正定二次型
- 格式:ppt
- 大小:545.00 KB
- 文档页数:24
正定二次型的判别方法正定二次型是向量空间内的重要概念,它在许多数学领域中都有应用,如优化、概率论和统计学。
本文将介绍正定二次型的定义,性质和判别方法。
定义:设$f(x_1,x_2,...,x_n)$是$x_1,x_2,...,x_n$的二次多项式,即:$$f(x_1,x_2,...,x_n)=\sum_{1\leq i,j\leq n} a_{ij}x_ix_j$$其中$a_{ij}$为实数,且$a_{ij}=a_{ji}$。
则称$f(x_1,x_2,...,x_n)$为$n$元实二次型,它的矩阵表示为$$A=(a_{ij})_{n\times n}$$称为二次型的矩阵。
也就是说,二次型和它的矩阵$A$是一一对应的关系。
性质:1.对于任意的实数$k$,$kx^T Ax$都是一个二次型。
2.二次型可以表示为两部分之和,即$f(x)=g(x)+h$,其中$g(x)$是只与$x$有关的部分,$h$是只与$x$无关的常数项。
3.设$A=(a_{ij})$是一个$n$阶实对称矩阵,则$A$的主对角线元素必为实数,有$a_{ii}\in\mathbb{R}$。
且$\forall i,j\in[1,n]$,有$a_{ij}=a_{ji}$。
4.对于任意非零实向量$x=(x_1,x_2,...,x_n)^T$,有$x^T Ax>0$,则称$f(x)$是正定二次型;有$x^T Ax<0$,则称$f(x)$是负定二次型;有$x^T Ax=0$,则称$f(x)$是半定二次型。
判别方法:1.矩阵的特征值法:对于实对称矩阵$A$,先求出它的所有特征值$\lambda_1,\lambda_2,...,\lambda_n$,然后判断它们的符号。
如果$\lambda_i>0(1\leq i\leq n)$,则$f(x)$为正定二次型;如果$\lambda_i<0(1\leq i\leq n)$,则$f(x)$为负定二次型;如果$\lambda_i=0(1\leqi\leq n)$的个数不超过$k$个,则$f(x)$为$k$阶半定二次型。
正定二次型的判别方法正定二次型是数学中一个重要的概念,它在优化问题、矩阵理论、微分方程等领域都有着重要的应用。
在实际问题中,我们经常需要判断一个二次型是否是正定的,因为正定二次型在优化问题中有着良好的性质,可以帮助我们解决问题。
研究正定二次型的判别方法对于理解和应用二次型具有重要的意义。
本文将就正定二次型的判别方法进行介绍和讨论,首先我们将对正定二次型做一个简单的介绍,然后详细讨论正定二次型的判别方法,包括特征值、惯性定理以及Sylvester定理等。
一、正定二次型的定义在矩阵理论中,二次型是指一个具有形式为\[ Q(x_1,x_2, \cdots, x_n) = \sum_{i,j=1}^{n} a_{ij}x_ix_j \]的二次齐次多项式。
在这里,a_{ij}是实数或复数,x_i是变量,i,j=1,2, \cdots, n,称n元二次型。
我们知道,二次型可以表示成矩阵的形式,即\[ X^TAx \]X=(x_1,x_2, \cdots, x_n)^T是一个列向量,A是一个n \times n的实对称矩阵,其对称性确保了二次型中不同的x_ix_j和x_jx_i的系数是相同的。
而正定二次型是指对于任意非零向量x,都有\[ x^TAx > 0 \]即对应的二次型值大于0。
这里需要注意的是,在一些文献中,正定二次型的定义可能会有所不同,但在本文中,我们将采用这个定义进行讨论。
1. 特征值判别法特征值是矩阵理论中一个非常重要的概念,它可以帮助我们理解矩阵的性质和结构。
对于一个n \times n的实对称矩阵A,它一定可以对角化成\[ A = PDP^{-1} \]P是一个正交矩阵,D是一个对角矩阵,其对角线上的元素是A的特征值。
特征值判别法是通过矩阵A的特征值来判断二次型的正定性。
如果A的特征值都大于0,则二次型是正定的;如果A的特征值都小于0,则二次型是负定的;如果A的特征值中既有正值又有负值,则二次型是不定的。
正定二次型一、定义正定二次型是线性代数中一个重要的概念。
在矩阵理论中,正定二次型是正定矩阵基于向量内积的一种自然推广。
正定二次型在数学分析、优化问题以及统计学中有着广泛的应用。
设A是一个n阶方阵,A是一个n维列向量,则称二次型A(A)=AAAA为矩阵A的对应二次型。
如果对于任意的非零向量A,都有A(A)>0,则称二次型A(A)为正定二次型。
二、性质正定二次型具有以下性质:1. 正定二次型的矩阵A一定是对称矩阵。
这是因为对称矩阵的转置等于自身,所以对任意的A,都有AAAA=AA(AAA)=AAAA。
2. 正定二次型的特征值全为正数。
设A是正定二次型的矩阵,对于A 的任意一个特征向量A,我们有AA=AA。
由于正定二次型对于任意非零向量A的取值都大于零,所以对于特征向量A,有AAAA>0,这等价于AA(AA)>0,即A>0。
因此,正定二次型的特征值全为正数。
3. 正定二次型的标准型为A₁²+A₂²+⋯+AA²。
正定二次型可以通过配方法化简为标准型。
化简的过程就是通过正交变换将原二次型变为标准型。
正交变换保持向量的长度不变,所以正定二次型的标准型为A₁²+A₂²+⋯+AA²。
4. 正定二次型的零空间只包含零向量。
设二次型A(A)=AAAA是正定二次型,如果A(A)=0,那么由于A≠0,所以AAAA=0,根据正定二次型的定义,A=0。
三、应用正定二次型在数学的许多领域有着广泛的应用。
1. 凸优化凸优化是数学中的一个重要分支,而正定二次型在凸优化问题中扮演着重要的角色。
对于一个凸优化问题,如果目标函数是一个正定二次型,那么这个优化问题就是一个凸优化问题。
通过对正定二次型进行分析,我们可以得到其极小点,并进一步解决凸优化问题。
2. 统计学在统计学中,正定二次型常常出现在协方差矩阵、精确度矩阵等概念中。
协方差矩阵描述了多个变量之间的关系,而正定二次型可以通过协方差矩阵定义一个正态分布的概率密度函数。
§4 正定二次型一、正定二次型定义 设有实二次型f (n x x x ,,,21 ),如果对于任意一组不全为零的实数n c c c ,,,21 都有f (n c c c ,,,21 )>0.则称 f 为正定二次型。
如,二次型f (n x x x ,,,21 )=22221n x x x +++ 是正定的,因为只有在c 1=c 2=…=c n =0时,22221nc c c +++ 才为零. 正定性的判定 1.实二次型f (n x x x ,,,21 )= d 1x 12+d 2x 22+…+d n x n 2 是正定的当且仅当d i >0 ,i=1,2,…,n . .2.非退化线性替换不改变二次型的正定性 证明:设实二次型 f (n x x x ,,,21 )=∑∑==nj j i ijni x x a11 ,a ij =a ji , (1)是正定的,经过非退化实线性替换X =CY (2)变成二次型g (n y y y ,,,21 )=∑∑==nj j i ijni y y b11 , b ij =b ji (3)则n y y y ,,,21 的二次型g (n y y y ,,,21 )也是正定的,事实上,令y 1=k 1,y 2=k 2,…,y n =k n代入⑵的右端,就得n x x x ,,,21 对应的一组值.譬如说,是n c c c ,,,21 这就是说⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n c c c 21=C ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n k k k 21因为C 可逆,就有⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n k k k 21=C -1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n c c c 21所以当n k k k ,,,21 是一组不全为零的实数时,n c c c ,,,21 也是一组不全为零的实数.显然g (n k k k ,,,21 )= f (n c c c ,,,21 )>0因为二次型⑶也可以经非退化实线性替换X C Y 1-=变到二次型⑴,所以按同样理由,当⑶正定时⑴也正定.这就是说,非退化实线性替换保持正定性不变。
正定二次型正定二次型是线性代数中一种重要的二次型形式,它在数学和工程领域都有广泛的应用。
本文将介绍正定二次型的定义、性质以及一些应用。
1. 定义对于一个n维向量x=(x1,x2,...,x n)T,其中x i表示向量x的第i个分量。
正定二次型是指具有如下形式的二次型:Q(x)=x T Ax其中A是一个$n \\times n$的对称矩阵,x T表示向量x的转置。
如果对于任意的非零向量x,都有Q(x)>0,则称二次型Q(x)为正定二次型。
2. 性质正定二次型具有一些重要的性质,下面将介绍其中几个性质。
2.1 对称性正定二次型的矩阵A是一个对称矩阵,即A=A T。
这是因为对于任意的向量x,都有x T Ax=x T(A T x)=(x T Ax)T=x T A T x。
因此,正定二次型的矩阵A是对称的。
2.2 正定性与正定矩阵的关系正定二次型与正定矩阵之间有着紧密的联系。
一个$n \\times n$的对称矩阵A 是正定矩阵,当且仅当对于任意的非零向量x,都有x T Ax>0。
而正定二次型Q(x)是由矩阵A定义的,因此正定矩阵与正定二次型是等价的概念。
2.3 正定矩阵的特征值对于一个正定矩阵A,它的特征值都大于零。
这是因为如果A的一个特征值为$\\lambda$,对应的特征向量为x,那么有$Ax = \\lambda x$。
进而,我们可以得到$x^T A x = x^T (\\lambda x) = \\lambda (x^T x) > 0$。
由于x是非零向量,x T x> 0,因此必有$\\lambda > 0$。
2.4 正定矩阵的行列式对于一个正定矩阵A,它的行列式大于零。
这是因为正定矩阵的特征值都大于零,而行列式是特征值的乘积,因此正定矩阵的行列式也大于零。
3. 应用正定二次型在数学和工程领域有着广泛的应用。
下面将介绍两个典型的应用。
3.1 正定二次型在优化问题中的应用正定二次型经常出现在优化问题的目标函数中。
5..4 正定二次型一、定义:假设12(,)(),T n f x x x f X X AX == 为实二次型,TA A =,12(,)T n X x x x O =≠ ,则1、如果12(,)()0T n f x x x f X X AX ==> ,则称二次型12(,)()n f x x x f X = 为正定二次型,矩阵A 称为正定矩阵。
2、如果12(,)()0T n f x x x f X X AX ==< ,则称二次型12(,)()n f x x x f X = 为负定二次型,矩阵A 称为负定矩阵。
3、如果12(,)()0T n f x x x f X X AX ==≥ ,则称二次型12(,)()n f x x x f X = 为半正定二次型,矩阵A 称为半正定矩阵。
4、如果12(,)()0T n f x x x f X X AX ==≤ ,则称二次型12(,)()n f x x x f X = 为半负定二次型,矩阵A 称为半负定矩阵。
二、判定定理:1、二次型12(,)n f x x x 正定A ⇔为正定矩阵12(,)()0T n f x x x f X X AX ⇔==> 12(,)n f x x x ⇔ 的标准型2221122n n d y d y d y +++ 中的系数0,1,2i d i n >= 12(,)n f x x x ⇔ 的正惯性指数等于n 12(,)n f x x x ⇔ 的规范性为22212n y y y +++ A ⇔合同于单位矩阵E ⇔存在可逆矩阵C 使得TA C C =A ⇔的顺序主子式全大于零12(,)n f x x x ⇔- 负定。
证明:(1)二次型2221122n nd x d x d x +++ 正定0,1,2i d i n ⇔>= 事实上,如果0,1,2i d i n >= ,则对任意的12(,)n x x x O ≠ , 22211220n n d x d x d x +++> ,即2221122n nd x d x d x +++ 正定。
正定二次型判断方法正定二次型是线性代数中的一个重要概念,在实际应用中具有广泛的应用。
判断一个二次型是否正定的方法是线性代数中最基本的问题之一,也是非常重要的。
本文将介绍正定二次型的概念、性质和判定方法。
一、正定二次型的概念和性质1.1 正定二次型的定义设f(x1,x2,...,xn)是一个n元二次齐次函数,则称f(x1,x2,...,xn)是正定二次型,如果对于任意的非零向量x=(x1,x2,...,xn),都有f(x)>0。
(1)正定二次型的值域是正实数。
(3)正定二次型的解析式一定是一个关于字母的二次有理函数。
(4)正定二次型的非零二次型矩阵一定是可逆矩阵。
对于二元二次型f(x1,x2)=2x1^2+2x2^2-x1x2,我们可以验证该二次型是否正定。
根据定义,我们需要对于任意的非零向量(x1,x2),都有f(x)>0。
即需要满足如下条件:2x1^2+2x2^2-x1x2>0化简得:由于x1^2和x2^2始终是非负数,并且当x1=x2=0时,x1^2+x2^2+\frac{1}{2}x1x2=0,因此只要证明\frac{1}{2}x1x2的系数大于等于0,就能证明f(x)是正定的。
根据矩阵乘法的定义可得到f(x)=x^T\begin{bmatrix}2 & -\frac{1}{2} \\-\frac{1}{2} & 2\end{bmatrix} x由于该矩阵是正定矩阵(两个特征值均为正数),因此该二次型是正定的。
2.1 特征值法设二次型为f(x)=x^TAx,其中A为二次型的系数矩阵,λ1,λ2,...,λn为矩阵A的n 个特征值,则有如下结论:当A是正定矩阵时,有λ1>0,λ2>0,...,λn>0。
2.2 主元法当二次型f(x)对应的矩阵A是可逆矩阵时,有如下结论:当二次型的系数矩阵A的顺序主子式(行列式)都大于0时,二次型成为正定的。
正定二次型的判定方法首先,介绍一下什么是正定二次型。
正定二次型是指对于任意非零向量x,都有x^TAx>0,其中A为n阶对称矩阵。
这意味着二次型的值对于所有非零向量都是正的,反之,若存在一些非零向量使得二次型的值为负或0,则称为负定二次型或半定二次型。
接下来,我们来介绍正定二次型的判定方法,包括特征值法、配方法、主元法等。
1.特征值法:特征值法是判定二次型正定性的重要方法。
首先求矩阵A的特征值λi及其对应的特征向量xi,然后判断特征值是否全部大于0。
如果全部大于0,则二次型是正定的;如果有一个特征值小于等于0,则二次型不是正定的。
2.配方法:配方法是判定二次型正定性的常用方法。
对于n阶矩阵A,通过对A进行合同变换,将A化为对角矩阵D,即D=P^TAP,其中P为可逆矩阵,D为对角矩阵。
若D的对角元素d1, d2, ..., dn全大于0,则二次型是正定的。
否则,若存在一些对角元素di小于等于0,则二次型不是正定的。
3.主元法:主元法也是一种常用的判定正定二次型的方法。
将n阶对称矩阵A化为标准型,即E=T^TAT,其中E为对角矩阵,T为可逆矩阵。
对于标准型E,若E的主对角线元素全大于0,则二次型是正定的。
若存在一些主对角线元素小于等于0,则二次型不是正定的。
4.结构法:结构法是一种基于矩阵A的结构特点进行判定的方法。
对于n阶对称矩阵A,若存在n个线性无关的向量,将其拼接为矩阵B,即B=[b1,b2, ..., bn],且满足B^TAB是对角矩阵,则二次型是正定的。
否则,二次型不是正定的。
以上是常见的几种判定正定二次型的方法,下面我们通过一个具体的例子来演示这些方法。
设二次型Q(x)=x^TAx=x1^2+4x1x2+3x2^2,其中A是2阶对称矩阵。
我们通过以上方法来判定二次型的正定性。
1.特征值法:求矩阵A的特征值λi及其对应的特征向量xi,有:1-lambda, 22, 3-lambda解特征方程det(A-lambdaI)=0,得到特征值为λ1=4和λ2=0。