找等量关系方法总结

  • 格式:doc
  • 大小:160.00 KB
  • 文档页数:9

下载文档原格式

  / 9
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

找等量关系方法总结

————————————————————————————————作者:————————————————————————————————日期:

找等量关系式的四种方法

1、根据题目中的关键句找等量关系。

应用题中反映等量关系的句子,如“合唱队的人数比舞蹈队的3倍多15人”、“桃树和杏树一共有180棵”这样的句子叫做应用题的关键句。在列方程解应用题时,同学们可以根据关键句来找等量关系。

2、用常见数量关系式作等量关系。

我们已学过了如“工效×工时=工作总量”、“速度×时间=路程”、“单价×数量=总价”、“单产量×数量=总产量”等常见数量关系式,可以把这些常见数量关系式作为等量关系式来列方程。

3、把公式作为等量关系。

在解答一些几何形体的应用题时,我们可以把有关的公式作为等量关系。

4、画出线段图找等量关系

对于数量关系比较复杂,等量关系不够明显的应用题我们可以先画出线段图,再根据线段图找出等量关系。

例如:东乡农场计划耕6420公顷耕地,已经耕了5天,平均每天耕780公顷,剩下的要3天耕完,平均每天要耕多少公顷?

根据题意画出线段图:

从图中我们可以看出等量关系是:“已耕的公顷数+剩下的公顷数=6420”列出方程:

设:平均每天要耕X公顷

780×5+3X=6420

想一想:根据上面的线段图还可以找出哪些等量关系。

1.牢记计算公式,根据公式来找等量关系。

这种方法一般适用于几何应用题,教师要让学生牢记周长公式、面积公式、体积公式等,然后根据公式来解决问题。

2.熟记数量关系,根据数量关系找等量关系。

这种方法一般适用于工程问题、路程问题、价格问题,教师在教学这三类问题时,不但要让学生理解,还应让学生记熟“工作效率×工作时间=工作总量;速度×时间=路程;单价×件数=总价”等关系式。

如“汽车平均每小时行45千米,从甲地到乙地共225千米,汽车共需行多少小时?”就可以根据“速度×时间=路程”这一数量关系,列出方程45X=225。

3.抓住关键字词,根据字词的提示找等量关系。

这种方法一般适用于和差关系、倍数关系的应用题,在题中常有这样的提示:“一共有”、“比……多(少)”、“是……的几倍”、“比……的几倍多(少)”等。在解题时,可根据这些关键字词来找等量关系,按叙述的顺序列出方程。

如“四年级有学生250人,比三年级的2倍少70人,三年级有学生多少人?”,根据题中“比……少”可知:三年级的2倍减去70人等于四年级的人数,从而列出方程2X-70=250。

4.找准单位“1”,根据“量率对应”找等量关系。

这种方法一般适用于分数应用题,有时也适用“倍比关系”应用题。对于分数应用题来说,每一个分率都对应着一个具体的量,而每一个具体的量也都对应着一个分率。在倍比关系的应用题中,也应找准标准量。因此,正确地确定“量率对应”是解题的关键。

5.补充缺省条件,根据句子意思找等量关系。

这类应用题的特征是含有“比……多(少)”、“比……增加(减少)”等特定词,如:甲比乙多“几分之几”、少“几分之几”、增加“几分之几”、减少“几分之几”等类型的语句,题目中由于常缺少主语,造成学生理解上的困难。因此,教师在平时一定要强调让学生说“谁与谁比”、“以谁为标准”等,在缺少主语的情况下,让学生先把主语补充完整。

如“小明第一天看书60页,比第二天少看,第二天看了多少页?”一题中,就缺少了“第一天”这个主语,通过读题、析题,要让学生明白“这里的少的是指第二天的”,于是可列方程X-X=60。

6.利用好线段图,根据线段图找等量关系。

有些应用题光从字面上来看,不容易理解,有时教师可辅以线段图帮助学生理解。当然,如果学生会画线段图,题目往往很容易解开。画线段图的关键仍是找准谁是单位“1”,其它量都是与单位“1”相比较而言的。而理解单位“1”,又往往可以从“比”、“是”等词语后面找到,也即“比”、“是”后面的量通常是标准量,是单位“1”。

以上所举只是一些比较简单的应用题,如果遇到较复杂的应用题,还要采取灵活的方法,如“抓住不变量解”、“换一种说法解”、“根据题意逐步解”、“逆向思考推导解”等等,这些都要求学生在解决具体问题时,采取不同的方法,以求顺利解答。当然,这里更离不开教师平时的引导与启迪。

方程(组)是解决实际问题的一个有效数学模型.列方程(组)的关键是挖掘出隐含在题目中的等量关系.寻找等量关系有三种常用方法:译式法、列表法和图示法.解题时有意识的学习使用这些方法,可以有效的帮助我们分解难点,寻找出等量关系,进而列出方程(组)求解.

一、译式法

例1 4辆小卡车和5辆大卡车共27吨;6辆小卡车和10辆大卡车共运货51吨.问小卡车和大卡车每辆每次各运多少吨?

分析:本题等量关系比较明显,只需要直接按照题意把日常用语译成代数语言即可.设小卡车和大卡车每辆每次分别运x、y吨.则“4辆小卡车和5辆大卡车共27吨”可翻译成数学式子:

27

5

4=

+y

x;“6辆小卡车和10辆大卡车共运货51吨”可翻译成数学式子:51

10

6=

+y

x.由这两个式子组合列出二元一次方程组即可求解.

评注: 对实际问题不要产生畏惧心理,不要想一口吃个“胖子”,要一步一步走下去,首先,要多看几遍题目,审清题意,先列出“文字”等量关系,然后用代数式逐步替换,当代数式把“文字”替换完了,方程(组)也就列出来了.这种将关键词语译成代数式列方程(组)解决实际问题的方法称为“译式法”.译式法使用非常普遍,对于大多数基础题目较为有效.

二、列表法

例3 某日小伟和爸爸在超市买12袋牛奶24个面包花了64元.第二天他们又去超市时,发现牛奶和面包均打八折,这次他们花了60元却比上次多买了4袋奶3个面包.求打折前牛奶和面包的单价?

分析:设打折前牛奶的单价为x元,面包的单价为y元.可列表如下

打折前打折后

单价(元)数量(袋或

个)

费用

(元)

单价

(元)

数量(袋或

个)

费用(元)

牛奶x 12 12x 0.8x 16 16×0.8x 面包y 24 24y 0.8y 27 27×0.8y