初三圆知识点,专项复习[1]-推荐下载
- 格式:pdf
- 大小:362.53 KB
- 文档页数:8
九年级圆的全部知识点归纳圆是几何学中的重要概念,具有广泛的应用价值。
在九年级的学习中,我们需要对圆的相关知识进行全面的了解,包括定义、性质、定理等方面。
本文将对九年级学习中的圆相关知识点进行归纳总结。
一、定义与基本术语1. 圆:由平面上到定点的距离相等的所有点的轨迹称为圆。
2. 圆心:圆上所有点到圆心的距离相等,圆心是圆的中心点。
3. 半径:连接圆心和圆上任意一点的线段称为半径,用字母r 表示。
4. 直径:通过圆心并且两端点都在圆上的线段称为直径,直径的长度等于半径的两倍。
5. 弧:圆上的两点间的部分称为弧。
6. 弦:圆上任意两点之间的线段称为弦。
二、圆的性质与定理1. 弧长公式:在圆心角相等的情况下,弧长和半径的乘积是相等的。
即L = rθ,其中L为弧长,r为半径,θ为对应的圆心角的度数。
2. 弧度制:1个圆周角对应的弧长等于圆周长的2π,使用弧度制时,1个圆周角对应的弧长等于半径的2π,即1圆周角= 2π弧度。
3. 弦弧定理:在圆上,相等弧所对应的弦相等,弦所对应的弧相等。
4. 弦切定理:一条弦上的两个切线所截的弧相等。
5. 切线与半径的关系:切线与半径的垂直分离定理,切线切圆的点与圆心连线垂直。
三、圆的重要定理与推论1. 中心角定理:圆上的中心角的度数等于它所对应的弧的度数。
2. 弧度的定义与利用:弧度是角度制的单位,通过弧长和半径之间的比值得到。
利用弧度可以简便地描述与计算圆的相关问题。
3. 圆周角定理:圆周角的度数等于360度,对应的弧度等于2π。
4. 平行弦定理:平行弦所对应的圆心角相等。
5. 弦割定理:当两条弦交于圆的内部一点时,各自所对应的弧之积相等。
四、圆的应用圆具有广泛的应用价值,在日常生活中有很多应用场景。
比如在建筑领域,圆经常用于设计弧形的拱门、圆顶等;在工程测量中,圆常被用于测量水井、桥梁等的半径;在电子工程中,圆被运用于制作集成电路的微缩线路等。
总结:通过本文对九年级学习中的圆相关知识点进行归纳总结,我们了解了圆的定义与基本术语、性质与定理以及应用。
第四章:《圆》一、知识回顾圆的周长: C=2πr或C=πd、圆的面积:S=πr²圆环面积计算方法:S=πR²-πr²或S=π(R²-r²)(R是大圆半径,r是小圆半径)二、知识要点一、圆的概念集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;固定的端点O为圆心。
连接圆上任意两点的线段叫做弦,经过圆心的弦叫直径。
圆上任意两点之间的部分叫做圆弧,简称弧。
2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线;3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
二、点与圆的位置关系1、点在圆内⇒d r<⇒点C在圆内;2、点在圆上⇒d r=⇒点B在圆上;3、点在圆外⇒d r>⇒点A在圆外;三、直线与圆的位置关系1、直线与圆相离⇒d r>⇒无交点;2、直线与圆相切⇒d r=⇒有一个交点;3、直线与圆相交⇒d r<⇒有两个交点;A四、圆与圆的位置关系外离(图1)⇒ 无交点 ⇒ d R r >+; 外切(图2)⇒ 有一个交点 ⇒ d R r =+; 相交(图3)⇒ 有两个交点 ⇒ R r d R r -<<+; 内切(图4)⇒ 有一个交点 ⇒ d R r =-; 内含(图5)⇒ 无交点 ⇒ d R r <-;五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。
A图5圆的总结一 集合:圆:圆可以看作是到定点的距离等于定长的点的集合; 圆的外部:可以看作是到定点的距离大于定长的点的集合; 圆的内部:可以看作是到定点的距离小于定长的点的集合二 轨迹:1、到定点的距离等于定长的点的轨迹是:以定点为圆心,定长为半径的圆;2、到线段两端点距离相等的点的轨迹是:线段的中垂线;3、到角两边距离相等的点的轨迹是:角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线三 位置关系:1点与圆的位置关系:点在圆内 d<r 点C 在圆内 点在圆上 d=r 点B 在圆上 点在此圆外 d>r 点A 在圆外2 直线与圆的位置关系:直线与圆相离 d>r 无交点 直线与圆相切 d=r 有一个交点 直线与圆相交 d<r 3 圆与圆的位置关系:外离(图1) 无交点外切(图2) 相交(图3) 内切(图4) 内含(图5) 无交点DBB ABA四 垂径定理:垂径定理:垂直于弦的直径平分弦且平分弦所对的弧 推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB ⊥CD ③CE=DE ④⑤ 推论2:圆的两条平行弦所夹的弧相等。
即:在⊙O 中,∵AB ∥CD五 圆心角定理六 圆周角定理圆周角定理:同一条弧所对的圆周角等于它所对的圆心的角的一半即:∵∠AOB 和∠ACB 是 所对的圆心角和圆周角 ∴∠AOB=2∠ACB圆周角定理的推论:推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧即:在⊙O 中,∵∠C 、∠D 都是所对的圆周角∴∠C=∠D推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径即:在⊙O 中,∵AB 是直径 或∵∠C=90° ∴∠C=90° ∴AB 是直径推论3:三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形»»BC BD =»»AC AD =P即:在△ABC 中,∵OC=OA=OB∴△ABC 是直角三角形或∠C=90° 注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。
九年级数学圆形知识点归纳九年级数学学习中,我们接触到了许多有关圆形的知识。
本文将对这些知识进行归纳总结,以便更好地了解和掌握圆形的特性和运用。
一、圆的定义和性质圆是由平面上与一个固定点的距离相等的所有点组成的图形,这个固定点称为圆心,距离称为半径。
圆的性质有以下几个要点:1. 圆上的任意点与圆心的距离都相等。
2. 圆的直径是两个任意点在圆上连线的最长线段,它的长度是圆的半径的两倍。
3. 圆的弧是两个点在圆上连线所得到的曲线部分。
4. 圆心角是以圆心为顶点的角,它的度数等于所对的弧所在圆周的度数。
二、圆的计算公式在解决圆的相关问题时,我们需要运用一些计算公式。
以下是常见的圆的计算公式:1. 圆的周长公式:C = 2πr,其中C表示圆的周长,r表示半径,π取近似值3.14。
2. 圆的面积公式:S = πr²,其中S表示圆的面积。
三、圆的相关定理1. 同圆弧所对的圆心角相等。
2. 等弧所对的圆心角相等。
3. 在同一个圆或等圆中,圆心角大的所对的弧也大,圆心角小的所对的弧也小。
4. 在同一个圆或等圆中,与同一弧相交的弦所对的圆心角相等。
四、切线和切点的性质1. 切线是与圆只有一个交点的直线。
2. 在切点处,切线垂直于半径。
3. 半径和切线之间的夹角是直角。
五、圆锥和圆柱体1. 圆锥是以一个圆为底面,上方以一个顶点为端点的三维图形。
2. 圆柱体是以一个圆为底面,上下底面平行且等大小的三维图形。
六、几何图形的应用在生活中,我们经常会遇到一些与圆相关的几何图形。
以下是一些常见的应用场景:1. 钟表:钟表的表盘就是一个圆形,指针所指的位置是圆上的点。
2. 气球:气球形状都是圆形,用圆的表面面积计算气球的充气量。
3. 轮胎:轮胎是车辆底盘的重要组成部分,轮胎的结构和运动都与圆形有关。
通过对九年级数学圆形知识点的归纳总结,我们对圆形的定义、性质、计算公式、相关定理,以及在几何图形应用中的实际场景有了更深入的理解。
初中数学九年级圆的知识点圆是初中数学中的一个重要的图形,它具有独特的性质和应用。
在九年级的数学学习中,我们需要掌握圆的基本知识和相关的定理。
本文将依次介绍圆的定义、圆的性质、弦与弧、切线与切点、圆内接四边形以及圆的应用等内容。
一、圆的定义圆是指平面上到一个定点距离相等的所有点的集合。
定点称为圆心,所有到圆心距离等于半径的点构成圆。
圆通常用字母O表示圆心,字母r表示半径。
二、圆的性质1. 圆上任意两点之间的距离等于半径的长度。
2. 圆心角是位于圆上两条半径的夹角,它的度数等于所对的弧上的角度。
3. 弧度制中,一个圆的弧长等于圆心角的弧度数乘以半径。
三、弦与弧1. 弦是圆上两点之间的线段,它等于弧的直径。
2. 弧是圆上两点之间的一段曲线,它的度数等于对应的圆心角的度数。
四、切线与切点1. 切线是与圆相切于圆上一点的直线。
2. 切点是切线与圆的交点,切线与半径的夹角为90度。
五、圆内接四边形1. 圆内接四边形是指一个四边形的四个顶点都在圆上,且每条边都是弧。
2. 圆内接四边形的两个对角线互相垂直且平分。
六、圆的应用1. 圆的周长公式:C = 2πr,其中C表示圆的周长,r表示半径,π近似等于3.14。
2. 圆的面积公式:A = πr²,其中A表示圆的面积,r表示半径,π近似等于3.14。
3. 圆柱体、圆锥体、圆球等几何体的计算都与圆密切相关。
通过对初中数学九年级圆的知识点的学习,我们不仅能够了解圆的定义和性质,还能够应用圆的相关定理解决实际问题。
掌握圆的知识将为我们的数学学习打下坚实的基础,并在日常生活中发挥重要作用。
让我们积极投入学习,深入理解圆的知识,提升自己的数学水平!。
九年级初三圆知识点大汇总考点一、圆的相关概念1、圆的定义在一个个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。
2、圆的几何表示以点O为圆心的圆记作“⊙O”,读作“圆O”考点二、弦、弧等与圆有关的定义(1)弦连接圆上任意两点的线段叫做弦。
(如图中的AB)(2)直径经过圆心的弦叫做直径。
(如途中的CD)直径等于半径的2倍。
(3)半圆圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。
(4)弧、优弧、劣弧圆上任意两点间的部分叫做圆弧,简称弧。
弧用符号“⌒”表示,以A,B为端点的弧记作“”,读作“圆弧AB”或“弧AB”。
大于半圆的弧叫做优弧(多用三个字母表示);小于半圆的弧叫做劣弧(多用两个字母表示)考点三、垂径定理及其推论垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。
推论2:圆的两条平行弦所夹的弧相等。
垂径定理及其推论可概括为:过圆心垂直于弦直径平分弦知二推三平分弦所对的优弧平分弦所对的劣弧考点四、圆的对称性1、圆的轴对称性,圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。
2、圆的中心对称性,圆是以圆心为对称中心的中心对称图形。
考点五、弧、弦、弦心距、圆心角之间的关系定理1、圆心角,顶点在圆心的角叫做圆心角。
2、弦心距,从圆心到弦的距离叫做弦心距。
3、弧、弦、弦心距、圆心角之间的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦想等,所对的弦的弦心距相等。
推论:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。
考点六、圆周角定理及其推论1、圆周角,顶点在圆上,并且两边都和圆相交的角叫做圆周角。
、圆的概念 集合形式的概念:1、圆可以看作是到定点的距离等于定长的点的集合;2、 圆的外部:可以看作是到定点的距离大于定长的点的集合;3、 圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:至U 定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫 中垂线);3、 角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、 到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
三、直线与圆的位置关系1、直线与圆相离d r 无交点;2、直线与圆相切 d r有一个交点;、点与圆的位置关系1、点在圆内d r 点C 在圆内; 2、点在圆上d r 点B 在圆上; 3、点在圆外 d r点A 在圆外;8cm ,到圆心的距离为 5cm ,则该点在圆 ___________________练习题:一个圆的直径为四、圆与圆的位置关系五、垂径定理 垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论1:( 1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2 )弦的垂直平分线经过圆心,并且平分弦所对的两条弧;3、直线与圆相交 有两个交点;练习题:、一个点到圆的最短距离为3cm ,到圆的最长距离为 9cm ,则这个圆的半径为外离(图1) 无交点外切(图2) 有一个交点相交(图3) 有两个交点内切(图4) 有一个交点内含(图5) 无交点(3 )平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中 可推出其它3个结论,即:中任意2个条件推出其他3个结论。
推论2:圆的两条平行弦所夹的弧相等。
即:在O O 中,••• AB //CD•••弧 AC 弧 BD六、圆心角定理圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。
九年级圆知识点归纳在九年级数学学习中,圆是一个非常重要的知识点。
本文将对九年级圆的相关知识进行归纳,包括圆的定义、圆的性质、圆的元素以及圆的应用等内容。
一、圆的定义圆是由平面内和一个确定点距离相等的点的全体组成。
其中,确定点称为圆心,距离称为半径。
二、圆的性质1. 圆心角:圆心角是以圆心为顶点的角,其对应的弧长等于该角的大小。
2. 弦:圆上连接两点的线段称为弦,等长的弦对应的圆心角相等。
3. 切线:切线是与圆只有一点相切的直线,切线与半径垂直。
4. 弧:两个点间的圆弧是连接这两点且完全位于圆内的曲线部分。
5. 弧长:弧长是弧上的一段弧所对应的圆心角的大小乘以半径。
三、圆的元素1. 圆心:圆心是圆上任意一点到圆心的距离都相等。
2. 半径:半径是圆心到圆上任意一点的距离,用字母r表示。
3. 直径:直径是通过圆心的任意两点之间的线段,直径等于半径的两倍。
4. 弦:弦是圆上的线段,连接圆上任意两点,但不通过圆心。
5. 弧:弧是弦所对应的曲线部分,也可以用来求解弧长。
四、圆的应用1. 圆的面积:圆的面积可以通过半径或直径来计算,公式分别为πr²和π(d/2)²,其中π是一个常数,取近似值3.1415。
2. 弧长和扇形面积:根据圆的定义,可以推导出弧长和圆心角的关系,进而计算弧长和扇形面积。
3. 圆的切线与切点:通过圆心和切点的连线垂直于切线,可以利用圆的性质求解相关问题。
4. 圆的相交关系:两个圆相交时,可以根据相交的弧长、圆心角等来求解相应的问题。
总结:通过本文的归纳,我们对九年级圆的相关知识点有了一个整体的了解。
圆的定义、性质、元素以及应用都是我们在解题过程中需要掌握的重要内容。
希望同学们能够通过不断练习,熟练掌握圆的相关知识,提高数学解题能力。
初三圆的知识点总结圆是初中数学中的重要内容,在中考中也占据着重要的地位。
以下是对初三圆的知识点的详细总结。
一、圆的基本概念1、圆的定义在平面内,到定点的距离等于定长的点的集合叫做圆。
定点称为圆心,定长称为半径。
2、圆的表示以点 O 为圆心,r 为半径的圆记作“⊙O,r”。
3、弦连接圆上任意两点的线段叫做弦。
经过圆心的弦叫做直径,直径是圆中最长的弦。
4、弧圆上任意两点间的部分叫做圆弧,简称弧。
大于半圆的弧称为优弧,小于半圆的弧称为劣弧。
5、半圆圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆。
6、等圆能够重合的两个圆叫做等圆。
7、等弧在同圆或等圆中,能够互相重合的弧叫做等弧。
二、圆的性质1、圆的对称性(1)圆是轴对称图形,其对称轴是任意一条通过圆心的直线。
(2)圆是中心对称图形,对称中心为圆心。
2、垂径定理垂直于弦的直径平分弦且平分弦所对的两条弧。
推论:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。
3、圆心角、弧、弦的关系在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等。
4、圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半。
推论 1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。
推论 2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。
推论 3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
三、圆的位置关系1、点与圆的位置关系设⊙O 的半径为 r,点 P 到圆心的距离 OP = d,则有:(1)点 P 在圆外⇔ d > r ;(2)点 P 在圆上⇔ d = r ;(3)点 P 在圆内⇔ d < r 。
2、直线与圆的位置关系设⊙O 的半径为 r,圆心 O 到直线 l 的距离为 d,则有:(1)直线 l 和⊙O 相离⇔ d > r ;(2)直线 l 和⊙O 相切⇔ d = r ;(3)直线 l 和⊙O 相交⇔ d < r 。
九年级下圆知识点九年级下学期的数学课程中,圆是一个重要的知识点。
本文将详细介绍九年级下学期所学习的与圆相关的知识点,包括圆的定义、圆的性质、圆的关系、圆的应用等内容。
1. 圆的定义圆是由平面上与一个确定点的距离等于定长的所有点组成的集合。
在数学中,用一个大写字母表示圆,如圆O。
圆上的任意一点到圆心O的距离称为半径,用小写字母r表示。
2. 圆的性质(1) 圆的直径:通过圆心的两个点,并且这两个点在圆上的连线称为圆的直径。
直径的长度是半径的两倍,即d=2r。
(2) 圆周长:圆上任意两点的距离称为圆的弧长,圆上所有弧长的总和称为圆的周长。
圆的周长等于直径乘以圆周率π,即C=2πr。
(3) 圆的面积:圆的内部所有点组成的区域称为圆的面积。
圆的面积等于半径平方乘以圆周率π,即A=πr²。
3. 圆的关系(1) 切线:切线是与圆只有一个交点的直线。
切线与半径的夹角是直角。
(2) 弦:弦是连接圆上任意两点的线段。
直径是一种特殊的弦,它经过圆心。
(3) 弧:弧是圆上两个端点之间的一段曲线。
同样的弧长对应于同样大小的圆心角。
(4) 弧度:圆心角对应的弧长与半径之比称为弧度。
一个圆的周长对应的弧度是2π。
(5) 相交关系:两个圆可以相交于两个点、一个点或者没有交点。
两个相交圆的交点到两个圆心的距离是相等的。
4. 圆的应用(1) 圆的测量:根据给定的半径或直径,可以计算圆的周长和面积。
(2) 圆的角度测量:圆的角度以弧度为单位进行测量,可以用来计算弧长和扇形的面积。
(3) 圆的制图:在地图或平面图中,需要用到圆的制图技巧。
例如,画圆形道路、圆形花坛等。
(4) 圆的分割:将圆分割成若干个部分,可以实现较复杂图形的绘制。
总结:九年级下圆知识点包括圆的定义、性质、关系和应用。
了解圆的相关知识有助于学生更好地理解几何学的概念和应用。
通过学习圆的性质和公式,可以解决各种与圆相关的问题,并应用于实际生活中的测量、制图和分割等情景中。
九年级圆的常考知识点在九年级数学学习中,圆的相关知识点是重要的基础内容。
掌握了这些知识点,学生才能在解题过程中运用自如,为进一步学习更高级的几何知识打下坚实的基础。
本文将从圆的定义、圆的要素、圆的性质和圆的应用等几个方面,系统地介绍九年级圆的常考知识点。
一、圆的定义圆是平面上的一类特殊图形,它由平面内任意一点到另一点距离相等的所有点组成。
二、圆的要素1. 圆心:圆上的任意一点到圆上所有点的距离相等,这个点称为圆心。
2. 半径:连接圆心和圆上任意一点的线段,这段线段的长度称为圆的半径。
3. 直径:通过圆心的两个相对点,这个线段的长度称为圆的直径,直径是半径的两倍。
4. 弦:在圆上任意两点间的线段称为弦。
5. 弧:在圆上的两点间的一段弧称为弧。
弧的长度可以用它所对应的圆心角的度数来表示。
三、圆的性质1. 圆心角与弧的关系:圆心角是指以圆心为顶点的角,与圆上的弧所对应的圆心角的度数是相等的。
2. 弧长与圆周角的关系:以圆心为顶点的角,所对应的弧长与它所对应的圆心角度数成正比,即弧长等于圆周长的$\frac{1}{360}$倍乘以对应的圆心角的度数。
3. 弦长定理:如果两条弦在圆上的弦长相等,那么它们所对应的圆心角也相等。
4. 弦心定理:如果两条不等长的弦(或弦段)在圆上的两个弦心上对圆心的距离相等,那么它们与圆心的连线所夹的角(或角的对角)相等。
5. 切线和切点:通过圆外一点恰好有一条直线与圆相切,这条直线称为切线,切线与半径的夹角为直角,切点即为切线与圆的交点。
四、圆的应用圆是我们日常生活和工作中经常会遇到的几何图形,它的应用广泛而重要。
1. 圆的测量:在实际中,我们常常需要计算圆的直径、半径、周长和面积等。
这些计算需要借助圆的相关公式和性质,确保计算结果的准确性。
2. 圆的建模:在建筑、工程、艺术设计等领域,圆的概念和性质被广泛运用。
通过圆的建模,我们可以更好地解决和处理一些问题,实现更高的效益和价值。
《圆》知识点及定理一、圆的概念集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
二、点与圆的位置关系1、点在圆内⇒d r<⇒点C在圆内;2、点在圆上⇒d r=⇒点B在圆上;3、点在圆外⇒d r>⇒点A在圆外;三、直线与圆的位置关系1、直线与圆相离⇒d r>⇒无交点;2、直线与圆相切⇒d r=⇒有一个交点;3、直线与圆相交⇒d r<⇒有两个交点;四、圆与圆的位置关系外离(图1)⇒无交点⇒d R r>+;外切(图2)⇒有一个交点⇒d R r=+;相交(图3)⇒有两个交点⇒R r d R r-<<+;内切(图4)⇒有一个交点⇒d R r=-;内含(图5)⇒无交点⇒d R r<-;图1五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB是直径②AB CD⊥③CE DE=④弧BC=弧BD⑤弧AC=弧AD中任意2个条件推出其他3个结论。
《圆》重要章节知识点复习一、圆的概念集合形式的概念: 1、 圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
二、点与圆的位置关系1、点在圆内 ⇒ d r < ⇒ 点C 在圆内;2、点在圆上 ⇒ d r = ⇒ 点B 在圆上;3、点在圆外 ⇒ d r > ⇒ 点A 在圆外;练习题:一个圆的直径为cm 8,到圆心的距离为cm 5,则该点在圆三、直线与圆的位置关系r dd CBAO1、直线与圆相离 ⇒ d r > ⇒ 无交点;2、直线与圆相切 ⇒ d r = ⇒ 有一个交点;3、直线与圆相交 ⇒ d r < ⇒ 有两个交点;drd=rrd练习题:、一个点到圆的最短距离为cm 3,到圆的最长距离为cm 9,则这个圆的半径为四、圆与圆的位置关系外离(图1)⇒ 无交点 ⇒ d R r >+; 外切(图2)⇒ 有一个交点 ⇒ d R r =+; 相交(图3)⇒ 有两个交点 ⇒ R r d R r -<<+; 内切(图4)⇒ 有一个交点 ⇒ d R r =-; 内含(图5)⇒ 无交点 ⇒ d R r <-;rRd图3rR d五、垂径定理r Rd 图4rRd图5r RdOCB A垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。
初三圆知识点圆是初中数学中的一个重要内容,它具有独特的性质和广泛的应用。
在初三阶段,我们需要深入学习圆的相关知识,为进一步的数学学习打下坚实的基础。
一、圆的定义圆是平面内到定点的距离等于定长的点的集合。
这个定点称为圆心,定长称为半径。
用字母“O”表示圆心,用“r”表示半径。
例如,在一个平面内,以点 O 为圆心,以 3 厘米为半径画圆,那么圆上的所有点到点 O 的距离都等于 3 厘米。
二、圆的相关概念1、弦连接圆上任意两点的线段叫做弦。
经过圆心的弦叫做直径,直径是圆中最长的弦。
2、弧圆上任意两点间的部分叫做圆弧,简称弧。
大于半圆的弧称为优弧,小于半圆的弧称为劣弧。
3、圆心角顶点在圆心的角叫做圆心角。
4、圆周角顶点在圆上,并且两边都与圆相交的角叫做圆周角。
三、圆的性质1、圆的对称性圆是轴对称图形,其对称轴是任意一条通过圆心的直线。
圆也是中心对称图形,其对称中心是圆心。
2、垂径定理垂直于弦的直径平分弦且平分弦所对的两条弧。
例如,在圆 O 中,直径 CD 垂直于弦 AB ,则 AE = BE ,弧 AC =弧 BC ,弧 AD =弧 BD 。
3、圆心角、弧、弦的关系在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
4、圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半。
在圆 O 中,弧 AB 所对的圆周角∠C 和圆心角∠AOB ,则∠C =1/2∠AOB 。
同弧或等弧所对的圆周角相等。
半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。
四、圆的位置关系1、点与圆的位置关系设圆的半径为 r ,点到圆心的距离为 d 。
当 d > r 时,点在圆外;当 d = r 时,点在圆上;当 d < r 时,点在圆内。
2、直线与圆的位置关系设圆的半径为 r ,圆心到直线的距离为 d 。
当 d > r 时,直线与圆相离;当 d = r 时,直线与圆相切;当 d < r 时,直线与圆相交。
圆的切线性质:圆的切线垂直于经过切点的半径。