第二章 状态空间表达式的解
- 格式:ppt
- 大小:1.79 MB
- 文档页数:120
第二章 状态空间表达式的解3-2-1 试求下列矩阵A 对应的状态转移矩阵φ(t )。
(1) ⎥⎦⎤⎢⎣⎡-=2010A (2) ⎥⎦⎤⎢⎣⎡-=0410A (3) ⎥⎦⎤⎢⎣⎡--=2110A (4) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=452100010A (5)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=0000100001000010A (6)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=λλλλ000100010000A 【解】:(1) (2) (3) (4)特征值为:2,1321===λλλ。
由习题3-1-7(3)得将A 阵化成约当标准型的变换阵P 为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=421211101P ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=-1211321201P线性变换后的系统矩阵为:(5)为结构四重根的约旦标准型。
(6)虽然特征值相同,但对应着两个约当块。
或}0100010000{])[()(1111----⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------=-=Φλλλλs s s s L A sI L t 3-2-2 已知系统的状态方程和初始条件 (1)用laplace 法求状态转移矩阵; (2)用化标准型法求状态转移矩阵; (3)用化有限项法求状态转移矩阵; (4)求齐次状态方程的解。
【解】:(1) (2)特征方程为: 特征值为:2,1321===λλλ。
由于112==n n ,所以1λ对应的广义特征向量的阶数为1。
求满足0)(11=-P A I λ的解1P ,得:0110000000312111=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--P P P ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=0011P 再根据0)(22=-P A I λ,且保证1P 、2P 线性无关,解得:对于当23=λ的特征向量,由0)(33=-P A I λ容易求得: 所以变换阵为:[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==110010001321P P P P ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-1100100011P 线性变换后的系统矩阵为:(3)特征值为:2,1321===λλλ。
第2章 状态空间表达式的解第1节 线性定常齐次状态方程的解线性定常齐次状态方程0(0)x Ax x x ==& 的解为0()Atx t e x = (0)t >式中,22()2!!kAt k t At e I At A k ∞∆==+++=∑L 证明:用拉普拉斯变换法。
对 x A x =& 作拉氏变换,得0()()sX s x AX s -=10()()X s sI A x -=-110()[()]x t L sI A x --=-因为 223111()()sI A I A A I s s s -+++=L故 1223111()sI A I A A s s s --=+++L12023111()[]x t L I A A x s s s -=+++L 2201()2!I At A t x =+++L 0Ate x =顺便可知])[(11---=A sI L eAt第2节 矩阵指数函数Ate1、Ate 的定义和性质(1)定义22()2!!kAtk t At e I At A k ∞==+++=∑L 式中 A —线性定常系统系统矩阵,n n ⨯阶;Ate —矩阵指数函数,n n ⨯阶时变矩阵。
若A 中各元素均小于某定值,Ate 必收敛;若A 为实矩阵,Ate 绝对收敛。
(2)基本性质:◆组合性质:)(2121t t A At At ee e += 其中21,t t 为相衔接的两时间段。
推论1:I eeee A t t A t A At ===--0)()(推论2:)(1][t A At ee --=◆微分性质:A e Ae e tAt At At ==d d ◆当A 、B 两阵可交换,即 BA AB =,则tB A BtAt ee e )(+=◆若1-P 存在,则P e P eAAPP 11-=-2、Ate 的计算 (1)级数计算法()!kAtk At e k ∞==∑ (2)拉氏变换法])[(11---=A sI L eAt当A 阵维数较高时,预解矩阵可采用递推法计算。
第二章 控制系统状态空间表达式的解建立了控制系统状态空间表达式之后,就是讨论求解的问题,本章重点讨论状态转移矩阵的定义,性质和计算方法,从而导出状态方程的求解公式并讨论连续时间系统状态方程的离散化的问题。
§2-1线性定常齐次状态方程的解(自由解)所谓自由解是指系统输入为零时,由初始状态引起的自由运动。
状态方程为齐次矩阵微分方程:AX X= (2-1)若初始时刻0t 时的状态给定为00)(x t x =,则式(2-1)有唯一确定解。
0)(0)(x e t x t t A -=,0t t ≥(2-2)若初始时刻从0=t 开始,即0)0(x x =,则其解为:0)(x e t x At =, 0t t ≥(2-3)证:先假设式(2-1)的解)(t x 为t 的矢量幂级数形式,即:+++++=k k t b t b t b b t x 2210)((2-4)对上式求导: ++++=-1232132)(k k t kb t b t b b t x代人式(2-1)得:A x= ( +++++kk t b t b t b b 2210) (2-5)既然式(2-4)是(2-1)的解,则式(2-5)对任意时刻t 都成立,故t 的同次幂项的系数应相等,有:01Ab b =,0212!2121b A Ab b ==,0323!3131b A Ab b ==,… 01!11b A k Ab kb k k k ==-,… 在式(2-4)中,令0=t ,可得:00)0(x x b == 将以上结果代人式(2-4),故得:022)!1!211()(x t A k t A At t x k k +++++= (2-6)括号内的展开式是n n ⨯矩阵,它是一个矩阵指数函数,记为At e221112!!At k ke At A t A t K =+++++ (2-7)式(2-6)可表示为:0()At x t e x =再用)(0t t -代替)0(-t ,即在代替t 的情况下,同样证明0)(0)(x e t x t t A -=的正确性。
现代控制理论总结第一章:控制系统的状态空间表达式1、状态变量,状态空间与状态轨迹的概念:在描述系统运动的所有变量中,必定可以找到数目最少的一组变量,他们足以描述系统的全部运动,这组变量就称为系统的状态变量。
以状态变量X1,,X2,X3,……X n为坐标轴所构成的n维欧式空间(实数域上的向量空间)称为状态空间。
随着时间的推移,x(t)在状态空间中描绘出一条轨迹,称为状态轨迹。
2、状态空间表达式:状态方程和输出方程合起来构成对一个系统完整的动态描述,称为系统的状态空间表达式。
3、实现问题:由描述系统输入输出关系的运动方程或传递函数建立系统的状态空间表达式,这样的问题称为实现问题单入单出系统传函:W(s)=,实现存在的条件是系统必须满足m<=n,否则是物理不可实现系统最小实现是在所有的实现形式中,其维数最低的实现。
即无零,极点对消的传函的实现。
三种常用最小实现:能控标准型实现,能观标准型实现,并联型实现(约旦型)4、能控标准型实现,能观标准型实现,并联型实现(约旦型)传函无零点系统矩阵A的主对角线上方元素为1,最后一行元素是传函特征多项式系数的负值,其余元素为0,A为友矩阵。
控制矩阵b除最后一个元素是1,其他为0,矩阵A,b具有上述特点的状态空间表达式称为能控标准型。
将b与c矩阵元素互换,另输出矩阵c除第一个元素为1外其他为0,矩阵A,c具有上述特点的状态空间表达式称为能观标准型。
传函有零点见书p17页……..5、建立空间状态表达式的方法:①由结构图建立②有系统分析基里建立③由系统外部描述建立(传函)6、子系统在各种连接时的传函矩阵:设子系统1为子系统2为1)并联:另u1=u2=u,y=y1+y2的系统的状态空间表达式所以系统的传递函数矩阵为:2)串联:由u1=u,u2=y1,y=y2得系统的状态空间表达式为:W(S)=W2(S)W1(S)注意不能写反,应为矩阵乘法不满足交换律3)反馈:系统状态空间表达式:第二章:状态空间表达式的解:1、状态方程解的结构特征:线性系统的一个基本属性是满足叠加原理,把系统同时在初始状态和输入u作用下的状态运动x(t)分解为由初始状态和输入u分别单独作用所产生的运动和的叠加。
第2章状态空间表达式的解第1节线性定常齐次状态方程的解线性定常齐次状态方程i= Ax x(0) = X o的解为x(t) = e At X o (t 0 )式中,e At T At A2-2! k=o k!证明:用拉普拉斯变换法。
对x= Ax作拉氏变换,得sX(s) - X o= AX(s)-iX(s) = (si - A) X ox(t) =「[(si「A)1]x o111因为(si A)(T 丐A 飞A2 lilt Is s s故(si「A) 1 = -1 2 A + A2IIIs s sx(t)= L1[-r 2 A ^A2lll]x°s s s=(I At f A2t2lll)x o= e At x)顺便可知e At = L 1[(sl - A) 1]第2节矩阵指数函数e At1、e At的定义和性质(1)定义e At= I + At + A2「+ 11 卜z(At)-2! k=o k!式中A—线性定常系统系统矩阵,n n阶;e At—矩阵指数函数,n n阶时变矩阵。
若A中各元素均小于某定值,e At必收敛;若A为实矩阵,e At绝对收敛。
(2)基本性质:♦组合性质:e Atl e At^ e A(t/12}其中为相衔接的两时间段。
推论2: [e At]T 二e A Ct)■微分性质:%Ae At e At Adt♦当A、B两阵可交换,即BA,则e At e Bt (A B)t♦若pF存在,贝卩eg P1e A P2、e‘At的计算(1)级数计算法、lAtl!Ate(2)拉氏变换法当A 阵维数较高时, (3)多项式表示法e At = L 1[(sl A)1]预解矩阵可采用递推法计算。
e At若A 的特征根1,o (t)1(t)n-1k' k(t)A k=0•, n 两两互异,则III J in r1 I12212 2e l te 2t(4)非奇异变换法 1)设A 的特征根1,・,n 两两互异,贝卩t1e nt]P 1At■ t ■ te A - Pdiag[e lte 2t其中 P 满足 P^APu diag 「「2 n ]推论:若A= diagV 「2…5】,则证明:可交换,故 」e At 二 diag[e lt e 2t扎11 e nt]2)设A 为具有共轭复特征根zi,2CJ-j 的二阶阵,贝U其中P 满足eAtCT P 1AP-tP cos t sin t 胡 I P sin t cos t(模态规范型)。
现代控制理论1.经典-现代控制区别:经典控制理论中,对一个线性定常系统,可用常微分方程或传递函数加以描述,可将某个单变量作为输出,直接和输入联系起来;现代控制理论用状态空间法分析系统,系统的动态特性用状态变量构成的一阶微分方程组描述,不再局限于输入量,输出量,误差量,为提高系统性能提供了有力的工具.可以应用于非线性,时变系统,多输入-多输出系统以及随机过程.2.实现-描述由描述系统输入-输出动态关系的运动方程式或传递函数,建立系统的状态空间表达式,这样问题叫实现问题.实现是非唯一的.3.对偶原理系统=∑1(A1,B1,C1)和=∑2(A2,B2,C2)是互为对偶的两个系统,则∑1的能控性等价于∑2的能观性, ∑1的能观性等价于∑2的能控性.或者说,若∑1是状态完全能控的(完全能观的),则∑2是状态完全能观的(完全能控的).对偶系统的传递函数矩阵互为转置4.对线性定常系统∑0=(A,B,C),状态观测器存在的充要条件是的不能观子系统为渐近稳定第一章控制系统的状态空间表达式1.状态方程:由系统状态变量构成的一阶微分方程组2.输出方程:在指定系统输出的情况下,该输出与状态变量间的函数关系式3.状态空间表达式:状态方程和输出方程总合,构成对一个系统完整动态描述4.友矩阵:主对角线上方元素均为1:最后一行元素可取任意值;其余元素均为05.非奇异变换:x=Tz,z=T-1x;z=T-1ATz+T-1Bu,y=CTz+Du.T为任意非奇异阵(变换矩阵),空间表达式非唯一6.同一系统,经非奇异变换后,特征值不变;特征多项式的系数为系统的不变量第二章控制系统状态空间表达式的解1.状态转移矩阵:eAt,记作Φ(t)2.线性定常非齐次方程的解:x(t)=Φ(t)x(0)+∫t0Φ(t-τ)Bu(τ)dτ第三章线性控制系统的能控能观性1.能控:使系统由某一初始状态x(t0),转移到指定的任一终端状态x(tf),称此状态是能控的.若系统的所有状态都是能控的,称系统是状态完全能控2.系统的能控性,取决于状态方程中系统矩阵A和控制矩阵b3.一般系统能控性充要条件:(1)在T-1B中对应于相同特征值的部分,它与每个约旦块最后一行相对应的一行元素没有全为0.(2)T-1B中对于互异特征值部分,它的各行元素没有全为0的4.在系统矩阵为约旦标准型的情况下,系统能观的充要条件是C中对应每个约旦块开头的一列的元素不全为05.约旦标准型对于状态转移矩阵的计算,可控可观性分析方便;状态反馈则化为能控标准型;状态观测器则化为能观标准型6.最小实现问题:根据给定传递函数阵求对应的状态空间表达式,其解无穷多,但其中维数最小的那个状态空间表达式是最常用的.第五章线性定常系统综合1.状态反馈:将系统的每一个状态变量乘以相应的反馈系数,然后反馈到输入端与参考输入相加形成控制律,作为受控系统的控制输入.K为r*n维状态反馈系数阵或状态反馈增益阵2.输出反馈:采用输出矢量y构成线性反馈律H为输出反馈增益阵3.从输出到状态矢量导数x的反馈:A+GC4.线性反馈:不增加新状态变量,系统开环与闭环同维,反馈增益阵都是常矩阵动态补偿器:引入一个动态子系统来改善系统性能5.(1)状态反馈不改变受控系统的能控性(2)输出反馈不改变受控系统的能控性和能观性6.极点配置问题:通过选择反馈增益阵,将闭环系统的极点恰好配置在根平面上所期望的位置,以获得所希望的动态性能(1)采用状态反馈对系统任意配置极点的充要条件是∑0完全能控(2)对完全能控的单输入-单输出系统,通过带动态补偿器的输出反馈实现极点任意配置的充要条件[1]∑0完全能控[2]动态补偿器的阶数为n-1(3)对系统用从输出到x 线性反馈实现闭环极点任意配置充要条件是完全能观7.传递函数没有零极点对消现象,能控能观8.对完全能控的单输入-单输出系统,不能采用输出线性反馈来实现闭环系统极点的任意配置9.系统镇定:保证稳定是控制系统正常工作的必要前提,对受控系统通过反馈使其极点均具有负实部,保证系统渐近稳定(1)对系统采用状态反馈能镇定的充要条件是其不能控子系统渐近稳定(2)对系统通过输出反馈能镇定的充要条件是其结构分解中的能控且能观子系统是输出反馈能镇定的,其余子系统是渐近稳定的(3)对系统采用输出到x 反馈实现镇定充要条件是其不能观子系统为渐近稳定10.解耦问题:寻求适当的控制规律,使输入输出相互关联的多变量系统的实现每个输出仅受相应的一个输入所控制,每个输入也仅能控制相应的一个输出11.系统解耦方法:前馈补偿器解耦和状态反馈解耦12.全维观测器:维数和受控系统维数相同的观测器现代控制理论试题1 ①已知系统u u uy y 222++=+ ,试求其状态空间最小实现。
第二章控制系统的状态空间表达式一、主要内容1.状态空间描述的几个重要概念2.状态空间表达式的一般形式1)非线性系统的状态空间描述2)线性时变系统的状态空间描述3)线性定常系统的状态空间描述4)离散系统的状态空间描述3.系统状态空间表达式的特点4.状态空间表达式的建立1)由物理系统的机理直接建立状态空间表达式2)由系统高阶微分方程化为状态空间描述3)由系统传递函数化为状态空间描述4)由系统状态变量图列写状态空间描述5)由系统方块图列写状态空间描述5.状态向量的线性变换1)系统状态空间表达式的非唯一性2)系统特征值的不变性3)将状态方程化为型规范型(对角线型和约当型)二、教学基本要求1、正确理解状态变量和状态空间描述的概念、涵义和特点。
2、熟练掌握建立状态空间表达式的不同方法,能够依据不同的已知条件建立系统相应的状态空间表达式。
3、熟练掌握线性变换方面的知识。
理解坐标变换的概念,了解系统特征方程和特征值不变性及传递函数不变性的特点,熟练掌握将系统状态空间描述化为规范型的方法。
三、重点内容概要1. 状态空间描述的几个重要概念状态变量 是指能完整地、确定地描述系统的时域行为的最小一组变量。
给定了这个变量组在初始时刻0t t =的值和时刻0t t ≥系统的输入函数,那么系统在时刻0t t ≥的行为就可以完全确定。
这样一组变量就称为状态变量。
状态矢量 以状态变量为元组成的向量,称为状态矢量。
状态空间 以状态变量)(,),(),(21t x t x t x n 为坐标轴构成的n 维空间称为状态空间,记作n R 。
状态方程 状态变量和输入变量之间的关系用一组一阶微分方程来描述。
输出方程 系统的输出变量与状态变量、输入变量之间的数学表达式。
状态空间表达式 状态方程和输出方程综合起来,在状态空间中建立的对一个系统动态行为的完整描述(数学模型),称为系统的状态空间表达式。
2. 状态空间表达式的一般形式 (1) 非线性系统的状态空描述⎩⎨⎧==),,()),(),(()(t u g y t t u t f t X X X(2.1) 其中,n R X ∈为状态向量;p R u ∈为输入向量;q R y ∈为输出向量。