SARS传播预测的数学模型
- 格式:pdf
- 大小:987.58 KB
- 文档页数:10
关于SARS传播和影响问题的模型摘要本文首先采用Logistic模型、人工神经网络两个方法对SARS疫情公布的数据进行分析挖掘后,建立了不同的传染病模型来对疫情的变化趋势给出预测,从而为预防控制提供了可靠、足够的信息。
然后又考虑到证券市场被视为国民经济的晴雨表,因此在收集医药类、交通运输类等行业的股票价格的基础上,分别使用“事件分析法”、Markov 链建立数学模型对SARS给股市的影响进行分析预测。
在对早期模型进行合理性与实用性评价的基础上,对它的参数确定方法进行改进,消除了对港粤地区经验性数据的依赖,建立的二阶Logistic回归模型能就本地已知数据预测疫情发展趋势,给出预测值并拟合出疫情走势图。
并且该模型的决定系数R2高达99.02%,这表明预测值与实际值无显著性差异,拟合效果很好。
由疫情走势图可推算出发病高峰为4月29日及持续时间,且能体现出预防措施对疫情走势有明显的影响,也即随着预防指数K(t)的增大,累计发病人数N(t)趋于稳定。
因此该模型可为疾病的预防和控制提供有效的信息。
又考虑到本问题是一个动态预测问题,故建立了误差逆传播神经网络模型(BP,Back-Propagation)。
经过理论分析和多次实验确定其为三层结构的BP网络模型,节点数分别为(5,6,5),激励函数为双曲正切函数。
该模型能够根据前五天的累计患者数预测出未来五天的累计患者数。
首先,将已知65个数据分为13组,分别作为网络的输入、输出端输入网络,进行学习。
然后,用训练过的网络预测未知数据,正确率达99.9%以上。
最后,考虑到网络初值对模型灵敏度的影响,提出了初始化的合理建议,并将其与早期模型进行了比较。
在分析SARS对证券市场的影响时,由于这是一个突发事件,缺乏历史数据,所以SARS对股市产生的影响很难用传统的计量模型进行分析,因而采用“事件分析法”对其进行研究:利用一个相对短时期的股票价格的变化情况来分析和衡量该事件的影响程度。
SARS的预测控制模型随着全球化的进程和人类活动的频繁往来,传染病的爆发和传播成为全球面临的一项重要挑战。
严重急性呼吸综合症(Severe Acute Respiratory Syndrome,简称SARS)是2003年引起全球性关注的一种传染病。
如何预测和控制SARS的传播成为当时社会各界密切关注的问题。
在这个背景下,SARS的预测控制模型应运而生,成为研究者们的重要工具。
SARS的预测控制模型主要是为了预测疫情传播的趋势和规模,通过对疫情数据的收集和分析,利用数学和统计学方法构建模型,并进行模拟和预测,以便制定相应的防控措施。
在建立预测控制模型时,考虑到SARS的传播特性和传染源,研究者通常会关注以下几个方面的内容。
首先,SARS的传播途径是研究的重点之一。
根据研究结果,SARS主要通过空气飞沫和直接接触传播,因此,在建立预测控制模型时需要考虑到这些传播方式,并将其作为重要的变量纳入模型中。
通过建立数学模型,可以模拟病毒的传播路径和传播速度,以及传播途径对疫情传播的影响程度,进而预测传染源的数量和传播范围。
其次,SARS的传播规律也是预测控制模型要考虑的内容之一。
研究发现,SARS的传播具有一定的季节性,通常在冬春季节更容易爆发。
此外,SARS的传播也受到社会聚集活动和人口流动的影响。
因此,在建立预测控制模型时,需要将这些因素作为变量进行考虑,并通过收集相关数据进行分析,以便预测疫情的传播规律和趋势。
再次,SARS的预测控制模型还需要考虑到卫生防护措施的影响。
根据研究,加强卫生防护和个人防护措施,如佩戴口罩、勤洗手、保持社交距离等,可以有效减少SARS的传播风险。
因此,在建立预测控制模型时,需要将这些因素作为干预措施纳入模型中,并进行相应的调整和预测。
通过模拟和预测不同干预措施的效果,可以为决策者提供科学依据,指导制定和调整防控政策。
最后,SARS的预测控制模型还需要考虑到不确定性因素的影响。
传染病模型和sars的传播数学建模姜启源
传染病模型是一种数学模型,用于描述传染病的传播和蔓延过程。
传染病传播的数学建模可以帮助我们更好地理解疾病的传播机制,评估和预测疫情的发展趋势,指导疾病的控制和预防措施的制定。
SARS(严重急性呼吸综合征)是2002年至2003年期间爆发的一种严重急性呼吸道疾病,由一种名为SARS冠状病毒引起。
姜启源等研究人员在SARS爆发期间进行了一些数学建模研究,以对疾病的传播进行评估和预测。
姜启源等人基于传染病数学建模的经典理论和方法,开展了SARS传播的数学建模研究。
他们考虑了人际传播和环境传播两种传播方式,并建立了相应的动力学模型。
通过模型分析和数值模拟,他们可以估计SARS的传播速度、传播距离和传染性等参数,并通过对不同控制措施的模拟推断出最有效的控制策略。
研究结果显示,人际传播是SARS的主要传播途径,而环境传播的影响较小。
他们还发现,SARS传播速度受到接触感染率和感染者的平均潜伏期的影响。
他们的研究为SARS的疫情控制提供了重要的科学依据,并对其他传染病的传播数学建模研究提供了参考。
总的来说,姜启源等人的研究为我们对传染病的传播和控制机制有了更深入的理解,为疫情的预测和防控提供了重要的科学依据。
这些研究对于应对类似疫情的
发生和传播至关重要。
SARS传播的数学模型_数学建模全国赛论文SARS 传播的数学模型摘要本文分析了题目所提供的早期 SARS 传播模型的合理性与实用性,认为该模型可以预测疫情发展的大致趋势,但是存在一定的不足.第一,混淆了累计患病人数与累计确诊人数的概念;第二,借助其他地区数据进行预测,后期预测结果不够准确;第三,模型的参数 L、K 的设定缺乏依据,具有一定的主观性. 针对早期模型的不足,在系统分析了 SARS 的传播机理后,把 SARS 的传播过程划分为:征兆期,爆发期,高峰期和衰退期 4 个阶段.将每个阶段影响SARS传播的因素参数化,在传染病 SIR 模型的基础上,改进得到SARS 传播模型.采用离散化的方法对本模型求数值解得到:北京 SARS 疫情的预测持续时间为 106 天,预测 SARS 患者累计2514 人,与实际情况比较吻合. 应用 SARS 传播模型,对隔离时间及隔离措施强度的效果进行分析,得出结论:早发现,早隔离能有效减少累计患病人数;严格隔离能有效缩短疫情持续时间. 在建立模型的过程中发现,需要认清 SARS 传播机理,获得真实有效的数据.而题目所提供的累计确诊人数并不等于同期累计患病人数,这给模型的建立带来不小的困难. 本文分析了海外来京旅游人数受 SARS 的影响,建立时间序列半参数回归模型进行了预测,估算出 SARS 会对北京入境旅游业造成 23.22 亿元人民币损失,并预计北京海外旅游人数在 10 月以前能恢复正常. 最后给当地1/ 2报刊写了一篇短文,介绍了建立传染病数学模型的重要性. 1.问题的重述 SARS(严重急性呼吸道综合症,俗称:非典型肺炎)的爆发和蔓延使我们认识到,定量地研究传染病的传播规律,为预测和控制传染病蔓延创造条件,具有很高的重要性.现需要做以下工作:(1)对题目提供的一个早期模型,评价其合理性和实用性. (2)建立自己的模型,说明优于早期模型的原因;说明怎样才能建立一个真正能够预测以及能为预防和控制提供可靠、足够信息的模型,并指出这样做的困难;评价卫生部门采取的措施,如:提前和延后 5 天采取严格的隔离措施,估计对疫情传播的影响. (3)根据题目提供的数据建立相应的数学模型,预测 SARS 对社会经济的影响. (4)给当地报刊写一篇通俗短文,说明建立传染病数学模型的重要性. 2.早期模型的分析与评价题目要求建立 SARS 的传播模型,整个工作的关键是建立真正能够预测以及能为预防和控制提供可靠、足够的信息的模型.如何结合可靠、足够这两个要求评价一个模型的合理性和实用性,首先需要明确:合理性定义要求模型的建立有根据,预测结果切合实际. 实用性定义要求模型能全面模拟真实情况,以量化指标指导实际. 所以合理的模型能为预防和控制提供可靠的信息;实用的模型能为预防和控制提供足...。
SARS 的传播问题模型一 SI 模型模型假设1、在疾病传播期内,所考察地区的总人数N 不变,人群分为易感染者和已感染者两类,以下简称健康者和病人,两类人在总人数N 中占的比例分别记作()s t ,()i t ;2、每个病人每天有效接触的平均人数是常数λ,称为日常接触率。
当病人与健康者有效接触时,使健康者感染变为病人。
模型构成根据假设,每个病人每天可使()s t λ个健康人变为病人,因为病人人数为()Ni t ,所以每天共有()()Ns t i t λ个健康人被感染,于是Nsi λ就是病人人数Ni 的增加率,即有diNNsi dt λ= (1)又因为()()1s t i t += (2)再记初始时刻(t=0)病人的比例为0i,则()()01,0dii i i dt i λ=-= (3)对方程(5)的解有()01111ti t i λ-=⎛⎫+- ⎪ ⎪⎝⎭(4)由(5),(6)式可知,第一, 当12i =时,didt 达到最大值m di dt ⎛⎫ ⎪⎝⎭,这时刻: 101ln 1m t i λ-⎛⎫=- ⎪⎪⎝⎭ (5)这时病人增加的最快,预示着传染病高潮的到来,提前5天采取严格的隔离措施可以推迟传染病高潮的到来,为医疗卫生部门迎接高潮做好充分的准备。
推迟5天则会使感染者更多;第二, 当t →∞时1i →,所有人终将被感染,全变为病人,显然,这与实际不符,故必须对上模型做出修正。
模型二 SIS 模型模型假设1、在疾病传播期内,所考察地区的总人数N 不变,人群分为易感染者和已感染者两类,以下简称健康者和病人,两类人在总人数N 中占的比例分别记作()s t ,()i t ;2、 每个病人每天有效接触的平均人数是常数λ,称为日常接触率。
当病人与健康者有效接触时,使健康者感染变为病人;3、每天被治愈的病人人数占病人总人数的比例为常数μ,称为日治愈率。
病人治愈后成为仍可被感染的健康人,显然,1μ是该传染病的平均传染期。
sars的传播2003数学建模题目在2003年,严重急性呼吸综合征(Severe Acute Respiratory Syndrome,简称SARS)的爆发引起了全球范围内的恐慌。
为了更好地了解SARS的传播特点和控制措施,我们可以应用数学建模的方法来分析SARS的传播规律,并提出相关的应对策略。
1. SARS的传播模型为了探究SARS的传播规律,我们可以采用传染病的基本传播模型——SIR模型。
SIR模型将人群分为三类:易感者(Susceptible)、感染者(Infected)和康复者(Recovered)。
根据该模型,我们可以列出如下的微分方程:dS/dt = - βSIdI/dt = βSI - γIdR/dt = γI其中,S,I和R分别表示易感者、感染者和康复者的数量;β表示传染率;γ表示康复率。
2. 参数估计与模型拟合要对SARS的传播模型进行参数估计和模型拟合,我们需要收集大量的疫情数据。
通过对实际数据进行统计学分析,我们可以获得β和γ的估计值,并将其代入SIR模型方程中进行模型拟合。
通过与实际数据的对比,我们可以评估模型的拟合效果以及参数的准确性。
3. 传播速率和传播方式SARS的传播速率直接影响到其传播范围和传播强度。
在SARS爆发期间,我们可以通过统计病例的增长速率来估计SARS的传播速率。
此外,研究发现,SARS主要通过空气飞沫传播,在密闭环境中飞沫的传播距离较远,因此需要采取相应的防控措施,如戴口罩、保持良好的通风等。
4. 人群的易感性和免疫力SARS的传播过程中,人群的易感性和免疫力起着重要的作用。
通过研究易感者和感染者的流行病学数据,我们可以了解人群的易感性和免疫力对于传播过程的影响。
同时,针对易感者的接种疫苗和提高人群的免疫力也是有效控制SARS传播的策略之一。
5. 社会干预措施的效果评估为了控制SARS的传播,社会干预措施起到了至关重要的作用。
例如,早期的病例隔离、密切接触者的追踪和隔离、社交距离的维持等都可以有效降低SARS的传播风险。
一、问题的重述SARS 作为21世纪第一个在世界范围内传播的传染病,它的爆发和蔓延给我国的经济发展和人民生活带来很大影响,同时也给人们许多重要的经验和教训,认识到定量地研究传染病的传播规律、为预测和控制传染病蔓延创造条件的重要性。
现在的问题是针对SARS 的传播建立数学模型,要求如下:(1)对题目中所提供的一个早期的模型,评价其合理性和实用性。
(2)建立自己的模型,并比较它与题目提供模型的优劣;对建立一个真正能够预测且能为预防和控制提供可靠、足够的信息的模型,提出建议,并指出难点所在;另外对卫生部门所采取的措施做出评论,如:提前或延后5天采取严格的隔离措施,对疫情传播所造成的影响做出估计。
问题二要求建立SARS 传播模型。
一个健康人被传染过程为:健康人→潜伏类人→病人→退出者(包括死亡者和治愈者)通过分析各类人之间的转化关系,建立微分方程模型。
在SARS 传播过程中,政府的干预起较大作用,以政府采取措施控制疫情的时刻0t 作为分割点,分别考虑0t 前后两阶段,称之为控制前阶段和控制后阶段。
疫情发展规律主要由日接触率()t λ制约,在不同的阶段()t λ的影响因素不同。
控制前,因按自然传播规律传播,故()t λ可视为常量;同时,在疫情初期,人们的防范意识比较弱,再加上非典自身的传播特点,在许多地区出现一个病人传染很多人的现象,即“超级传染事件”(SSE 事件)[1];随着人们防范意识的增强, SSE 事件发生的概率减小,因此SSE 事件在非典的发展早期起着重要作用。
而SSE 事件作为超级传染事件,特性在于在较短的时间内,即可使传染者数目增幅较大。
因此可将SSE 事件对疫情的影响看作一个脉冲的瞬时行为,使用脉冲微分方程描述。
控制后,)(t λ受人们防范意识的影响,而引起人们防范意识变化的原因主要有两方面,一方面来自因对疫情的恐慌而迫使人们自身加强防范意识,用警惕指标()t h 来刻划,另一方面由于政府政策,法律法规的颁布等而加强的防范意识,用政府措施力度()t g 来刻划。
SARS 传染病模型建立与预测张亚新 刘洪光 田香玉摘要通过对问题的分析,本文建立了SARS 传播的微分方程模型,即: )t (N )t (d )t (N )t (r )t (N )t (s dt)t (dN --=,其中N(t)表示t 时刻的SARS 病人数, s(t)表示t 时刻的传播率, r(t)表示表示t 时刻的治愈率,d(t) 表示表示t 时刻的死亡率。
本文用s(t) 、r(t) 、d(t) 三个参数较好地描述了SARS 的传播过程。
通过采集6月20号以前的数据,结合各个参数代表的实际意义,对他们分别进行指数回归分析,得到了s(t) 、r(t) 、d(t)的表达式,较好地刻划了SARS 的传播规律,并对疫情作出了预测。
本模型的优点表现在:1、通过回归分析的方法使离散的点连续化;2、用微分方程描述SARS 的传播问题更加准确。
本文利用Matlab 软件,对复杂的微分方程进行了求解。
利用附件1提供的散点数据,得到了SARS 病人数目随时间变化的曲线预测图。
预测了在6月12日左右疫情将得到缓解,在7月中旬将基本消除。
经检验,我们的预测与实际情况是相吻合的。
文中调整s(t) 、r(t) 、d(t)来对模型的结果进行控制,画出提前5天和推后5天进行隔离时病人数和时间的曲线,其结果与实际情况是相符的。
本文建立的微分方程模型能够较好地对SARS 的传播过程进行预测,并为政府部门提供决策依据,具有一定的普遍适用性。
关键词:SARS 微分方程模型 控制参数 检验预测SARS (Severe Acute Respiratory Syndrome ,严重急性呼吸道综合症, 俗称:SARS 型肺炎)是21世纪第一个在世界范围内传播的传染病。
SARS 的爆发和蔓延给我国的经济发展和人民生活带来了很大影响,我们从中得到了许多重要的经验和教训,认识到定量地研究传染病的传播规律、为预测和控制传染病蔓延创造条件的重要性。
SARS的预测控制模型SARS(严重急性呼吸综合征)是2002年至2003年期间爆发的一种可怕传染病,给全球健康安全带来了巨大威胁。
在SARS爆发后不久,科学家们就开始研究和开发预测控制模型,以便更好地理解疾病的传播方式,预测疫情的发展趋势并制定相应的预防措施。
本文将探讨SARS的预测控制模型,并介绍其中一些重要的方法和技术。
一、传染病的数学模型传染病的数学模型是一种抽象的方式,用来定量描述和预测疾病的传播过程。
通常,传染病的传播可以分为多个阶段,如潜伏期、感染期等。
数学模型可以根据不同的传播机制来描述这些阶段并计算其动态变化。
二、基本的SARS传播模型基本的SARS传播模型通常基于传统的流行病学模型,其中考虑了人群的易感人数、感染人数和康复人数等因素。
这些模型通常使用微分方程来描述各个人群的数量变化,并根据已知的参数进行数值计算和预测。
此外,还可以结合统计学方法对疫情数据进行分析和建模。
三、网络传播模型针对SARS的网络传播模型是基于人与人之间的接触关系构建的。
这种模型通常将人群构建为一个网络图,图中的节点表示个体,边表示人与人之间的直接接触。
通过该模型可以定量计算每个个体之间的传播概率,并据此预测疫情的扩散路径和规模。
四、随机传播模型随机传播模型是为了更好地描述传染病在人群中随机传播的特性而提出的一种模型。
这种模型通常基于随机过程理论,通过引入概率参数来描述个体之间的传播事件。
在SARS研究中,随机传播模型被广泛应用于疫情的预测和分析。
五、人工智能在SARS预测控制模型中的应用近年来,人工智能技术在SARS预测控制模型中的应用发挥了重要作用。
通过使用机器学习算法,可以从大量的疫情数据中提取有价值的信息,并进行精确的预测和决策。
例如,可以使用支持向量机(SVM)等算法,通过对已有数据进行训练,预测未来一段时间内SARS疫情的发展趋势以及采取相应的控制措施。
六、早期预警系统为了尽早预测和控制SARS疫情,科学家们还提出了早期预警系统。
SARS传播的数学模型SARS传播的数学模型摘要SARS(严重急性呼吸道综合症,,俗称⾮典型肺炎)是21世纪第⼀个在世界范围内传播的传染病。
SARS的爆发和蔓延给我国的经济发展和⼈民⽣活带来了很⼤影响。
为了能定量的研究传染病的传播的规律,⼈们建⽴了各类模型来预测、控制疾病的发⽣发展。
本题中给出了⼀个早期指数模型,它在短期内有⼀定的合理性与实⽤性,认为该模型可以预测疫情发展的⼤致趋势,但是却存在着⽤短期参数描述长期过程偏离实际的缺陷。
基于此,我们考虑应该引进新的参数,建⽴更优的模型。
由于SARS是新发传染病,⼈们对其的有效防治⼿段还是以预防为主的隔离和检疫,所以我们引进⼀个预防效果指数k,来反映防控措施对SARS传播的影响;⼜由于SARS发病传染迅猛,为了描述这个特征,我们⼜引⼊了参数r,⽤来表⽰发病率。
在假设所研究地区⼈⼝为理想状态下的⼈群、对该病普遍易感等前提下,我们应⽤Logistic回归结合地区SARS发病的疫情资料,⽤Matlab软件模拟,得到了⼀个更为优化的Logistic SARS模型,它给出了SARS流⾏趋势以及控制措施有效性的定量评估。
由于参数k的引进,更符合实际情况也符合医学解释,并且能够预测SARS⾼峰期的到来时间,可能累计最⼤发病数,在测控和拟合世界上优于早期模型。
同时,我们也通过Matlab语⾔对北京疫情的计算和实际数据进⾏了拟合,进⽽验证了这个模型的可靠性。
应⽤SARS传播模型,对隔离时间及隔离措施强度的效果进⾏分析,得出结论:“早发现,早隔离”能有效地减少累计患病⼈数;“严格隔离能有效缩短疫情持续时间。
本⽂亦分析了海外旅游⼈数受SARS的影响情况,并⽤Matlab语⾔对2003年以前的每个⽉份旅游⼈数与⽉份进⾏数据拟合,进⽽估算出正常情况下2003年的旅游⼈数。
在SARS的影响下,求出每个⽉份⼈数的减少率,拟合出⽉份与减少率的曲线图,从图中可以看出旅游⼈数在9⽉份开始恢复。
SARS传播的数学模型摘要通过对题目附件1的SARS模型进行分析和评价,加深了对SARS的认识和了解。
根据传染病的传播特点,建立了关于SARS病人率和疑似病人率两个常微分方程模型。
以所给数据为基本依据,用Matlab软件进行数值计算,与图形模拟方法求得模型中的有关参数。
当λ1 =1.5 和λ2 =1时,理论图形与实际图形有良好的吻合,分别得到了SARS 病人率和疑似病人率比较符合实际数据的变化图,能正确地预测它们的发展趋势。
他们对于模型中的参数有非常强的灵感性,λ1的值作微小的改变对于整个疫情的发展有很大的影响,所以政府采取对SARS疫情的有关措施是完全正确的。
本文重点分析了关于SARS病人率的模型一,根据求得的参数,利用相轨线理论对结果加以分析并对整个疫情作出预测,并推论出SARS病人率关于t的表达式i(t),然后提出了对传染病的控制方案,同时列举了具体方法,并论证了方法的合理性和可行性,用其它地区的数据对模型进行检验,说明模型的参数有区域性。
关键词:SARS 微分方程曲线拟合数学模型相轨线一、问题的提出SARS俗称非典型肺炎,是21世纪第一个在世界范围内传播的传染病。
我国作为发展中大国深受其害:SARS的爆发和蔓延给我国的经济发展和人民生活带来了很大影响。
在党和政府的统一领导下,全国人民与SARS顽强抗争,取得了可喜的阶段性胜利,并从中得到了许多重要的经验和教训,认识到在没有找出真正病因和有效治愈方法前,政府采取的强制性政策对抑制SARS自然发展最有效办法。
而本题的目的就是要建立一个适当的模型对SARS传播规律进行定量地分析、研究,为预测和控制SARS蔓延提供可靠、足够的信息,无论对现在还是将来都有其重要的现实意义。
二、模型的假设1.地总人数N可视为常数,即流入人口等于流出人口。
2.据人口所处的健康状态,将人群分为:健康者,SARS病人,退出者(被治愈者、免疫者和死亡者)。
3.在政府的强制措施下,人口基本不流动,故无病源的流入和流出,避免了交叉感染,降低了感染基数。
数学建模sars的传播题目
题目:基于数学建模的SARS病毒传播模型分析
问题描述:
SARS(严重急性呼吸综合征)是一种严重的传染性疾病,其
传播过程受到各种因素的影响。
我们希望建立一个数学模型来分析SARS的传播,并预测其传播趋势。
具体问题如下:
1. 如何建立一个能够描述SARS传播过程的数学模型?
2. 在考虑不同因素的影响下,如何确定传染性疾病的传播速率和传播范围?
3. 如何定量分析不同因素对SARS传播速度和传播范围的影响?例如,人口密度、人口流动性、潜伏期、接触率等等。
4. 如何利用已知的疫情数据,来验证和调整数学模型的参数?
5. 如何利用建立的数学模型来预测疫情的发展趋势和未来传播可能出现的风险地区?
6. 如何制定合理的干预措施,以控制SARS的传播,并最大程度地减少疫情对社会和经济造成的影响?
这些问题涉及到传染病传播规律的研究,需要结合统计分析和数学建模的方法,通过模拟和预测来指导实际应对措施的制定。
通过对SARS传播过程的深入研究,我们可以提高对疫情的认识,加强对传染病的防控措施,保护公共卫生安全。
SARS的常微分方程模型摘要:SARS(Sever Acute Respiratory Syndrome 严重急性呼吸道综合症,俗称非典型肺炎)是21世纪第一个在世界范围传播的恶性传染病,潜伏期2至12天,通常在4至5天发病。
SARS的爆发和蔓延给我国的经济发展和人民生活带来了很大的影响,我们从中得到了许多重要的经验和教训,认识到定量地研究传染病的传播规律,并预测和控制传染病蔓延的重要性。
本文主要从模型的假设,分析建立模型和模型的应用三个方面来介绍SARS的常微分方程模型。
关键词:常微分方程SARS模型300多年前,由牛顿(Newton,1642-1727)和莱布尼兹(Leibniz,1646-1716)所创立的微积分学,是人类科学史上划时代的重大发现,其产生的一个重要动因来自于人们探求物质世界运动规律的需求.运动物体(变量)与它的瞬时变化率(导数)之间,通常在运动过程中按照某种己知定律存在着联系,用数学语言表达出来,其结果往往形成一个微分方程.一旦求出这个方程的解,其运动规律将一目了然.总结来说,微分方程就是联系自变量、未知函数以及未知函数的各阶导数之间的关系式.如果其中的未知函数只与一个自变量有关,则称为常微分方程. 常微分方程是数学理论联系实际的重要工具,它不仅与几何,生物学,经济学等有重要联系,还可以从实践的背景出发,联系实际,解决实际生活中的问题,如SARS问题。
SARS(Sever Acute Respiratory Syndrome 严重急性呼吸道综合症,俗称非典型肺炎)是21世纪第一个在世界范围传播的恶性传染病,潜伏期2--12天,通常在4--5天发病。
SARS 自2002年11月份发现以来,迅速蔓延到世界28个国家,据世界卫生组织报告,截至03年6月13日,全世界的SARS病例已达8454人,共792人死亡,我国情况尤为严重,病例高达5327人,其中343人死亡。
高峰期时,北京市每日新增患者即高达百人以上。