专题(29)高热考点强化训练 万有引力与航天的“新情景”问题---2021年高考物理复习专题训练含真题及解析
- 格式:pdf
- 大小:1.05 MB
- 文档页数:11
高中物理万有引力与航天常见题型及答题技巧及练习题 (含答案)一、高中物理精讲专题测试万有引力与航天1.据报道,一法国摄影师拍到 天宫一号”空间站飞过太阳的瞬间•照片中, 天宫一号”的天宫一号”正以速度v =7.7km/s 绕地球做匀速圆M 、N 的连线垂直,M 、N 间的距离L =20m ,地磁场的(1 )求M 、N 间感应电动势的大小 E ; (2)在太阳帆板上将一只 “ 1.5V0.3W 的小灯泡与M 、N 相连构成闭合电路,不计太阳帆 板和导线的电阻•试判断小灯泡能否发光,并说明理由; (3) 取地球半径 R=6.4 X3km ,地球表面的重力加速度g = 9.8 m/s 2,试估算 天宫一号"距 离地球表面的高度 h (计算结果保留一位有效数字). 【答案】(1) 1.54V (2)不能(3) 4 105m【解析】 【分析】 【详解】(1) 法拉第电磁感应定律E=BLv代入数据得E=1.54V(2) 不能,因为穿过闭合回路的磁通量不变,不产生感应电流. (3)在地球表面有匀速圆周运动解得gR 22太阳帆板轮廓清晰可见•如图所示,假设 周运动,运动方向与太阳帆板两端磁感应强度垂直于 v , MN 所在平面的分量B=1.0 X 10 T ,将太阳帆板视为导体.MmmgMm (R+ h)22v m 一 R+ hv 代入数据得【方法技巧】本题旨在考查对电磁感应现象的理解,第一问很简单,问题在第二问,学生在第一问的基 础上很容易答不能发光,殊不知闭合电路的磁通量不变,没有感应电流产生•本题难度不 大,但第二问很容易出错,要求考生心细,考虑问题全面.2 • a 、b 两颗卫星均在赤道正上方绕地球做匀速圆周运动, a 为近地卫星,b 卫星离地面高度为3R ,己知地球半径为 R,表面的重力加速度为 g ,试求: (1) a 、b 两颗卫星周期分别是多少? (2) a 、b 两颗卫星速度之比是多少? (3 )若某吋刻两卫星正好同时通过赤道同 --点的正上方,则至少经过多长时间两卫星相距最远?【答案】(1) 2 J 匚,16 (2)速度之比为2 ;【解析】【分析】根据近地卫星重力等于万有引力求得地球质量,然后根据万有引力做向心力求得 运动周期;卫星做匀速圆周运动,根据万有引力做向心力求得两颗卫星速度之比 ;由根据相距最远时相差半个圆周求解 ; 解:(1)卫星做匀速圆周运动,F 引F 向 ,对地面上的物体由黄金代换式 G*? mg十冃GMma 卫星 厂R R解得v a ,冒解得入16(2)卫星做匀速圆周运动,2mv ab 卫星b 卫星G 卫比(4R)2v 2 m ——R g3. —名宇航员抵达一半径为 R 的星球表面后,为了测定该星球的质量,做下实验:将一 个小球从该星球表面某位置以初速度v 竖直向上抛出,小球在空中运动一间后又落回原抛 出位置,测得小球在空中运动的时间为 t ,已知万有引力恒量为 G ,不计阻力,试根据题中所提供的条件和测量结果,求:(1) 该星球表面的"重力”加速度 g 的大小; (2) 该星球的质量M ;(3) 如果在该星球上发射一颗围绕该星球做匀速圆周运动的卫星,则该卫星运行周期 T 为多大?【答案】(1)g( 2)Mt【解析】 【详解】(1)由运动学公式得:t =2-g(2)质量为m 的物体在该星球表面上受到的万有引力近似等于物体受到的重力,则对该 星球表面上的物体,由牛顿第二定律和万有引力定律得:Gt(3)当某个质量为 m'的卫星做匀速圆周运动的半径等于该星球的半径 R 时,该卫星运行【点睛】重力加速度 g 是天体运动研究和天体表面宏观物体运动研究联系的物理量.本题 要求学生掌握两种等式:一是物体所受重力等于其吸引力;二是物体做匀速圆周运动其向 心力由万有引力提供.解得V b所以Va2 V b(3)最远的条件",口8解得t 2vR 2 Gt(3) T解得该星球表面的 重力”加速度的大小2vt解得该星球的质量为2vR 2 的周期T 最小,则由牛顿第二定律和万有引力定律解得该卫星运行的最小周期T = 2m M GV4 2m R T a4. 在月球表面上沿竖直方向以初速度 已知该月球半径为 R ,万有引力常量为 (1) 月球的密度; (2) 月球的第一宇宙速度。
2021年高考物理一轮复习考点全攻关专题(29)高热考点强化训练万有引力与航天的“新情景”问题(解析版)选择题(共16小题,每题6分,满分96分)1.2019年1月,我国嫦娥四号探测器成功在月球背面软着陆,在探测器“奔向”月球的过程中,用h表示探测器与地球表面的距离,F表示它所受的地球引力,能够描述F随h变化关系的图像是【答案】D【解析】根据万有引力定律可得:,h越大,F越大,故选项D符合题意。
2.1970年成功发射的“东方红一号”是我国第一颗人造地球卫星,该卫星至今仍沿椭圆轨道绕地球运动.如图所示,设卫星在近地点、远地点的速度分别为v1、v2,近地点到地心的距离为r,地球质量为M,引力常量为G。
则A.B.C.D.【答案】B【解析】“东方红一号”从近地点到远地点万有引力做负功,动能减小,所以,过近地点圆周运动的速度为,由于“东方红一号”在椭圆上运动,所以,故B正确。
3.2018年12月8日,肩负着亿万中华儿女探月飞天梦想的嫦娥四号探测器成功发射,“实现人类航天器首次在月球背面巡视探测,率先在月背刻上了中国足迹”。
已知月球的质量为、半径为,探测器的质量为,引力常量为,嫦娥四号探测器围绕月球做半径为的匀速圆周运动时,探测器的A.周期为B.动能为C.角速度为D.向心加速度为【答案】C【解析】由万有引力提供向心力可得,可得,故A正确;解得,由于,故B错误;解得,故C错误;解得,故D错误。
综上分析,答案为A。
4.北斗卫星导航系统空间段计划由35颗卫星组成,包括5颗静止同步轨道卫星和3颗倾斜同步轨道卫星,以及27颗相同高度的中轨道卫星。
中轨道卫星运行在3个轨道面上,轨道面之间相隔120°均匀分布,如图所示。
已知同步轨道、中轨道、倾斜同步轨道卫星距地面的高度分别约为6R、4R、6R(R为地球半径),则A.静止同步轨道卫星和倾斜同步轨道卫星的周期不同B.3个轨道面上的中轨道卫星角速度的值均相同C.同步轨道卫星与中轨道卫星周期的比值约为D.倾斜同步轨道卫星与中轨道卫星角速度的比值约为【答案】BC5.如图为人造地球卫星的轨道示意图,LEO 是近地轨道,MEO 是中地球轨道,GEO 是地球同步轨道,GTO 是地球同步转移轨道.已知地球的半径R =6 400 km ,该图中MEO 卫星的周期为(图中数据为卫星近地点、远地点离地面的高度)( )A .3 hB .8 hC .15 hD .20 h 【答案】A解析 GEO 是地球同步轨道,则周期为T G =24 h ;根据开普勒第三定律可知,T M 2T G 2=r M 3r G 3,则T M =r M 3r G 3T G=f(4 200+6 40036 000+6 4003)×24 h =3 h ,故选A.6.过去几千年来,人类对行星的认识与研究仅限于太阳系内,行星“51 peg b”的发现拉开了研究太阳系外行星的序幕。
高中物理万有引力与航天练习题及答案及解析一、高中物理精讲专题测试万有引力与航天1.天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星.双星系统在银河系中很普遍.利用双星系统中两颗恒星的运动特征可推算出它们的总质量.已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T ,两颗恒星之间的距离为r ,试推算这个双星系统的总质量.(引力常量为G ) 【答案】【解析】设两颗恒星的质量分别为m 1、m 2,做圆周运动的半径分别为r 1、r 2,角速度分别为w 1,w 2.根据题意有 w 1=w 2 ① (1分) r 1+r 2=r ② (1分)根据万有引力定律和牛顿定律,有 G ③ (3分) G④ (3分)联立以上各式解得⑤ (2分)根据解速度与周期的关系知⑥ (2分)联立③⑤⑥式解得(3分)本题考查天体运动中的双星问题,两星球间的相互作用力提供向心力,周期和角速度相同,由万有引力提供向心力列式求解2.人类第一次登上月球时,宇航员在月球表面做了一个实验:将一片羽毛和一个铁锤从同一个高度由静止同时释放,二者几乎同时落地.若羽毛和铁锤是从高度为h 处下落,经时间t 落到月球表面.已知引力常量为G ,月球的半径为R . (1)求月球表面的自由落体加速度大小g 月;(2)若不考虑月球自转的影响,求月球的质量M 和月球的“第一宇宙速度”大小v .【答案】(1)22h g t =月 (2)222hR M Gt =;2hRv =【解析】【分析】(1)根据自由落体的位移时间规律可以直接求出月球表面的重力加速度;(2)根据月球表面重力和万有引力相等,利用求出的重力加速度和月球半径可以求出月球的质量M ; 飞行器近月飞行时,飞行器所受月球万有引力提供月球的向心力,从而求出“第一宇宙速度”大小. 【详解】(1)月球表面附近的物体做自由落体运动 h =12g 月t 2 月球表面的自由落体加速度大小 g 月=22h t (2)若不考虑月球自转的影响 G 2MmR =mg 月 月球的质量 222hR M Gt= 质量为m'的飞行器在月球表面附近绕月球做匀速圆周运动m ′g 月=m ′2v R月球的“第一宇宙速度”大小 v 【点睛】结合自由落体运动规律求月球表面的重力加速度,根据万有引力与重力相等和万有引力提供圆周运动向心力求解中心天体质量和近月飞行的速度v .3.宇航员在某星球表面以初速度v 0竖直向上抛出一个物体,物体上升的最大高度为h .已知该星球的半径为R ,且物体只受该星球的引力作用.求: (1)该星球表面的重力加速度;(2)从这个星球上发射卫星的第一宇宙速度.【答案】(1)202v h(2) v 【解析】本题考查竖直上抛运动和星球第一宇宙速度的计算.(1) 设该星球表面的重力加速度为g ′,物体做竖直上抛运动,则202v g h ='解得,该星球表面的重力加速度202v g h'=(2) 卫星贴近星球表面运行,则2v mg m R'=解得:星球上发射卫星的第一宇宙速度v v ==4.我国科学家正在研究设计返回式月球软着陆器,计划在2030年前后实现航天员登月,对月球进行科学探测。
高中物理万有引力与航天专项训练及答案及解析一、高中物理精讲专题测试万有引力与航天1.人类第一次登上月球时,宇航员在月球表面做了一个实验:将一片羽毛和一个铁锤从同一个高度由静止同时释放,二者几乎同时落地.若羽毛和铁锤是从高度为h 处下落,经时间t 落到月球表面.已知引力常量为G ,月球的半径为R . (1)求月球表面的自由落体加速度大小g 月;(2)若不考虑月球自转的影响,求月球的质量M 和月球的“第一宇宙速度”大小v .【答案】(1)22h g t =月 (2)222hR M Gt=;2hRv t= 【解析】 【分析】(1)根据自由落体的位移时间规律可以直接求出月球表面的重力加速度;(2)根据月球表面重力和万有引力相等,利用求出的重力加速度和月球半径可以求出月球的质量M ; 飞行器近月飞行时,飞行器所受月球万有引力提供月球的向心力,从而求出“第一宇宙速度”大小. 【详解】(1)月球表面附近的物体做自由落体运动 h =12g 月t 2 月球表面的自由落体加速度大小 g 月=22h t (2)若不考虑月球自转的影响 G 2MmR =mg 月 月球的质量 222hR M Gt= 质量为m'的飞行器在月球表面附近绕月球做匀速圆周运动m ′g 月=m ′2v R月球的“第一宇宙速度”大小 2hRv g R t月== 【点睛】结合自由落体运动规律求月球表面的重力加速度,根据万有引力与重力相等和万有引力提供圆周运动向心力求解中心天体质量和近月飞行的速度v .2.已知地球同步卫星到地面的距离为地球半径的6倍,地球半径为R ,地球视为均匀球体,两极的重力加速度为g ,引力常量为G ,求: (1)地球的质量;(2)地球同步卫星的线速度大小.【答案】(1) G gR M 2= (2)7gRv =【解析】 【详解】(1)两极的物体受到的重力等于万有引力,则2GMmmg R = 解得GgR M 2=; (2)地球同步卫星到地心的距离等于地球半径的7倍,即为7R ,则()2277GMmv m RR =而2GM gR =,解得7gRv =.3.地球同步卫星,在通讯、导航等方面起到重要作用。
高考物理万有引力与航天专题训练答案一、高中物理精讲专题测试万有引力与航天1. 如图所示, A 是地球的同步卫星,另一卫星B 的圆形轨道位于赤道平面内,离地面高度为 h.已知地球半径为R ,地球自转角速度为ω0,地球表面的重力加速度为g ,O 为地球中心.(1)求卫星B 的运行周期.(2)如卫星B 绕行方向与地球自转方向相同,某时刻A 、B 两卫星相距最近(O 、B 、 A 在同一直线上),则至少经过多长时间,它们再一次相距最近?(R + h) 3t2【答案】 (1) T B = 2p(2)gR2gR 2( Rh)3【解析】【详解】Mm m 4 2R h ① , GMm(1)由万有引力定律和向心力公式得G2 2 mg ②R hT B R 2R3联立①②解得 : T B h③ 2R 2 g(2)由题意得0 t 2 ④ ,由③得BgR 2 ⑤BR3ht2R 2g代入④得3R h2.2018 年是中国航天里程碑式的高速发展年,是属于中国航天的 “超级 国将进行北斗组网卫星的高密度发射,全年发射18 颗北斗三号卫星,为2018 ”.例如,我“一带一路 ”沿线及周边国家提供服务.北斗三号卫星导航系统由静止轨道卫星(同步卫星)、中轨道卫星和 倾斜同步卫星组成.图为其中一颗静止轨道卫星绕地球飞行的示意图.已知该卫星做匀速圆周运动的周期为 T ,地球质量为 M 、半径为 R ,引力常量为 G .(1)求静止轨道卫星的角速度ω;(2)求静止轨道卫星距离地面的高度h1;(3)北斗系统中的倾斜同步卫星,其运转轨道面与地球赤道面有一定夹角,它的周期也是T,距离地面的高度为h2.视地球为质量分布均匀的正球体,请比较h1和 h2的大小,并说出你的理由.2πGMT 2R( 3)h1= h2【答案】( 1)=;( 2)h1=3T 4 2【解析】【分析】(1)根据角速度与周期的关系可以求出静止轨道的角速度;(2)根据万有引力提供向心力可以求出静止轨道到地面的高度;(3)根据万有引力提供向心力可以求出倾斜轨道到地面的高度;【详解】(1)根据角速度和周期之间的关系可知:静止轨道卫星的角速度= 2πTMm2π2(2)静止轨道卫星做圆周运动,由牛顿运动定律有:G2= m( R h1 )( )(R h1 )T解得:h1= 3GMT22R 4π(3)如图所示,同步卫星的运转轨道面与地球赤道共面,倾斜同步轨道卫星的运转轨道面与地球赤道面有夹角,但是都绕地球做圆周运动,轨道的圆心均为地心.由于它的周期也是 T,根据牛顿运动定律,GMm2 =m(R h2 )(2) 2 ( R h2 )T解得:h2= 3GMT 2R 42因此 h1= h2.1) =2π GMT 2R (3) h 1= h 2故本题答案是:( ;( 2) h 1 =3T4 2【点睛】对于围绕中心天体做圆周运动的卫星来说,都借助于万有引力提供向心力即可求出要求的物理量.3. 据报道,一法国摄影师拍到 “ ” “ ”天宫一号 空间站飞过太阳的瞬间.照片中, 天宫一号 的太阳帆板轮廓清晰可见.如图所示,假设“天宫一号 ”正以速度 v =7.7km/s 绕地球做匀速圆 周运动,运动方向与太阳帆板两端 M 、 N 的连线垂直, M 、 N 间的距离 L =20m ,地磁场的磁感应强度垂直于 v ,MN 所在平面的分量5﹣B=1.0 ×10T ,将太阳帆板视为导体.(1)求 M 、 N 间感应电动势的大小 E ;(2)在太阳帆板上将一只 “ 1.5V 、 0.3W ”的小灯泡与 M 、 N 相连构成闭合电路,不计太阳帆 板和导线的电阻.试判断小灯泡能否发光,并说明理由;(3)取地球半径 R=6.4 ×3 10km ,地球表面的重力加速度 g = 9.8 m/s 2,试估算 “天宫一号 ”距 离地球表面的高度h (计算结果保留一位有效数字).【答案】( 1) 1.54V ( 2)不能( 3) 4 105 m 【解析】 【分析】【详解】(1)法拉第电磁感应定律E=BLv代入数据得E=1.54V( 2)不能,因为穿过闭合回路的磁通量不变,不产生感应电流.( 3)在地球表面有GMmmgR 2匀速圆周运动G Mm= m v 2( R + h)2 R + h解得gR 2hv2R代入数据得h ≈ 4×510m 【方法技巧】本题旨在考查对电磁感应现象的理解,第一问很简单,问题在第二问,学生在第一问的基础上很容易答不能发光,殊不知闭合电路的磁通量不变,没有感应电流产生.本题难度不大,但第二问很容易出错,要求考生心细,考虑问题全面.4. 如图轨道Ⅲ为地球同步卫星轨道,发射同步卫星的过程可以筒化为以下模型:先让卫星进入一个近地圆轨道Ⅰ(离地高度可忽略不计),经过轨道上 P 点时点火加速,进入椭圆形转移轨道Ⅱ.该椭圆轨道Ⅱ的近地点为圆轨道Ⅰ上的P 点,远地点为同步圆轨道Ⅲ上的Q 点.到达远地点 Q 时再次点火加速,进入同步轨道Ⅲ.已知引力常量为G ,地球质量为M ,地球半径为 R ,飞船质量为m,同步轨道距地面高度为h .当卫星距离地心的距离为 r 时,地球与卫星组成的系统的引力势能为E pGMm(取无穷远处的引力势能为r零),忽略地球自转和喷气后飞船质量的変化,问:( 1)在近地轨道Ⅰ上运行时,飞船的动能是多少?( 2)若飞船在转移轨道Ⅱ上运动过程中,只有引力做功,引力势能和动能相互转化.已知飞船在椭圆轨道Ⅱ上运行中,经过P 点时的速率为 v 1 ,则经过 Q 点时的速率 v 2 多大?( 3)若在近地圆轨道Ⅰ上运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器可以到达离地心无穷远处),则探测器离开飞船时的速度v 3 (相对于地心)至少是多少?(探测器离开地球的过程中只有引力做功,动能转化为引力势能)【答案】( 1) GMm( 2) v 12 2GM2GM ( 3) 2GM2RR hR R【解析】【分析】( 1)万有引力提供向心力,求出速度,然后根据动能公式进行求解; ( 2)根据能量守恒进行求解即可;( 3)将小探测器射出,并使它能脱离地球引力范围,动能全部用来克服引力做功转化为势能;【详解】(1)在近地轨道(离地高度忽略不计)Ⅰ 上运行时,在万有引力作用下做匀速圆周运动即:G mMm v2 R2R则飞船的动能为E k 1 mv2GMm ;22R(2)飞船在转移轨道上运动过程中,只有引力做功,引力势能和动能相互转化.由能量守恒可知动能的减少量等于势能的増加量:1mv121mv22GMm( GMm ) 22R h R若飞船在椭圆轨道上运行,经过P 点时速率为v1,则经过Q点时速率为:v2v122GM2GM ;R h R(3)若近地圆轨道运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器离地心的距离无穷远),动能全部用来克服引力做功转化为势能即: G Mm1mv32 R2则探测器离开飞船时的速度(相对于地心)至少是:v32GM.R【点睛】本题考查了万有引力定律的应用,知道万有引力提供向心力,同时注意应用能量守恒定律进行求解.5.从在某星球表面一倾角为的山坡上以初速度v0平抛一物体,经时间t 该物体落到山坡上.已知该星球的半径为R,一切阻力不计,引力常量为G,求:(1)该星球表面的重力加速度的大小g(2)该星球的质量 M.2v0 tan2v0 R2 tan【答案】 (1)(2)t Gt【解析】【分析】(1)物体做平抛运动,应用平抛运动规律可以求出重力加速度.( 2)物体在小球的表面受到的万有引力等于物体的重力,由此即可求出.【详解】(1)物体做平抛运动,水平方向:x v0t ,竖直方向:y 1 gt22y gt由几何关系可知: tan2v0x解得: g 2v0 tan t(2)星球表面的物体受到的重力等于万有引力,即:G Mmmg R2可得:M gR 22v0R 2tanG Gt【点睛】本题是一道万有引力定律应用与运动学相结合的综合题,考查了求重力加速度、星球自转的周期,应用平抛运动规律与万有引力公式、牛顿第二定律可以解题;解题时要注意“黄金代换”的应用.6.宇航员站在某质量分布均匀的星球表面一斜坡上P点,沿水平方向以初速度v0抛出一个小球,测得小球经时间t落到斜坡另一点Q上,斜坡的倾角α,已知该星球的半径为R,引力4常量为 G,求该星球的密度(已知球的体积公式是V=33πR).3Vtan【答案】【解析】试题分析:平抛运动在水平方向上做匀速直线运动,在竖直方向上做自由落体运动,根据平抛运动的规律求出星球表面的重力加速度.根据万有引力等于重力求出星球的质量,结合密度的公式求出星球的密度.设该星球表现的重力加速度为g,根据平抛运动规律:水平方向: x v0t竖直方向: y1gt 22y 1 gt2平抛位移与水平方向的夹角的正切值tan2x v0t得: g 2v0 tant设该星球质量M ,对该星球表现质量为m1的物体有GMm1m1 g ,解得MgR 2 R2G由 V 4 R3,得:M 3v0 tan 3V2RGt7.地球同步卫星,在通讯、导航等方面起到重要作用。
(物理)物理万有引力与航天专项习题及答案解析及解析一、高中物理精讲专题测试万有引力与航天1.“嫦娥一号”在西昌卫星发射中心发射升空,准确进入预定轨道.随后,“嫦娥一号”经过变轨和制动成功进入环月轨道.如图所示,阴影部分表示月球,设想飞船在圆形轨道Ⅰ上作匀速圆周运动,在圆轨道Ⅰ上飞行n 圈所用时间为t ,到达A 点时经过暂短的点火变速,进入椭圆轨道Ⅱ,在到达轨道Ⅱ近月点B 点时再次点火变速,进入近月圆形轨道Ⅲ,而后飞船在轨道Ⅲ上绕月球作匀速圆周运动,在圆轨道Ⅲ上飞行n 圈所用时间为.不考虑其它星体对飞船的影响,求:(1)月球的平均密度是多少?(2)如果在Ⅰ、Ⅲ轨道上有两只飞船,它们绕月球飞行方向相同,某时刻两飞船相距最近(两飞船在月球球心的同侧,且两飞船与月球球心在同一直线上),则经过多长时间,他们又会相距最近?【答案】(1)22192n Gtπ;(2)1237mt t m n (,,)==⋯ 【解析】试题分析:(1)在圆轨道Ⅲ上的周期:38t T n=,由万有引力提供向心力有:222Mm G m R R T π⎛⎫= ⎪⎝⎭ 又:343M R ρπ=,联立得:22233192n GT Gt ππρ==. (2)设飞船在轨道I 上的角速度为1ω、在轨道III 上的角速度为3ω,有:112T πω= 所以332T πω=设飞飞船再经过t 时间相距最近,有:312t t m ωωπ''=﹣所以有:1237mt t m n(,,)==⋯. 考点:人造卫星的加速度、周期和轨道的关系【名师点睛】本题主要考查万有引力定律的应用,开普勒定律的应用.同时根据万有引力提供向心力列式计算.2.我国科学家正在研究设计返回式月球软着陆器,计划在2030年前后实现航天员登月,对月球进行科学探测。
宇航员在月球上着陆后,自高h 处以初速度v 0水平抛出小球,测量出小球的水平射程为L (这时月球表面可以看成是平坦的),已知月球半径为R ,万有引力常量为G 。
高中物理万有引力与航天专项训练及答案及解析一、高中物理精讲专题测试万有引力与航天1. 据每日邮报 2014 年 4 月 18 日报道,美国国家航空航天局目前宣布首次在太阳系外发现“类地 ”行星 .假如宇航员乘坐宇宙飞船到达该行星,进行科学观测:该行星自转周期为T ;宇航员在该行星 “北极 ”距该行星地面附近 h 处自由释放 -个小球 ( 引力视为恒力 ),落地时间为 t. 已知该行星半径为 R ,万有引力常量为 G ,求:1 2该行星的第一宇宙速度;该行星的平均密度.【答案】 12h R ?2 ? 3h. t 2 2 R2Gt【解析】 【分析】根据自由落体运动求出星球表面的重力加速度,再根据万有引力提供圆周运动向心力,求 M 出质量与运动的周期,再利用,从而即可求解.V【详解】1 根据自由落体运动求得星球表面的重力加速度h1 gt 22解得: g 2ht2则由 mgm v 2R求得:星球的第一宇宙速度vgR2h 2 R ,t2 由 GMm mg m2h R 2t 2有: M2hR 2Gt2所以星球的密度M3hV2Gt 2R【点睛】本题关键是通过自由落体运动求出星球表面的重力加速度,再根据万有引力提供圆周运动向心力和万有引力等于重力求解.2. 宇宙中存在一些离其他恒星较远的三星系统,通常可忽略其他星体对它们的引力作用,三星质量也相同.现已观测到稳定的三星系统存在两种基本的构成形式:一种是三颗星位于同一直线上,两颗星围绕中央星做囿周运动,如图甲所示;另一种是三颗星位于等边三角形的三个顶点上,并沿外接于等边三角形的囿形轨道运行,如图乙所示.设这三个星体的质量均为m,且两种系统中各星间的距离已在图甲、图乙中标出,引力常量为G,则 :(1)直线三星系统中星体做囿周运动的周期为多少?(2)三角形三星系统中每颗星做囿周运动的角速度为多少?L3( 2)3Gm【答案】( 1)435Gm L【解析】【分析】(1)两侧的星由另外两个星的万有引力的合力提供向心力,列式求解周期;(2)对于任意一个星体,由另外两个星体的万有引力的合力提供向心力,列式求解角速度;【详解】(1)对两侧的任一颗星,其它两个星对它的万有引力的合力等于向心力,则:Gm2Gm2m( 2 )2L(2 L)2L2TT 4L35Gm(2)三角形三星系统中星体受另外两个星体的引力作用,万有引力做向心力,对任一颗Gm2L星,满足:2m (2)2 cos30cos30L解得:=3GmL33.一宇航员站在某质量分布均匀的星球表面上沿竖直方向以初速度v0抛出一个小球,测得小球经时间t 落回抛出点,已知该星球半径为,引力常量为,求:R G(1)该星球表面的重力加速度;(2)该星球的密度;(3)该星球的“第一宇宙速度”.【答案】 (1) g 2v0(2)3v0(3)2v0 R t2πRGtvt【解析】(1) 根据竖直上抛运动规律可知,小球上抛运动时间2v0 tg可得星球表面重力加速度: g2v0.tGMm (2)星球表面的小球所受重力等于星球对小球的吸引力,则有:mg R2gR22v0 R2得:MGtG4 R3因为V3M3v0则有:2πRGtV(3)重力提供向心力,故该星球的第一宇宙速度mg m v2Rv gR2v0Rt【点睛】本题主要抓住在星球表面重力与万有引力相等和万有引力提供圆周运动向心力,掌握竖直上抛运动规律是正确解题的关键.4.载人登月计划是我国的“探月工程”计划中实质性的目标.假设宇航员登上月球后,以初速度 v0竖直向上抛出一小球,测出小球从抛出到落回原处所需的时间为t. 已知引力常量为G,月球的半径为 R,不考虑月球自转的影响,求:(1)月球表面的重力加速度大小g月;(2)月球的质量 M;(3)飞船贴近月球表面绕月球做匀速圆周运动的周期T.【答案】 (1)2v0; (2)2R2v0; (3)2Rt t Gt2v0【解析】【详解】(1) 小球在月球表面上做竖直上抛运动,有2v0 tg月月球表面的重力加速度大小g月2v 0t (2)假设月球表面一物体质量为m,有MmGR2=mg月月球的质量M 2R2v0 Gt(3) 飞船贴近月球表面做匀速圆周运动,有G Mmm22RR 2T飞船贴近月球表面绕月球做匀速圆周运动的周期T 2Rt2v 05. 一艘宇宙飞船绕着某行星作匀速圆周运动,已知运动的轨道半径为 r ,周期为 T ,引力常量为 G ,行星半径为求:(1)行星的质量 M ;(2)行星表面的重力加速度 g ;(3)行星的第一宇宙速度v .【答案】 (1) ( 2) ( 3)【解析】【详解】(1)设宇宙飞船的质量为 m ,根据万有引力定律求出行星质量(2)在行星表面求出 :(3)在行星表面求出 :【点睛】本题关键抓住星球表面重力等于万有引力,人造卫星的万有引力等于向心力.6. 如图所示, A 是地球的同步卫星.另一卫星B 的圆形轨道位于赤道平面内.已知地球自转角速度为0 ,地球质量为 M , B 离地心距离为 r ,万有引力常量为G , O 为地球中心,不考虑 A 和 B 之间的相互作用.(图中 R 、h 不是已知条件)(1)求卫星 A 的运行周期T A(2)求 B 做圆周运动的周期T B(3)如卫星 B 绕行方向与地球自转方向相同,某时刻A、B 两卫星相距最近(O、 B、 A 在同一直线上),则至少经过多长时间,它们再一次相距最近?2r3t2【答案】(1)T A(2) T B2( 3)GMGM r30【解析】【分析】【详解】(1) A 的周期与地球自转周期相同2T AGMm m(2)2 r(2)设 B 的质量为 m,对 B 由牛顿定律 :r 2T B解得:T Br 3 2GM(3) A、 B 再次相距最近时 B 比 A 多转了一圈,则有:(B0 ) t2t2GM解得:r 3点睛:本题考查万有引力定律和圆周运动知识的综合应用能力,向心力的公式选取要根据题目提供的已知物理量或所求解的物理量选取应用;第 3 问是圆周运动的的追击问题,距离最近时两星转过的角度之差为2π的整数倍.7.假设在月球上的“玉兔号”探测器,以初速度v0竖直向上抛出一个小球,经过时间t 小球落回抛出点,已知月球半径为R,引力常数为G.(1)求月球的密度.(2)若将该小球水平抛出后,小球永不落回月面,则抛出的初速度至少为多大?3v02Rv0【答案】(1)( 2)2 GRt t【解析】【详解】(1) 由匀变速直线运动规律:v0gt 2所以月球表面的重力加速度g 2v0 t由月球表面,万有引力等于重力得GMmmg R2gR 2 MG月球的密度M3v0=2 GRtV2(2) 由月球表面,万有引力等于重力提供向心力:mg m vR2Rv0可得: vt8.某行星表面的重力加速度为g ,行星的质量为M ,现在该行星表面上有一宇航员站在地面上,以初速度v0竖直向上扔小石子,已知万有引力常量为G .不考虑阻力和行星自转的因素,求:(1)行星的半径R;(2)小石子能上升的最大高度.GM v02【答案】 (1) R =( 2)hg2g【解析】GMm(1)对行星表面的某物体,有:mg-2R得: R =GM g(2)小石子在行星表面作竖直上抛运动,规定竖直向下的方向为正方向,有:0v022ghv02得: h2g9.“场”是除实物以外物质存在的另一种形式,是物质的一种形态.可以从力的角度和能量的角度来描述场.反映场力性质的物理量是场强.(1)真空中一个孤立的点电荷,电荷量为 +Q,静电力常量为 k,推导距离点电荷 r 处的电场强度E 的表达式.(2)地球周围存在引力场,假设地球是一个密度均匀的球体,质量为 M ,半径为 R ,引力常量为 G .a .请参考电场强度的定义,推导距离地心r 处(其中 r ≥R )的引力场强度E 引 的表达式.b .理论上已经证明:质量分布均匀的球壳对壳内物体的引力为零.推导距离地心r 处(其中 r <R )的引力场强度 E 引 的表达式.【答案】( 1)kQGM GMr2 ( 2) a . E 引r 2b . E 引R 3rE【解析】【详解】(1)由 EF , Fk qQ,得 EkQqr 2r 2(2) a .类比电场强度定义,E 引F 万 ,由 F 万GMm ,m r 2得 E 引 GMr2b .由于质量分布均匀的球壳对其内部的物体的引力为 0,当 r < R 时,距地心 r 处的引力场强是由半径为 r 的“地球 ”产生的.设半径为 r 的“地球 ”质量为 M r ,M r4 M4 r 3 r 3 M.R 33R 33得 E引GM r GM rr 2R 310. 2017 年 4 月 20 日 19 时 41 分天舟一号货运飞船在文昌航天发射中心由长征七号遥二运载火箭成功发射升空。
高考物理万有引力与航天专题训练答案及解析一、高中物理精讲专题测试万有引力与航天1.已知地球同步卫星到地面的距离为地球半径的 6 倍,地球半径为R,地球视为均匀球体,两极的重力加速度为g,引力常量为G,求:(1)地球的质量;(2)地球同步卫星的线速度大小.【答案】 (1)gR2gR M(2)vG7【解析】【详解】(1)两极的物体受到的重力等于万有引力,则GMmR2解得mgM gR2;G(2)地球同步卫星到地心的距离等于地球半径的7 倍,即为7R,则GMm v22m7R7R而 GM gR2,解得gRv.72.宇航员在某星球表面以初速度v0竖直向上抛出一个物体,物体上升的最大高度为h.已知该星球的半径为R,且物体只受该星球的引力作用.求:(1)该星球表面的重力加速度;(2)从这个星球上发射卫星的第一宇宙速度.【答案】(1)v2(2)R 2hv0 2h【解析】本题考查竖直上抛运动和星球第一宇宙速度的计算.(1) 设该星球表面的重力加速度为g ′,物体做竖直上抛运动,则v022g h 解得,该星球表面的重力加速度g v022hv2(2) 卫星贴近星球表面运行,则mg mRR解得:星球上发射卫星的第一宇宙速度v g R v02h3.某双星系统中两个星体A、 B 的质量都是m,且 A、 B 相距 L,它们正围绕两者连线上的某一点做匀速圆周运动.实际观测该系统的周期T 要小于按照力学理论计算出的周期理论值 T0,且k (),于是有人猜测这可能是受到了一颗未发现的星体 C 的影响,并认为 C 位于双星 A、 B 的连线中点.求:(1)两个星体 A、 B 组成的双星系统周期理论值;(2)星体 C 的质量.【答案】( 1);( 2)【解析】【详解】(1)两星的角速度相同 ,根据万有引力充当向心力知 :可得:两星绕连线的中点转动,则解得:(2) 因为 C 的存在 ,双星的向心力由两个力的合力提供,则再结合:k可解得:故本题答案是:(1);(2)【点睛】本题是双星问题,要抓住双星系统的条件:角速度与周期相同,再由万有引力充当向心力进行列式计算即可 .4.用弹簧秤可以称量一个相对于地球静止的小物体m 所受的重力,称量结果随地理位置的变化可能会有所不同。
最新高考物理万有引力与航天试题(有答案和解析)一、高中物理精讲专题测试万有引力与航天1.“天宫一号”是我国自主研发的目标飞行器,是中国空间实验室的雏形.2013年6月,“神舟十号”与“天宫一号”成功对接,6月20日3位航天员为全国中学生上了一节生动的物理课.已知“天宫一号”飞行器运行周期T,地球半径为R,地球表面的重力加速度为g,“天宫一号”环绕地球做匀速圆周运动,万有引力常量为G.求:(1)地球的密度;(2)地球的第一宇宙速度v;(3)“天宫一号”距离地球表面的高度.【答案】(1)34gGRρπ= (2)v gR= (3)22324gT Rh Rπ=-【解析】(1)在地球表面重力与万有引力相等:2MmG mgR=,地球密度:343M MRVρπ==解得:34gGRρπ=(2)第一宇宙速度是近地卫星运行的速度,2vmg mR=v gR=(3)天宫一号的轨道半径r R h=+,据万有引力提供圆周运动向心力有:()()2224MmG m R hTR hπ=++,解得:22324gT Rh Rπ=-2.土星是太阳系最大的行星,也是一个气态巨行星。
图示为2017年7月13日朱诺号飞行器近距离拍摄的土星表面的气体涡旋(大红斑),假设朱诺号绕土星做匀速圆周运动,距离土星表面高度为h。
土星视为球体,已知土星质量为M,半径为R,万有引力常量为.G求:()1土星表面的重力加速度g;()2朱诺号的运行速度v ; ()3朱诺号的运行周期T 。
【答案】()())(21?23?2GM R h R π+【解析】 【分析】土星表面的重力等于万有引力可求得重力加速度;由万有引力提供向心力并分别用速度与周期表示向心力可求得速度与周期。
【详解】(1)土星表面的重力等于万有引力:2MmG mg R = 可得2GMg R =(2)由万有引力提供向心力:22()Mm mv G R h R h=++可得:v =(3)由万有引力提供向心力:()222()()GMm m R h R h Tπ=++可得:(2T R h π=+3.经过逾6 个月的飞行,质量为40kg 的洞察号火星探测器终于在北京时间2018 年11 月27 日03:56在火星安全着陆。
高考物理万有引力与航天试题(有答案和解析)一、高中物理精讲专题测试万有引力与航天1.如图所示,返回式月球软着陆器在完成了对月球表面的考察任务后,由月球表面回到绕月球做圆周运动的轨道舱.已知月球表面的重力加速度为g ,月球的半径为R ,轨道舱到月球中心的距离为r ,引力常量为G ,不考虑月球的自转.求:(1)月球的质量M ;(2)轨道舱绕月飞行的周期T .【答案】(1)GgR M 2=(2)2r r T R gπ=【解析】【分析】 月球表面上质量为m 1的物体,根据万有引力等于重力可得月球的质量;轨道舱绕月球做圆周运动,由万有引力等于向心力可得轨道舱绕月飞行的周期;【详解】解:(1)设月球表面上质量为m 1的物体,其在月球表面有:112Mm G m g R = 112Mm G m g R = 月球质量:GgR M 2= (2)轨道舱绕月球做圆周运动,设轨道舱的质量为m由牛顿运动定律得: 22Mm 2πG m r r T ⎛⎫= ⎪⎝⎭222()Mm G m r r T π= 解得:2rr T R gπ=2.某星球半径为6610R m =⨯,假设该星球表面上有一倾角为30θ=︒的固定斜面体,一质量为1m kg =的小物块在力F 作用下从静止开始沿斜面向上运动,力F 始终与斜面平行,如图甲所示.已知小物块和斜面间的动摩擦因数3μ=,力F 随位移x 变化的规律如图乙所示(取沿斜面向上为正方向).已知小物块运动12m 时速度恰好为零,万有引力常量11226.6710N?m /kg G -=⨯,求(计算结果均保留一位有效数字)(1)该星球表面上的重力加速度g 的大小;(2)该星球的平均密度.【答案】26/g m s =,【解析】【分析】【详解】(1)对物块受力分析如图所示;假设该星球表面的重力加速度为g ,根据动能定理,小物块在力F 1作用过程中有: 211111sin 02F s fs mgs mv θ--=- N mgcos θ=f N μ= 小物块在力F 2作用过程中有:222221sin 02F s fs mgs mv θ---=- 由题图可知:1122156?3?6?F N s m F N s m ====,;, 整理可以得到:(2)根据万有引力等于重力:,则: ,, 代入数据得3.我国科学家正在研究设计返回式月球软着陆器,计划在2030年前后实现航天员登月,对月球进行科学探测。
高中物理万有引力与航天专题训练答案及解析一、高中物理精讲专题测试万有引力与航天1. 如图所示,质量分别为m 和 M 的两个星球A 和B 在引力作用下都绕O 点做匀速圆周运动,星球A 和B 两者中心之间距离为L .已知A 、B 的中心和O 三点始终共线,A 和B 分别在 O 的两侧,引力常量为G .求:(1)A 星球做圆周运动的半径R 和B 星球做圆周运动的半径r ;(2)两星球做圆周运动的周期.M L, r= m L,( 2) 2πL 3【答案】 (1) R=m Mm MG M m【解析】(1)令 A 星的轨道半径为R , B 星的轨道半径为 r ,则由题意有 L r R两星做圆周运动时的向心力由万有引力提供,则有:GmM 4 2 4 2L 2mR2Mr2TT 可得 R =M,又因为 LR rrm所以可以解得: M L , rm L ;RMmMm(2)根据( 1)可以得到 : GmM4 2 4 2ML 2m2 Rm2MLTTm4 2L32L 3则: Tm GG m MM点睛:该题属于双星问题,要注意的是它们两颗星的轨道半径的和等于它们之间的距离,不能把它们的距离当成轨道半径 .2. 载人登月计划是我国的 “探月工程 ”计划中实质性的目标.假设宇航员登上月球后,以初速度 v 0 竖直向上抛出一小球,测出小球从抛出到落回原处所需的时间为 t. 已知引力常量为G ,月球的半径为 R ,不考虑月球自转的影响,求: (1) 月球表面的重力加速度大小g 月 ;(2) 月球的质量 M ;(3)飞船贴近月球表面绕月球做匀速圆周运动的周期T.2v 0 ; (2) 2R 2v 0 Rt【答案】 (1)Gt; (3) 2t 2v 0【解析】【详解】2v 0(1) 小球在月球表面上做竖直上抛运动,有tg 月月球表面的重力加速度大小g 月 2v 0t(2) 假设月球表面一物体质量为m ,有MmGR2=mg月月球的质量M2R 2v 0Gt(3) 飞船贴近月球表面做匀速圆周运动,有G Mmm22RR 2T飞船贴近月球表面绕月球做匀速圆周运动的周期T 2Rt2v 03.“嫦娥一号 ”的成功发射,为实现中华民族几千年的奔月梦想迈出了重要的一步.已知 “嫦娥一号 ”绕月飞行轨道近似为圆形,距月球表面高度为 H ,飞行周期为 T ,月球的半径为R ,引力常量为 G .求:(1) 嫦“娥一号 ”绕月飞行时的线速度大小; (2)月球的质量;(3)若发射一颗绕月球表面做匀速圆周运动的飞船,则其绕月运行的线速度应为多大.【答案】 (1)2 RH ( 2) 4 2R H32 R HR H ( 3) TGT 2TR【解析】( 1) “嫦娥一号 ”绕月飞行时的线速度大小 v 12π(R H ).T( 2 )设月球质量为M .“嫦娥一号”的质量为 m.2根据牛二定律得 G Mm m 4π (R H )(R H )2T 223解得 M4π (R H ).GT 2( 3)设绕月飞船运行的线速度为Mm0V2 V ,飞船质量为 m0,则G2m0又R R23 M4π (R 2 H ) .GT联立得 V 2π R H R H T R4.经过逾 6 个月的飞行,质量为 40kg 的洞察号火星探测器终于在北京时间2018 年 11 月27 日 03: 56 在火星安全着陆。
高中物理万有引力与航天常见题型及答题技巧及练习题(含答案)一、高中物理精讲专题测试万有引力与航天1.一艘宇宙飞船绕着某行星作匀速圆周运动,已知运动的轨道半径为r ,周期为T ,引力常量为G ,行星半径为求:(1)行星的质量M ;(2)行星表面的重力加速度g ;(3)行星的第一宇宙速度v .【答案】(1)(2) (3)【解析】【详解】 (1)设宇宙飞船的质量为m ,根据万有引力定律 求出行星质量(2)在行星表面求出:(3)在行星表面求出:【点睛】本题关键抓住星球表面重力等于万有引力,人造卫星的万有引力等于向心力.2.从在某星球表面一倾角为θ的山坡上以初速度v 0平抛一物体,经时间t 该物体落到山坡上.已知该星球的半径为R ,一切阻力不计,引力常量为G ,求:(1)该星球表面的重力加速度的大小g(2)该星球的质量M .【答案】(1) 02tan v t θ (2) 202tan v R Gtθ 【解析】【分析】(1)物体做平抛运动,应用平抛运动规律可以求出重力加速度.(2)物体在小球的表面受到的万有引力等于物体的重力,由此即可求出.【详解】(1)物体做平抛运动,水平方向:0x v t =,竖直方向:212y gt = 由几何关系可知:02y gt tan x v θ== 解得:02v g tan tθ= (2)星球表面的物体受到的重力等于万有引力,即:2Mm Gmg R = 可得:2202v R tan gR M G Gtθ== 【点睛】本题是一道万有引力定律应用与运动学相结合的综合题,考查了求重力加速度、星球自转的周期,应用平抛运动规律与万有引力公式、牛顿第二定律可以解题;解题时要注意“黄金代换”的应用.3.地球同步卫星,在通讯、导航等方面起到重要作用。
已知地球表面重力加速度为g ,地球半径为R ,地球自转周期为T ,引力常量为G ,求:(1)地球的质量M ;(2)同步卫星距离地面的高度h 。
【答案】(1)(2)【解析】【详解】 (1)地球表面的物体受到的重力等于万有引力,即:mg=G解得地球质量为:M=; (2)同步卫星绕地球做圆周运动的周期等于地球自转周期T ,同步卫星做圆周运动,万有引力提供向心力,由牛顿第二定律得:解得:;【点睛】 本题考查了万有引力定律的应用,知道地球表面的物体受到的重力等于万有引力,知道同步卫星的周期等于地球自转周期、万有引力提供向心力是解题的前提,应用万有引力公式与牛顿第二定律可以解题.4.某行星表面的重力加速度为g ,行星的质量为M ,现在该行星表面上有一宇航员站在地面上,以初速度0v 竖直向上扔小石子,已知万有引力常量为G .不考虑阻力和行星自转的因素,求:(1)行星的半径R ;(2)小石子能上升的最大高度.【答案】(1)GM Rg (2)202v h g = 【解析】 (1)对行星表面的某物体,有:2GMm mg R =- 得:GM R g(2)小石子在行星表面作竖直上抛运动,规定竖直向下的方向为正方向,有: 2002v gh =-+得:202v h g=5.宇航员王亚平在“天宫一号”飞船内进行了我国首次太空授课.若已知飞船绕地球做匀速圆周运动的周期为T ,地球半径为R ,地球表面重力加速度g ,求:(1)地球的第一宇宙速度v ;(2)飞船离地面的高度h .【答案】(1)v =(2)h R = 【解析】【详解】 (1)根据2v mg m R=得地球的第一宇宙速度为:v =(2)根据万有引力提供向心力有:()2224()Mm G m R h R h Tπ=++, 又2GM gR =,解得:h R = .6.“天宫一号”是我国自主研发的目标飞行器,是中国空间实验室的雏形,2017年6月,“神舟十号”与“太空一号”成功对接.现已知“太空一号”飞行器在轨运行周期为To ,运行速度为0v ,地球半径为R ,引力常量为.G 假设“天宫一号”环绕地球做匀速圖周运动,求:()1“天宫号”的轨道高度h .()2地球的质量M .【答案】(1)00 2v T h R π=- (2)300 2v T M Gπ= 【解析】【详解】(1)设“天宫一号”的轨道半径为r ,则有:002r v T π=“天宫一号”的轨道高度为:h r R =- 即为:002v T h R π=- (2)对“天宫一号”有:22204Mm G m r r T π= 所以有:3002v T M Gπ= 【点睛】万有引力应用问题主要从以下两点入手:一是星表面重力与万有引力相等,二是万有引力提供圆周运动向心力.7.双星系统一般都远离其他天体,由两颗距离较近的星体组成,在它们之间万有引力的相互作用下,绕中心连线上的某点做周期相同的匀速圆周运动。
高考物理新力学知识点之万有引力与航天专项训练及解析答案(2)一、选择题1.地球表面的重力加速度为g,地球半径为R,万有引力常量为G,则地球的平均密度为()A.34gRGπB.234gR GπC.gRGD.2gR G2.若人造卫星绕地球做匀速圆周运动,则离地面越近的卫星()A.线速度越大B.角速度越小C.加速度越小D.周期越大3.在地球同步轨道上等间距布置三颗地球同步通讯卫星,就可以让地球赤道上任意两位置间实现无线电通讯,现在地球同步卫星的轨道半径为地球半径的6.6倍。
假设将来地球的自转周期变小,但仍要仅用三颗地球同步卫星实现上述目的,则地球自转的最小周期约为A.5小时B.4小时C.6小时D.3小时4.关于地球同步通讯卫星,下列说法中正确的是()A.它的轨道可以是椭圆B.各国发射的这种卫星轨道半径都一样C.它不一定在赤道上空运行D.它运行的线速度一定大于第一宇宙速度5.2019年春节期间上映的国产科幻电影《流浪地球》,获得了口碑和票房双丰收。
影片中人类为了防止地球被膨胀后的太阳吞噬,利用巨型发动机使地球公转轨道的半径越来越大,逐渐飞离太阳系,在飞离太阳系的之前,下列说法正确的是()A.地球角速度越来越大B.地球线速度越来越大C.地球向心加速度越来越大D.地球公转周期越来越大6.2019年1月3日上午10点26分,“嫦娥四号”探测器成功着陆在月球背面。
探测器在着陆过程从轨道3,到轨道2,再到轨道1。
设探测器在轨道3与轨道2经过Q点的速度分别为v3Q与v2Q,加速度分别为a3Q与a2Q;探测器在轨道2与轨道1经过P点的速度分别为v2P与v1P,加速度分别为a2P与a1P,则以下说法正确的是()A.v2P=v1P B.a2P=a1PC.v3Q>v2P D.a3Q>a1P7.2017年4月,我国成功发射的天舟一号货运飞船与天宫二号空间实验室完成了首次交会对接,对接形成的组合体仍沿天宫二号原来的轨道(可视为圆轨道)运行.与天宫二号单独运行时相比,组合体运行的:()A.周期变大B.速率变大C.动能变大D.向心加速度变大8.2018年12月8日凌晨2点24分,中国长征三号乙运载火箭在西昌卫星发射中心起飞,把嫦娥四号探测器送入地月转移轨道,“嫦娥四号”经过地月转移轨道的P点时实施一次近月调控后进入环月圆形轨道I,再经过系列调控使之进人准备落月”的椭圆轨道Ⅱ,于2019年1月3日上午10点26分,最终实现人类首次月球背面软着陆.若绕月运行时只考虑月球引力作用,下列关于“嫦娥四号的说法正确的是A.“嫦娥四号”的发射速度必须大于11.2km/sB.沿轨道I运行的速度大于月球的第一宇宙速度C.沿轨道I运行至P点的加速度小于沿轨道Ⅱ运行至P点的加速度D.经过地月转移轨道的P点时必须进行减速后才能进入环月圆形轨道I9.20世纪人类最伟大的创举之一是开拓了太空的全新领域.现有一艘远离星球在太空中直线飞行的宇宙飞船,为了测量自身质量,启动推进器,测出飞船在短时间Δt内速度的改变为Δv,和飞船受到的推力F(其它星球对它的引力可忽略).飞船在某次航行中,当它飞近一个孤立的星球时,飞船能以速度v,在离星球的较高轨道上绕星球做周期为T的匀速圆周运动.已知星球的半径为R,引力常量用G表示.则宇宙飞船和星球的质量分别是()A.F vt,2v RGB.F vt,32v TGπC.F tv,2v RGD.F tv,32v TGπ10.研究火星是人类探索向火星移民的一个重要步骤。
高中物理万有引力与航天及其解题技巧及练习题(含答案)一、高中物理精讲专题测试万有引力与航天1.以下图是一种丈量重力加快度g 的装置。
在某星球上,将真空长直管沿竖直方向放置,管内小球以某一初速度自 O 点竖直上抛,经 t 时间上涨到最高点, OP 间的距离为 h,已知引力常量为 G,星球的半径为 R;求:(1)该星球表面的重力加快度g;(2)该星球的质量 M;(3)该星球的第一宇宙速度 v1。
【答案】(2h2hR22hR 1)g( 2)(3)t 2Gt 2t【分析】( 1)由竖直上抛运动规律得:t 上 =t 下=t 由自由落体运动规律:h 1 gt222hgt 2(2)在地表邻近:G Mmmg R2gR22hR2 MGt 2G(3)由万有引力供给卫星圆周运动向心力得:G Mmm v12R2RGM2hRv1tR点睛:此题借助于竖直上抛求解重力加快度,并利用地球表面的重力与万有引力的关系求星球的质量。
2.利用万有引力定律能够丈量天体的质量.(1)测地球的质量英国物理学家卡文迪许,在实验室里奇妙地利用扭秤装置,比较精准地丈量出了引力常量的数值,他把自己的实验说成是“称量地球的质量”.已知地球表面重力加快度为 g,地球半径为 R,引力常量为 G.若忽视地球自转的影响,求地球的质量.(2)测“双星系统”的总质量所谓“双星系统”,是指在互相间引力的作用下,绕连线上某点O 做匀速圆周运动的两个星球 A 和 B,以下图.已知A、 B 间距离为L, A、 B 绕 O 点运动的周期均为T,引力常量为G,求 A、 B 的总质量.(3)测月球的质量若忽视其余星球的影响,能够将月球和地球当作“双星系统”.已知月球的公转周期为T1,月球、地球球心间的距离为L1.你还能够利用(1)、(2)中供给的信息,求月球的质量.【答案】( 1)gR2 4 2L3 4 2L13gR2;( 2);( 3)2.G GT 2GT1G【分析】【详解】(1)设地球的质量为M ,地球表面某物体质量为m,忽视地球自转的影响,则有G Mm mg 解得:M =gR2;R2G(2)设 A 的质量为 M 1,A 到 O 的距离为 r1,设 B 的质量为 M2,B 到 O 的距离为 r 2,依据万有引力供给向心力公式得:M1M 222G L2M 1 (T)r1,M1M222G L2M 2 (T)r2,又因为 L=r1+r2解得:M1M 2 4 2L3;GT 2(3)设月球质量为M3,由(2)可知,M34 2L13MGT12由( 1)可知, M = gR2 G解得: M342 L13gR2 GT12G3.2019 年 4 月,人类史上首张黑洞照片问世,如图,黑洞是一种密度极大的星球。
(物理)万有引力与航天练习题含答案一、高中物理精讲专题测试万有引力与航天1.如图所示,假设某星球表面上有一倾角为θ=37°的固定斜面,一质量为m =2.0 kg 的小物块从斜面底端以速度9 m/s 沿斜面向上运动,小物块运动1.5 s 时速度恰好为零.已知小物块和斜面间的动摩擦因数为0.25,该星球半径为R =1.2×103km.试求:(sin 37°=0.6,cos 37°=0.8)(1)该星球表面上的重力加速度g 的大小. (2)该星球的第一宇宙速度.【答案】(1)g=7.5m/s 2 (2)3×103m/s 【解析】 【分析】 【详解】(1)小物块沿斜面向上运动过程00v at =- 解得:26m/s a =又有:sin cos mg mg ma θμθ+= 解得:27.5m/s g =(2)设星球的第一宇宙速度为v ,根据万有引力等于重力,重力提供向心力,则有:2mv mg R= 3310m/s v gR ==⨯2.用弹簧秤可以称量一个相对于地球静止的小物体m 所受的重力,称量结果随地理位置的变化可能会有所不同。
已知地球质量为M ,自转周期为T ,万有引力常量为G .将地球视为半径为R 、质量均匀分布的球体。
(1)求在地球北极地面称量时弹簧秤的读数F 0,及在北极上空高出地面0.1R 处称量时弹簧秤的读数F 1;(2)求在赤道地面称量时弹簧秤的读数F 2;(3)事实上地球更接近一个椭球体,如图所示。
如果把小物体放在北纬40°的地球表面上,请定性画出小物体的受力分析图,并画出合力。
【答案】(1)02Mm F G R = ()120.1GMm F R R =+ (2)22224Mm RF Gm R Tπ=- (3)【解析】 【详解】(1)在地球北极,不考虑地球自转,则弹簧秤称得的重力则为其万有引力,有:02GmMF R=在北极上空高处地面0.1R 处弹簧秤的读数为:12(0.1)GmMF R R =+;(2)在赤道地面上,重力向向心力之和等于万有引力,故称量时弹簧秤的读数为:22224GmM RmF R T π=-(3)如图所示3.在月球表面上沿竖直方向以初速度v 0抛出一个小球,测得小球经时间t 落回抛出点,已知该月球半径为R ,万有引力常量为G ,月球质量分布均匀。
高中物理万有引力与航天练习题及答案一、高中物理精讲专题测试万有引力与航天1.如图所示,宇航员站在某质量分布均匀的星球表面一斜坡上 P 点沿水平方向以初速度v 0 抛出一个小球,测得小球经时间t 落到斜坡上另一点 Q ,斜面的倾角为 α,已知该星球半径为 R ,万有引力常量为 G ,求:(1) 该星球表面的重力加速度; (2) 该星球的质量。
2【答案】 (1)g 2v 0 tan (2) 2v 0R tant Gt【解析】 【分析】平抛运动在水平方向上做匀速直线运动,在竖直方向上做自由落体运动,根据平抛运动的 规律求出星球表面的重力加速度 【详解】(1)根据平抛运动知识可得 tan解得g 2v 0tant(2)根据万有引力等于重力,则有22解得M gR22v 0R 2tanG Gt2.2018 年是中国航天里程碑式的高速发展年,是属于中国航天的“超级 2018 ”.例如,我国将进行北斗组网卫星的高密度发射,全年发射 18 颗北斗三号卫星,为 “一带一路 ”沿线及 周边国家提供服务.北斗三号卫星导航系统由静止轨道卫星(同步卫星)、中轨道卫星和倾斜同步卫星组成.图为其中一颗静止轨道卫星绕地球飞行的示意图.已知该卫星做匀速 圆周运动的周期为 T ,地球质量为 M 、半径为 R ,引力常量为 G.; 根据万有引力等于重力求出星球的质量;12 y 2 gtgt xv 0t 2v 0GMmR 2mg423)如图所示,同步卫星的运转轨道面与地球赤道共面,与地球赤道面有夹角,但是都绕地球做圆周运动,轨道的圆心均为地心.由于它的周期也因此 h 1= h 2.1)求静止轨道卫星的角速度ω;2)求静止轨道卫星距离地面的高度h 1;3)北斗系统中的倾斜同步卫星,其运转轨道面与地球赤道面有一定夹角,它的周期也是 T ,距离地面的高度为 h 2.视地球为质量分布均匀的正球体,请比较 出你的理由.【答案】( 1) = 2π;( 2) h1=3 GMT 2 R (3)h 1= h 2【解析】 【分析】(1)根据角速度与周期的关系可以求出静止轨道的角速度; (2)根据万有引力提供向心力可以求出静止轨道到地面的高度;(3)根据万有引力提供向心力可以求出倾斜轨道到地面的高度; 【详解】h 1 和 h 2 的大小,并说1)根据角速度和周期之间的关系可知:静止轨道卫星的角速度= 2π=T2)静止轨道卫星做圆周运动,由牛顿运动定律有:Mm G(R h 1)22π2=m(R h 1)( T )2解得: 3GMT 2h 1= 3 G 4M πT2倾斜同步轨道卫星的运转轨道面是 T ,根据牛顿运动定律,Mm (R h 2)2=m(R h 2)(2T解得: h 2= 3GMT 2【点睛】 对于围绕中心天体做圆周运动的卫星来说,都借助于万有引力提供向心力即可求出要求的 物理量.3.如图所示,假设某星球表面上有一倾角为θ=37°的固定斜面,一质量为 m =2.0 kg 的小物块从斜面底端以速度 9 m/s 沿斜面向上运动,小物块运动 1.5 s 时速度恰好为零 .已知小物 块和斜面间的动摩擦因数为 0.25,该星球半径为 R =1.2 ×130km.试求: (sin 37 = 0°.6, cos 37 °= 0.8)(1)该星球表面上的重力加速度 g 的大小 . (2)该星球的第一宇宙速度 .【答案】 (1)g=7.5m/s 2 (2)3× 130m/s 【解析】 【分析】 【详解】(1)小物块沿斜面向上运动过程 0 v 0 at解得: a 6m/s 2又有: mgsin mgcos ma解得: g 7.5m/s 2 (2)设星球的第一宇宙速度为v ,根据万有引力等于重力,重力提供向心力,则有:v gR 3 103 m/s4.地球同步卫星,在通讯、导航等方面起到重要作用。