .(3,3)D -11、【江西文6】.下列叙述中正确的是( ).A 若,,a b c R ∈,则2"0"ax bx c ++≥的充分条件是2"40"b ac -≤.B 若,,a b c R ∈,则22""ab cb >的充要条件是""a c >.C 命题“对任意x R ∈,有20x ≥”的否定是“存在x R ∈,有20x ≥”.D l 是一条直线,,αβ是两个不同的平面,若,l l αβ⊥⊥,则//αβ12、【辽宁5】.设,,a b c 是非零向量,已知命题P :若0a b •=,0b c •=,则0a c •=;命题q :若//,//a b b c ,则//a c ,则下列命题中真命题是( )A .p q ∨B .p q ∧C .()()p q ⌝∧⌝D .()p q ∨⌝13、【山东理(2)】设集合{||1|2}A x x =-<,{|2,[0,2]}x B y y x ==∈,则AB = (A )[0,2](B )(1,3)(C )[1,3)(D )(1,4)14、【陕西理8】.原命题为“若12,z z 互为共轭复数,则12z z =”,关于逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )(A )真,假,真 (B )假,假,真 (C )真,真,假 (D )假,假,假15、【新课标(3)】函数()f x 在0x=x 处导数存在,若()00p f 0::x q x x '==:是()f x 的极值点,则p 是q(A )充分必要条件 (B )充分不必要条件(C )必要不充分条件 (D) 既充分也不必要条件16、【浙江文2】、设四边形ABCD 的两条对角线AC ,BD ,则“四边形ABCD 为菱形”是“AC ⊥BD ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件17、【浙江理2】已知i 是虚数单位,R b a ∈,,则“1==b a ”是“i bi a 2)(2=+”的A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件18、【广东8】.设集合(){}12345=,,,,{1,0,1},1,2,3,4,5i A x x x x x x i ∈-=,那么集合A 中满足条件“1234513x x x x x ≤++++≤”的元素个数为 A.60 B.90 C.120 D.13019、【福建文16】. 已知集合{}{}2,1,0,,=c b a ,且下列三个关系:①2≠a ②2=b ③0≠c 有且只有一个正确,则________10100=++c b a。
A 单元 集合与常用逻辑用语目录A1 集合及其运算 ............................................................................................................................ 1 A2 命题及其关系、充分条件、必要条件 .................................................................................... 7 A3 基本逻辑联结词及量词 .......................................................................................................... 22 A4 单元综合 . (23)A1 集合及其运算【文·浙江绍兴一中高二期末`2014】1.已知集合{}1,0,1A =-,{}11B x x =-≤<,则A B =( )A .{0}B .{0,1}C .{1,0}-D .{1,0,1}- 【知识点】两个集合的交集的定义和求法.【答案解析】C 解析 :解:由题意可发现集合A 中的元素1,0-在集合B 中,所以A B ={}1,0-,故选:C.【思路点拨】直接找集合集合A 集合B 中的元素可求得A B .【文·浙江宁波高二期末·2014】1. 设集合{|ln(1)}A x y x ==+,{}2,1,0,1B =--,则()R A B =ð( )A. }2{-B. {2,1}--C. }0,1,2{--D. {2,1,0,1}-- 【知识点】对数不等式的解法;交集、补集的定义.【答案解析】B 解析 :解:因为{|ln(1)}A x y x ==+所以10,x +>即1,x >-则{|1}R A x x =?ð,故()R A B =ð{2,1}--.故选:B.【思路点拨】先确定集合A 中的元素,再求R A ð,最后求出结果即可.【文·四川成都高三摸底·2014】2.设全集U={1,2,3,4},集合S={l ,3},T={4},则(U ðS )T 等于(A ){2,4} (B ){4} (C ) (D ){1,3,4} 【知识点】集合的运算【答案解析】A 解析:解:因为U ðS={2,4},所以(U ðS )T={2,4},选A.【思路点拨】本题主要考查的是集合的基本运算,可先结合补集的含义求S 在U 中的补集,再结合并集的含义求S 的补集与T 的并集.【文·宁夏银川一中高二期末·2014】18.(本小题满分10分) 设集合A={x|-1≤x≤2},B={x|x 2-(2m+1)x+2m<0}. (1)当m<12时,化简集合B ; (2)若A ∪B=A ,求实数m 的取值范围;(3)若C R A∩B 中只有一个整数,求实数m 的取值范围. 【知识点】集合的运算【答案解析】(1)B={x|2m<x<1};(2)-12≤m≤1;(3)-32≤m<-1或32<m≤2 解析:解:∵不等式x 2-(2m+1)x+2m<0⇔(x-1)(x-2m)<0. (1)当m<12时,2m<1,∴集合B={x|2m<x<1}. (2)若A ∪B=A,则B ⊆A,∵A={x|-1≤x≤2},①当m<12时,B={x|2m<x<1},此时-1≤2m<1⇒ -12≤m<12; ②当m=12时,B=Ø,有B ⊆A 成立;③当m>12时,B={x|1<x<2m},此时1<2m≤2⇒12<m≤1; 综上所述,所求m 的取值范围是-12≤m≤1.(3)∵A={x|-1≤x≤2}, ∴ðR A={x|x<-1或x>2}, ①当m<12时,B={x|2m<x<1},若ðR A∩B 中只有一个整数,则-3≤2m<-2⇒ -32≤m<-1; ②当m=12时,不符合题意;③当m>12时,B={x|1<x<2m},若ðR A∩B 中只有一个整数,则3<2m≤4,∴32<m≤2. 综上知,m 的取值范围是-32≤m<-1或32<m≤2.【思路点拨】在集合运算中,不等式的解集、函数的定义域、函数的值域问题,能解的先解出具体的实数范围,再结合数轴进行集合的运算,若端点位置不定时,要注意对端点的位置进行讨论求解.【文·宁夏银川一中高二期末·2014】15.已知集合A={a,b,2},B={2,b 2,2a},且A∩B=A ∪B ,则a=_______.【知识点】集合的运算【答案解析】0或14解析:解:因为A∩B=A ∪B ,所以A=B ,则2222a a a b b b b a =⎧⎧=⎨⎨==⎩⎩或解得104112a ab b ⎧=⎪=⎧⎪⎨⎨=⎩⎪=⎪⎩或,所以a 的值为0或14.【思路点拨】理解集合交集与并集的含义,即可由A∩B=A ∪B 得到A=B ,再利用集合相等进行解答,解答时注意集合元素的互异性.【文·宁夏银川一中高二期末·2014】1.集合A ={12x |y x = },B={y|y=log 2x,x>0},则A∩B 等于( )A .R B. Ø C. [0,+∞) D. (0,+∞)【知识点】集合的表示及运算【答案解析】C 解析:解:因为A ={12x |y x = }={x │x ≥0},B={y|y=log 2x,x>0}=R,所以 A∩B = [0,+∞),选C.【思路点拨】遇到集合的运算,能对集合进行转化和化简的应先化简再进行运算.【文·江苏扬州中学高二期末·2014】1.设集合{1,2,3}A =,集合{2,2}B =-,则A B =▲ .【知识点】交集及其运算.【答案解析】{2}解析 :解:∵集合A={1,2,3},集合B={﹣2,2}, ∴A ∩B={2}.故答案为:{2}.【思路点拨】利用交集的运算法则求解.【文·黑龙江哈六中高二期末考试·2014】 1.已知集合}12|{},31|{<<-=<<-=x x B x x M ,则=⋂B M ( ) )1,2.(-A )1,1.(-B )3,1.(C )3,2.(-D【知识点】交集的定义.【答案解析】B 解析 :解:由题意易知=⋂B M {}|11x x -<<,故选B. 【思路点拨】直接利用交集的定义即可.【理·浙江绍兴一中高二期末·2014】1.已知集合{}1,0,1A =-,{}11B x x =-≤<,则A B = A .{}0 B .{}0,1 C . {}1,0- D .{}1,0,1- 【知识点】两个集合的交集的定义和求法.【答案解析】C 解析 :解:由题意可发现集合A 中的元素1,0-在集合B 中,所以A B ={}1,0-,故选:C.【思路点拨】直接找集合集合A 集合B 中的元素可求得A B .【理·四川成都高三摸底·2014】2.设全集U={1,2,3,4},集合S={l ,3},T={4},则(U ðS )T 等于(A ){2,4} (B ){4} (C )∅ (D ){1,3,4} 【知识点】集合的运算【答案解析】A 解析:解:因为U ðS={2,4},所以(U ðS )T={2,4},选A.【思路点拨】本题主要考查的是集合的基本运算,可先结合补集的含义求S 在U 中的补集,再结合并集的含义求S 的补集与T 的并集.【理·江苏扬州中学高二期末·2014】1.设集合{1,2,3}A =,集合{2,2}B =-,则A B =▲ .【知识点】交集及其运算.【答案解析】{2}解析 :解:∵集合A={1,2,3},集合B={﹣2,2}, ∴A ∩B={2}.故答案为:{2}.【思路点拨】利用交集的运算法则求解.【理·吉林长春十一中高二期末·2014】1.设全集{}5,4,3,2,1=U ,集合{}4,1=M ,{}5,3,1=N ,则()=M C N U ( )A .{}3,1B . {}5,1C . {}5,3 D. {}5,4【知识点】交集、补集的运算.【答案解析】C 解析 :解:因为{}4,1=M ,所以{}2,3,5U C M =,故(){}3,5UNC M=,故选C. 【思路点拨】先求集合M 的补集,再求出()UNC M 即可.【理·黑龙江哈六中高二期末·2014】17.设a R ∈,函数2()22f x ax x a =--,若()0f x >的解集为A ,{12},B x x =<<,A B =∅求实数a 的取值范围(10分)【知识点】一元二次不等式(组)的解法;交集的定义. 【答案解析】22a -≤≤解析 :解:(1)当0a =时满足条件;………………….. 2分(2) 当0a >时,(1)0(2)0f f ì£ïí£ïî解得02a <?-------------3分(3) 当0a <时,因为对称轴10x a=<,所以(1)0f £,解得20a -?-------3分 综上22a -≤≤--------------------------------------------------------------2分【思路点拨】对a 进行分类讨论即可.【理·黑龙江哈六中高二期末·2014】1.设全集为R ,集合2{|90},{|15}A x x B x x =-<=-<≤,则()R A C B =( ).(3,0)A - .(3,1]B -- .(3,1)C -- .(3,3)D -【知识点】一元二次不等式的解法;补集、交集的定义.【答案解析】B 解析 :解:因为2{|90},A x x =-<整理得:{|33},A x x =-<<又因为{|15}B x x =-<?,所以{|51}R C B x x x =>?或,故(){|31}R A C B x x =-<?,故选B.【思路点拨】通过已知条件解出集合A 与R C B ,再求()R A C B 即可.【理·广东惠州一中高三一调·2014】2.已知集合},1{R x x y y A ∈-==,}2{≥=x x B ,则下列结论正确的是( ).A A ∈-3 .B B ∉3 .C A B B ⋂= .D A B B ⋃= 【知识点】集合元素的意义;集合运算;分段函数求值域.【答案解析】C 解析 :解:已知集合),,3(+∞-=A ),,2[+∞=B ∴B B A = ,故选C . 【思路点拨】{}|||1,A y y x x R ==-?指的是函数值域,将绝对值函数数形结合求值域,在验证各答案.【江苏盐城中学高二期末·2014】15(文科学生做)设函数22()28(0)f x x ax a a =-->,记不等式()0f x ≤的解集为A . (1)当1a =时,求集合A ;(2)若(1,1)A -⊆,求实数a 的取值范围.【知识点】一元二次不等式的解法;集合间的关系. 【答案解析】(1){}|24x x-#(2)1,2⎡⎫+∞⎪⎢⎣⎭解析 :解:(1)当1=a 时,82)(2--=x x x f ,解不等式0822≤--x x ,得42≤≤-x , ……5分{}42|≤≤-=∴x x A 集合. …………6 分(2) 08222≤--a ax x ,∴0)2)(4(≤+-a x a x ,又0>a ,a x a 42≤≤-∴,∴[]2,4A a a =-. …………9分 又()1,1A -⊆,⎩⎨⎧≤-≥-∴aa 4121,解得21≥a ,∴实数a 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭. …14分【思路点拨】(1)当1=a 时直接解不等式0822≤--x x 即可;(2)利用已知条件(1,1)A-⊆列不等式组即可解出范围.【文·浙江温州十校期末联考·2014】1.若集合{}R x x x M ∈≤=,42,{|13,}N x x x R =<≤∈,则=⋂N M ( ▲ )A . {|21}x x -≤<B .{|12}x x <≤C .{|22}x x -≤≤D .{|2}x x < 【知识点】集合的概念;一元二次不等式的解法;交集的定义. 【答案解析】B 解析 :解:{}24,22,22;x xM x x #\=-#\=⋂N M {|12}x x <≤,故选B.【思路点拨】由已知条件解出集合M 再求交集即可.【文·江西省鹰潭一中高二期末·2014】1.设全集U 是实数集R ,3{|0}1x A x x -=≤-与{|2}B x x =>都是U 的子集(如图所示), 则阴影部分所表示的集合为 ( )A .{}12x x ≤≤B .{}21x x -≤<C .{}12x x <≤D .{}22x x -≤≤ 【知识点】Venn 图表达集合的关系及运算.【答案解析】C 解析 :解:由题意{|2}B x x =>,3{|0}1x A x x -=≤-={x |1<x £3}由图知影部分所表示的集合为A C U (B ),∴A C U (B )={x|1<x ≤2} 故选A【思路点拨】由图形可得阴影部分所表示的集合为A C U (B )故先化简两个集合,再根据交集的定义求出阴影部分所表示的集合.A2 命题及其关系、充分条件、必要条件【文·重庆一中高二期末·2014】1.命题“对任意R x ∈,总有012>+x ”的否定是A. “对任意R x ∉,总有012>+x ” B. “对任意R x ∈,总有012≤+x ”C. “存在R x ∈,使得012>+x ”D. “存在R x ∈,使得012≤+x ”【知识点】命题的否定;全称命题.【答案解析】D 解析 :解:∵命题“对任意R x ∈,总有012>+x ”为全称命题, ∴根据全称命题的否定是特称命题得到命题的否定为:存在R x ∈,使得012≤+x . 故选:D .【思路点拨】根据全称命题的否定是特称命题,即可得到命题的否定.【典型总结】本题主要考查含有量词的命题的否定,要求熟练掌握特称命题的否定是全称命题,全称命题的否定是特称命题.【文·浙江宁波高二期末·2014】2. 若a 、b 为实数,则“1ab <”是“10a b<<”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充要条件 D. 既不充分也不必要条件 【知识点】必要条件、充分条件与充要条件的判断.【答案解析】B 解析 :解:若a 、b 为实数,1ab <, 令a=-1,b=1,ab=-1<1,推不出10a b<<,若10a b<<,可得b >0,∴0<ab <1,⇒ab <1, ∴ab<1”是“10a b<<必要不充分条件,故选B .【思路点拨】令a=-1,b=1特殊值法代入,再根据必要条件和充分条件的定义进行判断.【文·四川成都高三摸底·2014】3.已知命题p :x ∀∈R ,2x=5,则⌝p 为 (A )x ∀∉R,2x=5 (B )x ∀∈R,2x≠5 (C )0x ∃∈R ,20x =5 (D )0x ∃∈R ,2x ≠5【知识点】全称命题及其否定【答案解析】D 解析:解:结合全称命题的含义及其否定的格式:全称变特称,结论改否定,即可得⌝p 为0x ∃∈R ,2x ≠5,所以选D.【思路点拨】全称命题与特称命题的否定有固定格式,掌握其固定格式即可快速判断其否定.【文·宁夏银川一中高二期末·2014】5.“a<-2”是“函数f(x)=ax +3在区间[-1,2]上存在零点”的( ) A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【知识点】零点存在性定理、充要条件的判断【答案解析】A 解析:解:若函数f(x)=ax +3在区间[-1,2]上存在零点,则f(-1)f(2)≤0,得332a a ≥≤-或,所以“a<-2”是“函数f(x)=ax +3在区间[-1,2]上存在零点”的充分不必要条件,选A 【思路点拨】一般遇到判断在某区间存在零点问题可用零点存在性定理解答,判断充分条件与必要条件时,可先明确条件与结论,若由条件能推出结论,则充分性满足,若由结论能推出条件,则必要性满足.【文·江苏扬州中学高二期末·2014】15.(本小题满分14分)已知a R ∈,命题2:"[1,2],0"p x x a ∀∈-≥,命题2:",220"q x R x ax a ∃∈++-=. ⑴若命题p 为真命题,求实数a 的取值范围;⑵若命题""p q ∨为真命题,命题""p q ∧为假命题,求实数a 的取值范围. 【知识点】复合命题的真假;命题的真假判断与应用. 【答案解析】⑴1a £⑵1a >或21a -<<. 解析 :解:⑴因为命题2:"[1,2],0"p x x a ∀∈-≥,令2()f x x a =-,根据题意,只要[1,2]x ∈时,min ()0f x ≥即可, ……4分 也就是101a a -≥⇒≤; ……7分 ⑵由⑴可知,当命题p 为真命题时,1a ≤,命题q 为真命题时,244(2)0a a ∆=--≥,解得21a a ≤-≥或 ……11分 因为命题""p q ∨为真命题,命题""p q ∧为假命题,所以命题p 与命题q 一真一假,当命题p 为真,命题q 为假时,12121a a a ≤⎧⇒-<<⎨-<<⎩,当命题p 为假,命题q 为真时,11-21a a a a >⎧⇒>⎨≤≥⎩或,综上:1a >或21a -<<. ……14分 【思路点拨】(1)由于命题2:"[1,2],0"p x x a ∀∈-≥,令2()f x x a =-,只要[1,2]x ∈时,min ()0f x ≥即可;(2)由(1)可知,当命题p 为真命题时,1a ≤,命题q 为真命题时,244(2)0a a ∆=--≥,解得a 的取值范围.由于命题“p ∨q”为真命题,命题“p ∧q”为假命题,可知:命题p 与命题q 必然一真一假,解出即可.【文·江苏扬州中学高二期末·2014】12.设T S ,是R 的两个非空子集,如果存在..一个从S 到T 的函数)(x f y =满足;(i)}|)({S x x f T ∈=;(ii)对任意S x x ∈21,,当21x x <时,恒有)()(21x f x f <. 那么称这两个集合“保序同构”.现给出以下4对集合: ①,{1,1}S R T ==-; ②*,S N T N ==;③{|13},{|810}S x x T x x =-≤≤=-≤≤; ④{|01},S x x T R =<<=其中,“保序同构”的集合对的对应的序号是 ▲ (写出所有“保序同构”的集合对的对应的序号).【知识点】命题的真假判断与应用. 【答案解析】②③④解析 :解:①S=R ,T={﹣1,1},不存在函数f (x )使得集合S ,T “保序同构”; ②S=N ,T=N *,存在函数f (x )=x+1,使得集合S ,T “保序同构”;③S={x|﹣1≤x ≤3},T={x|﹣8≤x ≤10},存在函数f (x )=x+7,使得集合S ,T “保序同构”; ④S={x|0<x <1},T=R ,存在函数f (x )=x+1,使得集合S ,T “保序同构”. 其中,“保序同构”的集合对的对应的序号②③④. 故答案为:②③④.【思路点拨】对每个命题依次判断即可.【文·江苏扬州中学高二期末·2014】4.“0ϕ=”是“函数()sin()f x x ϕ=+为奇函数”的▲ 条件. (从“充要”,“充分不必要”,“必要不充分”,“既不充分也不必要”中选择适当的填写) 【知识点】必要条件、充分条件与充要条件的判断.【答案解析】充分不必要 解析 :解:若0ϕ=,则()sin()f x x ϕ=+=sinx 为奇函数,即充分性成立, 若()sin()f x x ϕ=+为奇函数,则k j p =,0ϕ=不一定成立,即必要性不成立,即“0ϕ=”是“函数()sin()f x x ϕ=+为奇函数”的充分不必要条件,故答案为:充分不必要【思路点拨】根据函数奇偶性的定义,结合充分条件和必要条件的定义即可得到结论.【文·黑龙江哈六中高二期末考试·2014】11.已知命题1:≠x p 或2≠y ,命题3:≠+y x q ,则命题p 是q 的( ).A 充分不必要 .B 必要不充分 .C 充要条件 .D 既不充分也不必要【知识点】充要条件.【答案解析】B 解析 :解:命题1:≠x p 或2≠y ,则p ┐:1x =且2x =;命题3:≠+y x q ,则:q ┐3x y +=,易知p q Þ┐┐,其等价命题为q p Þ,故p 是q 的必要不充分条件.故选B.【思路点拨】先判断各自的否命题之间的关系p q Þ┐┐,再根据原命题与其逆否命题是等价命题得到结果即可.【文·黑龙江哈六中高二期末考试·2014】2.命题“对任意的01,23≤+-∈x x R x ”的否定是 ( ).A 不存在01,23≤+-∈x x R x .B 存在01,23≥+-∈x x R x .C 存在01,23>+-∈x x R x .D 对任意的01,23>+-∈x x R x【知识点】命题的否定.【答案解析】C 解析 :解:全称命题的否定是特称命题,∴命题“对任意01,23≤+-∈x x R x ”的否定是:存在01,23>+-∈x x R x ,故选:C【思路点拨】根据全称命题的否定是特称命题即可得到结论【文·广东惠州一中高三一调·2014】4.命题“21,11x x <<<若则-”的逆否命题是( )A.21,1,1x x x ≥≥≤-若则或 B.若11<<-x ,则12<xC.若1x >或1x <-,则12>xD.若1x ≥或1x ≤-,则12≥x【知识点】四种命题;逆否命题.【答案解析】D 解析 :解:由逆否命题的变换可知,命题“若12<x ,则11<<-x ” 的逆否命题是“若1x ≥或1x ≤-,则12≥x ”,故选D.【思路点拨】根据逆否命题的变换可得选项.【理·重庆一中高二期末·2014】17、(13分)已知命题p:(x+1)(x-5)≤0,命题q:m x m +≤≤-11(1)若p 是q 的必要条件,求实数m 的取值范围;(2)若m=5,“p q ∨ ”为真命题,“p q ∧ ”为假命题,求实数x 的取值范围。
数学A单元集合与常用逻辑用语A1 集合及其运算1.[2014·北京卷] 已知集合A={x|x2-2x=0},B={0,1,2},则A∩B=()A.{0} B.{0,1}C.{0,2} D.{0,1,2}1.C[解析] ∵A={0,2},∴A∩B={0,2}∩{0,1,2}={0,2}.15.、[2014·福建卷] 若集合{a,b,c,d}={1,2,3,4},且下列四个关系:①a=1;②b≠1;③c=2;④d≠4有且只有一个是正确的,则符合条件的有序数组(a,b,c,d)的个数是________.15.6[解析] 若①正确,则②③④不正确,可得b≠1不正确,即b=1,与a=1矛盾,故①不正确;若②正确,则①③④不正确,由④不正确,得d=4;由a≠1,b≠1,c≠2,得满足条件的有序数组为a=3,b=2,c=1,d=4或a=2,b=3,c=1,d=4.若③正确,则①②④不正确,由④不正确,得d=4;由②不正确,得b=1,则满足条件的有序数组为a=3,b=1,c=2,d=4;若④正确,则①②③不正确,由②不正确,得b=1,由a≠1,c≠2,d≠4,得满足条件的有序数组为a=2,b=1,c=4,d=3或a=3,b=1,c=4,d=2或a=4,b=1,c=3,d=2;综上所述,满足条件的有序数组的个数为6.1.[2014·广东卷] 已知集合M={-1,0,1},N={0,1,2,},则M∪N=()A.{0,1} B.{-1,0,2}C.{-1,0,1,2} D.{-1,0,1}1.C[解析] 本题考查集合的运算.因为M={-1,0,1},N={0,1,2},所以M∪N ={-1,0,1,2}.3.[2014·湖北卷] U为全集,A,B是集合,则“存在集合C使得A⊆C,B⊆∁U C”是“A∩B=∅”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件3.C[解析] 若存在集合C使得A⊆C,B⊆∁U C,则可以推出A∩B=∅;若A∩B=∅,由维思图可知,一定存在C=A,满足A⊆C,B⊆∁U C,故“存在集合C使得A⊆C,B⊆∁U C”是“A∩B=∅”的充要条件.故选C.1.[2014·辽宁卷] 已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=() A.{x|x≥0} B.{x|x≤1}C.{x|0≤x≤1} D.{x|0<x<1}1.D[解析] 由题意可知,A∪B={x|x≤0或x≥1},所以∁U(A∪B)={x|0<x<1}.2.、[2014·全国卷] 设集合M={x|x2-3x-4<0},N={x|0≤x≤5},则M∩N=() A.(0,4] B.[0,4)C.[-1,0) D.(-1,0]2.B[解析] 因为M={x|x2-3x-4<0}={x|-1<x<4},N={x|0≤x≤5},所以M∩N ={x|-1<x<4}∩{0≤x≤5}={x|0≤x<4}.1.[2014·新课标全国卷Ⅰ] 已知集合A={x|x2-2x-3≥0},B={x|-2≤x<2},则A∩B =()A.[-2,-1] B.[-1,2)B.[-1,1] D.[1,2)1.A[解析] 集合A=(-∞,-1]∪[3,+∞),所以A∩B=[-2,-1].1.[2014·新课标全国卷Ⅱ] 设集合M={0,1,2},N={x|x2-3x+2≤0},则M∩N=() A.{1} B.{2} C.{0,1} D.{1,2}1.D[解析] 集合N=[1,2],故M∩N={1,2}.2.,[2014·山东卷] 设集合A={x||x-1|<2},B={y|y=2x,x∈[0,2]},则A∩B=() A.[0,2] B.(1,3) C.[1,3) D.(1,4)2.C[解析] 根据已知得,集合A={x|-1<x<3},B={y|1≤y≤4},所以A∩B={x|1≤x <3}.故选C.1.[2014·陕西卷] 设集合M={x|x≥0,x∈R},N={x|x2<1,x∈R},则M∩N=()A.[0,1] B.[0,1) C.(0,1] D.(0,1)1.B[解析] 由M={x|x≥0,x∈R},N={x|x2<1,x∈R}={x|-1<x<1,x∈R},得M∩N =[0,1).1.[2014·四川卷] 已知集合A={x|x2-x-2≤0},集合B为整数集,则A∩B=() A.{-1,0,1,2} B.{-2,-1,0,1}C.{0,1} D.{-1,0}1.A[解析] 由题意可知,集合A={x|-1≤x≤2},其中的整数有-1,0,1,2,故A∩B ={-1,0,1,2},故选A.19.、、[2014·天津卷] 已知q和n均为给定的大于1的自然数.设集合M={0,1,2,…,q-1},集合A={x|x=x1+x2q+…+x n q n-1,x i∈M,i=1,2,…,n}.(1)当q=2,n=3时,用列举法表示集合A.(2)设s,t∈A,s=a1+a2q+…+a n q n-1,t=b1+b2q+…+b n q n-1,其中a i,b i∈M,i=1,2,…,n.证明:若a n<b n,则s<t.19.解:(1)当q=2,n=3时,M={0,1},A={x|x=x1+x2·2+x3·22,x i∈M,i=1,2,3},可得A={0,1,2,3,4,5,6,7}.(2)证明:由s,t∈A,s=a1+a2q+…+a n q n-1,t=b1+b2q+…+b n q n-1,a i,b i∈M,i =1,2,…,n及a n<b n,可得s-t=(a1-b1)+(a2-b2)q+…+(a n-1-b n-1)q n-2+(a n-b n)q n-1≤(q-1)+(q-1)q+…+(q-1)q n-2-q n-1=(q -1)(1-q n -1)1-q -q n -1 =-1<0,所以s <t .1.[2014·浙江卷] 设全集U ={x ∈N |x ≥2},集合A ={x ∈N |x 2≥5},则∁U A =( )A .∅B .{2}C .{5}D .{2,5}1.B [解析] ∁U A ={x ∈N |2≤x <5}={2},故选B.11.[2014·重庆卷] 设全集U ={n ∈N |1≤n ≤10},A ={1,2,3,5,8},B ={1,3,5,7,9},则(∁U A )∩B =________.11.{7,9} [解析] 由题知∁U A ={4,6,7,9,10},∴(∁U A )∩B ={7,9}.A2 命题及其关系、充分条件、必要条件2.[2014·安徽卷] “x <0”是“ln(x +1)<0”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件2.B [解析] ln(x +1)<0⇔0<1+x <1⇔-1<x <0,而(-1,0)是(-∞,0)的真子集,所“x <0”是“ln(x +1)<0”的必要不充分条件.5.[2014·北京卷] 设{a n }是公比为q 的等比数列,则“q >1”是“{a n }为递增数列”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件5.D [解析] 当a 1<0,q >1时,数列{a n }递减;当a 1<0,数列{a n }递增时,0<q <1.故选D.6.、[2014·福建卷] 直线l :y =kx +1与圆O :x 2+y 2=1相交于A ,B 两点,则“k =1”是“△OAB 的面积为12”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分又不必要条件6.A [解析] 由直线l 与圆O 相交,得圆心O 到直线l 的距离d =1k 2+1<1,解得k ≠0. 当k =1时,d =12,|AB |=2r 2-d 2=2,则△OAB 的面积为12×2×12=12; 当k =-1时,同理可得△OAB 的面积为12,则“k =1”是“△OAB 的面积为12”的充分不必要条件.3.[2014·湖北卷] U 为全集,A ,B 是集合,则“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.C [解析] 若存在集合C 使得A ⊆C ,B ⊆∁U C ,则可以推出A ∩B =∅;若A ∩B =∅,由维思图可知,一定存在C =A ,满足A ⊆C ,B ⊆∁U C ,故“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的充要条件.故选C.8.[2014·陕西卷] 原命题为“若z 1,z 2互为共轭复数,则|z 1|=|z 2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )A .真,假,真B .假,假,真C .真,真,假D .假,假,假8.B [解析] 设z 1=a +b i ,z 2=a -b i ,且a ,b ∈R ,则|z 1|=|z 2|=a 2+b 2,故原命题为真,所以其否命题为假,逆否命题为真.当z 1=2+i ,z 2=-2+i 时,满足|z 1|=|z 2|,此时z 1,z 2不是共轭复数,故原命题的逆命题为假.7.[2014·天津卷] 设a ,b ∈R ,则“a >b ”是“a |a |>b |b |”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件7.C [解析] 当ab ≥0时,可得a >b 与a |a |>b |b |等价.当ab <0时,可得a >b 时a |a |>0>b |b |;反之,由a |a |>b |b |知a >0>b ,即a >b .2.、[2014·浙江卷] 已知i 是虚数单位,a ,b ∈R ,得“a =b =1”是“(a +b i)2=2i ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件2.A [解析] 由a ,b ∈R ,(a +b i)2=a 2-b 2+2ab i =2i, 得⎩⎪⎨⎪⎧a 2-b 2=0,2ab =2,所以⎩⎪⎨⎪⎧a =1,b =1或⎩⎪⎨⎪⎧a =-1,b =-1.故选A. 6.[2014·重庆卷] 已知命题p :对任意x ∈R ,总有2x >0,q :“x >1”是“x >2”的充分不必要条件,则下列命题为真命题的是( )A .p ∧qB .綈p ∧綈qC .綈p ∧qD .p ∧綈q6.D [解析] 根据指数函数的图像可知p 为真命题.由于“x >1”是“x >2”的必要不充分条件,所以q 为假命题,所以綈q 为真命题,所以p ∧綈q 为真命题.A3 基本逻辑联结词及量词5.[2014·湖南卷] 已知命题p :若x >y ,则-x <-y ,命题q :若x >y ,则x 2>y 2.在命题①p ∧q ;②p ∨q ;③p ∧(綈q );④(綈p )∨q 中,真命题是( )A .①③B .①④C .②③D .②④5.C [解析] 依题意可知,命题p 为真命题,命题q 为假命题.由真值表可知p ∧q 为假,p ∨q 为真,p ∧(綈q )为真,(綈p )∨q 为假.5.、[2014·辽宁卷] 设a ,b ,c 是非零向量,已知命题p :若a ·b =0,b ·c =0,则a ·c =0,命题q :若a ∥b ,b ∥c ,则a ∥c ,则下列命题中真命题是( )A .p ∨qB .p ∧qC .(綈p )∧(綈q )D .p ∨(綈q )5.A [解析] 由向量数量积的几何意义可知,命题p 为假命题;命题q 中,当b ≠0时,a ,c 一定共线,故命题q 是真命题.故p ∨q 为真命题.9.、[2014·新课标全国卷Ⅰ] 不等式组⎩⎪⎨⎪⎧x +y ≥1,x -2y ≤4的解集记为D ,有下面四个命题: p 1:∀(x ,y )∈D ,x +2y ≥-2,p 2:∃(x ,y )∈D ,x +2y ≥2,p 3:∀(x ,y )∈D ,x +2y ≤3,p 4:∃(x ,y )∈D ,x +2y ≤-1.其中的真命题是( )A .p 2,p 3B .p 1,p 2C .p 1,p 4D .p 1,p 39.B [解析] 不等式组表示的区域D 如图中的阴影部分所示,设目标函数z =x +2y ,根据目标函数的几何意义可知,目标函数在点A (2,-1)处取得最小值,且z min =2-2=0,即x +2y 的取值范围是[0,+∞),故命题p 1,p 2为真,命题p 3,p 4为假.A4 单元综合2.[2014·福州期末] 已知全集U =R ,集合A ={1,2,3,4,5},B =[3,+∞),则图X11中阴影部分所表示的集合为(A .{0,1,2}B .{0,1}C .{1,2}D .{1}2.C [解析] 由题意,阴影部分表示A ∩(∁U B ).因为∁U B ={x |x <3},所以A ∩(∁U B )={1,2}.4.[2014·湖南十三校一联] 下列说法正确的是( )A .命题“若x 2=1,则x =1”的否命题为“若x 2=1,则x ≠1”B .命题“∃x 0∈R ,x 20+x 0-1<0”的否定是“∀x ∈R ,x 2+x -1>0”C .命题“若x =y ,则sin x =sin y ”的逆否命题为假命题D .若“p 或q ”为真命题,则p ,q 中至少有一个为真命题4.D [解析] A 中否命题应为“若x 2≠1,则x ≠1”;B 中否定应为“∀x ∈R ,x 2+x -1≥0”;C 中原命题为真命题,故逆否命题为真命题;易知D 正确.6.[2014·郑州质检] 已知集合A ={x |x >2},B ={x |x <2m },且A ⊆(∁R B ),则m 的值可以是( )A .1B .2C .3D .46.A [解析] 易知∁R B ={x |x ≥2m },要使A ⊆(∁R B ),则2m ≤2,∴m ≤1,故选A.9.[2014·湖北八市联考] 已知集合M =⎩⎨⎧⎭⎬⎫(x ,y )⎪⎪⎪y -3x -2=3,N ={(x ,y )|ax +2y +a =0},且M ∩N =∅,则a =( )A .-6或-2B .-6C .2或-6D .-29.A [解析] 易知集合M 中的元素表示的是过(2,3)点且斜率为3的直线上除(2,3)点外的所有点.要使M ∩N =∅,则N 中的元素表示的是斜率为3且不过(2,3)点的直线,或过(2,3)点且斜率不为3的直线,∴-a 2=3或2a +6+a =0,∴a =-6或a =-2. 11.[2014·吉林实验中学模拟] 已知集合A ={1,2a },B ={a ,b }.若A ∩B =⎩⎨⎧⎭⎬⎫12,则A ∪B =____________.11.{-1,12,1} [解析] ∵A ∩B =12,∴2a =12,∴a =-1,∴b =12,∴A =⎩⎨⎧⎭⎬⎫1,12,B =-1,12,∴A ∪B ={-1,12,1}. 12.[2014·杭州一模] “λ<0”是“数列{a n }(a n =n 2-2λn ,n ∈N *)为递增数列”的____________条件.12.充分不必要 [解析] ∵{a n }为递增数列⇔a n +1>a n ⇔2n +1-2λ>0⇔2n +1>2λ⇔3>2λ⇔λ<32,∴“λ<0”是“数列{a n }(a n =n 2-2λn ,n ∈N *)为递增数列”的充分不必要条件.。
专题1 集合与常用逻辑用语1. 【2014高考安徽卷文第2题】命题“0||,2≥+∈∀x x R x ”的否定是( )A.0||,2<+∈∀x x R xB. 0||,2≤+∈∀x x R xC. 0||,2000<+∈∃x x R xD. 0||,2000≥+∈∃x x R x2. 【2014高考北京卷文第1题】若集合A={}0,1,2,4,B={}1,2,3,则A B ⋂=( )A.{}0,1,2,3,4B.{}0,4C.{}1,2D.{}33. 【2014高考北京卷文第5题】设a 、b 是实数,则“a b >”是“22a b >”的( )A.充分而不必要条件B.必要而不必要条件C.充分必要条件D.既不充分也不必要条件4. 【2014高考大纲卷文第1题】设集合M={1,2,4,6,8},N={2,3,5,6,7},则MN 中元素的个数为( )A. 2B. 3C. 5D. 7【答案】B【解析】试题分析:{1,2,6)M N =.故选B.考点:集合的运算.5.【2014高考福建卷文第1题】若集合}{}{24,3,P x x Q x x =≤<=≥则P Q ⋂等于 ( ) }{}{}{}{.34.34.23.23A x x B x x C x x D x x ≤<<<≤<≤≤6. 【2014高考福建卷文第5题】命题“[)30,.0x x x ∀∈+∞+≥”的否定是 ( ) ()()[)[)3333000000.,0.0.,0.0.0,.0.0,.0A x x x B x x x C x x x D x x x ∀∈-∞+<∀∈-∞+≥∃∈+∞+<∃∈+∞+≥7. 【2014高考广东卷文第1题】已知集合{}2,3,4M =,{}0,2,3,5N =,则MN =( )A.{}0,2B.{}2,3C.{}3,4D.{}3,58. 【2014高考湖北卷文第1题】 已知全集}7,6,5,4,3,2,1{=U ,集合}6,5,3,1{=A ,则=A C U ( )A.}6,5,3,1{B. }7,3,2{C. }7,4,2{D. }7,5,2{【答案】C【解析】试题分析:依题意,}7,4,2{=A C U ,故选C.考点:补集的运算,容易题.9. 【2014高考湖北卷文第3题】命题“R ∈∀x ,x x ≠2”的否定是( )A. R ∉∀x ,x x ≠2B. R ∈∀x ,x x =2C. R ∉∃x ,x x ≠2D. R ∈∃x ,x x =210. 【2014高考湖南卷文第1题】设命题2:,10p x R x ∀∈+>,则p ⌝为( )200.,10A x R x ∃∈+> 200.,10B x R x ∃∈+≤200.,10C x R x ∃∈+< 2.,10D x R x ∀∈+≤11. 【2014高考湖南卷文第2题】已知集合{|2},{|13}A x x B x x =>=<<,则A B =( ).{|2}A x x > .{|1}B x x > .{|23}C x x << .{|13}D x x <<12. 【2014高考江苏卷第1题】已知集合{}2,1,3,4A =--,{}1,2,3B =-,则A B ⋂= .【答案】{1,3}-【解析】由题意得{1,3}AB =-.【考点】集合的运算 13. 【2014高考江西卷文第2题】设全集为R ,集合2{|90},{|15}A x x B x x =-<=-<≤,则()R A C B =( ).(3,0)A - .(3,1)B -- .(3,1]C -- .(3,3)D -14. 【2014高考江西卷文第6题】下列叙述中正确的是( ).A 若,,a b c R ∈,则2"0"ax bx c ++≥的充分条件是2"40"b ac -≤.B 若,,a b c R ∈,则22""ab cb >的充要条件是""a c >.C 命题“对任意x R ∈,有20x ≥”的否定是“存在x R ∈,有20x ≥”.D l 是一条直线,,αβ是两个不同的平面,若,l l αβ⊥⊥,则//αβ15. 【2014高考辽宁卷文第1题】 已知全集,{|0},{|1}U R A x x B x x ==≤=≥,则集合()U C AB =( )A .{|0}x x ≥B .{|1}x x ≤C .{|01}x x ≤≤D .{|01}x x <<【答案】D【解析】 试题分析:由已知得,{=0A B x x ≤或}1x ≥,故()U C A B ={|01}x x <<.【考点定位】集合的运算.16. 【2014高考全国1卷文第1题】已知集合{}{}|13,|21M x x N x x =-<<=-<<,则MN =( )A. )1,2(-B. )1,1(-C. )3,1(D. )3,2(-17. 【2014高考全国2卷文第1题】设集合2{2,0,2},{|20}A B x x x =-=--=,则AB =( )A. ∅B. {}2C. {0}D. {2}-18. 【2014高考全国2卷文第3题】函数()f x 在0x x =处导数存在,若0:()0p f x =;0:q x x =是()f x的极值点,则( )A .p 是q 的充分必要条件B. p 是q 的充分条件,但不是q 的必要条件C. p 是q 的必要条件,但不是q 的充分条件D. p 既不是q 的充分条件,也不是q 的必要条件19. 【2014高考山东卷文第2题】设集合{}{},41,022≤≤=<-=x x B x x x A 则=B A ( )(A )(]2,0 (B )()2,1 (C ) [)2,1 (D )()4,120. 【2014高考陕西卷文第1题】已知集合2{|0,},{|1,}M x x x R N x x x R =≥∈=<∈,则M N =( ) .[0,1]A .(0,1)B .(0,1]C .[0,1)D【答案】D【解析】试题分析:由{|0,}[0,)M x x x R =≥∈=+∞2{|1,}(1,1)N x x x R =<∈=-所以[0,1)MN =故选D考点:集合间的运算.21. 【2014高考四川卷文第1题】已知集合{|(1)(2)0}A x x x =+-≤,集合B 为整数集,则A B ⋂=( )A .{1,0}-B .{0,1}C .{2,1,0,1}--D .{1,0,1,2}-22. 【2014高考天津卷卷文第3题】已知命题为则总有p e x x p x ⌝>+>∀,1)1(,0:( )A.1)1(,0000≤+≤∃x e x x 使得B. 1)1(,0000≤+>∃x e x x 使得C.0000,(1)1x x x e ∀>+≤总有D.0000,(1)1x x x e ∀≤+≤总有【答案】B【解析】试题分析:因为命题:,p x d ∀的否定为:,p x d ⌝∃⌝,所以命题:0,(1)1,x p x x e p ∀>+>⌝总有为0000,(1)1x x x e ∃>+≤使得,选B.考点:命题的否定23. 【2014高考浙江卷文第1题】设集合 {|2}S x x =≥,}5|{≤=x x T ,则S T =( )A. ]5,(-∞B. ),2[+∞C. )5,2(D.]5,2[24. 【2014高考浙江卷文第2题】设四边形ABCD 的两条对角线为AC 、BD ,则“四边形ABCD 为菱形”是“BD AC ⊥”的( )A. 充分不必要条件B. 必要不成分条件C. 充要条件D. 既不充分也不必要条件25. 【2014高考重庆卷文第6题】已知命题:p 对任意x R ∈,总有||0x ≥; :1q x =是方程20x +=的根,则下列命题为真命题的是( ).A p q ∧⌝ .B p q ⌝∧ .C p q ⌝∧⌝ .D p q ∧26. 【2014高考重庆卷文第11题】已知集合{3,4,5,12,13},{2,3,5,8,13}A B ==,则AB =_______. 【答案】{}3,5,13【解析】试题分析:{}{}{}3,4,5,12,132,3,5,8,133,5,13A B ==所以答案应填{}3,5,13.考点:集合的运算.27. 【2014高考上海卷文第15题】设R b a ∈,,则“4>+b a ”是“2,2>>b a 且”的( )(A )充分条件 (B )必要条件(C )充分必要条件 (D )既非充分又非必要条件。
2014年全国各地高考数学试题分类汇编大全目录01--集合((1)集合的含义与表示;(2)集合间的基本关系;(3)集合的基本运算)02--常用逻辑用语((1)命题以及关系;(2)充分条件与必要条件;(3)简单的逻辑联结词;(4)全称量词与存在量词)03--函数的性质及其应用((1)函数;(2)指数函数;(3)对数函数; (4)幂函数;(5)函数与方程;(6)函数模型及其应用;)04--导数及其应用((1)导数概念及其几何意义;(2)导数的运算;(3)导数在研究函数中的应用;(4)生活中的优化问题;(5)定积分与微积分基本定理)05--不等式((1)不等关系;(2)一元二次不等式;(3)二元一次不等式组与简单线性规划问题;(4)基本不等式)06--数列((1)数列的概念和简单表示法;(2)等差数列、等比数列;(3)数学归纳法。
)07--数系的扩充与复数的引入((1)复数的概念;(2)复数的四则运算)08--三角函数三角恒等变换((1)任意角的概念、弧度制;(2)三角函数;(3)和与差的三角函数公式;(4)简单的三角恒等式)09--解三角形((1)正弦定理和余弦定理;(2)应用(解决一些与测量和几何计算有关的实际问题))10--平面向量((1)平面向量的实际背景及基本概念;(2)向量的线性运算;(3)平面向量的基本定理及坐标表示;(4)平面向量的数量积;(5)向量的应用)11--解析几何初步((1)直线与方程;(2)圆与方程;(3)空间直角坐标系)12--圆锥曲线与方程((1)圆锥曲线;(2)曲线与方程)13--立体几何((1)空间几何体;(2)点、直线、平面之间的位置关系;(3)空间向量及其运算;(4)空间向量的应用)14-- 算法初步、框图((1)算法的含义、程序框图;(2)基本算法语句;(3)流程图;(4)结构图;)15--统计、统计案例、推理与证明((1)事件与概率;(2)古典概型;(3)随机数与几何概型;(4)随机抽样;(5)总体估计;(6)变量的相关性;(7)独立性检验;(8)回归分析;(9)合情推理与演绎推理; (10)直接证明与间接证明; )16--随机变量及其分布((1)离散型随机变量及其分布;(2)均值与方差;(3)正态分布)17--计数原理、二项式定理((1)分类加法计数原理、分步乘法计数原理;(2)排列与组合;(3)二项式定理)18--选修4:((1)几何证明选讲;(2)坐标系与参数方程;(3)不等式选讲;(4)矩阵与变换)本套资料是对2014年全国各地的全部37套高考数学试题,按新课标的知识单元所做的分类汇编。
一数学
选择题
1.[2014·北京卷] 已知集合A={x|x2-2x=0},B={0,1,2},则A∩B=()
A.{0} B.{0,1} C.{0,2} D.{0,1,2}
1.C
2.[2014·广东卷] 已知集合M={-1,0,1},N={0,1,2,},则M∪N=() A.{0,1} B.{-1,0,2}
C.{-1,0,1,2} D.{-1,0,1}
2.C
3.[2014·湖北卷] U为全集,A,B是集合,则“存在集合C使得A⊆C,B⊆∁U C”是“A∩B=∅”的()
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件
3.C
4.[2014·辽宁卷] 已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=() A.{x|x≥0} B.{x|x≤1} C.{x|0≤x≤1} D.{x|0<x<1}
4.D
5.[2014·全国卷] 设集合M={x|x2-3x-4<0},N={x|0≤x≤5},则M∩N=() A.(0,4] B.[0,4) C.[-1,0) D.(-1,0]
5.B
6.[2014·新课标全国卷Ⅰ] 已知集合A={x|x2-2x-3≥0},B={x|-2≤x<2},则A∩B =()
A.[-2,-1] B.[-1,2)B.[-1,1] D.[1,2)
6.A
7.[2014·新课标全国卷Ⅱ] 设集合M={0,1,2},N={x|x2-3x+2≤0},则M∩N=() A.{1} B.{2} C.{0,1} D.{1,2}
7.D
8.[2014·山东卷] 设集合A={x||x-1|<2},B={y|y=2x,x∈[0,2]},则A∩B=() A.[0,2] B.(1,3) C.[1,3) D.(1,4)
8.C
9.[2014·陕西卷] 设集合M={x|x≥0,x∈R},N={x|x2<1,x∈R},则M∩N=() A.[0,1] B.[0,1) C.(0,1] D.(0,1)
9.B
10.[2014·四川卷] 已知集合A={x|x2-x-2≤0},集合B为整数集,则A∩B=() A.{-1,0,1,2} B.{-2,-1,0,1} C.{0,1} D.{-1,0}
10.A
11.[2014·浙江卷] 设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁U A=() A.∅B.{2} C.{5} D.{2,5}
11.B
12.[2014·安徽卷] “x<0”是“ln(x+1)<0”的()
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件
12.B
13.[2014·北京卷] 设{a n}是公比为q的等比数列,则“q>1”是“{a n}为递增数列”的
( )
A .充分而不必要条件
B .必要而不充分条件
C .充分必要条件
D .既不充分也不必要条件
13.D
14. [2014·福建卷] 直线l :y =kx +1与圆O :x 2+y 2=1相交于A ,B 两点,则“k =1”
是“△OAB 的面积为12
”的( ) A .充分而不必要条件 B .必要而不充分条件
C .充分必要条件
D .既不充分又不必要条件
14.A
15.[2014·湖北卷] U 为全集,A ,B 是集合,则“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的( )
A .充分而不必要条件
B .必要而不充分条件
C .充要条件
D .既不充分也不必要条件
15.C
16.[2014·陕西卷] 原命题为“若z 1,z 2互为共轭复数,则|z 1|=|z 2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )
A .真,假,真
B .假,假,真
C .真,真,假
D .假,假,假
16.B
17.[2014·天津卷] 设a ,b ∈R ,则“a >b ”是“a |a |>b |b |”的( )
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分又不必要条件
17.C
18. [2014·浙江卷] 已知i 是虚数单位,a ,b ∈R ,得“a =b =1”是“(a +b i)2=2i ”的
( )
A .充分不必要条件
B .必要不充分条件
C .充分必要条件
D .既不充分也不必要条件
18.A
19.[2014·重庆卷] 已知命题p :对任意x ∈R ,总有2x >0,q :“x >1”是“x >2”的充分不必要条件,则下列命题为真命题的是( )
A .p ∧q
B .┓p ∧┓q
C .┓p ∧q
D .p ∧┓q
19.D
20.[2014·湖南卷] 已知命题p :若x >y ,则-x <-y ,命题q :若x >y ,则x 2>y 2.在命题①p ∧q ;②p ∨q ;③p ∧(┓q );④(┓p )∨q 中,真命题是( )
A .①③
B .①④
C .②③
D .②④
20.C
21. [2014·辽宁卷] 设a ,b ,c 是非零向量,已知命题p :若a ·b =0,b ·c =0,则a ·c =0,命题q :若a ∥b ,b ∥c ,则a ∥c ,则下列命题中真命题是( )
A .p ∨q
B .p ∧q
C .(┓p )∧(┓q )
D .p ∨(┓q )
21.A
22. [2014·新课标全国卷Ⅰ] 不等式组⎩
⎪⎨⎪⎧x +y ≥1,x -2y ≤4的解集记为D ,有下面四个命题: p 1:∀(x ,y )∈D ,x +2y ≥-2,p 2:∃(x ,y )∈D ,x +2y ≥2,
p 3:∀(x ,y )∈D ,x +2y ≤3,p 4:∃(x ,y )∈D ,x +2y ≤-1.
其中的真命题是( )
A .p 2,p 3
B .p 1,p 2
C .p 1,p 4
D .p 1,p 3
22.B
23.[2014·福建卷] 若集合{a,b,c,d}={1,2,3,4},且下列四个关系:
①a=1;②b≠1;③c=2;④d≠4有且只有一个是正确的,则符合条件的有序数组(a,b,c,d)的个数是________.
23.6
填空题
1.[2014·重庆卷] 设全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},则(∁U A)∩B=________.
1.{7,9}
解答题
1.[2014·天津卷] 已知q和n均为给定的大于1的自然数.设集合M={0,1,2,…,q-1},
集合A={x|x=x1+x2q+…+x n q n-1,x i∈M,i=1,2,…,n}.
(1)当q=2,n=3时,用列举法表示集合A.
(2)设s,t∈A,s=a1+a2q+…+a n q n-1,t=b1+b2q+…+b n q n-1,其中a i,b i∈M,i=1,2,…,n.证明:若a n<b n,则s<t.
1.解:(1)当q=2,n=3时,M={0,1},A={x|x=x1+x2·2+x3·22,x i∈M,i=1,2,3},可得A={0,1,2,3,4,5,6,7}.
(2)证明:由s,t∈A,s=a1+a2q+…+a n q n-1,t=b1+b2q+…+b n q n-1,a i,b i∈M,i =1,2,…,n及a n<b n,可得
s-t=(a1-b1)+(a2-b2)q+…+(a n-1-b n-1)q n-2+(a n-b n)q n-1
≤(q-1)+(q-1)q+…+(q-1)q n-2-q n-1
=(q-1)(1-q n-1)
1-q
-q n-1
=-1<0,所以s<t.。