旋转油封失效分析
- 格式:docx
- 大小:23.06 KB
- 文档页数:2
机械密封结构原理及失效分析1 机械密封的基本原理机械密封依靠弹性元件提供弹力,克服补偿环辅助密封圈与轴之间的摩擦力,使补偿环紧密地贴合在非补偿环的端面,形成密封端面初始闭合力,当主机充满压力介质并开始工作时,可使密封端面产生闭合力,从而使密封端面达到合理的比压,实现流体的密封。
2机械密封的基本结构由补偿环、补偿环辅助密封圈、弹性元件、传动件、弹簧座、紧固件等组成的补偿组件,以及由非补偿环、非补偿静环辅助密封圈等组成的非补偿组件,共同组成一套完整的机械密封。
1)典型的旋转式(见图1)和静止式(见图)2)机械密封基本结构构成典型的旋转式机械密封的基本元件有:摩擦副(补偿环4、非补偿环3)、辅助密封圈(O形圈2、5)、传动件(推环6)、弹性元件(弹簧7)、弹簧座8、紧固件(紧定螺钉9)、防转销1及密封端盖11和密封腔10组成。
图1 机械密封基本结构(旋转式)1-防转销2-非补偿环辅助密封圈3—非补偿环(静环)4—补偿环(动环) 5-补偿环辅助密封圈6-传动件7-弹簧8—弹簧座 9—紧定螺钉10—密封腔11—密封端盖图2 机械密封基本结构(静止式)1-弹簧座2-防转套3-弹簧4-推环5-补偿环辅助密封圈6-补偿环(静环) 7—卡环8—非补偿环(动环)9—非补偿环辅助密封圈10—密封腔11—密封端盖12—密封压盖2)机械密封主要泄漏途径当密封腔内充满有压的被密封介质时,由图1所示机械密封的泄漏点主要有4处:泄漏点1:密封摩擦副端面处,称为主密封,是决定密封性能及寿命的关键密封点,据统计大约有80%以上的密封泄漏都是由此造成的。
泄漏点2:位于密封静环与压盖之间。
泄漏点3:位于密封动环与轴(或轴套)之间,称为机械密封的辅助密封,主要形式有:O形圈、V 形圈、矩形圈等。
工作时辅助密封基本无相对运动,属相对静止的密封,但动环辅助密封圈对机械密封的追随性起着关键作用。
泄漏点4:位于密封腔与压盖之间的静密封,狭义讲不属于机械密封零件,主要形式有:O形圈、垫片等。
骨架油封的失效模式及排除方法1、概述骨架油封属于动密封元件,“临界油膜“的存在,是油封密封的充分必要条件,无泄漏的密封是不允许也是不存在的。
因为润滑油膜的存在是保证油封唇口实现润滑摩擦所必不可缺的,而润滑油膜的存在,使得一定量的泄漏不可避免。
对旋转用油封,在使用过程中,如果运行初期的50~100小时之内发生微量泄漏是允许的。
随着运转时间的加长,泄漏会逐渐停止,往往这样的油封寿命比较长。
在有效使用期限内,微量的泄漏是允许的,否则,必须按照油封的常见故障原因及排除方法进行处理。
2、油封的常见故障原因及排除方法a、骨架油封不良,造成早期泄漏唇口不良:原因:制造质量不佳,唇口有毛刺或缺陷。
排除方法:去除飞边毛刺或更换油封。
弹簧质量不佳或失效原因:制造质量不佳排除方法:更换油封弹簧径向力过小原因:弹簧过松,抱紧力过小排除方法:调整油封弹簧/装配不良,发生泄漏唇口有明显伤痕原因:装配时,油封通过键槽或螺纹,划伤唇口排除方法:更换油封,重新安装时,要用保护套,以保护油封唇口油封呈蝶形变形原因:油封安装工具不当排除方法:重新设计、制造油封安装工具油封唇口向装配反方向翻转或弹簧松脱原因:轴倒角不当,粗糙度过高或装配用力过大,致使油封唇部翻转或弹簧脱落排除方法:打磨轴端倒角,小心安装油封唇部与轴表面涂覆油脂过多,误判泄漏原因:装配时,油封唇部与轴表面涂覆油脂过多排除方法:待轴运转一段时间,油脂即可减少恢复正常/唇口磨损润滑不良,唇口工作面磨损严重,接触宽度超过1/3以上,呈现无光泽原因:润滑不良,接触表面与唇口产生干摩擦排除方法:保证润滑轴表面粗糙度较高原因:轴表面粗糙度较高,导致唇口磨损严重排除方法:降低轴的表面粗糙度润滑油有灰尘(杂质)或无防尘装置造成灰尘(杂质)等侵入原因:润滑油、油路系统清洁度不佳,灰尘(杂质)等侵入唇口与轴的接触表面,引起异常磨损;轴上粘附粉末硬质异物;装配时,铁屑等硬质异物刺入唇口;轴上或油封唇口误涂漆料;油封弹簧抱得太紧排除方法:保持润滑油清洁;加强油路系统清理;为了防止等侵入唇部,增设防尘装置;装配时,注意清洁;去除误涂的漆料唇口径向力过大,油膜破裂原因:弹簧过紧排除方法:调整或更换油封弹簧安装偏心,唇口滑动出现异常磨损,最大与最小磨损宽度呈对称分布;主唇与副唇滑动面痕迹的大小,两者随各自呈对称分布,但大小位置相反原因:箱体(壳体)、端盖、轴不同心,致使油封偏心运转;油封座孔过小,不适当的压入油封,以致倾斜排除方法:保证箱体(壳体)、端盖、轴装配后的整体同心度要求;保证油封座孔的尺寸要求油封与工作介质相容性不良,唇口软化、溶胀或硬化、龟裂原因:工作介质不匹配排除方法:根据实际工作介质选用适宜的油封材料或根据实际油封材料选用适宜的工作介质橡胶老化唇部过热硬化或龟裂原因:工作介质实际温度高于设计值,超过油封材料耐用限度排除方法:降低工作介质温度或更换耐热橡胶材料的油封润滑不良、唇部硬化或龟裂原因:润滑不良,发生干摩擦排除方法:保证润滑唇部溶胀、软化原因:橡胶对工作介质的相容性差;油封长时间浸泡于洗油或汽油中,使唇口溶胀排除方法:选用相容于工作介质的橡胶材料或选用适用于橡胶材料的的工作介质;不得使用洗油或汽油清洗油封轴表面粗糙度过高或过低原因:表面粗糙,磨损严重;表面太光,润滑油膜难以形成和保持,发生干摩排除方法:轴表面粗糙度采用适宜的加工方法保证表面粗糙度轴硬度不当,高于40HRC原因:试验表明,轴表面硬度高于40HRC时反而加速轴的磨损(表面镀铬除外)排除方法:轴表面硬度保持在30~40HRC,表面镀铬最好润滑油有杂质,表面磨损严重原因:润滑油不清洁排除方法:保证润滑油清洁偏心过大,轴径向摇动时有响声原因:轴承磨损、松旷;轴本身偏心排除方法:更换轴承,改用耐偏心轴承唇口处有灰尘,轴表面磨损严重原因:轴表面清洁度不足,粘附灰尘颗粒,侵入油封唇口,磨损轴表面;侵入铸造型砂,磨损轴表面;外部侵入灰尘,磨损轴表面;润滑油劣化,生成氧化物,侵入油封唇口,磨损轴表面排除方法:保证轴表面及油封的清洁;为了防止外部灰尘杂质的侵入,增加防尘装置;改用油脂润滑油轴的滑动表面有伤痕或砂眼原因:轴表面有工艺性龟裂或腐蚀点等,加剧磨损而泄漏;轴表面的伤痕、砂眼与油封唇口之间形成间隙而泄漏;轴表面碰伤或划伤排除方法:保证轴表面质量,严防磕碰轴表面的滑动部分有方向性的加工痕迹原因:轴表面留有细微螺纹旋槽等车削或磨削加工痕迹,形成泵吸作用而泄漏排除方法:保证轴表面精加工工艺。
电机油封失效原因概述说明以及解释1. 引言1.1 概述本文旨在对电机油封失效原因进行概述说明和解释。
电机油封作为电机的重要组成部分,在保护电机内部免受外界物质侵蚀和润滑电机工作过程中起着至关重要的作用。
然而,由于各种原因,电机油封可能会发生故障,导致严重后果。
因此,了解电机油封失效原因并采取相应的解决方法和预防措施具有重要意义。
1.2 文章结构本文将分为五个主要部分进行论述。
首先是引言部分,对文章内容进行概述说明,并介绍了文章的结构安排。
接下来,第二部分将详细探讨电机油封失效的定义与背景信息,并进一步列举具体的失效原因。
第三部分将以故障影响为切入点,对电机油封失效之后可能带来的后果进行深入分析。
第四部分将提供解决方法和预防措施来解决或避免这些问题的发生。
最后,在结论中将总结全文,并提出未来研究方向。
1.3 目的本文的主要目的是为读者提供关于电机油封失效原因的全面概述和解释,帮助读者更好地理解电机油封在电机工作中所扮演的重要角色。
通过了解导致油封失效的具体原因和可能产生的后果,读者能够采取针对性的措施来避免或解决这些问题。
此外,本文也将为进一步研究电机油封失效提供一些可行的研究方向。
2. 电机油封失效原因2.1 定义和背景介绍电机油封是一种用于密封电机内部零部件与外部环境之间的装置。
其主要功能是防止润滑油或冷却液从电机中泄漏,并阻挡外界灰尘、水气等有害物质进入电机内,以保护电机的正常运行。
然而,由于工作环境的恶劣条件和不可避免的磨损,电机油封可能会失效。
失效的油封可能导致润滑油泄漏、污染环境,甚至引发电机故障。
因此,了解电机油封失效原因对于提高电机使用寿命和减少故障率具有重要意义。
2.2 失效原因一首先,一种常见的导致电机油封失效的原因是磨损。
由于长时间的摩擦和振动,油封表面会逐渐磨损,并形成微小裂纹或缺陷。
这些缺陷可能使橡胶材料变硬,失去弹性,并且不能再有效地密封润滑油或冷却液。
其次,化学侵蚀也是导致油封失效的因素之一。
常见的旋转橡胶密封圈泄漏原因及解决措施
旋转橡胶密封圈又称之为油封,密封过程往往出现部分(位置)的泄漏问题,我们又该如何排除旋转动密封圈各种泄漏以及做好解决措施?今天桂祺密封件小编与您分享旋转橡胶密封圈的各种泄漏现象及解决措施。
一、摩擦过程越大的原因及解决措施
1. 压力过大:可改换密封形式;
2. 预加载荷过大:可改换密封形式;
3. 润滑不良:改换为PTFE摩擦面材质;
二、密封损坏原因及解决措施
1. 轴粗糙:严格要求密封表面粗糙度及倒角技术;
2. 安装不当:利用适当技术及专业工具;
3. 有磨损颗粒存在:可在多尘环境下配用防尘密封圈;
三、密封泄露量越多的原因及解决措施
1. 橡胶密封圈损坏及表面磨损:更好密封圈型号及材料应用旋转耐磨性强的;
2. 橡胶密封圈唇口开裂:可能由于轴表面粗糙,密封材料不正确及速度、温度过高问题引起;
3. 橡胶密封圈唇口压力不足:核对密封圈规格尺寸是否正确,弹簧是否工作正常;
4. 密封圈装配不良:正确安装密封元件,勿反向误装(错位);。
常见橡胶油封的故障原因及排除方法精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-
常见橡胶油封的故障原因及排除方法
(oil seal)是一般密封件的习惯称谓,简单地说就是润滑油的密封。
告诉您这不是一般的封油密封零件,相比其他密封件更可靠,他能有效泄漏并将传动部件中需要润滑的部件与出力部件隔离,不至于让润滑油渗漏。
一般传动部件中需要润滑的部件与出力部件隔离,不至于让在机械里面的润滑油渗漏,通常用于旋转轴,是一种旋转轴唇密封。
tc是采用材质丁腈橡胶和钢板制作而成,质量稳定,使用寿命长。
那么您知不知道的实际用途是什么呢?
1.只用防止泥沙、灰尘、水气等来自外侵入轴承中;
2.限制轴承中的润滑油漏出。
当然啦,对弹性度也是有要求的,这样就能起到将轴适当的卡住,起到密封作用。
广州东晟密封件告诉您:如何处理油封的早期泄漏以及排除发生状况的相应方法:
要学会防止油脂泄漏,就得好好的了解下油封对机械的规格需求,定期的保养好密封件,那就不需要担心会发生问题啦!
了解更多液压活塞密封的问题,就在广州东晟批发网哦!
文章整理dsh广州密封件公司。
机械密封失效原因及应对分析摘要:本文简单阐述了机械密封失效原因及应对方法。
针对炼油化工装置中广泛应用的机械密封失效的现象、原因等方面进行了分析,并结合实际生产会出现的典型的密封失效故障,对机械密封失效提出了相应的应对措施。
关键词:机械密封失效应对措施一、概述机械密封在石油和化工企业使用非常广泛,由于其具备很好的密封性和稳定的性能,而且泄漏量较少,摩擦功耗低,使用周期长,对轴(或轴套)磨损很小,能满足多种工况要求等特点而被广泛使用。
但是其密封结构复杂,使用条件苛刻,价格高及维修技术高等特点,特别是机械密封工艺条件温度、压力等工艺参数的影响直接关系到设备机械密封的性能和使用寿命,因此,找出机械密封失效原因及改进措施是保证企业安全生产,提高设备使用寿命的重要任务。
机械密封是一种用来解决旋转轴与机体之间动密封的装置,它是依靠弹性元件对动、静环端面密封副的预紧和介质压力与弹性元件压力的压紧而实现密封的,又被称为轴向端面密封或端面密封。
机械密封基本构成为:端面密封副(动换和静环)、弹性元件(如弹簧、波纹管、隔膜等)、辅助密封(如O型圈)、传动件(如传动销和传动螺钉)、防转件(如防转销)和紧固件(弹簧座、推环、压盖等)。
机械密封由于具有密封性好、可靠性高、稳定向好、耐振性好、使用广泛的优点,在石油石化中得到广泛应用。
二、机械密封存在的问题随着现代工业生产的发展,机械密封的工作环境越来越苛刻,对密封的要求越来越高。
目前国内外旋转式机泵(主要为离心泵)用机械密封基本上为普通的接触式机械密封,由于密封端面之间存在直接的固体颗粒导致密封端面摩擦温升过高、过度磨损等原因早期失效。
在密封环境较为恶劣的条件下,如密封易汽化类、高危险性、高腐蚀性、高含颗粒介质,失效概率明显增大,机械密封难以满足长周期运行的要求。
我国JB 4127.1-1999《机械密封技术条件》中规定:在选型合理、安装使用正确的情况下,被密封介质为清水、油类及类似介质时,机械密封的使用寿命一般不少于1年。
根据该泵密封失效后的损坏情况,初步判断其机械密封失效有以下原因:①除密封失效及寿命短外,其余一切情况正常,因此,可以排除装配误差、辅助系统、机泵振动及工艺操作等因素的影响,大致可以认为是设计缺陷引起的密封失效。
②从密封面的失效现象看,动环表面出现径向裂纹,辅助密封圈老化,属于典型热损失效。
石墨静环磨平并有开裂现象是磨损和热损双重作用所致。
③1997年大检修后因生产的需要,工艺上做了部分调整,增加了轻质油产率,致使该泵输送的汽油中轻质组分增加,并含有少量的液化汽成分(c4、c5),导致摩擦副工作的温升过大,动环出现热裂现象,同时静环磨损加剧,使密封寿命大为降低。
图1 不同相态机械密封液体膜载荷与膜厚关系另外,104-45型机械密封使用的psv值和工作pbv值均超过了允许值。
而端面比压pb的大小对机械密封的稳定运行有着极大的影响。
端面比压太小容易产生泄漏。
端面比压太大,会使摩擦面液膜减薄,液膜承载力降低,摩擦因数加大,使用寿命降低。
综上所述,脱乙烷汽油泵机械密封失效的原因是由于汽油中轻组分的增加,介质更易于汽化,液膜承载能力降低,端面比压过大,液膜减薄,摩擦副在不稳定的似汽相状态下工作,摩擦热增加,端面温升过大,进而引起更多的轻质汽油组分汽化。
如此循环,最终摩擦副在干摩擦状态下工作,使石墨静环磨损加剧。
同时,过大的端面温升使碳化钨动环出现径向热裂纹,辅助密封圈老化,介质泄漏增加,密封寿命大为缩短,最终使机械密封迅速失效。
3 改进措施及应用效果为了适应输送介质的变化,结合该泵的具体条件,采取了2种措施来降低密封的端面比压。
①将104-45非平衡机械密封改为110-45平衡型机械密封,使密封的平衡系数β由1.177降为0.77。
②根据石油大学流体动密封研究室的实验,在密封面上开圆弧槽可显著提高液膜的承载能力,增加密封稳定性。
限于加工条件,我们仅在110-45型机械密封的石墨静环表面上加工了8个半圆形凹槽,增强了端面液膜的承载能力,降低了端面比压,并使密封的润滑性能得到了改善,降低了摩擦副的摩擦因数,减少了端面的摩擦热及由温度升高引起的端面汽化现象,避免了干摩擦的出现。
油封损坏原因油封是一种用于机械设备中的密封件,其主要作用是防止润滑油或液体从设备内部泄漏出来,同时阻止外部杂质进入设备。
然而,在使用过程中,油封有时会出现损坏的情况,导致其密封性能下降甚至完全失效。
那么,油封损坏的原因有哪些呢?使用过程中的磨损是油封损坏的主要原因之一。
由于油封处于机械设备中的运动部件上,长时间的摩擦会使油封表面磨损,进而导致其密封性能下降。
特别是在高速旋转的设备中,磨损会更为明显。
此外,如果设备没有定期进行润滑保养,油封摩擦面的润滑剂会减少,也会加速磨损的发生。
油封老化也是导致油封损坏的原因之一。
随着使用时间的增加,油封的材料会发生老化,变得脆硬。
这就使得油封的弹性减弱,无法有效地密封设备内部的液体或气体。
特别是在高温环境下,油封老化会更加严重,加速了油封的损坏。
不适当的安装和使用也会导致油封损坏。
例如,如果油封被不正确地安装在设备上,或者在使用过程中遭受到过大的压力或振动,都会对油封造成损坏。
油封的质量问题也是导致损坏的原因之一。
如果油封的材料质量不过关,或者制造工艺不合格,那么油封在使用过程中很容易出现裂纹、变形等问题,从而导致其密封性能下降。
因此,在选择油封时,应选择正规厂家生产的产品,并进行严格的验收和检测。
环境因素也会对油封造成损坏。
例如,工作环境中存在大量的颗粒物、尘埃等杂质,会进入油封内部,磨损油封表面;或者工作环境中温度、湿度等因素变化较大,也会对油封的材料产生影响,导致油封损坏。
油封损坏的原因可以归纳为使用过程中的磨损、油封老化、不适当的安装和使用、油封质量问题以及环境因素等。
为了延长油封的使用寿命,需要定期进行润滑保养,正确安装和使用设备,选择优质的油封产品,并尽量减少环境因素对油封的影响。
只有这样,才能保证机械设备的正常运行和延长其使用寿命。
油封常见失效原因分析及改善一、唇部泄漏(内径)失效项目失效模式失效起因建议措施轴表面唇部磨损大,在磨表面粗糙度超出标准值的修正轴的表面粗糙度符合标准值Ra=0.2~0.8μm。
粗糙度损面上有圆周方Ra=0.2~0.8μm,导致异常磨损。
过大向的条纹。
指定轴的表面粗糙度更换。
唇润滑不唇部磨损大,磨损润滑油不足,造成唇部干摩擦,产生补充润滑油至指定量再旋转。
部足面失去光泽。
异常磨损。
磨内压大唇部磨损大,有凹压力超出油封设计值。
改用耐压型油封。
损槽。
设通气孔使成为不带压力的结构。
异物卡唇部磨损大,有条泥沙与灰尘附着在轴与油封唇部,造装配时轴与油封上不要沾染上泥沙与灰尘。
咬纹和凹槽。
成唇部卡咬。
装配环境恶劣时,在油封上加上防尘唇的设计。
润滑不唇部光滑、有光润滑油不足,造成唇部干摩擦,产生泽,唇部硬化表面补充润滑油至指定量再旋转。
足异常磨损。
发生龟裂。
唇唇部光滑、有光部异常高温度超出油封设计值。
改用耐热性良好的橡胶材料。
泽,唇部硬化表面硬温发生龟裂。
唇部温升超出橡胶的耐热极限。
避免唇部温升过高。
化唇部接触面宽大、改用耐压油封。
内压大有光泽,唇部硬化压力超出油封设计值。
设通气孔使成为不带压力的结构。
表面发生龟裂。
装配尺寸太小,勉强安装,造成油封使用适合尺寸的装配孔。
唇倾斜。
倾斜安唇部与轴接触宽部装配孔未倒角,勉强安装,造成油封装度不均匀对称。
将装配孔倒角,尺寸适当偏倾斜。
磨没有适当的装配工装。
选用合适的装配工装损安装偏唇部与轴接触宽轴与装配孔的中心在移位的状况下提高轴与装配孔的通信度。
心度不均匀对称。
安装及运转。
唇唇部材改用适当的润滑油部润滑油与橡胶不适合,造成唇部膨料不适唇部膨胀、软化软胀、软化。
改用适当的橡胶材料合化油组装不在组装时压坏唇部而使腰部产生龟使轴与装配孔同心,注意装配。
封良裂。
腰油封腰部有龟裂改用耐压型油封。
部内压大压力超出油封设计值。
破设通气孔使成为不带压力的结构。
损轴倒角轴端倒角尺寸及角度不正确,使唇部使倒角尺寸与角度适合,组装时在倒角处涂上润滑唇不良在轴端卡住,造成损伤。
机械中油封的失效和对策管荣根 顾 玲(扬州大学工学院机械工程系,扬州,225009)摘 要 探讨了油封的密封机理、失效和对策.为密封的正确设计和使用提供了实用性依据.关键词 油封;失效;对策中图法分类号 T H 117机械设备能否正常运转,其性能可否良好发挥,是与密封结构的设计、密封元件密封性能的好坏息息相关的.如果密封失效,那么工作介质或润滑液的泄漏所造成的损失是十分惊人的.既影响机器的摩擦、磨损与功率消耗,缩短机器的工作寿命,也会因泄漏而引起污油横溢,腐蚀设备和工作环境.更严重的还会因此而失火爆炸,引发人身、设备的安全事故.开展对密封技术的研究已是当前技术工作中的重点攻关项目之一,对密封的新结构、新材料、新工艺的研究和设计,已成为满足现代化建设中各个技术领域发展的迫切需要.油封因其结构简单、紧凑,性能可靠,有广泛的适应性,而成为最常用的密封件之一.为此,我们以油封的研究成果为基础,作一些分析和探讨.1 密封机理首先,从油封的密封机理入手,研究有关密封性能的各影响因素,分析它们之间的内在联系、变化规律和失效原因,为采取相应的对策,提供足够的依据.研究成果表明[1~3],不同的密封,从本质上说,其工作机理是各不相同的.因而不能用统一的力学模型加以描述.迄今为止,对密封机理的探索和解释存在着许多学派.就油封而言,其中比较有说服力、并经实验证实的,是Horve L 等人研究并提出的“泵汲”效应模型理论.该理论认为:被密封液体的表面张力有助于防止泄漏,可保证密封系统中接触区的油液膜处于混合润滑状态下工作,其密封是通过油封的“泵汲”实现的.这种泵汲能力是由轴和油封唇部所形成的径向力及轴向擦拭作用而产生.换言之,油封的密封机理,是由轴上的油封唇部,在轴的运转过程中不断地将油液从大气侧泵汲到油侧.这一理论经Muller 实验证实[2]:一个已有泄漏的油封,将它反装,则成为一个良好的泵汲密封.图1所示为装在轴上油封的几何形状和泵汲密封示意图.油封装到轴上后,因过盈量而产生径向力,改变了唇部几何形状,并使大气侧的角度 减小,油侧的角度 增大.油封与轴的接触宽度,即密封作用宽度为D .D 的磨损变化是随工作条件(包括轴的加工精度、表面状况和轴的转速,以及润滑油液的粘度、洁度和温升等)和油封的结构、材料、过盈量不同而变化的.由图可见:D =A +B式中A 为大气侧密封接触宽度,mm,A =D tg tg +tg ;B 为油侧密封接触宽度,mm,B =D tg tg +tg.基于上述泵汲机理,油封随轴的运转过程中,会产生一个把油回送到油侧的速度v 进,和一个把油泄送至大气侧的速度v 出.只要使v 进>v 出,则不发生泄漏,而v 进=P r h 26 D2tg +tg tg ;v 出=P r h 26 D 2tg +tg tg ,式中P r 为径向力,N;h 为油膜厚度,mm ; 为油液粘度,N s -1 mm -2.比较两式可见,在假设其他条件稳定不变的情况下,理论上只要 > ,则可使v 进>v 出,从而使密收稿日期第2卷第1期扬州大学学报 自然科学版V ol.2N o.11999年2月JOU RNAL OF YANGZHOU UNIVERSITY NAT URAL SCIENCE EDIT ION F eb.1999封可靠而不泄漏.2 失效分析和对策事实上,油封的工作条件和环境条件是复杂而多变的,它的失效也是诸多因素和它们的交互作用所致.下面逐一加以分析.2.1 轴的表面粗糙度及有关技术要求轴的表面与油封唇部间应有适量的油膜,以达到混合润滑状态.因此,必须选择合适的轴表面粗糙度.若粗糙度过大,油膜厚度大,易泄漏,而使唇部磨损加剧;若过小,则油膜难以形成,滑动面易皲裂,导致密封性能不稳定.图2所示为采用磨和砂光两种工艺方法、轴与油封间处于干摩擦和有润滑油两种不同工况下,以不同的轴表面粗造度作试验所获得的油封磨损宽度与轴表面粗糙度之关系曲线.由图可见,在干摩擦工况下的磨损宽度明显要大于润滑工况,特别是当R a <0.15 m 的小粗糙度下,油封的磨损将急剧增大,以致很快导致报废.为保证有合适的油膜,一般轴的表面粗造度宜在0.15~0.4 m 内选取.除了轴的表面粗糙度的合理选取外,还应对轴的尺寸和形状公差提出相应的要求.由于存在着加工、安装误差,将会产生轴的不圆度和动态偏心,它们都将影响到油封使用中的密封效果.图3所示的试验结果表明:轴的不圆度和动态偏心所出现的泄漏率与轴的转速有极大的关系.动态偏心所引起的泄漏,大大高于不圆度所引起的泄漏.在一定转速范围内,动态偏心将使泄漏量迅速增大,偏离这一转速范围则又迅速下降.图1 轴上油封几何形状和泵汲示意图 图2 油封唇部磨损宽度与轴表面粗糙度关系图中实线为润滑工况;虚线为干摩擦工况2.2 轴的转速轴的转速是密封系统设计或密封元件选用的依据之一.它不仅影响到油封的泄漏,而且由于转速的改变,将引起温升、动载等变化,显著影响到油封的工作寿命.图4所示为油液温度保持在120℃时轴转速对密封寿命的影响曲线.2.3 润滑油量实验验证,在轴与油封滑动面间供给适量的润滑油,就能减少油封唇部的磨损,确保良好的密封性能.图5所示,是油封唇部单位磨损与润滑油量间的关系曲线.这是在轴径d =40m m 、轴转速n =1500r min -1,当轴的表面粗糙度分别为R a =0.8、3、18 m 时,逐次加入润滑油,运转5m in 所获得的试验曲线.图中粗实线、虚线和点划线分别对应于轴表面粗糙为0.8、3和18 m 的试验曲线.图中还显示:在一定的轴表面粗糙度下,存在着一个使油封磨损的最大的相应的供油量值;表面粗糙度越大,则最大磨损也越大;不论何种粗糙度下,都有一个使磨损为最小的供油量.在大量试验所础上,运用统计规律可得出使油封磨损量最小的最少润滑油量为:Q min =0.d 为轴径,mm ;n 为轴转速,r min -1.因加工、安装和工作条件的千变万化,为保证油封的工作可靠性,实际提供的油量宜大于最少供油量Q min .76扬州大学学报 自然科学版第2卷图3 轴的不圆度和动态偏心下的泄漏率1.轴的动态偏心0.8mm;2.轴的不圆度0.8mm 图4 轴转速对密封寿命的影响 图5 油封唇部单位磨损与润滑油量的关系 2.4 润滑油的清洁度如果油液不洁,或由于机械对偶件在运转中产生的磨损粉末和切屑粉末,以及外部侵入的灰尘,进入润滑油中,将使油质变坏,形成油泥和固态杂质,引起油封唇口与轴表面划伤,从而导致油封的急剧磨损.据资料报道,国外学者做过试验,用粒径不同的几种白刚玉粉(Al 2O 3),取其1%的重量混入润滑油中,观察各粒径的粉末对油封唇口和轴的磨损程度.结果发现:粒径为d =0.3 m 的粉末对油封唇口和轴的磨损最为严重.经分析认为,通常情况下,使用油封时的平均油膜厚度为0.1~0.5 m ,粒径大于该平均油膜厚度的杂质,进不了滑动面;而粒径小于该平均油膜厚度的小微粒杂质,则可在滑动面间自由流动.只有当粒径大小与平均油膜厚度大致相当的杂质进入润滑油时,才会发生剧烈磨损的情况.鉴于油液的清洁度至关重要,因此,不论是在安装或维修,发现脏物,或发现油封的金属骨架、弹簧卡圈生锈,都应及时清除或更换.产品在试运转检验后,也应更换新油.使用一段时间后的老化油液,因化学反应会腐蚀油封,产生的硬质氧化物颗粒更会使滑动面发生严重的磨粒磨损,因此,必须定期更换油液.2.5 润滑油的粘度和橡胶材料润滑油粘度的高低,在一定程度上反映了润滑油的油性.我们知道,润滑油一般是由基油和添加剂等组成.由于油封上橡胶与不同油液的亲和性不同,因而会出现橡胶的膨胀或收缩[4~6].若油封唇部收缩过大,必然使密封部位过盈量减少,不能达到泵汲能力,不能形成所需要的油膜,而造成泄漏.若膨胀量过大,唇部变形过大,其硬度、强度和延伸率均降低(即唇部“软化”)后,唇部极易磨损,无法进行泵汲密封.实践证明,氟橡胶几乎适用于各种润滑油、燃料油;硅橡胶则不适于低苯胶点的矿物油和含极压添加剂的油液,丁睛橡胶的耐油性虽好,但不适用于磷酸酯系液压油及含极压添加剂的齿轮油.应当说,油封唇部橡胶有适度的膨胀量也是许可的.因为这种膨胀量,一方面可补偿油封的永久性变形和磨损,以提高密封性;另一方面,橡胶膨胀后可吸附一定量的润滑油液,从而加强了唇部与轴的自身润滑效果,提高了油封的工作寿命.2.6 工作压力和温升油封与轴在运转过程中会产生工作压力.一般,旋转轴油封的压力为0.4~0.7MPa .当工作压力大于耐压力时,易使油封唇部变形,对轴产生过大的径向力,油封中间发生凹陷,从而增大了接触宽度.实验表明,当压力从零增大到0.1MPa 时,其接触宽度将是压力为零时的4倍[7].压力作用下接触宽度的增加,使摩擦力矩增加,也使磨损加剧、温升提高,从而影响到油封的使用寿命.图6表明,随着油液温度的增加,其密封寿命将急剧下降,温度每增加10℃,密封寿命缩短约1/3.当密封使用的工作压力超过耐压值时,必须采用耐压油封或高压油封.这些油封的特点是:唇部77第1期管荣根等:机械中油封的失效和对策图6 油液温度对密封寿命的影响刚度大,耐磨性和抗变形能力强,即便是在大的工作压力作用下,接触宽度和力矩的增量也不显著.2.7 油封的安装安装时,必须保证油封唇口部端面垂直于轴的中心线,否则产生的偏移会造成唇口单边的局部磨损,不能形成泵汲.通常,与油封配用的轴,在自身加工完后有时在圆柱面上会留下加工网纹.这种网纹相对于轴中心线成某一角度,即在外表面形成螺旋线状.在油封安装时尤应注意这种“螺旋密封”问题,因为这时的油封就具有方向性[8].即是说,当轴在某一旋转方向时,油封能起到密封作用,而轴作反向旋转时,油封就会泄漏.如前所述,适当的过盈量有利于泵汲作用,除了考虑到橡胶的膨胀出现唇部的过盈量以外,安装时也须预置适宜的过盈量,一是可以产生径向压力,创造泵汲条件;二是能适应轴因偏心所产生的振动.但须注意,过盈量过大不利于散热,因为油封唇下的温升与过盈量基本是成比例增加的[9].今天,从工程角度看,一个小小的油封所具有的密封性、可靠性的重要性,往往比许多复杂的零部件还重要得多.可以这么说,一种机器的密封技术和水平,往往能成为该产品技术水平的重要标志,特别是许多涉及危险物质、尖端领域,或超高参数的生产过程(如航天和地下深层采掘技术等)的实现,常常是以密封技术的某种新突破为前提的.然而,许多情况下要立即或完美地解决密封系统和密封元件问题,也是非常棘手,甚至是难以解决的.因为存在着许多相互矛盾的制约因素和复杂情况,涉及到多门学科的相关知识.但我们坚信,随着科学的发展和技术的进步,计算机模拟仿真、优化设计和有限元分析等先进的设计方法的运用,性能更完善,工作更可靠的油封等密封技术和产品,必将不断地推陈出新,以满足各行各业的需要.3 参考文献1 [美]Hor ve L 著.径向油封的密封机理.窦文兰等译.北京:机械工业出版社,1991.78~822 刘令勋,刘 英.动态密封设计技术.北京:中国标准出版社,1993.132~1703 奚 翠.密封装置设计基础.合肥:安徽科学技术出版社,1987.304~3214 陈戈平.关于橡胶密封件失效的探讨.工程机械,1997,(7):265 沈锡华.密封材料手册.北京:中国石油出版社,1991.68~726 李继和.机械密封技术.北京:化学工业出版社,1988.112~1407 赵克定.液压油与合成橡胶密封件的相容性.润滑与密封,1989,(1):248 [英]活林R H 著.密封件与密封手册.宋学义等译.北京:国防工业出版社,1990.128~1569 内野一男.轴用油封设计注意事项.机械设计,1986,(7):34FAILURE AND COUNTERMEASURES ONTHE OIL SEAL IN MACHINERYGuan Ronggen Gu Ling(Dept of M ech E ngi n Coll,Yangzhou Univ,Yangzhou,225009)Abstract The paper discusses mechanism of sealing and the coutermeasures of failure of oil seal,provided acturl basic for rig ht desighing and using of seal.Keywords oil seal ;failure ;counter -m easure (本文责任编辑 晓 文)78扬州大学学报 自然科学版第2卷。
液压系统动密封装置常见故障原因及对策一、往复运动密封装置常见故障的原因及对策下面介绍两种典型的密封系统-滑环式组合密封件和Y形密封件在往复运动液压缸中的应用。
滑环式组合密封件的优点主要是活塞结构紧凑,且由于滑环材质本身自润滑性能好、摩擦系数低,液压缸作往复运动时摩擦阻力极小,并可避免液压缸的“爬行”和异常噪声。
Y 形密封件是应用最广泛的一种唇形密封件,是一种比较经济的密封装置。
其优点主要是成本低廉,且密封性能比较可靠。
但活塞的结构尺寸较前者稍大,活塞密封装置在工作中会因为存在于左、右两个唇形密封件间的背压而产生密封件工作状态物不稳定,并会发生密封件翻滚和窜动,而导致密封件唇缘或根部啃切等现象。
为防止该现象,可以采用以下措施:1. 控制滑移面配合精度(取Hg/fg);控制活塞与缸筒内径间的间隙;采用整体式活塞。
2. 控制间隙的同时,加开导油口;采用整体式活塞。
3. 沿活塞两端面对着唇形密封圈的凹槽部位加工均布导油孔,同时控制间隙。
4. 在唇形密封圈的凹槽处加纯胶支承环。
由丁腈橡胶和聚氨酯橡胶制作的Y形圈在使用中出现的故障原因及排除方法分别见表1和表2。
表1 丁腈橡胶Y形圈常见故障原因及对策表2 聚胺酯橡胶Y形圈常见故障原因及对策二、旋转运动密封装置常见故障原因及对策旋转运动密封装置是由骨架油封及其座孔(油封安装腔体)和相应的动密封副偶件(轴)所构成。
其故障型式一般表现为沿油封外径与座孔配合面间的泄漏及沿油封密封唇缘与转轴间的泄漏,而导致这两类泄漏的原因很多。
沿油封外径与座孔配合面间的泄漏主要原因有油封座孔尺寸过大,油封孔内表面粗糙或有坑穴,油封装配不当而导致装置位置不正以及油封外径失圆等;沿油封密封唇缘与轴面间的泄漏原因有油封唇缘磨耗过大或偏磨,唇缘部有刻痕、损伤及变形等缺陷,由于装配不当引起唇口翘起、弹簧脱落和唇缘翻转,胶料变质导致溶胀及硬化,轴偏心、粗糙及缺损等。
具体原因及对策见表3。
表3 旋转密封装置用骨架油封常见故障原因及对策。
常见橡胶油封的故障原因
及排除方法
Prepared on 24 November 2020
常见橡胶油封的故障原因及排除方法
(oil seal)是一般密封件的习惯称谓,简单地说就是润滑油的密封。
告诉您这不是一般的封油密封零件,相比其他密封件更可靠,他能有效泄漏并将传动部件中需要润滑的部件与出力部件隔离,不至于让润滑油渗漏。
一般传动部件中需要润滑的部件与出力部件隔离,不至于让在机械里面的润滑油渗漏,通常用于旋转轴,是一种旋转轴唇密封。
tc是采用材质丁腈橡胶和钢板制作而成,质量稳定,使用寿命长。
那么您知不知道的实际用途是什么呢
1.只用防止泥沙、灰尘、水气等来自外侵入轴承中;
2.限制轴承中的润滑油漏出。
当然啦,对弹性度也是有要求的,这样就能起到将轴适当的卡住,起到密封作用。
广州东晟密封件告诉您:如何处理油封的早期泄漏以及排除发生状况的相应方法:
要学会防止油脂泄漏,就得好好的了解下油封对机械的规格需求,定期的保养好密封件,那就不需要担心会发生问题啦!
了解更多液压活塞密封的问题,就在广州东晟批发网哦!
文章整理dsh广州密封件公司。
风电齿轮箱的各部分失效与故障分析引言:随着可再生能源的快速发展,风能逐渐成为全球范围内的一种重要的可再生能源,而风电齿轮箱作为风力发电机组的核心部件,具有承担巨大负荷和高速旋转的特点。
然而,由于操作环境恶劣且长期运行,齿轮箱容易出现各种失效和故障。
一、齿轮失效1. 疲劳失效疲劳失效是由于重复应力作用下齿轮金属材料的疲劳断裂引起的。
这种失效通常发生在齿轮接触区域,在长时间高速旋转和不可预测的加载条件下,会在齿根处形成疲劳裂纹,最终导致齿轮断裂。
2. 磨损失效磨损是齿轮箱常见的一种失效形式,主要分为表面磨损和微观磨损。
表面磨损通常由于载荷过大、润滑不良或者颗粒污染引起,而微观磨损则是由于齿面摩擦和接触疲劳引起的。
3. 腐蚀失效腐蚀是由于介质中存在酸、碱或者其他化学物质,导致齿轮表面与润滑油发生化学反应而损坏的失效形式。
腐蚀会破坏齿轮的表面硬度,导致齿轮表面变薄,减小载荷传输能力,并可能引发其他类型的失效。
二、轴承失效1. 疲劳失效轴承疲劳失效是由于反复的加载引起轴承材料的裂纹形成和扩展。
这种失效通常在负荷高、转速快的情况下发生,长期运行会导致轴承表面的疲劳裂纹逐渐扩展,最终导致轴承失效。
2. 磨损失效轴承磨损是由于齿轮箱工作时产生的颗粒污染、不良润滑或由于杂质引起的磨损。
磨损会导致轴承零件间的摩擦增加,从而引发轴承的过早失效。
3. 温度失效高温会导致轴承材料的变形和热膨胀,进而损坏轴承的内部结构。
过高温度使轴承的润滑脂失效,从而导致轴承的寿命缩短。
三、油封失效油封是齿轮箱中非常关键的部件,主要用于防止润滑油泄漏以及防止灰尘和污染物进入齿轮箱。
油封失效通常由封口材料老化、密封面损坏或过度磨损引起。
失效的油封会导致润滑油泄漏和外界污染物进入齿轮箱,进而引发齿轮、轴承等更严重的故障。
四、齿轮箱振动失效振动是齿轮箱失效的重要标志,它可以预示齿轮、轴承和其它部件的故障。
齿轮箱振动失效可能由于不平衡、松动、轴承故障、齿轮磨损等原因引起。
干熄焦排出旋转密封阀维护及卡阻故障处理朱长军翁文国何文海(首钢京唐钢铁联合有限公司)摘要主要论述了干熄焦排出旋转密封阀的维护要点,介绍了其发生卡阻故障的原因和处理步骤。
关键词干熄焦排出装置旋转密封阀旋转密封阀是干熄焦系统的核心设备之一,因其需连续单机运转,且是无法替代的焦炭排出必经设备,所以旋转密封阀正确的使用维护和快速的故障处理是保障干熄焦工艺正常运转的必要手段。
1 旋转密封阀简介旋转密封阀是一种具有密封性能的多格式旋转给料器,既能连续定量排料,又具有良好的密封性及耐磨性,主要由阀体、转子、密封副、下料槽、机架及台车、驱动装置等组成,其结构如图 1所示。
1-干熄炉 2-吹扫风机 6-阀体 7-转子3-旋转密封阀 4-皮带机 5-振动给料器 8-驱动装置 9-机架及台车 10-下料槽(a)旋转密封阀安装位置示意图 b)旋转密封阀结构示意图图 1 旋转密封阀示意图旋转密封阀安装在干熄炉底部,其进料口与振动给料器连接、出料口与排焦溜槽连接,用以将振动给料器给定排出的焦炭在相对密闭的状态下连续排出。
2 维护要点2.1 无负荷启动/停止旋转密封阀如果旋转密封阀停止时内部有焦炭,或振动给料器仍在排焦,均会导致转子卡阻,在启动时则会造成由单侧链条传动的旋转密封阀轴端受到单侧牵动力,特别是当旋转密封阀故障停机后的频繁试机,将对旋转阀轴承、驱动电机、链条都有相当大损害,所以应尽可能空载启动和停止旋转密封阀。
手动排焦时应先开启旋转密封阀,空转后再开启振动给料器,停止时应先停振动给料器,待无下料声音后再停旋转密封阀。
2.2 确保辅助密封气体压力正常为防止焦粉进入阀体两侧的轴承箱,在转子及阀体部位设有软硬密封机构,使承料部位与轴承箱间形成隔离空腔,并向隔离空腔通入辅助密封气体进行吹扫和冷却。
密封副位置由自动给脂装置定时、定量给脂,以保证润滑密封,同时保证辅助密封气体压力高于排出密封旋转阀内部气体压力,以防含尘气体进入阀体两侧密封腔。
如何对旋转油封的失效性进行分析?(油封设计合理,无制造缺陷的前提下)1.优先建议客户不要对油封进行拆除更换:油封拆下后,装配关系难以确定;拆卸过程中可能造成损伤或变形,影响判断的结果。
2.明确失效产生的时机。
根据油封泄露时机的不同,油封失效漏油可分为短期泄露,中期泄露与长期泄露几种不同的情况。
短期泄露主要需确认以下几个方面:1.油封选择:选用油封装配关系是否符合使用要求的装配位置;有压力的情况下,油封是否满足要求的压力;油封旋转方向选择是否正确;选用的油封结构能否满足实际的转速要求;是否将常规油封应用与特殊的使用条件(我司前期生产发动机油封在工程机械条件下存在泄漏,常规条件下密封正常,试验无泄漏。
分析为油封无法适应大震动及陡坡上润滑油直接淹没密封唇口)。
2.装配过程:油封是否存在装配偏斜或装配失位(油封安装不到位或超出推荐的安装位置)的情况;油封装配过程中是否出现损伤,包括唇口划伤,弹簧脱落等;安装时导向不足导致翻唇(油面甚至挡簧臂直接与轴接触);不合理的装配方式导致的油封变形。
3.配合零部件:是否存在过大的轴孔偏心或轴向窜动;轴表面粗糙度是否过大或带有旋向的螺旋加工痕迹;轴表面缺陷;装配孔热胀系数过大导致的油封脱落;壳体缺陷导致静密封失效。
中期泄露需确认的因素:1.油封方面:橡胶材料与密封介质是否匹配(橡胶是否存在溶胀变形);油封的耐温范围是否与要求的使用范围一致(橡胶是否存在高温老化甚至龟裂,材料耐低温性能否满足使用的温度环境);装配力不足导致的油封位置移动;2.配合零部件:轴表面因硬度不足导致磨损严重;润滑油更换不及时导致的润滑油碳化;润滑油存在杂质导致唇口密封性能下降。
3.特殊情况:长期干磨导致油封过度磨损;防尘失效导致的泥水、粉尘进入密封唇口。
长期泄露:1.油封方面:橡胶材料及弹簧长期使用老化,导致油封径向力不足;油封外径橡胶材料老化导致的油封松动甚至脱落。
2.配合零部件:与中期泄露相同;3.防尘失效。
3.确定失效位置及漏油情况:
根据失效位置分为静密封漏油及动密封漏油。
静密封失效:1油封松动或脱落:孔尺寸过大;孔表面粗糙度过高;孔热涨系数过大导致温度升高后脱落。
2.轴表面加工缺陷导致的油渗出。
动密封漏油:
根据漏油情况,可分为大量泄漏及渗漏。
大量泄漏:1.油封方面:唇口损伤;杂质进入唇口(外界杂质或油碳化或产生的杂质);唇部磨损(干摩擦导致的磨损,或偏心过大导致的局部偏磨);唇口老化严重;橡胶溶胀;油封选择不正确导致的匹配性问题(压力、旋向等)。
2.装配关系:过大的偏心、窜动;装配过程中存在的异常(见短期泄露中描述)。
3.配合零部件:轴表面缺陷;过大的表面粗糙度。
渗漏:1.油封方面:长期使用导致油封径向力下降;轻微的唇口缺陷(无明显损伤)。
2.配合零部件:轴表面加工痕迹;过高的轴表面粗糙度导致油膜无法附着。
3.装配关系:偏心、窜动偏大。
4.如油封未拆下,需对油封的装配位置进行确认,明确是否装配到位,有无反弹,松脱,偏斜;明确产品的失效位置(静密封/动密封)及失效状态(大量泄漏/渗漏);确认防尘是否有效;确认油封是否存在变形。
5.油封已拆下,或4确认后,对拆下油封进行确认:(如未能确认拆卸过程,部分问题可能无法确定是否为拆卸导致)
静密封异常,则确认油封外径状态(是否存在装配不到位或反弹导致的台阶;是否存在啃伤或贯穿外径的损伤)及外径尺寸;确认油封是否存在装配变形。
动密封:确认唇口是否存在损伤,确认唇口磨损情况,老化情况,是否存在老化导致的龟裂;确认副唇磨损情况,根据副唇过盈量及磨损情况判定装配偏心(副唇无润滑,易出现明显的磨损痕迹);确认油封上是否存在杂质及碳化的润滑油;确认弹簧是否脱落,弹簧有无明显的变形;确认是否存在装配变形。
6.配合零部件状态确认:
结合上述的分析,对轴孔标准状态,尺寸,粗糙度进行确认。