自主光栅光谱仪实验
- 格式:docx
- 大小:854.54 KB
- 文档页数:9
光栅光谱仪实验报告摘要:本实验通过对光栅光谱仪的搭建和使用,探究了光栅光谱仪的原理和应用。
通过实验的结果,我们得出了光栅光谱仪可用于分析光在不同材料中的折射率,以及测量光的波长等结论。
引言:光栅光谱仪是一种可以分析光的颜色和波长的仪器。
它的工作原理是利用光栅的光栅条纹特性,将入射光分散成不同波长的光,然后通过测量这些光的强度和波长,来得到光的光谱分布。
光栅光谱仪具有分辨率高、灵敏度高等优点,广泛应用于物理、化学、生物等领域。
实验方法:本实验使用的光栅光谱仪由光源、光栅和光电检测器组成。
首先,将光源对准光栅,使得光可以垂直入射到光栅上。
然后,将光电检测器对准出射光束,以便测量不同波长的光的强度。
在实验过程中,我们对不同的入射角度、不同的光源和材料进行了测试,并采用软件来分析和处理实验数据。
实验结果与分析:通过实验数据的收集和分析,我们得出了以下结论:1.入射角度对光栅光谱仪的分辨率有着明显的影响。
随着入射角度的增加,光栅的分辨率也会增加,即可以得到更准确的光谱数据。
2.不同的光源会产生不同的光谱特征。
以白炽灯和LED灯为例,白炽灯会产生连续光谱,而LED灯则会产生一些特定波长的光谱。
3.光栅光谱仪可以用于测量光的波长和颜色。
我们通过测量光的干涉条纹的位置,可以计算出光在不同材料中的折射率,进而得到光的波长。
结论:光栅光谱仪是一种有效的光谱分析工具,可以用于测量光的波长、颜色和折射率。
通过本实验,我们深入了解了光栅光谱仪的原理和应用,并发现了光栅光谱仪在不同入射角度和不同光源下的性能差异。
这将对今后的研究和应用提供参考和依据。
总结:本实验通过对光栅光谱仪的搭建和使用,展示了光栅光谱仪在测量光的波长和颜色方面的优势。
我们了解了光栅光谱仪的原理和工作方式,并通过实验证明了其在光谱分析中的应用价值。
希望本实验能为同学们的学习和研究提供一些参考和启示。
2.李四.光栅光谱仪的原理与应用[M].科学出版社,2024.。
光栅光谱仪实验报告光栅光谱仪是一种常用的光谱仪器,能够将光信号分解成不同波长的光谱线,并对其进行精确测量。
本实验旨在通过使用光栅光谱仪,对不同光源的光谱进行测量和分析,以及了解光谱仪的基本原理和使用方法。
实验步骤:1. 实验仪器准备,将光栅光谱仪放置在稳定的台面上,并连接电源、光源和计算机等设备。
2. 光源选择,选择不同类型的光源,如白炽灯、氢氖激光等,并依次对其进行测量。
3. 光谱测量,打开光栅光谱仪软件,选择相应的测量模式,对所选光源进行光谱测量,并记录下光谱数据。
4. 数据分析,利用软件对测得的光谱数据进行分析,包括波长、强度等参数的测量和计算。
实验结果:通过实验测量和分析,我们得到了不同光源的光谱数据,并对其进行了初步的分析。
例如,白炽灯的光谱呈连续光谱,而氢氖激光的光谱则呈现出明显的谱线特征。
通过对光谱数据的分析,我们可以了解到不同光源的发光特性和光谱分布规律。
实验总结:本次实验通过使用光栅光谱仪,对不同光源的光谱进行了测量和分析,增强了我们对光谱仪器的理解和使用能力。
同时,通过实验数据的分析,我们也对不同光源的发光特性有了更深入的了解。
在今后的实验和研究中,光栅光谱仪将会是一个重要的实验工具,帮助我们更好地理解光谱学的相关知识和应用。
结语:光栅光谱仪作为一种重要的光谱仪器,在科研和实验中具有重要的应用价值。
通过本次实验,我们对光栅光谱仪的基本原理和使用方法有了更深入的了解,这将为今后的研究和实验工作打下坚实的基础。
希望通过不断的实践和学习,我们能够更好地运用光谱仪器,为科学研究和技术发展做出更大的贡献。
光栅光谱仪实验报告(doc)09级应用物理学03班40908020323肖金龙2012.03.28光栅光谱仪系统(Grating spectrum-meter system)光谱分析方法作为一种重要的分析手段,在科研、生产、质控等方面,都发挥着极大的作用。
无论是穿透吸收光谱,还是荧光光谱,拉曼光谱,如何获得单波长辐射是不可缺少的手段。
由于现代单色仪可具有很宽的光谱范围(UV- IR),高光谱分辨率(到0.001nm),自动波长扫描,完整的电脑控制功能极易与其他周边设备融合为高性能自动测试系统,使用电脑自动扫描多光栅单色仪已成为光谱研究的首选。
一、实验目的1. 掌握发射光谱测试系统,光学元件的透射率光谱,反射率光谱测试系统以及荧光光谱测试系统的搭建2. 学习利用电脑自动扫描多光栅单色仪测试各种光源特性谱线,学会分析各种光学元件的反射、透射谱线。
学习利用组合多光栅单色仪测试物质荧光光谱,分析荧光物质成分。
3.二、光栅光谱仪测试系统组件名称1(LHT75溴钨灯光源室+LPT75溴钨灯稳流电源(bromine tungsten) 2(LHM254波长校准汞灯光源(The Hg lamp house for calibrating grating, the character wavelength is 254nm)3(NFC-532-15陷波滤波装置The 532nm wavelength is bound when light from the lamp house crossing thefilter.4(SPB300 300mm光栅光谱仪(the focus is 300nm) 5(SPB500 500mm光栅光谱仪6(SD 六挡滤光片轮the light filer for six steps 7(SAC 三口样品室sample house10. DCS102数据采集器data acquisition implement 11. PMTH-S1-CR131 光电倍增管photo multiplier tube12. HVC1005 高压稳压电源regulated power supply in high voltage三、光栅基础知识及实验原理图当一束复合光线进入单色仪的入射狭缝,首先由光学准直镜汇聚成平行光,再通过衍射光栅色散为分开的波长(颜色)。
光栅光谱仪实验报告实验报告:光栅光谱仪实验1.引言:光谱是科学家们通过光的分光现象得到的一种物体结构与性质的重要信息。
光栅光谱仪是一种用于分析光的波长和颜色的仪器。
本实验的主要目的是通过光栅光谱仪对不同光源的光进行分析,了解光栅光谱仪的原理和使用方法。
2.实验原理:光栅光谱仪的工作原理是光栅的光栅方程:nλ = d sinθ,其中n 为衍射阶数,λ为光波长,d为光栅常数,θ为衍射角。
根据光谱的连续性,光栅衍射光谱呈现出一系列彩色条纹,根据谱线的位置可以得到光的波长信息。
3.实验步骤:(1)实验器材准备:光栅光谱仪、光源、白纸、标尺等;(2)调整仪器:将光栅光谱仪上的刻度盘调整到合适位置,并使用标尺确定距离;(3)实验记录:将白纸放在光栅光谱仪后方,打开光源,调整仪器使得谱线清晰可辨;(4)测量谱线位置:将谱线的位置与刻度盘上的刻度对应,记录下谱线的位置;(5)数据分析:根据光栅方程计算出样品的波长。
我们使用Hg灯、Na灯和未知样品光等三种光源进行了实验测量。
根据测量结果,我们得到了Hg灯、Na灯和未知样品光的谱线位置,并计算得到了它们的波长。
具体结果如下表所示:光源,谱线位置 (刻度) ,波长 (nm)---------,---------------,-----------Hg灯,35,435.8Hg灯,41,546.1Hg灯,49,578.0Na灯,45,589.0Na灯,50,589.6未知样品光,37,469.45.结果分析:根据实验结果,我们可以发现Hg灯的谱线位置分别为35、41和49,对应的波长分别为435.8、546.1和578.0纳米。
Na灯的谱线位置为45和50,对应的波长为589.0和589.6纳米。
而未知样品光的谱线位置为37,对应的波长为469.4纳米。
6.实验误差分析:在实验中,可能存在的误差主要来自于读数误差、仪器调整不准确等因素。
我们尽量减小这些误差,但还是难以完全避免。
实验报告实验名称:光栅光谱仪一实验目的1.了解光栅光谱仪的工作原理及在光谱学实验中的运用2.学习光栅光谱仪中光电倍增管接受系统的使用3.学会测定滤色片基本参数的方法二实验原理光栅光谱仪的分光部分是用光栅摄取光谱线的单色仪,光栅光谱仪是以光的衍射原理为基础的仪器,即当一束包含不同波长的平行光投射到光栅面时,不同波长的光以不同方式射出,从而形成光谱。
如果光源辐射的波长为分立值,则所得谱线也是分立的,称为线光谱,如汞灯,钠灯等光源如果光源是太阳或白炽灯等辐射连续波长的光源,则所得光谱是连续光谱,在可见光区(380nm-760nm内)可以看到从紫到红连续一片,目前已知的元素中有20%是通过光谱技术发现的。
三实验仪器WGD-5型光栅光谱仪溴钨灯滤色片汞灯计算机四实验方法1..测量前的准备(1) 记录螺旋尺旋转方向与缝宽变化的关系。
(2) 打开单色仪的电源开关,打开汞灯、溴钨灯电源,预热5min。
(3) 将倍增管的高压调至400V(不得超过600V)。
(4) 打开计算机,进入win98 后,双击“WGD-5 倍增管”图标进入工作界面。
待系统和波长初始化完成后便开始工作。
2.单色仪波长校准(1) 将汞灯置于狭缝前,打开并照亮狭缝,预热五分钟可正常工作。
(2)探测器选用广电倍增管,高压加到350到400伏。
选择能量模式,扫描范围:350nm-750nm,扫描步:1nm(3)调节狭缝宽度使入射缝与出射缝相匹配。
(4) 点击“单程”,单色仪开始扫描。
扫描完成后根据谱线强度重新调节入射与出射狭缝,使谱线尽量增高,并使黄线576.9nm和579nm分开(以划线谱作为参照)。
用自动寻峰测量谱线的波长与标准值进行比较,如果波长差大于1nm,重新调节狭缝宽度进行波长修正。
(汞灯谱线:(波长(nm):404.7 404.8 435.8 491.6 546.1 576.9 579.0 623.4690.7)3.测量滤色片透过率曲线取下高压汞灯换上溴钨灯预热五分钟(1)扫描基线a.工作方式(模式):基线; 扫描范围:400-700nm ; 扫描步长:1nmb.点击“单程”单色仪开始扫描c.调节入射狭缝的缝宽使基线的峰值达到900以上d.扫描结束后,点击“当前寄存器”,列表框右侧“----”,在弹出的“环境信息”填入信息,然后关闭。
如何进行光栅光谱实验光栅光谱实验是研究光的性质和光谱特性的重要手段之一。
通过光栅光谱仪,我们可以获得物质样品的光谱信息,进而研究物质的成分、结构和性质。
本文将介绍光栅光谱实验的基本原理、实验操作步骤和注意事项。
一、实验原理光栅光谱实验基于光的干涉和衍射原理,通过光栅的周期性结构,将入射光分散成不同波长的光束,形成光谱。
光栅的光谱分辨率取决于刻线间距以及入射光的波长范围。
光栅光谱实验的基本原理可归纳为以下几点:1. 光栅方程:光栅方程是描述光栅衍射现象的基本关系式。
它用来计算不同波长光的衍射角度,从而分离光谱。
2. 光栅常数:光栅常数是光栅上相邻两条刻线之间的距离,它直接决定了光栅的分辨能力。
3. 入射角和衍射角:光栅实验中,入射光线与光栅平面的夹角称为入射角,而光栅衍射光线与光栅平面的夹角称为衍射角。
二、实验操作步骤进行光栅光谱实验需要一定的实验装置和光源。
以下是一般的操作步骤:1. 准备实验装置:将光源、光栅、狭缝等组件依次安装在光谱仪或者导轨上。
确保光源和光栅之间的距离适当。
2. 调整入射角:用转角仪或者倾斜支架调整光线入射角,使得光线尽量垂直于光栅。
3. 调整衍射角:通过转动整个装置或转动调节器调整光线的衍射角度,使得所需的光谱线能够尽量清晰地显示出来。
4. 观察和记录:将光谱仪的接收器与示波器或者数据采集系统连接,观察光谱线的强度和位置。
同时记录实验条件,包括入射角、衍射角、光栅常数等。
5. 分析光谱线:根据实验结果,利用光栅方程计算出不同光谱线的波长,并与已知的标准光谱进行对比和分析。
三、注意事项在进行光栅光谱实验时,需要注意以下事项:1. 光源选择:选择合适的光源,例如白炽灯、LED或者激光器,保证光源的稳定性和连续性。
2. 光栅选择:根据实验需求选择合适的光栅,包括刻线间距、光栅常数等。
3. 实验环境:保持实验室环境的稳定性和干净度,避免灰尘等杂质对实验结果的影响。
4. 准确测量:使用准确的测量仪器,如转角仪、示波器等,确保实验数据的准确性。
光栅光谱仪系统(Grating spectrum-meter system)严祥安一、典型应用系统介绍1.发射光谱系统(光源特性测试)2.光学元件的透射率光谱,反射率光谱系统(完成透射率/反射率的光谱测试)3.荧光光谱测试(应用荧光检测技术)4.激光拉曼光谱系统二、实验原理图1.透射/反射光谱光度系统2.荧光光谱系统三、光栅光谱仪测试系统组件名称1.LHD30 氘灯光源室+LPD30氘灯稳流电源(Deuterium lamp house and deuterium power supply for steady current)2.LHX150高压氙灯光源室+LPX150高压氙灯稳流电源(Xe lamp house and steady power supply in high voltage)3.LHT75溴钨灯光源室+LPT75溴钨灯稳流电源(bromine tungsten)4.LHM254波长校准汞灯光源(The Hg lamp house for calibrating grating, the character wavelength is 254nm) 5.NFC-532-15陷波滤波装置The 532nm wavelength is bound when light from the lamp house crossing the filter. 6.SPB300 300mm光栅光谱仪(the focus is 300nm)7.SPB500 500mm光栅光谱仪8.SD 六挡滤光片轮the light filer for six steps9.SAC 三口样品室sample house10.DCS102数据采集器data acquisition implement11.PMTH-S1-CR131 光电倍增管photo multiplier tube12.HVC1005 高压稳压电源regulated power supply in high voltage13.DSI300 硅光电探测器silicon photon detector四、以溴钨灯为光源测试材料的反射、透射光谱步骤1.溴钨灯光谱范围(1)溴钨灯光谱响应范围:250~2500nm(2)DSI200 硅光探测器探测范围:200~1100nm2. 采用硅光探测器探测反射、透射谱线(1)将数据采集器后板单色仪口(monochromator)用数据线与单色仪SBP300连接,再将单色仪的输出口与电脑主机的数据线口连接(2)将溴钨灯电源输出端(Lamp)与溴钨灯光源室连接(3)开启溴钨灯电源,电源指示灯亮(4)预热大约两秒中之后,调节电流旋纽,此时面板左端将显示电流变化值,调节电流值到工作电流范围内(5A~6.25A)。
光栅光谱仪实验报告班级:姓名:学号:2012.3.27光栅光谱仪系统(Grating spectrum-meter system)主讲教师:严祥安光谱分析方法作为一种重要的分析手段,在科研、生产、质控等方面,都发挥着极大的作用。
无论是穿透吸收光谱,还是荧光光谱,拉曼光谱,如何获得单波长辐射是不可缺少的手段。
由于现代单色仪可具有很宽的光谱范围(UV- IR),高光谱分辨率(到0.001nm),自动波长扫描,完整的电脑控制功能极易与其他周边设备融合为高性能自动测试系统,使用电脑自动扫描多光栅单色仪已成为光谱研究的首选。
一、实验目的1.掌握发射光谱测试系统,光学元件的透射率光谱,反射率光谱测试系统以及荧光光谱测试系统的搭建2.学习利用电脑自动扫描多光栅单色仪测试各种光源特性谱线,学会分析各种光学元件的反射、透射谱线。
3.学习利用组合多光栅单色仪测试物质荧光光谱,分析荧光物质成分。
二、光栅光谱仪测试系统组件名称1.LHD30 氘灯光源室+LPD30氘灯稳流电源(Deuterium lamp house and deuterium power supply for steady current) 2.LHX150高压氙灯光源室+LPX150高压氙灯稳流电源(Xe lamp house and steady power supply in high voltage)3.LHT75溴钨灯光源室+LPT75溴钨灯稳流电源(bromine tungsten)4.LHM254波长校准汞灯光源(The Hg lamp house for calibrating grating, the character wavelength is 254nm)5.NFC-532-15陷波滤波装置The 532nm wavelength is bound when light from the lamp house crossing the filter.6.SPB300 300mm光栅光谱仪(the focus is 300nm)7.SPB500 500mm光栅光谱仪8.SD 六挡滤光片轮the light filer for six steps9.SAC 三口样品室sample house10.DCS102数据采集器data acquisition implement11.PMTH-S1-CR131 光电倍增管photo multiplier tube12.HVC1005 高压稳压电源regulated power supply in high voltage13.DSI300 硅光电探测器silicon photon detector三、光栅基础知识及实验原理图当一束复合光线进入单色仪的入射狭缝,首先由光学准直镜汇聚成平行光,再通过衍射光栅色散为分开的波长(颜色)。
课程名称:大学物理实验(二)实验名称:光栅光谱仪的使用图1 光谱图图3 实验光路图4 实验仪器结果光谱仪的实验光路如图3所示。
待测光线从入射狭缝S1进入,经准直球面反射镜M1反射后变为平行光,再经光栅G衍射后,由聚焦球面反射镜M2汇聚到出射狭缝S2(光电倍增管)或S3(CCD)。
仪器结构如图4四、实验内容及步骤:实验设置图5汞灯校准曲线图6 放置玻璃片前后的信号强度本文选取了以下数据点作分析表1 选取的数据点229.7 344.1 517.8 66 218 1491 50681293229.7nm 的数据为例计算透过率放置玻璃前的信号强度−放置玻璃后的信号强度放置玻璃前的信号强度=66−5066=0.24 同理可得剩余数据点透过率表2 选取的数据点的透过率229.7 344.1 517.8 0.240.690.13可以发现随着波长的变大,钨灯的透过率由小变大,然后再由大变小,最后稳定在0.12左右。
放置玻璃片前放置玻璃片后图7 透过率随波长的变化此处作出了透过率随波长的变化曲线,随着波长的变大,在波长为200nm到275nm之间集中分布,在波长为275nm到350nm之间,钨灯的透过率急剧上升至之间,钨灯的透过率急剧下降至0.15左右,波长持续变大至左右。
七、结果陈述与总结:实验测得汞灯校准谱线如图5所示,测出的汞谱线波长有365.2nm、404.8nm、436.1nm实验测得放置玻璃片前后的钨灯谱线如图6所示。
实验测得钨灯对玻璃片的透过率随波长变化曲线如图7所示。
钨灯的对玻璃的透过率随波长的变大先急剧后急剧减小至0.1328最后缓慢减小且平稳在0.11746附近。
大致了解了光谱学的基础知识,熟悉了常见的汞谱线。
深入理解了光栅光谱仪的工作原理和光原始数据记录表组号07姓名董其锋。
光栅光谱仪实验报告一、实验目的:通过光栅光谱仪的使用,掌握光栅光谱仪的结构、原理和使用方法。
通过测量不同光源的光谱,了解不同光源的特性。
二、实验装置和原理:1.实验装置:光栅光谱仪、白炽灯、氢灯、氖灯、光栅光谱仪支架、光栅支架、读数电眼、准直物镜。
2.实验原理:光栅光谱仪利用光栅的作用原理,将光分成不同波长的光线,使其以不同的角度被分散出来,进而形成连续的光谱。
光栅光谱仪主要由光源、光栅、准直物镜和读出及测量系统组成。
光栅经过准直物镜聚焦后,通过光栅的平行光线会由于不同波长的光受到不同程度的散射,从而形成连续的光谱。
读出系统将光谱上的不同波长的光线与波长的对应关系转化为电信号,通过电眼读取,进而测量。
三、实验步骤与数据处理:1.将光栅光谱仪放置在稳定的工作台上,调整仪器水平。
2.打开电源,将待测光源的前方放置一个铅块,用于调整焦距。
3.调整准直物镜的位置,使光线能够准直射入光栅光谱仪。
4.打开光栅光谱仪的读数电源,调整光栅支架上的读数电眼位置,使其能够正常读取光谱。
5.用白炽灯、氢灯、氖灯等光源进行实验测量。
6.调整读数电眼的读数位置,记录不同波长的光线对应的读数值。
7.根据读数电眼的读数和仪器提供的波长-读数变换函数,得到不同波长对应的光线。
8.绘制光谱图,并对光谱图进行分析和解释。
四、实验结果与分析:实验测量得到的光谱图如下所示:(这里应当给出具体的测量数据和光谱图,可以通过软件绘图工具或手工绘图)从光谱图中可以看出,在可见光范围内,不同波长的光线在光栅的作用下经过分散,形成了连续的光谱。
通过读数电眼的读出,我们可以根据波长-读数变换函数得到不同波长对应的光线。
根据实验测量的数据,可以得到不同光源的光谱特性,比如氢灯和氖灯在可见光范围内的谱线等。
五、实验总结:通过本次实验,我们掌握了光栅光谱仪的结构、原理和使用方法,并进行了不同光源的光谱测量。
光谱是光的波长和频率的一种表现形式,通过光谱测量可以了解光源的组成和特性。
光栅光谱仪实验报告 2一、实验目的1.用光栅光谱仪测量白、黄滤光玻璃片的基线、吸光度、与透过率。
2.学会并掌握光栅光谱仪的应用。
二、实验仪器1.已装载软件的电脑2. 有白、黄滤光镜片的滤光片3.光栅光谱仪三、实验原理仪器的规格与主要技术指标:波长范围 200,800nm焦距 302.5mm相对孔径 D/F,1/7波长精度 ?0.4nm波长重复性 ?0.2nm,3 杂散光 ?10WGD,3 型组合式多功能光栅光谱仪,由光栅单色仪,接收单元,扫描系统,电子放大器,A/D采集单元,计算机组成。
该设备集光学、精密机械、电子学、计算机技术于一体。
光学系统采用C-T型,如图2-1图2-1 光学原理图M1反射镜、M2准光镜、M3物镜、M4转镜、G平面衍射光栅S1入射狭缝、S2光电倍增管接收、S3 CCD接收入射狭缝、出射狭缝均为直狭缝,宽度范围0,2.5mm连续可调,光源发出的光束进入入射狭缝S1,S1位于反射式准光镜M2的焦面上,通过S1射入的光束经M2反射成平行光束投向平面光栅G上,衍射后的平行光束经物镜M3成象在S2上或S3上。
M2、M3 焦距302.5mm光栅G 每毫米刻线1200条闪耀波长550nm二块滤光片工作区间白片 320,500nm黄片 500,800nm四、实验内容1.进入系统后,首先弹出如图的友好界面。
2.单击鼠标或键盘上的任意键或等待5秒钟后,马上显示工作界面,同时弹出一个对话框(如图),让用户确认当前的波长位置是否有效、是否重新初始化。
如果选择确定,则确认当前的波长位置,不再初始化;如果选择取消,则初始化,波长位置回到200nm处。
此时,选择确定即可。
3.基线的测量,将信息/视图一栏选为动态方式,左侧的工作模式选为基线,间隔设定为0.1或0.2纳米,安好玻璃片后开始单程扫描,不断调节电压表,使图像的在450-550nm时达到顶峰,然后返回,重新初始化,重新扫描即可,将所得图像与数据保存在寄存器1中。
一、实验目的1. 理解光栅光谱的基本原理和特性。
2. 掌握使用光栅光谱仪进行光谱分析的方法。
3. 通过实验观察和记录不同物质的光谱,了解其光谱特征。
4. 培养实验操作技能和数据处理能力。
二、实验原理光栅光谱仪是利用光栅衍射原理进行光谱分析的光学仪器。
当一束单色光垂直照射在光栅上时,光栅上的狭缝会产生衍射现象,形成衍射光谱。
衍射光谱的亮暗条纹是由光的干涉和衍射共同作用的结果。
通过观察和分析衍射光谱,可以确定光的波长、研究物质的组成和结构。
三、实验仪器与材料1. 光栅光谱仪2. 稳定光源3. 光栅4. 光电探测器5. 数据采集系统6. 实验记录本四、实验步骤1. 将光栅光谱仪放置在实验台上,确保其稳定。
2. 调整光源,使其发出的光束垂直照射在光栅上。
3. 通过调整光栅的角度,观察光栅的衍射光谱。
4. 使用光电探测器记录光谱数据,包括光谱的亮暗条纹位置、强度等。
5. 根据光谱数据,分析物质的组成和结构。
6. 重复实验,观察不同物质的光谱特征。
五、实验结果与分析1. 实验过程中,观察到光栅的衍射光谱为明暗相间的条纹,表明光在光栅上发生了衍射现象。
2. 通过光电探测器记录的光谱数据,发现不同物质的光谱特征存在差异。
例如,氢原子光谱呈现为一系列亮暗相间的线状光谱,称为巴耳末系;钠光谱呈现为两条明亮的黄线,称为钠双线。
3. 根据光谱数据,可以计算出光的波长。
例如,氢原子光谱的波长可通过巴耳末公式计算得到。
六、实验总结1. 本实验成功观察到了光栅的衍射光谱,验证了光栅光谱仪的基本原理。
2. 通过实验,掌握了使用光栅光谱仪进行光谱分析的方法,并了解了不同物质的光谱特征。
3. 实验过程中,培养了实验操作技能和数据处理能力。
七、实验反思1. 在实验过程中,发现光栅光谱仪的调节需要一定的技巧,需要多加练习。
2. 实验数据记录时,应注意记录光谱的亮暗条纹位置、强度等信息,以便后续分析。
3. 在分析光谱数据时,要结合理论知识,才能准确判断物质的组成和结构。
实验38 光栅光谱仪实验光谱是人们认识和了解物质成分的一门古老的技术。
今天已知的元素中有近20%是依靠光谱技术发现的,而光栅光谱仪是研究光谱的重要工具。
【实验目的】1.了解光栅光谱仪器的基本原理及其应用;2.学习光栅光谱仪的使用方法,测绘不同物质的光谱图。
【实验原理】1.光谱仪器的基本组成光谱仪器是进行光谱研究和物质光谱分析的装置。
它的基本作用是测定被研究的光(所研究物质发射的、吸收的、散射的或受激发射的荧光等)的光谱组成,包括其波长、强度和轮廓等。
其通用光路图如图3-21所示。
入射光由狭缝入射经反光镜反形成的准直光束又反射到衍射光栅上,光栅将入射光分成独立的光谱,再经物镜反射后形成不同颜色的狭缝的像,即光谱,可由CCD接收或经光电倍增管放大接收。
因此,光谱仪器至少应具备三种功能:(1)可以将被研究的光按波长或波数分解开来。
(2)可以测定各波长的光所具有的能量,或能量按波长或波数的分布,即可以测量谱线的轮廓或宽度。
(3)可以记录能量按波长或波数的分布,并以光谱图的方式显示出来。
2.光谱仪器的基本特性光谱仪器的主要基本特性:工作光谱范围、色散率、分辨率、光强度及工作效率等。
(1)工作光谱范围指使用光谱仪器所能记录的光谱范围。
若改变光栅表面反射膜层的光谱反射率,反射式光栅可以用于整个光学光谱区。
但光电倍增管的光谱灵敏度界限只能达到850nm左右,红外波段则要求改用热电元件作为接收器。
(2)色散率对于经典的光谱仪器,色散率表示从光谱仪器色散系统中射出的光线在空间彼此分开的程度,或者会聚到成像物镜焦平面上时彼此分开的距离。
前者用角色散率表述,后者用线色散率表述。
(3)分辨率 是表示光谱仪器分开波长极为接近的两条谱线的能力,是光谱仪器重要的性能指标。
两条光谱线能否被分辨,不仅决定于仪器的色散率,而且还和这两条谱线的强度分布轮廓及其相对位置有关,也与接收系统有关。
通常用瑞利(Rayliegh )提出的仅考虑衍射现象的分辨率⎯理论分辨率作为分辨率的判据。
实验报告课程名称: 2011-2012光信息综合实验 指导老师: 林远芳 成绩:____ _ 实验名称: 自组装光栅光谱仪及其校准实验 实验类型: 综合型同组学生姓名:一、实验目的和要求 二、实验内容和原理 三、主要仪器设备 四、操作方法和实验步骤五、实验结果记录、数据处理分析 六、思考题 七、实验中遇到的问题,心得体会,意见和建议一、实验目的和要求1、了解光栅的分光原理及主要特性;2、了解光栅光谱仪的工作原理;3、掌握利用光栅光谱仪进行测量的实验方法;二、实验内容和原理衍射光栅是光栅光谱仪的核心色散器件,它的记录介质多采用光致抗蚀剂,一般用激光器作光源,可产生每毫米几千条对的空间频率的光栅,并且通过曝光和显影,直接得到浮雕型的正弦透射光栅。
相邻刻线的间距d 称为光栅常数,通常刻线密度为每毫米数百至数十万条,刻线方向与光谱仪狭缝平行。
当平行光入射到一块平面衍射光栅时,让衍射光波经过一透镜,则在透镜焦平面上得到光栅的夫琅和弗衍射图象,见图1。
如果光源是平行于光栅刻痕的狭缝光源发出的准单色光,则衍射花样是一些分立的亮线(亮条纹)。
图1 光栅衍射图亮纹位置满足如下条件——光栅方程式2,1,0,)sin (sin ±±==±m m i d m λθ (1)式中,d 为光栅常数,d=a+b , 在可见光范围内,d 一般在1/1000~1/500mm 之间。
mθ为第m 级亮纹对应的衍射角,λ为入射光波长,i 为入射平行光对光栅面的入射角,m 为多缝干涉主极大级数。
入射光处于光栅面法线同侧的亮条纹时上式中取正号;异侧时取负号。
专业:姓名:学号:_ 日期:_光栅上的每一条缝的单缝衍射在θ方向上P 点产生一个光振动,N 条缝在P 点产生的N 个光振动的振幅相同,他们的相干叠加决定了P 点的光强,光栅衍射是单缝衍射和多缝干涉的总效果。
亮纹(主极大)中心位置满足光栅方程中m =0,(θ=0)时,dsinθ=0为中央明纹中心。
实验报告【实验题目】光栅光谱仪【实验时间】教十206【实验仪器】WGD-5 型组合式多功能光栅光谱仪,滤色片,汞灯,溴钨灯【实验内容】一、汞灯光谱测量探测器选用光电倍增管,高压加到400 伏(不超过600V)。
在能量模式下测量汞灯光谱。
扫描范围300-750nm,扫描步长选1 1 nm。
用“自动寻峰”测量谱线波长,与标准值比较,如果波长差大于1nm,进行波长修正。
说明:光源:汞灯参数设置:工作方式:模式“能量”,间隔“1nm”;工作范围300—750nm。
狭缝宽度调节,使入射缝与出射缝相匹配。
点击“单程”,单色仪开始扫描。
扫描完成根据谱线强度重新调整入射和出射狭缝,使谱线尽量增高,并使黄线576.9nm 、579.0nm 分开( ( 以划线谱线作为参照) )(汞灯谱线:波长(nm) 365.02、404. 66、407.78、435.83、546.07、576.96、579.07、623.4)二、测量红LED灯和激光的光谱在能量模式下测量汞灯光谱。
扫描范围300-750nm,扫描步长选1 1 nm。
用“自动寻峰”测量谱线波长,与标准值比较,如果波长差大于1nm,进行波长修正。
光源:红LED和激光参数设置:工作方式:模式“能量”,间隔“1nm”;工作范围300—750nm。
狭缝宽度调节,使入射缝与出射缝相匹配。
点击“单程”,单色仪开始扫描。
三、测量滤色片透过率曲线光源:取下高压汞灯,换上溴钨灯1. 扫描基线工作方式:模式“基线”。
点击“单程”,单色仪开始扫描。
调节入射缝的缝宽使基线的峰值达到900 以上;扫描结束后,点击“当前寄存器”列表框右侧“---”,在弹出的“环境信息”填入信息,然后关闭。
保存该寄存器的数据,选用“txt”的文本格式。
2. 扫描透过率曲线打开样品池顶盖,将一个滤色片放在入射狭缝的前面,盖上顶盖。
工作方式:模式“透过率”;更换寄存器;扫描,保存。
确定某一种滤光片的峰值、峰值波长及半高宽,确定某一种滤光片的截止波长(禁带两侧第一个峰值的40%强度处所对应波长,如无峰,可不做)四、数据处理:1. 根据所记录的实验数据,用Excel 或者origin 画出实验曲线2. 描述滤光片的特性。
自组式光栅光谱仪
一、实验目的
1、了解光栅的分光原理及主要特性;
2、了解光栅光谱仪的工作原理;
3、掌握利用光栅光谱仪进行测量的实验方法。
二、实验仪器
1低压汞灯及电源:2狭缝及固定调节架1个:0~2mm;3一维光栅及干板调节架1个;4、透镜及固定调节架3个(焦距f=60mm、焦距f=60mm、焦距f=200mm);
5、白板1个;
6、读数显微镜及固定调节架1个。
三、实验原理
本实验用的是透射光栅,是用光学玻璃片刻制而成的(如图5-11-1)。
当光照射到光栅表面时,刻痕处不透光。
只有在两刻痕之间的光滑部分,光才能通过,相当于一条狭缝,因此,光栅实际上是一密排、均匀而又平行的狭缝。
设a为缝宽,b为刻痕宽度,d=a+b称为光栅常数。
由夫琅和费衍射理论,当波长为λ的平行光束垂直照射到光栅平面时,在每一狭缝处都产生衍射,但由于各缝发出的衍射波都是相干光,彼此又产生干涉。
这样就会在光栅后面的屏上形成一系列被相当宽的暗区隔开的亮度大、宽度窄的明条纹,成为谱线(如图5-11-2)。
如图5-11-3所示,设S为位于透镜L1第一焦平面上的细长狭缝,G为光栅,光栅的常数为d,L1射出的平行光垂直地照射在光栅G上。
透镜L2将与光栅法线成θ角的衍射光会聚于其第二焦平面上的Pθ点。
由夫琅和费衍射理论知,相邻两缝对应点出射的光束之光程差为:∆ = (a + b)sinθ = d sinθ 当衍射角符合下列条件:
d sinθ = kλ k = ±1, ± 2, ± 3, ..., ± n (5-11-1)
该衍射角方向的光将会得到加强,叫做主极大,形成明纹;其他方向的衍射光线或者完全抵消,或者强度很弱,几乎成暗背景。
(5-11-1)式称为光栅方程,其中:λ为单色光波长,k称为光谱线的级数。
在k=0的方向上可观察到中央极强,称为零级谱线,其它谱线则对称地分布在零级谱线的两侧,如图5-11-2所示。
图5-11-3 平行光通过光栅
当k=0时,任何波长的光均满足(5-11-1)式,亦即在θ = 0 的方向上,各种波长的光谱线重叠在一起,形成明亮的零级光谱;对于k 的其它数值,不同波长的光谱线出现在不同的方向上(θ的值不同),从而在不同的位置上形成谱线,称为光栅谱线。
而与k的正负两组相对应的两组光谱,则对称地分布在零的光谱两侧。
若光栅常数d 已知,在实验中测定了某谱线的衍射角θ和对应的光谱级k ,则可由(5-11-1)式求出该谱线的波长λ;反之,如果波长λ是已知的,则可求出光栅常数d 。
四、实验内容
1、自组装置光栅光谱实验仪,实验装置图见图2所示。
光源发出的光经过60mm透镜会聚到狭缝上,光线经过狭缝(狭缝放置在200mm 透镜的前焦面上),从200mm透镜出来的光为平行光,再入射到光栅上。
通过光栅衍射的光成像于60mm透镜的后焦平面上(实为无穷远处可调狭缝的像)。
图2自组光栅光谱仪实验装置图
2、在60mm透镜后放置读数显微镜,读数显微镜前端据60mm透镜约120mm。
通过读数显微镜观察光谱的像,并前后左右移动读数显微镜,使光谱的0级和1级的光条纹完整清晰的呈现在读数显微镜中,0级不要放在视场中心,要放在一侧,否则可能看不见1级条纹(由于读数显微镜的视场有限,不太可能同时观察到正负一级条纹)。
3、粗调时,可将可调狭缝调的比较宽,以增加干涉条纹亮度,方便调试。
光路调整完毕后,即可调细狭缝便于测量。
4、用读数显微镜测量各衍射亮条纹距0级的距离,通过透镜焦距和这个距离可以算出各亮条纹的衍射角。
5、最后将光栅片轻轻取下,放在显微镜载物台上,用金相显微镜观察光栅结构并测量光栅常数d。
(测量光栅常数方法见附件一)
6、运用光栅公式d sinθm=±mλ(m=1),求出光谱线的波长。
汞灯发出的可见光光谱谱波长为:404.7nm、435.8nm、546.1nm、577.0nm、579.0nm;
附件一
1.打开软件:双击上图箭头所指的软件图标
软件打开后如下图所示
2.选择摄像头,单击上图箭头所指摄像头名称
选择完摄像头摄像头开始工作如下图(因为没放东西所以视野是空白的)
3.打开显微镜主开关,调节照明系统使目镜视场均匀明亮;将光栅片轻置在显微镜载物台上,选择物镜并仔细调焦,要求目镜视场中清晰观察到光栅面上的均匀刻痕,利用计算机软件测量光栅常数d。
4.测量
测量前先选择相应的定标数据---物镜是多少倍就选择多少倍(见下图圈中菜单);
再选择相应的测量工具(见工具栏里划线)
现在用的线段选择线段之后在测量的起点单击一下左键终点单击一下左键
如想删除不需要测量的结果选择图中红框中的箭头图标然后选中想要删除的数据按下键盘上的(DELETE)键。
附件二:
金相显微镜简单说明
目镜
物镜转换器镜
物镜
载物台
1.调光开关:控制光源亮度
2.左粗调焦手轮:前后旋转调节焦距(右侧也有功能一样)
3.左微调焦手轮::前后旋转调节细微焦距(右侧也有功能一样)
4.锁紧套:进行固定以方便观察
5.视度调节环:如果右眼清晰左眼不清晰可通过它调节
6.瞳距指示牌:调节瞳距
7.视场光阑:左右移动调节视野范围
8.孔径光阑:左右移动调节光的通过量大小
9.聚光镜调节杆:左右移动消灯丝像
1.主开关:总电源开关
2.又粗调焦手轮:前后旋转调节焦距(左侧也有功能一样)
3.纵向调节手轮:旋转手轮载物台前后移动
4.横向调节手轮:旋转手轮载物台左右移动。