CLMaterialsScienceEngineeringA05(47)
- 格式:pdf
- 大小:393.51 KB
- 文档页数:9
序号期刊全称缩写1Nature Reviews Materials NAT REV MATER2NATURE MATERIALS NAT MATER3Nature Nanotechnology NAT NANOTECHNOL4Materials Today MATER TODAY5MATERIALS SCIENCE & ENGINEERING R-REPORTSMAT SCI ENG R6PROGRESS IN MATERIALS SCIENCE PROG MATER SCI7ADVANCED MATERIALS ADV MATER8Advanced Energy Materials ADV ENERGY MATER9Annual Review of Materials Research ANNU REV MATER RES 10ADVANCED FUNCTIONAL MATERIALS ADV FUNCT MATER11Materials Horizons MATER HORIZ12Nano Energy NANO ENERGY13INTERNATIONAL MATERIALS REVIEWS INT MATER REV14ACS Energy Letters ACS ENERGY LETT15Journal of Materials Chemistry A J MATER CHEM A16CHEMISTRY OF MATERIALS CHEM MATER17Small SMALL18npj Computational Materials NPJ COMPUT MATER19BIOMATERIALS BIOMATERIALS20ACS Applied Materials & Interfaces ACS APPL MATER INTER 21Advanced Optical Materials ADV OPT MATER22Nano-Micro Letters NANO-MICRO LETT23NPG Asia Materials NPG ASIA MATER242D Materials2D MATER25JOURNAL OF POWER SOURCES J POWER SOURCES26Biofabrication BIOFABRICATION27CURRENT OPINION IN SOLID STATE &MATERIALS SCIENCECURR OPIN SOLID ST M28Acta Biomaterialia ACTA BIOMATER29Materials Research Letters MATER RES LETT30ACTA MATERIALIA ACTA MATER31Journal of Materials Chemistry C J MATER CHEM C32Biomaterials Science BIOMATER SCI-UK33Advanced Healthcare Materials ADV HEALTHC MATER 34Advanced Electronic Materials ADV ELECTRON MATER 35CEMENT AND CONCRETE RESEARCH CEMENT CONCRETE RES 36COMPOSITES SCIENCE AND TECHNOLOGY COMPOS SCI TECHNOL37Materials Science & Engineering C-Materials for Biological ApplicationsMAT SCI ENG C-MATER38SOLAR ENERGY MATERIALS AND SOLAR CELLS SOL ENERG MAT SOL C 39COMPOSITES PART B-ENGINEERING COMPOS PART B-ENG40CORROSION SCIENCE CORROS SCI41Advanced Materials Interfaces ADV MATER INTERFACES 42MRS BULLETIN MRS BULL43SCIENCE AND TECHNOLOGY OF ADVANCEDMATERIALSSCI TECHNOL ADV MAT44Journal of Materials Chemistry B J MATER CHEM B45CEMENT & CONCRETE COMPOSITES CEMENT CONCRETE COMP 46Advanced Materials Technologies ADV MATER TECHNOL-US47MATERIALS & DESIGN MATER DESIGN48COMPOSITES PART A-APPLIED SCIENCE ANDMANUFACTURINGCOMPOS PART A-APPL S49APPLIED SURFACE SCIENCE APPL SURF SCI50ACS Biomaterials Science & Engineering ACS BIOMATER SCI ENG51PARTICLE & PARTICLE SYSTEMSCHARACTERIZATIONPART PART SYST CHAR52Science China-Materials SCI CHINA MATER 53SCRIPTA MATERIALIA SCRIPTA MATER 54APL Materials APL MATER55COMPOSITE STRUCTURES COMPOS STRUCT 56Liquid Crystals Reviews LIQ CRYST REV 57CELLULOSE CELLULOSE58JOURNAL OF THE EUROPEAN CERAMICSOCIETYJ EUR CERAM SOC59JOURNAL OF ALLOYS AND COMPOUNDS J ALLOY COMPD60Soft Matter SOFT MATTER61EUROPEAN CELLS & MATERIALS EUR CELLS MATER62MICROPOROUS AND MESOPOROUS MATERIALS MICROPOR MESOPOR MAT63JOURNAL OF MATERIALS PROCESSINGTECHNOLOGYJ MATER PROCESS TECH64JOURNAL OF MATERIALS SCIENCE &TECHNOLOGYJ MATER SCI TECHNOL65Nanomaterials NANOMATERIALS-BASEL 66CONSTRUCTION AND BUILDING MATERIALS CONSTR BUILD MATER 67INTERMETALLICS INTERMETALLICS68MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIESMICROSTRUCTURE AND PROCESSINGMAT SCI ENG A-STRUCT69NANOTECHNOLOGY NANOTECHNOLOGY70Journal of Materials Research andTechnology-JMR&TJ MATER RES TECHNOL71JOURNAL OF BIOMEDICAL MATERIALSRESEARCH PART B-APPLIED BIOMATERIALSJ BIOMED MATER RES B72Materials Science and Engineering B-Advanced Functional Solid-StateMaterialsMATER SCI ENG B-ADV73HYDROMETALLURGY HYDROMETALLURGY74Journal of the Mechanical Behavior ofBiomedical MaterialsJ MECH BEHAV BIOMED75JOURNAL OF BIOMEDICAL MATERIALSRESEARCH PART AJ BIOMED MATER RES A76ChemNanoMat CHEMNANOMAT 77INTERNATIONAL JOURNAL OF FATIGUE INT J FATIGUE 78CERAMICS INTERNATIONAL CERAM INT79MRS Communications MRS COMMUN80JOURNAL OF MATERIALS SCIENCE J MATER SCI80Journal of Biobased Materials andBioenergyJ BIOBASED MATER BIO82Beilstein Journal of Nanotechnology BEILSTEIN J NANOTECH 83Smart Materials and Structures SMART MATER STRUCT84WEAR WEAR85JOURNAL OF THE AMERICAN CERAMICSOCIETYJ AM CERAM SOC86PROGRESS IN ORGANIC COATINGS PROG ORG COAT87Nanoscience and Nanotechnology Letters NANOSCI NANOTECH LET 88SURFACE & COATINGS TECHNOLOGY SURF COAT TECH89Biomedical Materials BIOMED MATER90MATERIALS CHARACTERIZATION MATER CHARACT91Electronic Materials Letters ELECTRON MATER LETT 92MATERIALS RESEARCH BULLETIN MATER RES BULL93Particuology PARTICUOLOGY94NDT & E INTERNATIONAL NDT&E INT95JOURNAL OF SANDWICH STRUCTURES &MATERIALSJ SANDW STRUCT MATER96MECHANICS OF MATERIALS MECH MATER97MACROMOLECULAR MATERIALS ANDENGINEERINGMACROMOL MATER ENG98MATERIALS LETTERS MATER LETT99MATERIALS AND MANUFACTURING PROCESSES MATER MANUF PROCESS100MECHANICS OF ADVANCED MATERIALS ANDSTRUCTURESMECH ADV MATER STRUC101INTERNATIONAL JOURNAL OF REFRACTORYMETALS & HARD MATERIALSINT J REFRACT MET H102MATERIALS SCIENCE IN SEMICONDUCTORPROCESSINGMAT SCI SEMICON PROC103JOURNAL OF COMPOSITES FOR CONSTRUCTION J COMPOS CONSTR 104ADVANCED ENGINEERING MATERIALS ADV ENG MATER105Progress in Natural Science-MaterialsInternationalPROG NAT SCI-MATER106Optical Materials Express OPT MATER EXPRESS107FATIGUE & FRACTURE OF ENGINEERINGMATERIALS & STRUCTURESFATIGUE FRACT ENG M108COMPUTATIONAL MATERIALS SCIENCE COMP MATER SCI 109Materials MATERIALS110Biointerphases BIOINTERPHASES111JOURNAL OF MATERIALS SCIENCE-MATERIALSIN MEDICINEJ MATER SCI-MATER M112Physical Mesomechanics PHYS MESOMECH 113Coatings COATINGS114Advances in Nano Research ADV NANO RES115JOURNAL OF MATERIALS SCIENCE-MATERIALSIN ELECTRONICSJ MATER SCI-MATER EL116OPTICAL MATERIALS OPT MATER117MATERIALS AND STRUCTURES MATER STRUCT118POLYMER TESTING POLYM TEST119DIAMOND AND RELATED MATERIALS DIAM RELAT MATER 120CHEMICAL VAPOR DEPOSITION CHEM VAPOR DEPOS121JOURNAL OF INTELLIGENT MATERIALSYSTEMS AND STRUCTURESJ INTEL MAT SYST STR122MATERIALS CHEMISTRY AND PHYSICS MATER CHEM PHYS 123Journal of Nanomaterials J NANOMATER124Journal of Energetic Materials J ENERG MATER125REVIEWS ON ADVANCED MATERIALS SCIENCE REV ADV MATER SCI 126JOM JOM-US127Crystals CRYSTALS128International Journal of PolymericMaterials and Polymeric BiomaterialsINT J POLYM MATER PO128JOURNAL OF NANOPARTICLE RESEARCH J NANOPART RES 130MICROSCOPY AND MICROANALYSIS MICROSC MICROANAL131Surface Topography-Metrology andPropertiesSURF TOPOGR-METROL132VACUUM VACUUM133INTERNATIONAL JOURNAL OF ADHESION ANDADHESIVESINT J ADHES ADHES134SURFACE ENGINEERING SURF ENG135Nondestructive Testing and Evaluation NONDESTRUCT TEST EVA 136METALS AND MATERIALS INTERNATIONAL MET MATER INT137JOURNAL OF THERMAL SPRAY TECHNOLOGY J THERM SPRAY TECHN 138POLYMER COMPOSITES POLYM COMPOSITE139THIN SOLID FILMS THIN SOLID FILMS140International Journal of MaterialFormingINT J MATER FORM140JOURNAL OF ADHESION J ADHESION140SCIENCE AND TECHNOLOGY OF WELDING ANDJOININGSCI TECHNOL WELD JOI143CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRYCALPHAD144CORROSION CORROSION-US145International Journal of Applied GlassScienceINT J APPL GLASS SCI146JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITIONJ BIOMAT SCI-POLYM E147Nanotechnology Reviews NANOTECHNOL REV148International Journal of Mechanics andMaterials in DesignINT J MECH MATER DES149METALLURGICAL AND MATERIALSTRANSACTIONS A-PHYSICAL METALLURGY ANDMATERIALS SCIENCEMETALL MATER TRANS A150JOURNAL OF POROUS MATERIALS J POROUS MAT151METALLURGICAL AND MATERIALSTRANSACTIONS B-PROCESS METALLURGY ANDMATERIALS PROCESSING SCIENCEMETALL MATER TRANS B152MATERIALES DE CONSTRUCCION MATER CONSTRUCC152MATERIALS SCIENCE AND TECHNOLOGY MATER SCI TECH-LOND154TRANSACTIONS OF NONFERROUS METALSSOCIETY OF CHINAT NONFERR METAL SOC155MODELLING AND SIMULATION IN MATERIALSSCIENCE AND ENGINEERINGMODEL SIMUL MATER SC156GOLD BULLETIN GOLD BULL157JOURNAL OF VACUUM SCIENCE & TECHNOLOGYAJ VAC SCI TECHNOL A158JOURNAL OF SOL-GEL SCIENCE ANDTECHNOLOGYJ SOL-GEL SCI TECHN159Nanomaterials and Nanotechnology NANOMATER NANOTECHNO 160Metals METALS-BASEL161JOURNAL OF NONDESTRUCTIVE EVALUATION J NONDESTRUCT EVAL 162CORROSION REVIEWS CORROS REV163GRANULAR MATTER GRANUL MATTER164AIP Advances AIP ADV165WELDING JOURNAL WELD J166KONA Powder and Particle Journal KONA POWDER PART J 167PHILOSOPHICAL MAGAZINE PHILOS MAG168Journal of Coatings Technology andResearchJ COAT TECHNOL RES169JOURNAL OF COMPOSITE MATERIALS J COMPOS MATER 170Journal of Advanced Ceramics J ADV CERAM 170STRAIN STRAIN172JOURNAL OF BIOACTIVE AND COMPATIBLEPOLYMERSJ BIOACT COMPAT POL173Materials Express MATER EXPRESS174MICROSYSTEM TECHNOLOGIES-MICRO-ANDNANOSYSTEMS-INFORMATION STORAGE ANDPROCESSING SYSTEMSMICROSYST TECHNOL175RESEARCH IN NONDESTRUCTIVE EVALUATION RES NONDESTRUCT EVAL 176JOURNAL OF ELECTRONIC MATERIALS J ELECTRON MATER177OXIDATION OF METALS OXID MET178TEXTILE RESEARCH JOURNAL TEXT RES J179Korean Journal of Metals and Materials KOREAN J MET MATER 180RARE METALS RARE METALS181JOURNAL OF MATERIALS RESEARCH J MATER RES182MAGAZINE OF CONCRETE RESEARCH MAG CONCRETE RES183FIRE TECHNOLOGY FIRE TECHNOL184Frontiers of Materials Science FRONT MATER SCI185Recent Patents on Nanotechnology RECENT PAT NANOTECH186JOURNAL OF REINFORCED PLASTICS ANDCOMPOSITESJ REINF PLAST COMP187Carbon Letters CARBON LETT188Image Analysis & Stereology IMAGE ANAL STEREOL 188STEEL RESEARCH INTERNATIONAL STEEL RES INT190MATERIALS AT HIGH TEMPERATURES MATER HIGH TEMP191JOURNAL OF WOOD CHEMISTRY ANDTECHNOLOGYJ WOOD CHEM TECHNOL192European Journal of Wood and WoodProductsEUR J WOOD WOOD PROD193Journal of Mining and MetallurgySection B-MetallurgyJ MIN METALL B194Journal of Applied Biomaterials &Functional MaterialsJ APPL BIOMATER FUNC195Advances in Materials Science andEngineeringADV MATER SCI ENG196MECHANICS OF TIME-DEPENDENT MATERIALS MECH TIME-DEPEND MAT197JOURNAL OF NANOSCIENCE ANDNANOTECHNOLOGYJ NANOSCI NANOTECHNO198FIBERS AND POLYMERS FIBER POLYM 199ISIJ INTERNATIONAL ISIJ INT 200Green Materials GREEN MATER201Acta Metallurgica Sinica-EnglishLettersACTA METALL SIN-ENGL202JOURNAL OF MATERIALS ENGINEERING ANDPERFORMANCEJ MATER ENG PERFORM203APPLIED COMPOSITE MATERIALS APPL COMPOS MATER 203JOURNAL OF PLASTIC FILM & SHEETING J PLAST FILM SHEET 205Science of Advanced Materials SCI ADV MATER206JOURNAL OF VACUUM SCIENCE & TECHNOLOGYBJ VAC SCI TECHNOL B207Current Nanoscience CURR NANOSCI 208JOURNAL OF FIRE SCIENCES J FIRE SCI 209Journal of Industrial Textiles J IND TEXT210PROCEEDINGS OF THE INSTITUTION OFMECHANICAL ENGINEERS PART L-JOURNAL OFMATERIALS-DESIGN AND APPLICATIONSP I MECH ENG L-J MAT211Surface Innovations SURF INNOV212International Journal of MineralsMetallurgy and MaterialsINT J MIN MET MATER213MATERIALS AND CORROSION-WERKSTOFFE UND KORROSIONMATER CORROS214ACI MATERIALS JOURNAL ACI MATER J215MATERIALE PLASTICE MATER PLAST216Silicon SILICON-NETH217JOURNAL OF ELECTROCERAMICS J ELECTROCERAM 218Advances in Concrete Construction ADV CONCR CONSTR 219MATERIALS TECHNOLOGY MATER TECHNOL 220FIRE AND MATERIALS FIRE MATER221Frontiers in Materials FRONT MATER222Welding in the World WELD WORLD223IRONMAKING & STEELMAKING IRONMAK STEELMAK 224BioResources BIORESOURCES225JOURNAL OF THE TEXTILE INSTITUTE J TEXT I226NEW CARBON MATERIALS NEW CARBON MATER227International Journal of AppliedCeramic TechnologyINT J APPL CERAM TEC228Processing and Application of Ceramics PROCESS APPL CERAM 229Materials Research Express MATER RES EXPRESS230Journal of Advanced ConcreteTechnologyJ ADV CONCR TECHNOL231SOFT MATERIALS SOFT MATER232JOURNAL OF VINYL & ADDITIVE TECHNOLOGY J VINYL ADDIT TECHN 232NORDIC PULP & PAPER RESEARCH JOURNAL NORD PULP PAP RES J234JOURNAL OF IRON AND STEEL RESEARCHINTERNATIONALJ IRON STEEL RES INT235ADVANCED COMPOSITE MATERIALS ADV COMPOS MATER236Materials Research-Ibero-americanJournal of MaterialsMATER RES-IBERO-AM J237Advances in Applied Ceramics ADV APPL CERAM 238Functional Materials Letters FUNCT MATER LETT 239Journal of Natural Fibers J NAT FIBERS240CORROSION ENGINEERING SCIENCE ANDTECHNOLOGYCORROS ENG SCI TECHN241Journal of Ceramic Science andTechnologyJ CERAM SCI TECHNOL242ADVANCES IN CEMENT RESEARCH ADV CEM RES243BOLETIN DE LA SOCIEDAD ESPANOLA DECERAMICA Y VIDRIOBOL SOC ESP CERAM V244COMPOSITE INTERFACES COMPOS INTERFACE245JOURNAL OF ADHESION SCIENCE ANDTECHNOLOGYJ ADHES SCI TECHNOL246Maderas-Ciencia y Tecnologia MADERAS-CIENC TECNOL 247CELLULAR POLYMERS CELL POLYM248Journal of Renewable Materials J RENEW MATER249AMERICAN CERAMIC SOCIETY BULLETIN AM CERAM SOC BULL 250Autex Research Journal AUTEX RES J251BULLETIN OF MATERIALS SCIENCE B MATER SCI252JOURNAL OF THERMOPLASTIC COMPOSITEMATERIALSJ THERMOPLAST COMPOS253TRANSACTIONS OF THE INDIAN INSTITUTEOF METALST INDIAN I METALS254POWDER METALLURGY POWDER METALL255JOURNAL OF THE CERAMIC SOCIETY OFJAPANJ CERAM SOC JPN256MATERIALS SCIENCE-POLAND MATER SCI-POLAND 257PLASTICS RUBBER AND COMPOSITES PLAST RUBBER COMPOS258JOURNAL OF ENGINEERING MATERIALS ANDTECHNOLOGY-TRANSACTIONS OF THE ASMEJ ENG MATER-T ASME259INTERNATIONAL JOURNAL OF MATERIALS &PRODUCT TECHNOLOGYINT J MATER PROD TEC260PHYSICS OF METALS AND METALLOGRAPHY PHYS MET METALLOGR+ 261CANADIAN METALLURGICAL QUARTERLY CAN METALL QUART261Journal of Laser Micro Nanoengineering J LASER MICRO NANOEN263RUSSIAN JOURNAL OF NONDESTRUCTIVETESTINGRUSS J NONDESTRUCT+264JOURNAL OF ELASTOMERS AND PLASTICS J ELASTOM PLAST 265International Journal of Metalcasting INT J METALCAST 266CELLULOSE CHEMISTRY AND TECHNOLOGY CELL CHEM TECHNOL 267Journal of Central South University J CENT SOUTH UNIV267Transactions of the Indian CeramicSocietyT INDIAN CERAM SOC269International Journal of MaterialsResearchINT J MATER RES270ACTA METALLURGICA SINICA ACTA METALL SIN 271GLASS PHYSICS AND CHEMISTRY GLASS PHYS CHEM+ 271INORGANIC MATERIALS INORG MATER+271JOURNAL OF THE AMERICAN LEATHERCHEMISTS ASSOCIATIONJ AM LEATHER CHEM AS274Physics and Chemistry of Glasses-European Journal of Glass Science andTechnology Part BPHYS CHEM GLASSES-B275Protection of Metals and PhysicalChemistry of SurfacesPROT MET PHYS CHEM+276CERAMICS-SILIKATY CERAM-SILIKATY277Journal of Engineered Fibers andFabricsJ ENG FIBER FABR278MATERIALS TRANSACTIONS MATER TRANS279Digest Journal of Nanomaterials andBiostructuresDIG J NANOMATER BIOS280JOURNAL OF TESTING AND EVALUATION J TEST EVAL 281SCIENCE OF SINTERING SCI SINTER 282Journal of Nano Research J NANO RES-SW283Revista Romana de Materiale-RomanianJournal of MaterialsREV ROM MATER284INTERNATIONAL JOURNAL OF CAST METALSRESEARCHINT J CAST METAL RES285WOOD RESEARCH WOOD RES-SLOVAKIA 286KOVOVE MATERIALY-METALLIC MATERIALS KOVOVE MATER287Journal of Superhard Materials J SUPERHARD MATER+ 288ARCHIVES OF METALLURGY AND MATERIALS ARCH METALL MATER288MATERIALWISSENSCHAFT UNDWERKSTOFFTECHNIKMATERIALWISS WERKST290SCIENCE AND ENGINEERING OF COMPOSITEMATERIALSSCI ENG COMPOS MATER291Journal of Ovonic Research J OVONIC RES 292Drvna Industrija DRVNA IND293Journal of Fiber Science andTechnologyJ FIBER SCI TECHNOL294Materiali in Tehnologije MATER TEHNOL294TRANSACTIONS OF THE INSTITUTE OF METALFINISHINGT I MET FINISH296Journal of the Australian CeramicSocietyJ AUST CERAM SOC297FIBRES & TEXTILES IN EASTERN EUROPE FIBRES TEXT EAST EUR 298Journal of Friction and Wear J FRICT WEAR+298Metallurgical Research & Technology METALL RES TECHNOL300International Journal of ClothingScience and TechnologyINT J CLOTH SCI TECH301Progress in Rubber Plastics andRecycling TechnologyPROG RUBBER PLAST RE302HIGH TEMPERATURES-HIGH PRESSURES HIGH TEMP-HIGH PRESS 303REFRACTORIES AND INDUSTRIAL CERAMICS REFRACT IND CERAM+304JOURNAL OF WUHAN UNIVERSITY OFTECHNOLOGY-MATERIALS SCIENCE EDITIONJ WUHAN UNIV TECHNOL305STRENGTH OF MATERIALS STRENGTH MATER+ 306Materials Testing MATER TEST307TAPPI JOURNAL TAPPI J308International Journal ofNanotechnologyINT J NANOTECHNOL309Journal of Materials Education J MATER EDUC310JOURNAL OF INORGANIC MATERIALS J INORG MATER310MECHANICS OF COMPOSITE MATERIALS MECH COMPOS MATER 312Pigment & Resin Technology PIGM RESIN TECHNOL 313SENSORS AND MATERIALS SENSOR MATER314JOURNAL OF THE SOCIETY OF LEATHERTECHNOLOGISTS AND CHEMISTSJ SOC LEATH TECH CH315J-FOR-Journal of Science & Technologyfor Forest Products and ProcessesJ-FOR316GLASS AND CERAMICS GLASS CERAM+317Cement Wapno Beton CEM WAPNO BETON318POLYMERS & POLYMER COMPOSITES POLYM POLYM COMPOS 319ANTI-CORROSION METHODS AND MATERIALS ANTI-CORROS METHOD M 320Materials Science-Medziagotyra MATER SCI-MEDZG321Russian Journal of Non-Ferrous Metals RUSS J NON-FERR MET+ 322Industria Textila IND TEXTILA323HIGH TEMPERATURE MATERIALS ANDPROCESSESHIGH TEMP MAT PR-ISR324METALLURGIA ITALIANA METALL ITAL325ADVANCED COMPOSITES LETTERS ADV COMPOS LETT326REVISTA DE METALURGIA REV METAL MADRID 327SAMPE JOURNAL SAMPE J328METAL SCIENCE AND HEAT TREATMENT MET SCI HEAT TREAT+329JOURNAL OF OPTOELECTRONICS ANDADVANCED MATERIALSJ OPTOELECTRON ADV M330MATERIALS SCIENCE MATER SCI+331Optoelectronics and AdvancedMaterials-Rapid CommunicationsOPTOELECTRON ADV MAT332PRAKTISCHE METALLOGRAPHIE-PRACTICALMETALLOGRAPHYPRAKT METALLOGR-PR M333INDIAN JOURNAL OF FIBRE & TEXTILERESEARCHINDIAN J FIBRE TEXT334China Foundry CHINA FOUNDRY335METALLURGIST METALLURGIST+336AATCC Journal of Research AATCC J RES336Materia-Rio de Janeiro MATERIA-BRAZIL338AATCC REVIEW AATCC REV339JOURNAL OF CERAMIC PROCESSING RESEARCH J CERAM PROCESS RES 340POWDER METALLURGY AND METAL CERAMICS POWDER METALL MET C+341JOURNAL OF THE JAPAN INSTITUTE OFMETALSJ JPN I MET342Drewno DREWNO343RARE METAL MATERIALS AND ENGINEERING RARE METAL MAT ENG344TETSU TO HAGANE-JOURNAL OF THE IRONAND STEEL INSTITUTE OF JAPANTETSU TO HAGANE345Glass Technology-European Journal ofGlass Science and Technology Part AGLASS TECHNOL-PART A346Tekstil ve Konfeksiyon TEKST KONFEKSIYON 347Emerging Materials Research EMERG MATER RES348Soldagem & Inspecao SOLDAGEM INSP349JOURNAL OF NEW MATERIALS FORELECTROCHEMICAL SYSTEMSJ NEW MAT ELECTR SYS350APPITA APPITA351INTERNATIONAL JOURNAL OF POWDERMETALLURGYINT J POWDER METALL352MATERIALS EVALUATION MATER EVAL353ADVANCED MATERIALS & PROCESSES ADV MATER PROCESS 354MATERIALS PERFORMANCE MATER PERFORMANCE 355SEN-I GAKKAISHI SEN-I GAKKAISHI356PULP & PAPER-CANADA PULP PAP-CANADA357ZKG INTERNATIONAL ZKG INT358MOKUZAI GAKKAISHI MOKUZAI GAKKAISHI 359JCT COATINGSTECH JCT COATINGSTECH 360WOCHENBLATT FUR PAPIERFABRIKATION WOCHENBL PAPIERFABR 361SURFACE COATINGS INTERNATIONAL SURF COAT INTISSN影响因子2058-843751.941 1476-112239.235 1748-338737.49 1369-702124.5370927-796X24.480079-642523.75 0935-964821.95 1614-683221.875 1531-733115.846 1616-301X13.325 2051-634713.183 2211-285513.12 0950-660812.703 2380-819512.277 2050-74889.931 0897-47569.89 1613-68109.598 2057-39608.941 0142-96128.806 1944-82448.097 2195-10717.43 2311-67067.381 1884-40497.208 2053-15837.042 0378-7753 6.945 1758-5082 6.838 1359-0286 6.5481742-7061 6.383 2166-3831 6.161 1359-6454 6.036 2050-7526 5.976 2047-4830 5.831 2192-2640 5.609 2199-160X 5.466 0008-8846 5.43 0266-3538 5.16 0928-4931 5.080927-0248 5.018 1359-8368 4.92 0010-938X 4.862 2196-7350 4.834 0883-7694 4.788 1468-6996 4.7872050-750X 4.776 0958-9465 4.66 2365-709X 4.6220264-1275 4.525 1359-835X 4.514 0169-4332 4.439 2373-9878 4.432 0934-0866 4.384 2095-8226 4.318 1359-6462 4.163 2166-532X 4.127 0263-8223 4.101 2168-0396 4.091 0969-0239 3.809 0955-2219 3.794 0925-8388 3.779 1744-683X 3.709 1473-2262 3.667 1387-1811 3.649 0924-0136 3.6471005-0302 3.609 2079-4991 3.504 0950-0618 3.485 0966-9795 3.420921-5093 3.4140957-4484 3.404 2238-7854 3.398 1552-4973 3.373 0921-5107 3.316 0304-386X 3.3 1751-6161 3.239 1549-3296 3.231 2199-692X 3.173 0142-1123 3.132 0272-8842 3.057 2159-6859 3.008 0022-2461 2.993 1556-6560 2.993 2190-4286 2.968 0964-1726 2.9630043-1648 2.960002-7820 2.9560300-9440 2.955 1941-4900 2.917 0257-8972 2.906 1748-6041 2.897 1044-5803 2.892 1738-8090 2.882 0025-5408 2.873 1674-2001 2.785 0963-8695 2.7811099-6362 2.7760167-6636 2.6971438-7492 2.690167-577X 2.687 1042-6914 2.669 1537-6494 2.6450263-4368 2.606 1369-8001 2.593 1090-0268 2.592 1438-1656 2.576 1002-0071 2.572 2159-3930 2.566 8756-758X 2.533 0927-0256 2.53 1996-1944 2.467 1934-8630 2.455 0957-4530 2.448 1029-9599 2.38 2079-6412 2.35 2287-237X 2.333 0957-4522 2.324 0925-3467 2.32 1359-5997 2.271 0142-9418 2.247 0925-9635 2.232 0948-1907 2.227 1045-389X 2.211 0254-0584 2.21 1687-4110 2.2070737-0652 2.183 1606-5131 2.172 1047-4838 2.145 2073-4352 2.1440091-4037 2.1271388-0764 2.127 1431-9276 2.124 2051-672X 2.074 0042-207X 2.067 0143-7496 2.065 0267-0844 1.978 1058-9759 1.957 1598-9623 1.952 1059-9630 1.949 0272-8397 1.943 0040-6090 1.939 1960-6206 1.936 0021-8464 1.936 1362-1718 1.9360364-5916 1.935 0010-9312 1.927 2041-1286 1.912 0920-5063 1.911 2191-9089 1.904 1569-1713 1.8961073-5623 1.887 1380-2224 1.858 1073-5615 1.834 0465-2746 1.803 0267-0836 1.803 1003-6326 1.795 0965-0393 1.793 0017-1557 1.767 0734-2101 1.7610928-0707 1.7451847-9804 1.73 2075-4701 1.704 0195-9298 1.69 0334-6005 1.66 1434-5021 1.658 2158-3226 1.653 0043-2296 1.652 0288-4534 1.638 1478-6435 1.6321945-9645 1.6190021-9983 1.613 2226-4108 1.605 1475-1305 1.605 0883-9115 1.598 2158-5849 1.5970946-7076 1.581 0934-9847 1.567 0361-5235 1.566 0030-770X 1.547 0040-5175 1.54 1738-8228 1.518 1001-0521 1.5 0884-2914 1.495 0024-9831 1.488 0015-2684 1.483 2095-025X 1.478 1872-2105 1.4750731-6844 1.471 1976-4251 1.432 1580-3139 1.424 1611-3683 1.424 0960-3409 1.4230277-3813 1.418 0018-3768 1.401 1450-5339 1.4 2280-8000 1.397 1687-8434 1.372 1385-2000 1.3641533-4880 1.354 1229-9197 1.353 0915-1559 1.35 2049-1220 1.344 1006-7191 1.3411059-9495 1.34 0929-189X 1.333 8756-0879 1.333 1947-2935 1.318 1071-1023 1.314 1573-4137 1.306 0734-9041 1.296 1528-0837 1.2831464-4207 1.2812050-6252 1.268 1674-4799 1.261 0947-5117 1.259 0889-325X 1.252 0025-5289 1.248 1876-990X 1.246 1385-3449 1.238 2287-5301 1.237 1066-7857 1.232 0308-0501 1.22 2296-8016 1.211 0043-2288 1.206 0301-9233 1.205 1930-2126 1.202 0040-5000 1.174 1007-8827 1.1711546-542X 1.165 1820-6131 1.152 2053-1591 1.151 1346-8014 1.134 1539-445X 1.132 1083-5601 1.131 0283-2631 1.131 1006-706X 1.126 0924-3046 1.1241516-1439 1.103 1743-6753 1.092 1793-6047 1.084 1544-0478 1.076 1478-422X 1.0712190-9385 1.069 0951-7197 1.063 0366-3175 1.049 0927-6440 1.048 0169-4243 1.039 0718-221X 1.014 0262-48931 2164-63250.986 0002-78120.98 1470-95890.957 0250-47070.925 0892-70570.9120972-28150.91 0032-58990.893 1882-07430.887 2083-134X0.854 1465-80110.848 0094-42890.8280268-19000.802 0031-918X0.79 0008-44330.789 1880-06880.789 1061-83090.785 0095-24430.783 1939-59810.779 0576-97870.764 2095-28990.761 0371-750X0.7611862-52820.748 0412-19610.704 1087-65960.699 0020-16850.6990002-97260.6991753-35620.6962070-20510.681 0862-54680.68 1558-92500.678 1345-96780.675 1842-35820.673 0090-39730.669 0350-820X0.667 1662-52500.665 1583-31860.6611364-04610.643 1336-45610.642 0023-432X0.636 1063-45760.633 1733-34900.6250933-51370.625 0792-12330.619 1842-24030.618 0012-67720.616 2189-76540.605 1580-29490.59 0020-29670.59 2510-15600.587 1230-36660.577 1068-36660.574 2271-36460.574 0955-62220.569 1477-76060.559 0018-15440.544 1083-48770.542 1000-24130.524 0039-23160.522 0025-53000.521 0734-14150.5161475-74350.5120738-79890.5 1000-324X0.49 0191-56650.49 0369-94200.486 0914-49350.4820144-03220.476 1927-63110.475 0361-76100.473 1425-81290.468 0967-39110.461 0003-55990.46 1392-13200.45 1067-82120.446 1222-53470.438 0334-64550.433 0026-08430.432 0963-69350.422 0034-85700.412 0091-10620.4 0026-06730.397 1454-41640.39 1068-820X0.387 1842-65730.3860032-678X0.384 0971-04260.366 1672-64210.36 0026-08940.347 2330-55170.34 1517-70760.34 1532-88130.333 1229-91620.327 1068-13020.326 0021-48760.312 1644-39850.311 1002-185X0.29 0021-15750.2841753-35460.282 1300-33560.266 2046-01470.2540104-92240.244 1480-24220.243 1038-68070.186 0888-74620.182 0025-53270.162 0882-79580.147 0094-14920.144 0037-98750.109 0316-40040.098 0949-02050.091 0021-47950.057 1547-00830.035 0043-71310.005 1754-09250。
第一章前言1.1 历史展望材料在我们的文化中比我们认识到的还要根深蒂固。
如交通、房子、衣物,通讯、娱乐和食物的生产,实际上,我们日常生活中的每一部分都或多或少地受到材料的影响。
历史上,社会的发展及进步与那些能满足社会需要的材料的生产及操作能力密切相关。
实际上,早期的文明就以材料的发展水平来命名,如石器时代,铜器时代。
早期人们能得到的只有一些很有限的天然材料,如石头、木材、粘土等。
渐渐地,他们发现了用于生产优于自然材料的新材料的技术,这些新材料包括陶器和各类金属。
进一步地,人们发现材料的性质可以通过热处理或加入其他物质来改变。
在这点上,材料的应用完全是一个选择的过程。
也就是说,在一系列非常有限的材料中,根据材料的优点选择一种最适合某种应用的材料。
直到最近,科学家才终于了解材料的结构要素与其特性之间的关系。
这种在过去的 60年左右获得的知识在很大程度上使得人们能够赋予材料特征。
因此,成千上万的发展了独特性能的材料通过其特殊的性质得以发展来满足我们现代复杂的社会需要;这些材料包括:金属,塑料,玻璃和纤维。
很多使我们生活舒适的技术的发展与适宜材料的获得密切相关。
对一类材料理解的提升通常是一种技术逐步进步的先兆。
比如,没有便宜的钢制品或其他替代品就没有汽车。
在现代,复杂的电子器件取决于所谓的半导体零件。
1.2 材料科学与工程材料科学学科涉及研究材料的结构和性质之间的关系。
相反,材料工程是根据材料的结构和性质的联系来设计或操纵材料的结构以求制造出一系列可预定的性质。
本书将注意力集中在材料性质和结构元素的关系上。
“structure”一词是个需要被解释的模糊.术语。
简单地说,材料的结构通常与其内在成分的排列有关。
亚原子结构涉及单个原子内的电子以及原子核间的相互作用。
在原子水平上,结构包括原子或分子与其他相关的原子或分子的组织。
在更大的结构领域上,其包括大的原子团,这些原子团通常聚集在一起,称为“微观”结构,意思是可以使用某种显微镜直接观察得到的结构。
中科院分区JCR分区排名Rank分区Quartile 期刊名称Publication Name影响因子2018(彩眄因子5年)1 QI COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING 6.208(5.189)2 Qi IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 5.744(6.064)3 QI BUILDING AND ENVIRONMENT 4.820(5.379)4 QI TRANSPORTATION RESEARCH PART B-METHODOLOGICAL 4.574(5.257)5 Ql ENERGY AND BUILDINGS a.495(a.823)6 QI 」OURNAL OF HYDROLOGY 4.405(4.938)7 QI AUTOMATION IN CONSTRUCTION 4.313(5.276)8 QI TRANSPORTATION RESEARCH PART E-L06ISTICS AND TRANSPORTATION REVIEW 4.253(4.806)9 Ql CONSTRUCTION AND BUILDING MATERIALS 4.046(4.685)10 QI TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY 3.942(4.356}11 QI STEELAND COMPOSITE STRUCTURES 3.899(3.882)12 QI COASTAL ENGINEERING 3-85(4.273)13 Ql Structural Control & Health Monitoring 3.74(3.870)14 QI Smart Structures and Sy sterns 3.622(2.649)15 Ql STRUCTURALSAFETY 3517(3.985)16 Ql THIN ・WALLED STRUCTURES 3.4.88(3.583)17 Ql TRANSPORTATION 3.457(3.851)18 Ql EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS 3.419(4.122)19 Ql JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT 3.404(3.543)20 Ql COMPUTERS & STRUCTURES 3.354(3.575)21 Ql JOURNAL OF MANAGEMENT IN ENGINEERING 3.269(3.475) 22Ql ENGINEERING STRUCTURES 3.084(3.345) 23Ql JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS 3.010(3.625) 24 Ql WATER RESOURCES MANAGEMENT 2.987(3.255)25QlQl JOURNAL OF HYDRAULIC RESEARCH 2.974(2.762)26 MARINE STRUCTURES 2.865(2.996)27 Ql Archives of Civil a仃d Mechanical Engineering 2.84612.805)28 Ql STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT 2.807(2.934)29 Ql STRUCTURAL ENGINEERING AND MECHANICS 2.804(2.264)30 Ql COLD REGIONS SCIENCE AND TECHNOLOGY 2.767(2.800)31 Ql JOURNAL OF EARTHQUAKE ENGINEERING 2.754(2.281)32 Ql JOURNAL OF CONSTRUCTION ENGINEERING AND MANAGEMENT 2.734(2.968)33 Ql OCEAN ENGINEERING 2.730(3.067}35Q2Advances in Concrete Construction 2.618(New)36 Q2 JOURNAL OF COMPOSITES FOR CONSTRUCTION 2.606(3.485)37 Q2 Geomechanics and Engineenng 2.594(2.406)38 Q2 IEEE JOURNAL OF OCEANIC ENGINEERING 2.567(3.033139 Q2 mgegneriaSismica 2.561(1.893|40 Q2 JOURNAL OF COMPUTING IN CIVIL ENGINEERING 2.554(2.743|41 Q2 Journal of Hydro environment Research 2.548(2.635)42 Q2 MATERIALS AND STRUCTURES 2.548(3.091}43 Q2 JOURNAL OF STRUCTURAL ENGINEERING 2.528(2.814)44 Q2 Structure and Infr合Engineering 2^130(2.275}45Q2Transportation Geotechnics 2.385{new) 46Q2Journal of Building Engineering 2.378( new)17 Q.2International Journal of Pavement Engineering 2.298(2.237) 4S Q2 JOURNAL Of HYDRAULIC ENGINEERING 2.206(2.628)49 Q2 STRUCTURAL DESIGN OF TALL AND SPECIAL BUILDINGS 2.204(l.&82>50 Q2 International Journal of Structural Stability and Dynamics 2.156(2.005)51 Q2 inrernational」oumal of concrete structures and Materials 2.111(2.696)52 Q2 Journal of Civil Engineeringand Management 2.029(1.809}53 Q2 COASTAL ENGINEERING JOURNA. 2.016(1.602)54 Q2 EARTHQUAKE SPECTRA 2.005(3.431)55 Q2 JOURNALOF MATERIALS IN CIVIL ENGINEERING 1.984(2.457}56 Q2 JOURNAL OF ADVANCED TRANSPORTATION 1.9S3(1.9S2;57 Q2 Road Materials and Pavement Design 1.980(2.064>58 Q2 JOURNAL OF HYDROINFORMATICS 1.908(2.105)59 Q2 computers and concrete 1.889(1.634)60 Q2 Structural Concrete 1.885(2.272}161 Qi WATER INTERNATIONAL 885(2.149) 62Q2 European Journal of Environmental and Civil Engineering 1.873(1^71>63 02 JOURNAL OF MARINE SCIENCE AND TECHNOLOGY 1.845(1.898)64 02 Journ合1 of Bridge Engineering 1.840(2.084)65 Q2 JOURNAL OF SURVEYING ENGINEERING 1.766(1.87)66 Q2 FIRE SAFETY JOURNAL 1.659(1.946}■ ■■ S・67Q3 JOURNALOF ENVIRONMENTAL ENGINEERING 1.657(1.72) 6803Structures 1.646(new)69 Q3 JOURNAL OF WATERWAY PORT COASTAL AND OCEAN ENGINEERING 1.625(1.772)70 Q3 Journal of Analytical Methods In Chemistry 1.589(1.94.8)71 Q3 Earthquakes and structures 1.573(1.540) 7203Engineenng Construction and Architectural Management 1.561( New)73 Q3 JOURNAL OF PERFORMANCE OF CONSTRUCTED FACILITIES 1.542(1.620)74 Q3 OF THE INSTITUTION OF MECHANICAL ENGINEERS PART F-JOURNAL OF RAIL AND F 1.540(1.800)75 03 Journal of infrastructure Systems 1.538(2.113)76 Q3 N合tural Hazards Review 1.525(1.874)77 Q3 JOURNAL OF TRANSPORTATION ENGINEERING 1.520; 1.436J78 Q3 SURVEY REVIEW 1.42(1.211)79 Q3 International Journal of Architectural Heritage 1.440(1.480)80 Q3 JOURNALOF HYDROLOGIC ENGINEERING 1.438(1.992)81 Q3 KSC£ Journal of Civil Engineering 1.428(1.423)82 03 JOURNALOFSHIP RESEARCH 1.406{ 1.855}83 Q3 CIVIL ENGINEERING AND ENVIRONMENTAL SYSTEMS 1.394(1.143)84 Q3 JOURNAL OF AEROSPACE ENGINEERING 1.373(1.295)85 Q3 JOURNAL OF IRRIGATION AND DRAINAGE ENGINEERING 1.340(1.54 习86 03 Journal of Advanced Concrete Technology 1.336{ 1.583)87 Q3 ADVANCES IN STRUCTURAL ENGINEERING 1.32OJL363)88 Q3 Proceedings of the Institution of Civil Engineers・Enginee「ing Sustainability 1.302(1.163)89 Q3 ACI STRUCTURAL JOURNAL 1.287(1.83 5) 90Q3Frontiers of structural and Civil Engineenng 1.272(new)91 Q3 WIND AND STRUCTURES 1.256(1.291>92 Q3 Journal of Pipeline Systems Engineer!ng and Practice 1.181( 1.456J93 Q3 JOURNAL OF URBAN PLANNING AND DEVELOPMENT 1.165(1.517|94 Q3 -OURNALOF ENERGY ENGINEERING 1.131(1.351)95 Q3 Latin American Journal of Solids and Structures 1.125(1.289> 96Q3Advances in Civil Engineering 1.104( new)97 Q3 JOURNAL OF WATER SUPPLY RESEARCH AND TECHNOLDGY-AQUA 1.051(1.088> 9S Q3 Earthquake Engineering and Engineering Vibration 1.050(1.444| 99 Q3 Periodica Polytechnica Civil Engineering 0.976(0.905> ■ ■•------- •• J .............. ---- o o -- •* *J 100 Q4 Bexon- und Stahlbetcnbau 0.966{0.651)101 Q4 Advanced Steel Construction 0.957(1.084) 102 Q4 ROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-STRUCTURES AND BUILDINC 0.877(0.857) 103 QA int^maiional Journal of steel structures 0.873(1.033) 104 Q4 JOURNAL AMERICAN WATER WORKS ASSOCIATION 0.838{0.725J 105 Q4 Iranian Journal of Scie nc^ and Tech nolo gy-Transactionsof Civil E 仃gineeri ng 0.800(0.801) 106 Q4 PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-MARITIME ENGINEERING 0.800(0.711) 107 04 PROCEEDINGS OF THE INSTHUTION OF CIVIL ENGINEERS-TRANSPORT 0.792(0.593) 108 Q4 BahicJournal of Road and Bridge EngineGnng 0.771(0.668) 109 Q4 JOURNAL OF COLD REGIONS ENGINEERING 0.761(0.885) 110 Q4 TRANSPORTATION RESEARCH RECORD 0.748(0.956) 111 QA CANADIAN JOURNAL OF CIVIL ENGINEERING 0.742(1.129) 112 Q4 INTERNATIONAL JOURNAL OF OFFSHORE AND POLAR ENGINEERING 0.741{0.773| 113 Q4 Journal of Transportation Engine巳ring Part B-Pa\r ements 0.722(0.722)114 115 Q4Q4PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-WATER MANAGEMENT CHINA OCEANENGINEERING0.706(0.879)0.693(0.722)116 Q4 PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-CIVIL ENGINEERING 0.683(0.521) 117 Q4 journal of Transportation Engineering Part A Systems 0.641(0.641) 118 Q4 Bauingenieur 0.622(0.449) 119 04 PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS.MUNICIPAL ENGINEER 0.614(0.525) 120 Q4 Structural Engineering Intemational 0.608{0.628) 121 Q4 Gradevinar 0.493(0.635) 122 Q4 ENGINEERING JOURNAL-AMERICAN INSTITUTE OF STEEL CONSTRUCTION 0.484(0.474) 123 Q4 Revista de 1 合Construction 0.468(0.5&8) 124 Q4 CIVIL ENGINEERING 0.464(0.3661■ •125 04 Journ合1 of〔he South African institution of Civil Engineering 0.004(0.486) 126 Q4 stahlbau 0.004(0.290) 127 Q4 Tecnologia y Ciencias del Agua 0.290(0.302) 128 04 Bautechnik 0.249(0.274) 129 Q4 NAVAL ENGINEERS JOURNAL 0.246(0.327) 130 04 GEFAHRSTOFFE REINHALTUN6 DER LUFT 0.241(0.265) 131 Q4 Teknik Dergi 0.196(0.255) 132 Q4 ITE JOURNAL-INSTRUTE OF TRANSPORTATION ENGINEERS 0.155(0.172)。
Solid materials have been conveniently grouped into three basic classifications: metals, ceramics, and polymers. This scheme is based primarily on chemical makeup and atomic structure, and most materials fall into one distinct grouping or another, although there are some intermediates. In addition, there are three other groups of important engineering materials—composites, semiconductors, and biomaterials.译文:固体材料被便利的分为三个基本的类型:金属,陶瓷和聚合物。
这个分类是首先基于化学组成和原子结构来分的,大多数材料落在明显的一个类别里面,尽管有许多中间品。
除此之外,有三类其他重要的工程材料-复合材料,半导体材料和生物材料。
Composites consist of combinations of two or more different materials, whereas semiconductors are utilized because of their unusual electrical characteristics; biomaterials are implanted into the human body. A brief explanation of the material types and representative characteristics is offered next.译文:复合材料由两种或者两种以上不同的材料组成,然而半导体由于它们非同寻常的电学性质而得到使用;生物材料被移植进入人类的身体中。
自然31.434 Science科学28.103 Nature Material自然(材料)23.132 Nature Nanotechnology自然(纳米技术)20.571 Progress in Materials Science材料科学进展18.132 Nature Physics自然(物理)16.821 Progress in Polymer Science聚合物科学进展16.819 Surface Science Reports表面科学报告12.808Materials Science & EngineeringR-reports 材料科学与工程报告12.619Angewandte Chemie-InternationalEdition应用化学国际版10.879 Nano Letters纳米快报10.371 Advanced Materials先进材料8.191 Journal of the American ChemicalSociety美国化学会志8.091 Annual Review of Materials Research材料研究年度评论7.947 Physical Review Letters物理评论快报7.180 Advanced Functional Materials先进功能材料 6.808 Advances in Polymer Science聚合物科学发展 6.802 Biomaterials生物材料 6.646 Small微观? 6.525 Progress in Surface Science表面科学进展 5.429 Chemical Communications化学通信 5.34MRS Bulletin 材料研究学会(美国)公告5.290Chemistry of Materials材料化学 5.046 Advances in Catalysis先进催化 4.812 Journal of Materials Chemistry材料化学杂志 4.646Carbon碳 4.373 Crystal Growth & Design晶体生长与设计 4.215 Electrochemistry Communications电化学通讯 4.194The Journal of Physical Chemistry B 物理化学杂志,B辑:材料、表面、界面与生物物理4.189Inorganic Chemistry有机化学 4.147 Langmuir朗缪尔 4.097 Physical Chemistry Chemical Physics物理化学 4.064 International Journal of Plasticity塑性国际杂志 3.875 Acta Materialia材料学报 3.729 Applied Physics Letters应用物理快报 3.726 Journal of power sources电源技术 3.477Journal of the Mechanics and Physics ofSolids 固体力学与固体物理学杂志3.467International Materials Reviews国际材料评论 3.462 Nanotechnology纳米技术 3.446 Journal of Applied Crystallography应用结晶学 3.212 Microscopy and Microanalysis 2.992Current Opinion in Solid State & Materials Science 固态和材料科学的动态2.976Scripta Materialia材料快报 2.887The Journal of Physical Chemistry A 物理化学杂志,A辑2.871Biometals生物金属 2.801 Ultramicroscopy超显微术 2.629 Microporous and Mesoporous Materials多孔和类孔材料 2.555Composites Science and Technology 复合材料科学与技术2.533Current Nanoscience当代纳米科学 2.437Journal of the Electrochemical Society电化学界 2.437 Solid State Ionics固体离子 2.425IEEE Journal of Quantum Electronics IEEE量子电子学杂志2.413Mechanics of Materials材料力学 2.374 Journal of nanoparticle research纳米颗粒研究 2.299 CORROSION SCIENCE腐蚀科学 2.293 Journal of Applied Physics应用物理杂志 2.201Journal of Biomaterials Science-PolymerEdition 生物材料科学—聚合物版2.158IEEE Transactions on Nanotechnology IEEE纳米学报 2.154Progress in Crystal Growth and Characterization of Materials 晶体生长和材料表征进展2.129Journal of Physics D-Applied Physics 物理杂志D——应用物理2.104Journal of the American Ceramic Society美国陶瓷学会杂志 2.101 Diamond and Related Materials金刚石及相关材料 2.092Journal of Chemical & Engineering Data 化学和工程资料杂志2.063Intermetallics金属间化合物 2.034 Electrochemical and Solid State Letters固体电化学快报 2.001 Synthetic Metals合成金属 1.962Composites Part A-Applied Science andManufacturing 复合材料A应用科学与制备1.951Journal of Nanoscience and Nanotechnology 纳米科学和纳米技术1.929Journal of Solid State Chemistry固体化学 1.91Journal of Physics: Condensed Matter 物理学学报:凝聚态物质1.9Urnal of Bioactive and CompatiblePolymer 生物活性与兼容性聚合物杂志1.896International Journal of Heat and MassTransfer传热与传质 1.894Applied Physics A-Materials Science &Processing 应用物理A-材料科学和进展1.884Thin Solid Films固体薄膜 1.884 Surface & Coatings Technology表面与涂层技术 1.860Materials Science & Engineering C-Biomimetic and SupramolecularSystems材料科学与工程C—仿生与超分子系统1.812Materials Research Bulletin材料研究公告 1.812 International Journal of Solids andStructures固体与结构 1.809Materials Science and Engineering A-Structural Materials PropertiesMicrost材料科学和工程A—结构材料的性能、组织与加工1.806Materials Chemistry and Physics材料化学与物理 1.799 Powder Technology粉末技术 1.766Materials Letters材料快报 1.748 Journal of Materials Research材料研究杂志 1.743 Smart Materials & Structures智能材料与结构 1.743 Solid State Sciences固体科学 1.742Polymer Testing聚合物测试 1.736 Nanoscale Research Letters纳米研究快报 1.731 Surface Science表面科学 1.731Optical Materials光学材料 1.714 International Journal of ThermalSciences热科学 1.683 Thermochimica Acta热化学学报 1.659 Journal of Biomaterials Applications生物材料应用杂志 1.635 Journal of Thermal Analysis andCalorimetry 1.63Journal of Solid State Electrochemistry固体电化学杂志 1.597 Journal of the European Ceramic Society欧洲陶瓷学会杂志 1.58Materials Science and Engineering B-Solid State Materials for AdvancedTech材料科学与工程B—先进技术用固体材料1.577Applied Surface Science应用表面科学 1.576 European Physical Journal B欧洲物理杂志B 1.568 Solid State Communications固体物理通信 1.557 International Journal of Fatigue疲劳国际杂志 1.556 Computational Materials Science计算材料科学 1.549 Cement and Concrete Research水泥与混凝土研究 1.549Philosophical Magazine Letters 哲学杂志(包括材料)1.548Current Applied Physics当代应用物理 1.526 Journal of Alloys and Compounds合金和化合物杂志 1.51 Wear磨损 1.509Journal of Materials Science-Materials inMedicine 材料科学杂志—医用材料1.508Advanced Engineering Materials先进工程材料 1.506Journal of Nuclear Materials核材料杂志 1.501 International Journal of Applied CeramicTechnology应用陶瓷技术 1.488 Chemical Vapor Deposition化学气相沉积 1.483COMPOSITES PARTB-ENGINEERING复合材料B工程 1.481 Composite Structures复合材料结构 1.454 Journal of Non-crystalline Solids非晶固体杂志 1.449Journal of Vacuum Science &Technology B 真空科学与技术杂志B1.445Semiconductor Science and Technology半导体科学与技术 1.434Journal of SOL-GEL Science andTEchnology 溶胶凝胶科学与技术杂志1.433Science and Technology of Welding andJoining焊接科学与技术 1.426Metallurgical and Materials Transactions A-Physical Metallurgy and Material冶金与材料会刊A——物理冶金和材料1.389Modelling and Simulation in Materials Science and Engineering 材料科学与工程中的建模与模拟1.388Philosophical Magazine A-Physics of Condensed Matter Structure Defects and Mechanical Properties 哲学杂志A凝聚态物质结构缺陷和机械性能物理1.384Philosophical Magazine哲学杂志 1.384 Ceramics International国际陶瓷 1.369 Oxidation of Metals材料氧化 1.359 Modern Physics Letters A现代物理快报A 1.334Cement & Concrete Composites 水泥与混凝土复合材料1.312Journal of Intelligent Material Systemsand Structures 智能材料系统与结构1.293Journal of Magnetism and MagneticMaterials 磁学与磁性材料杂志1.283Journal of Electronic Materials电子材料杂志 1.283 Surface and Interface Analysis表面与界面分析 1.272 Science and Technology of AdvancedMaterials1.267Journal of Computational and TheoreticalNanoscience 计算与理论纳米科学1.256IEEE TRANSACTIONS ON ADVANCED PACKAGING IEEE高级封装会刊1.253Materials Characterization材料表征 1.225International Journal of Refractory Metals & Hard Materials 耐火金属和硬质材料国际杂志1.221Physica Status solidi A-Applied Research 固态物理A——应用研究1.205PHASE TRANSITIONS相变 1.201 Journal of Thermal Spray Technology热喷涂技术杂志 1.2 International Journal of Nanotechnology纳米工程 1.184 Journal of Materials Science材料科学杂志 1.181Journal of Vacuum Science & Technology A-VACUUM Surfaces and Films 真空科学与技术A真空表面和薄膜1.173PHYSICA STATUS SOLIDI B-BASICRESEARCH 固态物理B—基础研究1.166MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING 半导体加工的材料科学1.158International Journal of Fracture断裂学报 1.147Journal of Materials ProcessingTechnology材料加工技术杂志 1.143 Metals and Materials International国际金属及材料 1.139IEEE TRANSACTIONS ONMAGNETICSIEEE磁学会刊 1.129 Vacuum真空 1.114 Journal of Applied Electrochemistry应用电化学 1.111 Materials & Design材料与设计 1.107JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS 固体物理与化学杂志1.103Journal of Experimental Nanoscience实验纳米科学 1.103 POLYMER COMPOSITES聚合物复合材料 1.054(二)Journal of Materials Science-Materials in Electronics 材料科学杂志—电子材料1.054Journal of Composite Materials复合材料杂志 1.034 Journal of the Ceramic Society of Japan日本陶瓷学会杂志 1.023 JOURNAL OF ELECTROCERAMICS电子陶瓷杂志0.99 ADVANCES IN POLYMER 聚合物技术发展0.979TECHNOLOGYIEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES IEEE元件及封装技术会刊0.968Journal of Porous Materials多孔材料0.959IEEE TRANSACTIONS ON SEMICONDUCTORMANUFACTURING IEEE半导体制造会刊0.957CONSTRUCTION AND BUILDINGMATERIALS结构与建筑材料0.947Journal of Engineering Materials and Technology-Transactions of The ASME 工程材料与技术杂志—美国机械工程师学会会刊0.938FATIGUE & FRACTURE OF ENGINEERING MATERIALS &STRUCTURES 工程材料与结构的疲劳与断裂0.934IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY IEEE应用超导性会刊0.919ACI STRUCTURAL JOURNAL 美国混凝土学会结构杂志0.895Materials Science and Technology材料科学与技术0.894 Materials and Structures材料与结构0.892 Reviews on Advanced Materials Science先进材料科学评论0.891 International Journal of Thermophysics热物理学国际杂志0.889JOURNAL OF ADHESION SCIENCE AND TECHNOLOGY 粘着科学与技术杂志0.869Journal of Materials Science &Technology 材料科学与技术杂志0.869High Performance Polymers高性能聚合物0.86 BULLETIN OF MATERIALS SCIENCE材料科学公告0.858Mechanics of Advanced Materials andStructures 先进材料结构和力学0.857PHYSICA B物理B0.822EUROPEAN PHYSICAL JOURNAL-APPLIED PHYSICS 欧洲物理杂志—应用物理0.822CORROSION腐蚀0.821 International Journal of MaterialsResearch材料研究杂志0.819JOURNAL OF NONDESTRUCTIVEEVALUATION无损检测杂志0.808METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS冶金和材料会刊B—制备冶金和材料制备科学0.798Materials Transactions材料会刊0.753 Aerospace Science and Technology航空科学技术0.74 Journal of Energetic Materials金属学杂志0.723 Advanced Powder Technology先进粉末技术0.716 Applied Composite Materials应用复合材料0.712 Advances in Applied Ceramics先进应用陶瓷0.708 Materials and Manufacturing Processes材料与制造工艺0.706 Composite Interfaces复合材料界面0.69 JOURNAL OF ADHESION粘着杂志0.685 INTERNATIONAL JOURNAL OFTHEORETICAL PHYSICS理论物理国际杂志0.675JOURNAL OF NEW MATERIALS FOR ELECTROCHEMICAL SYSTEMS 电化学系统新材料杂志0.67Journal of Thermophysics and HeatTransfer热物理与热传递0.647Materials and Corrosion-Werkstoffe UndKorrosion材料与腐蚀0.639RESEARCH IN NONDESTRUCTIVEEVALUATION无损检测研究0.630JOURNAL OF COMPUTER-AIDED MATERIALS DESIGN 计算机辅助材料设计杂志0.605JOURNAL OF REINFORCED PLASTICS AND COMPOSITES 增强塑料和复合材料杂志0.573ACI MATERIALS JOURNAL 美国混凝土学会材料杂志0.568SEMICONDUCTORS半导体0.565 FERROELECTRICS铁电材料0.562INTERNATIONAL JOURNAL OF MODERN PHYSICS B 现代物理国际杂志B0.558MATERIALS RESEARCHINNOVATIONS材料研究创新0.54 GLASS TECHNOLOGY -PART A玻璃技术0.529JOURNAL OF MATERIALS IN CIVILENGINEERING土木工程材料杂志0.526NEW DIAMOND AND FRONTIER CARBON TECHNOLOGY 新型金刚石和前沿碳技术0.500SCIENCE IN CHINA SERIES E-TECHNOLOGICAL SCIENCES 中国科学E技术科学0.495ATOMIZATION AND SPRAYS雾化和喷涂0.494 SYNTHESE合成0.477 HIGH TEMPERATURE高温0.469 Journal of Phase Equilibria and Diffusion相平衡与扩散0.457 INORGANIC MATERIALS无机材料0.455 MECHANICS OF COMPOSITEMATERIALS复合材料力学0.453BIO-MEDICAL MATERIALS ANDENGINEERING 生物医用材料与工程0.446PHYSICS AND CHEMISTRY OFGLASSES玻璃物理与化学0.429JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALSSCIENCE EDITION 武汉理工大学学报-材料科学版0.424ADVANCED COMPOSITEMATERIALS先进复合材料0.404Journal of Materials Engineering andPerformance 材料工程与性能杂志0.403Solid State Technology固体物理技术0.400 FERROELECTRICS LETTERSSECTION铁电材料快报0.375JOURNAL OF POLYMERMATERIALS聚合物材料杂志0.373JOURNAL OF INORGANICMATERIALS无机材料杂志0.37GLASS SCIENCE ANDTECHNOLOGY-GLASTECHNISCHEBERICHTE玻璃科学与技术0.365POLYMERS & POLYMER COMPOSITES 聚合物与聚合物复合材料0.355Surface Engineering表面工程0.354RARE METALS稀有金属0.347 HIGH TEMPERATURE MATERIALPROCESSES高温材料加工0.34JOURNAL OF TESTING ANDEVALUATION测试及评价杂志0.324AMERICAN CERAMIC SOCIETYBULLETIN美国陶瓷学会公告0.324MATERIALS AT HIGHTEMPERATURES高温材料0.323MAGAZINE OF CONCRETERESEARCH混凝土研究杂志0.315 SURFACE REVIEW AND LETTERS表面评论与快报0.309 Journal of Ceramic Processing Research陶瓷处理研究0.294JSME INTERNATIONAL JOURNAL SERIES A-SOLID MECHANICS AND MATERIAL ENGINEERIN 日本机械工程学会国际杂志系列A-固体力学与材料工程0.291MATERIALS TECHNOLOGY材料技术0.288 ADVANCED COMPOSITES LETTERS先进复合材料快报0.27 HIGH TEMPERATURE MATERIALSAND PROCESSES高温材料和加工0.268INTEGRATED FERROELECTRICS集成铁电材料0.242 MATERIALS SCIENCE材料科学0.226 MATERIALS EVALUATION材料评价0.21POWDER METALLURGY AND METAL CERAMICS 粉末冶金及金属陶瓷0.201RARE METAL MATERIALS ANDENGINEERING 稀有金属材料与工程0.162INTERNATIONAL JOURNAL OF MATERIALS & PRODUCTTECHNOLOGY 材料与生产技术国际杂志0.157METAL SCIENCE AND HEATTREATMENT金属科学及热处理0.157JOURNAL OF ADVANCEDMATERIALS先进材料杂志0.14ADVANCED MATERIALS &PROCESSES先进材料及工艺0.129 MATERIALS WORLD材料世界0.122SCIENCE AND ENGINEERING OF COMPOSITE MATERIALS 复合材料科学与工程0.098MATERIALS PERFORMANCE材料性能0.074。
Fundamentals of Materials Science and Engineering第一章原子结构一. 波尔原子模型:1.在任意轨道上绕核运动,在一些符合一定量化的轨道上运动2.电子离核越远,原子所含能量越高,电子尽可能在离核较近的轨道上3.电子只有从较高能级跃迁到较低能级才以光子形式释放能量波动力学模型:量子力学模型量子力学是建立在微观世界的量子性和微粒运动统计性基本特征上,在量子力学处理氢原子核外电子的理论模型中,最基本的方程叫做薛定谔方程,是由奥地利科学家薛定谔(E.Schrödinger 1887-1961)在1926年提出来的。
薛定谔方程是一个二阶偏微分方程,它的自变量是核外电子的坐标,它的因变量是电子波的振幅(ψ)。
给定电子在符合原子核外稳定存在的必要、合理的条件时,薛定谔方程得到的每一个解就是核外电子的一个定态,它具有一定的能量,具有一个电子波的振幅随坐标改变的的函数关系式ψ=f(x,y,z),称为振幅方程或波动方程。
二. 能量最低原理:电子的排布总是尽可能使体系的能量最低三. 泡利不相容原理:在一个原子中不可能有运动状态完全相同的两个电子四. 洪德原则:在同一个亚层中,各个能级中,电子的排布尽可能分占不同的能级,而且自旋方向相同。
五. 原子键合:1.金属键:定义:金属中的电子与金属正离子相互间结合构成的键合特点:1.无方向性无饱和性2.电子公有化3.良好的延展性4.导电导热性,金属光泽2.离子键:定义: 金属将最外层的电子给予非金属原子,是自己成为带正电的正离子,而得到价电子的非金属成为带负电的负离子,正负离子靠静电引力相互结合在一起构的键合特点:1.以离子为结合单元,而不是原子2.无方向性无饱和性3.配位数高,熔点硬度高,绝缘体3.共价键:定义:由两个或多个电负性相差不大的原子相互结合在一起形成共用电子对而形成的键合特点:1.方向性,饱和性2.共用电子对3.熔点高,质硬脆,结构稳定,导电能力差。
材料科学与工程专业英语Materials Science and EngineeringUnit1Materials Science and EngineeringMaterials are properly more deep-seated in our culture than most of us realize. 材料可能比我们大部分人所意识到的更加深入地存在于我们的文化当中。
Transportation, housing, clothing, communication, recreation and food production-virtually every segment of our lives is influenced to one degree or another by materials.运输、住房、衣饰、通讯、娱乐,还有食品生产——实际上我们日常生活的每个部分都或多或少地受到材料的影响。
Historically, the development and advancement of societies have been int imately tied to the members’ abilities to produce and manipulate materials to fill their needs. 从历史上看,社会的发展和进步已经与社会成员生产和利用材料来满足自身需求的能力紧密地联系在一起。
In fact, early civilizations have been designated by the level of their materials development.事实上,早期文明是以当时材料的发展水平来命名的。
(也就是石器时代,青铜器时代)The earliest humans has access to only a very limited number of materials, those that occur naturally stone, wood, clay, skins, and so on. 最早的人类只能利用非常有限数量的材料,象那些自然界的石头,木头,黏土和毛皮等等。
全球材料类SCI 收录期刊影响因子排名期刊英文名 中文名 影响因子 Nature 自然 31.434 Scienee 科学 28.103Nature Material 自然(材料)23.132Nature Nano tech no logy自然(纳米技术)20.571Progress in Materials ScienceProgress in Polymer Science聚合物科学进展16.819Nature Physics 自然(物理)16.821Surface Scie nee Reports 表面科学报告 12.808Materials Science & Engin eeri ng R-reports 材料科学与工程报告 12.619 An gewa ndte Chemie-I ntern atio nal Editi on 应用化学国际版10.879Na no Letters 纳米快报 10.371 Advaneed Materials 先进材料 8.191Journal of the America n Chemical Society 美国化学会志8. Annual Review of Materials Research 材料研究年度评论 7.947 Physical Review Letters 物理评论快报 7. Adva need FunctionalMaterials 先进功能材料6.808 Adva nces in Polymer Scie nee 聚合物科学发展 6.802Biomaterials 生物材料 6.646 Small 微观? 6.525材料科学进展18.132Progress in Surface Scie nee 表面科学进展5.429Chemical Communications 化学通信5.34MRS Bulletin 材料研究学会(美国)公告5.290Chemistry of Materials 材料化学5.Advances in Catalysis 先进催化4.812Journal of Materials Chemistry 材料化学杂志4.646Carbon 碳4.373Crystal Growth & Desig n 晶体生长与设计4.215Electrochemistry Communications 电化学通讯4.194The Journal of Physical Chemistry B 物理化学杂志,B辑:材料、表面、界面与生物物理4.Inorganic Chemistry 有机化学4.147Langmuir 朗缪尔4.Physical Chemistry Chemical Physics 物理化学4.064In ternatio nal Journal of Plasticity 塑性国际杂志3.875Acta Materialia 材料学报3.729Applied Physics Letters 应用物理快报3.726Journal of power sources 电源技术3.477Journal of the Mecha nics and Physics of Solids 固体力学与固体物理学杂志 3.467 International Materials Reviews 国际材料评论3.462Na notech nology 纳米技术3.446Journal of Applied Crystallography 应用结晶学3.212Journal of the American Ceramic Society 美国瓷学会杂志2.101Microscopy and Microa nalysis 2.992Current Opinion in Solid State & Materials Science Scripta Materialia材料快报 2.887The Jour nal of Physical Chemistry A Biometals 生物金属 2.801 Ultramicroscopy超显微术 2.629Microporous and Mesoporous Materials Composites Science and Tech no logy Curre nt Na noscie nee 当代纳米科学 Journal of the Electrochemical Society Solid State Ionics固体离子 2.425IEEE Journal of Qua ntum Electro nicsIEEE 量子电子学杂志 2.413Mechanics of Materials材料力学 2.374Journal of nan oparticle research 纳米颗粒研究 2.299CORROSION SCIENCE 腐蚀科学 2.293 Journal of Applied Physics应用物理杂志 2.201Journal of Biomaterials Scie nce-Polymer Editio n 生物材料科学一聚合物版 2.158IEEE Tran sacti ons on Na notech nologylEEE纳米学报 2.154Progress in Crystal Growth and Characterization of Materials 晶体生长和材料表征进展 2.129Journal of Physics D-Applied Physics物理杂志 D ------ 应用物理 2.104固态和材料科学的动态 2.976物理化学杂志,A 辑2.871多和类材料2.555 复合材料科学与技术 2.533 2.437电化学界2.437Diam ond and Related Materials金刚及相关材料2.092Journal of Chemical & En gi neeri ng Data 化学和工程资料杂志2.In termetallics 金属间化合物2.034Electrochemical and Solid State Letters 固体电化学快报2.001Sy nthetic Metals 合成金属1.962Composites Part A-Applied Scienee and Manufacturing 复合材料A 应用科学与制备1.951Journal of Nan oscie nee and Nano tech no logy 纳米科学和纳米技术 1.929Journal of Solid State Chemistry 固体化学1.91Journal of Physics: Co nde nsed Matter 物理学学报:凝聚态物质 1.9Urnal of Bioactive and Compatible Polymer 生物活性与兼容性聚合物杂志 1.896In ternatio nal Journal of Heat and Mass Tran sfer 传热与传质1.894Applied Physics A-Materials Scienee & Processing 应用物理A —材料科学和进展 1.884 Thin Solid Films 固体薄膜1.884Surface & Coat ings Techn ology 表面与涂层技术1.860Materials Science & Engin eeri ng C-Biomimetic and Supramolecular Systems 材料科学与工程C —仿生与超分子系统 1.812Materials Research Bullet in 材料研究公告1.812In ternatio nal Journal of Solids and Structures 固体与结构1.809Materials Science and Engin eeri ng A-Structural Materials Properties Microst 材料科学和工程A —结构材料的性能、组织与加工 1.806Journal of the American Ceramic Society 美国瓷学会杂志2.101Materials Chemistry and Physics 材料化学与物理1.799Powder Techn ology 粉末技术1.766Materials Letters 材料快报1.748Journal of Materials Research 材料研究杂志1.743Smart Materials & Structures 智能材料与结构 1.743Solid State Scie nces 固体科学1.742Polymer Testi ng 聚合物测试1.736Nan oscale Research Letters 纳米研究快报1.731Surface Scie nee 表面科学1.731Optical Materials 光学材料1.714In ternatio nal Journal of Thermal Scie nces 热科学1.683 Thermochimica Acta 热化学学报1.659Journal of Biomaterials Applicati ons 生物材料应用杂志 1.635 Jour nal of Thermal An alysis and Calorimetry1.63Journal of Solid State Electrochemistry 固体电化学杂志1.597 Journal of the European Ceramic Society 欧洲瓷学会杂志1.58Materials Science and Engin eeri ng B-Solid State Materials for Adva need Tech 科学与工程B —先进技术用固体材料 1.577Applied Surface Scie nee 应用表面科学1.576Europea n Physical Jour nal BSolid State Communi cati onsIntern ati onal Jour nal of Fatigue 材料欧洲物理杂志B1.568固体物理通信1.557疲劳国际杂志1.556Computational Materials Science 计算材料科学1.549Philosophical Magaz ine A-Physics of Conden sed Matter Structure Defects andCeme nt and Con crete Research Philosophical Magazi ne Letters哲学杂志(包括材料)1.548Curre nt Applied Physics 当代应用物理 1.526 Jour nal of Alloys and Compo unds Wear 磨损 1.509Journal of Materials Scie nce-Materials in Medici ne Adva need En gi neeri ng Materials 先进工程材料 1.506 Journal of Nuclear Materials核材料杂志 1.501Intern ati on al J ournal of Applied Ceramic Tech no logy 应用瓷技术 1.488 Chemical Vapor Depositi on化学气相沉积 1.483COMPOSITES PART B-ENGINEERING 复合材料 B 工程 1.481Composite Structures复合材料结构 1.454Journal of Non-crystalli ne Solids非晶固体杂志 1.449Journal of Vacuum Scie nee & Techn ology B 真空科学与技术杂志 B1.445 Semico nductor Scie nee and Tech no logy 半导体科学与技术1.434Journal of SOL-GEL Scie nee and TEch no logy 溶胶凝胶科学与技术杂志1.433Scie nee and Tech nology of Weldi ng and Joi ning焊接科学与技术 1.426Metallurgical and Materials Tran sact ions A-Physical Metallurgy and Material 冶金与材料会刊A ――物理冶金和材料1.389Modelli ng and Simulation in Materials Scie nee and Engin eeri ng 材料科学与工程中的建模与模拟1.388水泥与混凝土研究 1.549 合金和化合物杂志 1.51材料科学杂志一医用材料1.508Journal of Materials Scie nee材料科学杂志1.哲学杂志A 凝聚态物质结构缺陷和机械性能物理 1.384Philosophical Magaz ine 哲学杂志1.384 Ceamics Intern ati onal 国际瓷1.369 Oxidation of Metals材料氧化1.359Modern Physics Letters A现代物理快报 A1.334Ceme nt & Con crete Composites水泥与混凝土复合材料 1.312Mecha nical Properties Jour nal of In tellige nt Material Systems and Structures 智能材料系统与结构 1.293Jour nal of Magn etism and Magn etic Materials 磁学与磁性材料杂志 1.283Journal of Electr onic Materials 电子材料杂志 1.283 Surface and In terface An alysis表面与界面分析1.272Science and Tech no logy of Adva need Materials1.267 Jour nal of Computatio nal and Theoretical Nano scie nee 计算与理论纳米科学 1.256 IEEE TRANSACTIONS ON ADVANCED PACKAGINGIEEE 高级封装会刊1.253Materials Characterizatio n材料表征 1.225Intern ati onal Journal of Refractory Metals & Hard Materials 耐火金属和硬质材料国际 杂志1.221Physica Status solidi A-Applied Research 固态物理A ——应用研究 1.205PHASE TRANSITIONS 相变 1.201 Jour nal of Thermal Spray Tech no logy 热喷涂技术杂志1.2Intern ati onal Jour nal of Nano tech no logy 纳米工程1.184Journal of Vacuum Scie nee & Techno logy A-VACUUM Surfaces and Films真空科学与技术A真空表面和薄膜1.PHYSICA STATUS SOLIDI B-BASIC RESEARCH 固态物理B —基础研究1.166 MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING 半导体加工的材料科学1.158In ternatio nal Journal of Fracture 断裂学报1.147Journal of Materials Processi ng Techno logy 材料加工技术杂志1.143Metals and Materials In ternatio nal 国际金属及材料1.IEEE TRANSACTIONS ON MAGNETICSIEEE 磁学会刊1.129Vacuum 真空1.114Journal of Applied Electrochemistry 应用电化学1.111Materials & Desig n 材料与设计1.107JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS 固体物理与化学杂志1.103Journal of Experime ntal Na noscie nee 实验纳米科学1.103POLYMER COMPOSITES 聚合物复合材料1.054Journal of Materials Scie nce-Materials in Electro nics 材料科学杂志一电子材料 1.054 Journal of Composite Materials 复合材料杂志1.034Journal of the Ceramic Society of Japa n 日本瓷学会杂志1.JOURNAL OF ELECTROCERAMICS 电子瓷杂志0.99ADVANCES IN POLYMER TECHNOLOGY 聚合物技术发展0.979IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIESIEEE 元件及封装技术会刊0.968Journal of Porous Materials 多材料0.959In ternatio nal Journal of Materials Research 材料研究杂志 0.819专业资料IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURINGIEEE 0.957CONSTRUCTION AND BUILDING MATERIALS结构与建筑材料 0.947Journal of Engin eeri ng Materials and Tech no logy-Tra nsact ions of The ASME 工程材料与技术杂志一美国机械工程师学会会刊0.938FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES 工程材料与结构的疲劳与断裂0.934IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITYIEEE 应用超导性会刊 0.919ACI STRUCTURAL JOURNAL美国混凝土学会结构杂志0.895Materials Scie nee and Techn ology 材料科学与技术 0.894Materials and Structures 材料与结构 0.892 Reviews on Adva need Materials Scie nee 先进材料科学评论 0.891 In ternatio nal Journal of Thermophysics热物理学国际杂志 0.889JOURNAL OF ADHESION SCIENCE AND TECHNOLOGY 粘着科学与技术杂志 0.869Journal of Materials Scie nee & Tech no logy 材料科学与技术杂志 0.869High Performa nee Polymers高性能聚合物 0.86BULLETIN OF MATERIALS SCIENCE材料科学公告 0.858Mecha nics of Adva need Materials and Structures 先进材料结构和力学0.857PHYSICA B 物理 B0.822EUROPEAN PHYSICAL JOURNAL-APPLIED PHYSICS 欧洲物理杂志一应用物理 0.822CORROSION 腐蚀 0.821半导体制造会刊JOURNAL OF NONDESTRUCTIVE EVALUATIONMETALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY ANDMATERIALS 冶金和材料会刊 B —制备冶金和材料制备科学 0.798Materials Transactions材料会刊 0.753Aerospace Science and Tech no logy Journal of Energetic Materials Adva need Powder Tech no logy Applied Composite Materials Adva nces in Applied CeramicsMaterials and Manu facturi ng Processes Composite In terfaces 复合材料界面 0.69 JOURNAL OF ADHESION 粘着杂志 0.685INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS 理论物理国际杂志 0.675 JOURNAL OF NEW MATERIALS FOR ELECTROCHEMICAL SYSTEMS 电化学系统新材料杂志0.67Journal of Thermophysics and Heat Tran sfer 热物理与热传递 0.647Materials and Corrosion-Werkstoffe Und Korrosion 材料与腐蚀 0.639 RESEARCH IN NONDESTRUCTIVE EVALUATION无损检测研究 0.630JOURNAL OF COMPUTER-AIDED MATERIALS DESIGN 计算机辅助材料设计杂志 0.605JOURNAL OF REINFORCED PLASTICS AND COMPOSITES 增强塑料和复合材料杂志0.573ACI MATERIALS JOURNAL美国混凝土学会材料杂志0.568无损检测杂志0.808航空科学技术0.74材料与制造工艺 0.706金属学杂志0.723 先进粉末技术0.716 应用复合材料0.712 先进应用瓷0.708SEMICONDUCTORS 半导体0.565FERROELECTRICS 铁电材料0.562INTERNATIONAL JOURNAL OF MODERN PHYSICS B 现代物理国际杂志B0.558 MATERIALS RESEARCH INNOVATIONS 材料研究创新0.54GLASS TECHNOLOGY -PART A 玻璃技术0.529JOURNAL OF MATERIALS IN CIVIL ENGINEERING 土木工程材料杂志0.526NEW DIAMOND AND FRONTIER CARBON TECHNOLOGY 新型金刚和前沿碳技术0.500SCIENCE IN CHINA SERIES E-TECHNOLOGICAL SCIENCES 中国科学E 技术科学0.495 ATOMIZATION AND SPRAYS 雾化和喷涂0.494SYNTHESE 合成0.477HIGH TEMPERATURE 高温0.469Journal of Phase Equilibria and Diffusion 相平衡与扩散0.457INORGANIC MATERIALS 无机材料0.455MECHANICS OF COMPOSITE MATERIALS 复合材料力学0.453BIO-MEDICAL MATERIALS AND ENGINEERING 生物医用材料与工程0.446PHYSICS AND CHEMISTRY OF GLASSES 玻璃物理与化学0.429JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION理工大学学报-材料科学版0.424ADVANCED COMPOSITE MATERIALS 先进复合材料0.404Journal of Materials En gi neering and Performa nee 材料工程与性能杂志0.403专业资料Solid State Techno logy 固体物理技术0.400FERROELECTRICS LETTERS SECTION 铁电材料快报0.375JOURNAL OF POLYMER MATERIALS 聚合物材料杂志0.373JOURNAL OF INORGANIC MATERIALS 无机材料杂志0.37GLASS SCIENCE AND TECHNOLOGY-GLASTECHNISCHE BERICHTE 玻璃科学与技术0.365POLYMERS & POLYMER COMPOSITES 聚合物与聚合物复合材料0.355Surface Engineering 表面工程0.354RARE METALS 稀有金属0.347HIGH TEMPERATURE MATERIAL PROCESSES 高温材料加工0.34JOURNAL OF TESTING AND EVALUATION 测试及评价杂志0.324AMERICAN CERAMIC SOCIETY BULLETIN 美国瓷学会公告0.324MATERIALS AT HIGH TEMPERATURES 高温材料0.323MAGAZINE OF CONCRETE RESEARCH 混凝土研究杂志0.315SURFACE REVIEW AND LETTERS 表面评论与快报0.309Journal of Ceramic Processing Research 瓷处理研究0.294JSME INTERNATIONAL JOURNAL SERIES A-SOLID MECHANICS AND MATERIAL ENGINEERIN日本机械工程学会国际杂志系列 A —固体力学与材料工程0.291 MATERIALS TECHNOLOGY 材料技术0.288ADVANCED COMPOSITES LETTERS 先进复合材料快报0.27HIGH TEMPERATURE MATERIALS AND PROCESSES 高温材料和加工0.268INTEGRATED FERROELECTRICS 集成铁电材料0.242MATERIALS SCIENCE 材料科学0.226MATERIALS EVALUATION 材料评价0.21POWDER METALLURGY AND METAL CERAMICS 粉末冶金及金属瓷0.201RARE METAL MATERIALS AND ENGINEERING 稀有金属材料与工程0. INTERNATIONAL JOURNAL OF MATERIALS & PRODUCT TECHNOLOGY 材料与生产技术国际杂志0.157METAL SCIENCE AND HEAT TREATMENT 金属科学及热处理0.157JOURNAL OF ADVANCED MATERIALS 先进材料杂志0.14ADVANCED MATERIALS & PROCESSES 先进材料及工艺0.129MATERIALS WORLD 材料世界0.122SCIENCE AND ENGINEERING OF COMPOSITE MATERIALS 复合材料科学与工程0.098 MATERIALS PERFORMANCE 材料性能0.Journal of Materials En gi neering and Performa nee 材料工程与性能杂志0.403专业资料。
Materials Science and Engineering: A材料科学与工程:A卷V ol.589, 1 Jan. 2014序号目次信息1 篇名:Micro–macro-characterisation and modelling of mechanical properties of gas metal arc welded (GMA W) DP600 steel采用气体金属电弧焊接的DP600钢的微–宏观表征及力学性能建模作者:A. Ramazani, K. Mukherjee, A. Abdurakhmanov, U. Prahl, M. Schleser, U. Reisgen, W. Bleck2 篇名:Deformation behavior in the isothermal compression of Ti–5Al–5Mo–5V–1Cr–1Fe alloyTi-5Al-5Mo-5V-1Cr-1Fe合金的等温压缩变形行为作者:S.F. Liu, M.Q. Li, J. Luo, Z. Yang3 篇名:Dynamic recrystallization kinetics in α phase of as-cast Ti–6Al–2Zr–1Mo–1V alloy during compression at different temperatures and strain rates铸态Ti-6Al-2Zr-1Mo-1V合金在不同的温度和应变率下压缩时α相的动态再结晶动力学作者:Guo-zheng Quan, Dong-sen Wu, Gui-chang Luo, Y u-feng Xia, Jie Zhou, Qing Liu, Lin Gao4 篇名:Effect of dynamic strain aging on isotropic hardening in low cycle fatigue for carbon manganese steel动态应变时效对碳锰钢在低周期疲劳下各向同性硬化的影响作者:Zhi Yong Huang, Jean-Louis Chaboche, Qing Y uan Wang, Danièle Wagner, Claude Bathias5 篇名:Hot deformation mechanisms, microstructure and texture evolution in extruded AZ31–nano-alumina composite受挤压的AZ31纳米氧化铝复合材料的热变形机制、微观结构以及织构演变作者:T. Zhong, K.P. Rao, Y.V.R.K. Prasad, F. Zhao, M. Gupta6 篇名:The method for reproducing fine grained HAZ of W strengthened high Cr steel用于再现强化高Cr钢钨细粒HAZ的方法作者:Xue Wang, Qiang Xu, Hong-wei Liu, Hong Liu, Wei Shang, Yao-yao Ren, Shu-min Y u7 篇名:Influence of Mn solute content on grain size reduction and improved strength in mechanically alloyed Al–Mn alloys锰溶质浓度对晶粒尺寸的减小和改进机械合金化的铝锰合金的强度的影响作者:K.A. Darling, A.J. Roberts, L. Armstrong, D. Kapoor, M.A. Tschopp, L.J. Kecskes, S.N. Mathaudhu8 篇名:Self-consistent modelling of lattice strains during the in-situ tensile loading of twinning induced plasticity steel孪生诱发塑性钢的原位拉伸加载过程中的晶格应变自洽建模作者:Ahmed A. Saleh, Elena V. Pereloma, Bjørn Clausen, Donald W. Brown, Carlos N. Tomé, Azdiar A. Gazder9 篇名:Constitutive description of high temperature flow behavior of Sanicro-28 super-austenitic stainless steel对sanicro-28超级奥氏体不锈钢的高温流动行为的本构描述作者:A. Mirzaei, A. Zarei-Hanzaki, N. Haghdadi, A. Marandi10 篇名:Influence of raw material selection and fabrication parameters on microstructure and properties of micro-laminated TiB2–TiAl composite sheets原材料的选择和工艺参数对微叠层TiB2–TiAl基复合材料板材的微观结构和性能的影响作者:Xiping Cui, Guohua Fan, Lin Geng, Hao Wu, Jincheng Pang, Jinxin Gong11 篇名:Stress-induced thickening of Ω phase in Al–Cu–Mg alloys containing various Ag additions在含有各种银附加物的铝-铜-镁合金中的压力诱导Ω相增作者:Song Bai, Zhiyi Liu, Xuanwei Zhou, Peng Xia, Meng Liu12 篇名:Effect of plate-like alumina on the properties of alumina ceramics prepared by gel-casting板状氧化铝对用凝胶浇注法制备的氧化铝陶瓷性能的影响作者:Meiqi Cao, Qingzhi Yan, Xianhui Li, Yingying Mi13 篇名:Microstructure–properties relationship in a one-step quenched and partitioned steel一步淬火和分段钢化之间的微观结构性能关联作者:Xiaodong Tan, Y unbo Xu, Xiaolong Yang, Di Wu14 篇名:Influence of stored energy on twin formation during primary recrystallization储存能量对一次再结晶中双形成的影响作者:W. Wang, F. Brisset, A.L. Helbert, D. Solas, I. Drouelle, M.H. Mathon, T. Baudin15 篇名:Effect of Si addition on the microstructure and mechanical properties of ECAPed Mg–15Al alloy施硅对ECAPed Mg-15Al合金的显微组织和力学性能的影响作者:Hongxia Wang, Bin Zhou, Y uantao Zhao, Kangkang Zhou, Weili Cheng, Wei Liang16 篇名:Creep of polycrystalline yttrium aluminum garnet (YAG) at elevated temperature in air and in steam在空气和蒸汽温度升高时多晶钇铝石榴石(YAG)的蠕变作者:C.J. Armani, M.B. Ruggles-Wrenn, R.S. Hay, G.E. Fair, K.A. Keller17 篇名:Motion of screw segments in the early stage of fatigue testing 在疲劳试验初期螺杆段的运动作者:Yichao Zhu, Stephen Jonathan Chapman18 篇名:An in-situ transmission electron microscopy study on roomtemperature ductility of TiAl alloys with fully lamellar microstructure关于具有全层状微观结构的钛铝合金的室温塑性的一种原位透射电子显微镜研究作者:Seong-Woong Kim, Young-Sang Na, Jong-Taek Yeom, Seung Eon Kim, Yoon Suk Choi19 篇名:Significance of crystallographic misorientation at phase boundaries for fatigue crack initiation in a duplex stainless steel during high and very high cycle fatigue loading双相不锈钢在高和非常高的循环疲劳载荷作用下,其疲劳裂纹扩展区的相界的结晶错位的意义作者:B. Dönges, A. Giertler, U. Krupp, C.-P. Fritzen, H.-J. Christ20 篇名:Microstructure evolution and mechanical properties of Inconel 740H during aging at 750 °C经过在750°C老化的铬镍铁合金740H的微观结构演化及其力学性能作者:Chong Yan, Liu Zhengdong, Andy Godfrey, Liu Wei, Weng Y uqing21 篇名:Effects of boron addition on tensile and Charpy impact properties in high-phosphorous steels硼对高磷钢的拉伸强度和夏比冲击性能的影响作者:Seokmin Hong, Junghoon Lee, Kyong Su Park, Sunghak Lee22 篇名:Microstructure–texture–mechanical properties relationship in multi-pass warm rolled Ti–6Al–4V Alloy在多通道温轧的Ti–6Al–4V合金中,微观结构与纹理、力学性能之间的关系作者:S.V.S. Narayana Murty, Niraj Nayan, Pankaj Kumar, P. Ramesh Narayanan, S.C. Sharma, Koshy M. George23 篇名:Effects of casting temperature on the microstructure and mechanical properties of the TiZr-based bulk metallic glass matrix composite浇铸温度对钛锆基大块金属玻璃基体复合材料的微观结构和力学性能的影响作者:P.F. Sha, Z.W. Zhu, H.M. Fu, H. Li, A.M. Wang, H.W. Zhang, H.F. Zhang, Z.Q. Hu24 篇名:The effect of aging on heat-resistant cast stainless steels老化对耐热铸造不锈钢的影响作者:M. Viherkoski, E. Huttunen-Saarivirta, E. Isotahdon, M. Uusitalo, T. Tiainen, V.-T. Kuokkala25 篇名:Effect of SPD surface layer on plasma nitriding of Ti–6Al–4V alloy 电涌保护器(SPD)表面层对Ti 6Al 4V合金的等离子渗氮的影响作者:K. Farokhzadeh, J. Qian, A. Edrisy26 篇名:A study of fatigue damage development in extruded Mg–Gd–Y magnesium alloy受挤压的Mg–GD–Y镁合金的疲劳损伤发展的研究作者:Fenghua Wang, Jie Dong, Miaolin Feng, Jie Sun, Wenjiang Ding, Yanyao Jiang27 篇名:Grain size and particle dispersion effects on the tensile behavior offriction stir welded MA956 oxide dispersion strengthened steel from low to elevated temperatures晶粒尺寸和颗粒分散对搅拌摩擦焊接MA956氧化物弥散强化钢从低温到高温下的拉伸性能的影响作者:B.W. Baker, T.R. McNelley, L.N. Brewer28 篇名:The microstructure and mechanical properties of friction stir welded Cu–30Zn brass alloys搅拌摩擦焊接的Cu-30Zn黄铜合金的微观结构和力学性能作者:Y.F. Sun, N. Xu, H. Fujii29 篇名:Effect of martensitic phase transformation on the hardening behavior and texture evolution in a 304L stainless steel under compression at liquid nitrogen temperature马氏体相变对304L不锈钢在液氮温度下压缩后的硬化行为和组织演变的影响作者:Ercan Cakmak, Sven C. V ogel, Hahn Choo30 篇名:Separation of nucleation and growth of voids during tensile deformation of a dual phase steel using synchrotron microtomography对双相钢利用同步辐射成像法进行拉伸变形过程中的成核分离与空隙生长作者:Guillermo Requena, Eric Maire, Claire Leguen, Sandrine Thuillier31 篇名:The dynamic behaviour of a twinning induced plasticity steel 孪生诱发塑性钢的动态行为作者:K.M. Rahman, V.A. V orontsov, D. Dye32 篇名:A dynamic ductile fracture model on the effects of pressure, Lode angle and strain rate一个关于压力、洛德角和应变率效果的动态韧性断裂模型作者:Y.J. Liu, Q. Sun33 篇名:Damping and dynamic recovery in magnesium alloys containing strontium含锶镁合金中的阻尼和动态恢复作者:K. Hazeli, A. Sadeghi, M.O. Pekguleryuz, A. Kontsos34 篇名:The static and dynamic mechanical properties of a new low-carbon, low-alloy austempered steel一种新的低碳,低合金奥贝钢的静态和动态力学性能作者:Codrick J. Martis, Susil K. Putatunda, James Boileau, John G. Spray35 篇名:Analysis of the stress states and interface damage in a particle reinforced composite based on a micromodel using cohesive elements运用内聚单元对基于微观模型的粒子增强复合材料中的应力状态和界面损伤进行分析作者:Zhanwei Y uan, Fuguo Li, Fengmei Xue, Min He, Mirza Zahid Hussain36 篇名:On low temperature bainite transformation characteristics using in-situ neutron diffraction and atom probe tomography使用原位中子衍射和原子探针装置实现低温贝氏体转变特性作者:Khushboo Rakha, Hossein Beladi, Ilana Timokhina, Xiangyuan Xiong,Saurabh Kabra, Klaus-Dieter Liss, Peter Hodgson37 篇名:Achieving friction stir welded SiCp/Al–Cu–Mg composite joint of nearly equal strength to base material at high welding speed在较高焊接速度下,实现强度几乎等于基础材料的搅拌摩擦焊接SiCp/Al–Cu–Mg复合接头的方法作者:D. Wang, Q.Z. Wang, B.L. Xiao, Z.Y. Ma。
Materials Science and Engineering A 528 (2011) 4522–4527Contents lists available at ScienceDirectMaterials Science and EngineeringAj o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /m s eaStudy of effect of indenter shape in nanometric scratching process using molecular dynamicsPeng-zhe Zhu a ,b ,∗,Yuan-zhong Hu a ,Hui Wang a ,Tian-bao Ma aa State Key Laboratory of Tribology,Tsinghua University,Chengfu Road,Beijing 100084,PR ChinabState Key Laboratory of Precision Measuring Technology and Instruments,Tianjin University,92Weijin Road,Tianjin 300072,PR Chinaa r t i c l e i n f o Article history:Received 6September 2010Received in revised form 9February 2011Accepted 15February 2011Available online 19 February 2011Keywords:Molecular dynamics ScratchingIndenter shape Size effecta b s t r a c tIn this paper three-dimensional molecular dynamics (MD)simulations are performed to investigate the effect of indenter shape on the nanometric scratching process of copper.In the simulations two types of indenters (sharp and blunt)are used to study the effect of indenter shape on the workpiece deformation and friction.The results show that indenter shape significantly affects the nanoscratch deformation.The blunt indenter causes larger deformation region and much more dislocations at both the indentation and scratch stages.During the scratching stage the blunt indenter results in larger chip volume in front of the indenter.The results also show that there is a size effect on how the indenter shape influences the nanometric scratching process.For small indenters (radius of 1.9nm)the blunt indenter may result in bigger friction coefficient than the sharp indenter,while for bigger indenters (radii of 3nm and 4.5nm)it is reversed.The simulation results indicate that generally the sharp surface asperities in MEMS cause more friction.However,when the asperities are rather small,the blunt asperities may result in more friction.Furthermore,both the friction coefficient and scratch hardness decrease with the increase of the radius of the blunt indenter.© 2011 Elsevier B.V. All rights reserved.1.IntroductionAs the friction/wear and mechanical properties of solid surfaces are very important for the nanostructures used in magnetic stor-age systems,microelectromechanical systems (MEMS)and other industrial applications [1],a fundamental understanding of inter-facial phenomena on the nano-scale is needed.Nanoscratching technique has been used to study the friction and wear process in the nanostructures.At the same time,MD simulations have also been widely applied to study the scratching/cutting process on the nanoscale [2–14].Komanduri et al.[2,3]simulated nanometric cutting of sin-gle crystal aluminum to study the microscopic deformation and the nanoscale material removal process.Komanduri et al.[4]also performed MD simulations of nanoindentation followed by nanoscratching on single crystal aluminum to investigate the atomic-scale friction.Their study showed that the friction coeffi-cient was constant and independent of scratch depth at extremely low depths (0.1–0.8nm).Fang and Weng conducted MD simula-tions to study the tool geometry (tool angle)effect on AFM-based nanometric cutting process of copper using simple two-body Morse potential [5].Jun et al.performed MD simulations of nanoscratch-∗Corresponding author.Tel.:+861062788310;fax:+861062781379.E-mail address:zpz06@ (P.-z.Zhu).ing process on the Al (111)surface using an AFM tip to explore the correlation between the scratching conditions and the defect mech-anism in the workpiece [6].Mulliah et al.investigated the effect of indenter orientation using a sharp-edged three sided pyramid tool on nanoscratch process of silver (100)by MD simulations [7].It is found that friction coefficient is dependent on both the orientation of the indenter and the indentation depth.According to the published literatures,we found that few stud-ies focus on how the topography of the contact surfaces (especially shapes of the asperities)influences the friction and wear of thin films using MD simulations.Gao et al.[8]investigated the effect of asperity shapes on the wear of nickel thin film by carrying out MD simulations of nanometric scratching process using different indenter shapes.The results showed that the sharp surface asperi-ties cause more friction than the blunt surface asperities.However,their simulation model is a quasi-three-dimensional thin slab and the radius of the asperity is about 7nm.Whether sharp surface asperities cause more friction than blunt surface asperities when the size of surface asperities is much smaller is still unclear.In order to better understand how the shapes of contact asperities influence the friction and wear process on the nanoscale,three-dimensional MD simulations are performed to study the effect of indenter shape on the nanometric scratching process of copper.Smaller indenters are adopted to mimic the small surface asperi-ties.Two types of indenters are used:one is a conic indenter and the other is a hemispherical indenter.We find that there is a size effect0921-5093/$–see front matter © 2011 Elsevier B.V. All rights reserved.doi:10.1016/j.msea.2011.02.035P.-z.Zhu et al./Materials Science and Engineering A528 (2011) 4522–45274523Fig.1.Model of MD simulation. on how the surface asperities influence the nanometric scratchingprocess.2.Simulation methodFig.1shows the MD simulation model.The model consists of adiamond indenter and face-centered cubic(FCC)single crystal cop-per workpiece.The size of the workpiece is18nm×18nm×9nm.The three orientations of workpiece are in x-[100],y-[010]and z-[001].During the scratching process,the indentation/scratch planeis(001)and the scratch direction(−x direction)is[−100].The indenters are created from perfect diamond atomic lattices.Two types of indenters have been adopted.The sharp indenter hasthe configuration of co-shape of cone and cylinder,while the bluntindenter has the configuration of co-shape of hemisphere and cylin-der.The radius of the hemisphere is1.9nm.The cone has a radius of1.9nm and an angle of90◦.The apex of the cone is truncated by onelayer of atoms.According to our simulation results,when the bluntindenter has a configuration of hemisphere with a radius of1.9nm,the height of the chip generated in front of the indenter is beyondthe range of the hemisphere.Therefore,a cylinder is introduced tothe indenters.While for bigger indenters no cylinder is added.Inthe simulations both the indenters are treated as rigid bodies sincethe diamond is much harder than copper.The workpiece includes three kinds of atoms,namely,boundaryatoms,thermostat atoms and Newtonian atoms.The three layersof boundary atoms in the left,right,front,back and bottom of theworkpiece are keptfixed in space to reduce the edge effects and pre-vent the system from translating.The next three layers adjacent tothe boundary atoms are thermostat atoms.The initial temperatureof the workpiece is293K.During MD simulations,heat dissipa-tion is carried out by keeping the thermostat atoms at a constanttemperature of293K by velocity scaling method.The motions ofthermostat atoms and Newtonian atoms obey classical Newton’ssecond law.The Newton’s equations of motion are integrated witha velocity–Verlet algorithm with a time step of1fs.For the Cu–Cu interaction between workpiece atoms the embed-ded atom method(EAM)potential[15,16]is used since the EAMpotential has been widely used in MD simulations of nanocutting[9–14].For EAM potential,the total potential energy of a system isexpressed as:E tot=12ij˚ij(r ij)+iF i( i)(1)Table1Computational parameters used in the MD simulations.Materials Workpiece:copper Tool:diamondDimensions18nm×18nm×9nm cone:radius of1.9nm,angle of90◦Hemisphere:radiusof1.9nmTime step1fsInitial temperature293KScratching velocity100m/sIndentation depth1nmScratching length5nmScratching direction[−100]on(001)surfacewhere˚ij is the pair potential between atoms i and j,and F i is theembedded energy of atom i. i is the host electron density at site iinduced by all other atoms in the system,which is given by:i=j/=ij(r ij)(2)As the indenter is treated as a rigid body,the C–C interactionsbetween indenter atoms are ignored.For the Cu–C interaction we adopt Morse potential:V(r)=D(e−2˛(r−r0)−2e−˛(r−r0))(3)where V(r)is a pair potential energy function;D is the cohesionenergy;˛is the elastic modulus;r and r0are the instantaneousand equilibrium distance between two atoms,respectively.Thethree Morse potential parameters for Cu–C[10–14]are adoptedas D=0.087eV,˛=5.14´˚A−1and r0=2.05´˚A.In the simulations the indenter is initially positioned abovethe surface.After relaxation the indenter indents into the work-piece and then scratches in the[−100]direction with a scratchingdistance of 5.0nm.The indentation depth is 1.0nm.Both theindentation and scratch velocities are100m/s.The velocities aresignificantly higher than the real velocities during indentation(<10−6m/s)and cutting(∼1.0m/s),but such low velocities wouldgreatly increase the computational cost.So in the simulations wechoose relatively high velocity.Mehrez and Ciraci had confirmedthat MD simulation performed with relatively higher velocity couldreveal the main features of the atomic rearrangements[17].Table1summarizes the computational parameters used in the MD simu-lations.Accurately identifying dislocations at room temperature inMD simulations is very difficult due to the thermal vibration4524P.-z.Zhu et al./Materials Science and Engineering A528 (2011) 4522–4527Fig.2.MD simulation results for the sharp indenter.(a)Indentation depth=0.5nm, (b)indentation depth=1.0nm,(c)scratching distance=1.0nm,(d)scratching dis-tance=5.0nm.The left are the side views of the model and the right are the back views of the model.The blue color shows the dislocations formed inside the work-piece during indentation and scratching.(For interpretation of the references to color in thisfigure legend,the reader is referred to the web version of the article.)of atoms.Pei et al.[12,13]found that centrosymmetry param-eter(CSP)[18]is less sensitive to the temperature increase compared to atomic coordinate number[19]and the slip vec-tor[20].Therefore,in the present work CSP is used to identify dislocations and other lattice defects.The CSP is computed as fol-lows:CSP=6i=1Ri+Ri+62(4)where R i and R i+6are the vectors corresponding to the six pairs of opposite nearest neighbors in the FCC lattice[18].The CSP is zero for an atom in a perfect face centered cubic lattice and positive value for an atom which is part of a defect such as a dislocation or a surface.3.Results and discussionsIn current study,three-dimensional MD simulations are per-formed to study the nanoscratch process of copper.The MD simulations are conducted with the Large-scale Atomic/Molecular Massively Parallel simulator(LAMMPS)developed by Plimpton [21].Fig.2presents side and back views of the lattice defects of dif-ferent stages of MD simulation for the case of a sharp indenter. Each atom is colored by CSP.Note that the atoms inside the model with CSP smaller than three are removed in the visualizations as they are assumed to be in perfect FCC configuration.The isolated atoms with CSP above three distributed inside the model are not lattice defects[12,13].Those atoms having CSP above three result from the thermal vibration of atoms atfinite temperature.The blue color shows the dislocations formed inside the workpiece.It should be noted that the discussions presented here are based not only on the MD simulation snapshots,but also on the observation of the animations of the scratching process.In Fig.2(a)the indenter has penetrated into the workpiece at a depth of0.5nm.It can beseen Fig.3.MD simulation results for the blunt indenter.(a)Indentation depth=0.5nm, (b)indentation depth=1.0nm,(c)scratching distance=1.0nm,(d)scratching dis-tance=5.0nm.The left are the side views of the model and the right are the back views of the model.The blue color shows the dislocations formed inside the work-piece during indentation and scratching.(For interpretation of the references to color in thisfigure legend,the reader is referred to the web version of the article.)that there is a small amount of workpiece deformation beneath the indenter.Dislocations and other lattice defects are generated.With the increase of indentation depth more dislocations are formed,see Fig.2(b).Fig.2(c)depicts the early stage of scratching.There is an accumulation and pile-up of amorphous structural atoms in front of and on both sides of the indenter.As the scratch proceeds,the dislocation region is pushed to move forward by the indenter.The chip volume in front of the indenter increases,see Fig.2(d).During scratching workpiece material removal takes place via chip for-mation ahead of the indenter as in conventional machining and a groove is fabricated.At the same time workpiece material accumu-lates on both sides of the groove.After the passing of the indenter, nearly all the dislocations penetrated into the workpiece begin to move upwards and disappear from the workpiece surface due to the elastic recovery[10].Fig.3shows the simulation results for the case of a blunt inden-ter.The blunt indenter deforms a large zone beneath the indenter at the early stage of the indentation,see Fig.3(a).Even at this early stage of indentation,a number of dislocations have been generated. Moreover,an isolated dislocation loop is present in the workpiece. The isolated dislocation loop glides in the[10−1]direction,which corresponds to the 110 slip direction in FCC lattice.It should be noted that at the indentation depth of0.5nm for the sharp indenter, no dislocation loop is formed due to the fact that the indentation force imposed by the sharp indenter is not big enough to gener-ate and emit the dislocation loop compared to the blunt one.At the maximum indentation depth,more dislocations are formed and the isolated dislocation loop remains,see Fig.3(b).During the scratch-ing stage,the chip volume in front of the indenter is much larger and more dislocations and other defects are formed,see Fig.3(c)and(d). From Figs.2and3it can be seen clearly that at both the indentation and scratch stages,the blunt indenter causes larger deformation region and much more dislocations[8].The normal force and friction force are calculated by the summa-tion of forces along the vertical direction and the lateral direction on all atoms in the indenter,respectively.The force–displacement curves during scratch process are shown in Fig.4.ThefluctuationsP.-z.Zhu et al./Materials Science and Engineering A 528 (2011) 4522–45274525Fig.4.Force–displacement curves for the indenters with a radius of 1.9nm.Table 2Calculated parameters for the MD simulations.Friction force (nN)Normal force (nN)Friction cofficient Sharp indenter 51.745.8 1.13Blunt indenter71.855.41.30Fig.5.Cross-sectional snapshots of xz plane at the scratching distance of 5nm for different indenters.(a)Sharp indenter;(b)blunt indenter.of forces are related to the formation and movement of dislocations in the workpiece [10–14].The formation of dislocations during scratching process leads to the release of the accumulated strain energy,which causes the temporary drop of the friction force and normal force.Since the blunt indenter consists of more diamond atoms and contacts more workpiece atoms during the scratching process,the blunt indenter results in larger friction force and nor-mal force.So here we use the friction coefficient defined as the ratio of the average friction force to the average normal force to measure the scratching resistance.The average friction force and normal force for the scratching distance from 2nm to 5nm where scratching is in a steady state are listed in Table 2.The friction coeffi-cients are also obtained.As shown in Table 2,the friction coefficient for blunt indenter is bigger than that for sharp indenter,which is contrary to the result in Ref.[8].This may be due to the fact that the chip volume produced ahead of the blunt indenter is too big compared to radius of indenter,thus resulting in a significantly larger friction coefficient.As can be seen from Fig.5the height of the chip produced by the blunt indenter is far beyond the range of hemispherical tip at the scratching distance of 5nm.To further investigate the size effect of indenter on the nano-metric process,bigger indenters are adopted.In this situation,the sharp indenter has a configuration of cone shape with an angle of 90◦,while the blunt indenter has a configuration of hemisphere shape.The radii of the indenters are 3nm and 4.5nm,respectively.Other simulation parameters are the same as those listed in Table 1.Fig.6shows the cross-sectional snapshots of xz plane at the scratching distance of 5nm for the indenters with a radius of 4.5nm.Fig.6.Cross-sectional snapshots of xz plane at the scratching distance of 5nm for the indenters with a radius of 4.5nm.(a)Sharp indenter;(b)blunt indenter.It can be seen that the blunt indenter causes larger deformation region and generates much more chip than the sharp indenter in the scratching process.The height of the chip formed ahead of the indenters is smaller than that of the indenters,which confirms that the simulation model adopted is appropriate.The variations of force curves for the indenters with a radius of 4.5nm are similar to those of indenters with radius of 1.9nm,as shown in Fig.7.Fig.8shows the friction coefficients for different indenters for the scratching distance from 2nm to 5nm.It can be seen that there is a size effect on how the indenter shape influences the nanomet-ric scratching process.For small indenters (radius of 1.9nm)the blunt indenter results in a bigger friction coefficient than the sharp indenter,while for bigger indenters (radii of 3nm and 4.5nm)it is reversed.This indicates that the sharp surface asperities in MEMS generally cause more friction [8].However,when the asperities are rather small,the blunt asperities may result in more friction.Fur-thermore,as the indenter radius increases the friction coefficient decreases for the blunt indenters.In order to further study the size effect of indenter on the nanometric scratching process and compare the simulation results with the experiments,we calculate the scratch hardness of the workpiece defined as the ratio of the average normal force to the horizontal projected area of contact [22]for the blunt indenters for the scratching distance from 2nm to 5nm.Table 3shows the scratch hardness for the blunt indenters at the indentation depth of 1nm.It can be clearly seen that the scratch hardness decreases with the increase of the radius of the blunt indenter.In our simulations,the scratching is conducted with different indenter radii at a fixed indentation depth of 1nm.This corresponds to the situation in many experiments [22,23]that the scratching is performed with a fixed indenter radius at different indentation depths.It can be seen from Fig.8and Table 3that there exists a size effect of indenter on the nanometric scratching process,which4526P.-z.Zhu et al./Materials Science and Engineering A528 (2011) 4522–4527Fig.7.Force–displacement curves for the indenters with a radius of 4.5nm.Fig.8.Variations of friction coefficient for different indenters.Table 3Scratch hardness for the blunt indenters in the nanometric process.Radius of indenter (nm)Scratch hardness (GPa)1.99.773.0 6.774.54.67agrees with the results of experiments carried out by Gane and Skinner [22]and Grac ¸a et al.[23].Both the friction coefficient and scratch hardness decrease with the increase of the radius of the blunt indenter.It is pointed out by Hokkirigawa and Kato [24]that in abrasive wear,three wear modes were observed:cutting,wedge or prow forming and ploughing.In the experiments the pin is similar to the blunt indenter adopted in our simulations since it has a hemi-spherical tip.In our simulations both the cutting and ploughing states obviously coexist in the nanometric scratching process for the blunt indenters as the volume of workpiece atoms that pile up in front of the indenter is comparable to that of workpiece atoms piling up on both sides of the indenter in the nanometric scratching process.Therefore,the theoretical expressions of friction coeffi-cient proposed by Hokkirigawa and Kato [24]for cutting mode,wedge forming mode and ploughing mode cannot be directly intro-duced to our simulations.Besides,in the experiments conducted by Hokkirigawa and Kato [24]a long ribbon-like chip was formed inthe cutting modes of abrasive wear obtained with brass.However,in our simulations no ribbon-like chip is observed in the scratching process.4.ConclusionsIn this study three-dimensional MD simulations are conducted to study the nanometric scratching of copper.It is found that there is a size effect on how the indenter shape affects the nanomet-ric scratching process.For small indenters (radius of 1.9nm)the blunt indenter results in a bigger friction coefficient than the sharp indenter,while for bigger indenters (radii of 3nm and 4.5nm)it is reversed.The simulation results indicate that generally the sharp surface asperities in MEMS cause more friction.However,when the asperities are rather small,the blunt asperities may result in more friction.Furthermore,both the friction coefficient and scratch hard-ness decrease with the increase of the radius of the blunt indenter.AcknowledgementsWe gratefully acknowledge financial support from the National Natural Science Foundation of China (grant nos.50730007,51075226and 50721004)and the State Key Development Program for Basic Research of China (grant no.2009CB724200).References[1]B.Bhushan,Handbook of Micro/Nano Tribology,2nd ed.,CRC Press,Boca Raton,FL,1999.[2]R.Komanduri,N.Chandrasekaran,L.M.Raf,Phil.Mag.B 79(1999)955–968.[3]R.Komanduri,N.Chandrasekaran,L.M.Raf,Wear 219(1998)84–97.[4]R.Komanduri,N.Chandrasekaran,L.M.Raff,Phys.Rev.B 61(2000)14007–14019.[5]T.H.Fang,C.I.Weng,Nanotechnology 11(2000)148–153.[6]S.Jun,Y.Lee,S.Y.Kim,S.Im,Nanotechnology 15(2004)1169–1174.[7]D.Mulliah,S.D.Kenny,R.Smith,C.F.Sanz-Navarro,Nanotechnology 15(2004)243–249.[8]Y.Gao,C.Lu,N.N.Huynh,G.Michal,H.T.Zhu,A.K.Tieu,Wear 267(2009)1998-2002.[9]Y.D.Yan,T.Sun,S.Dong,X.C.Luo,Y.C.Liang,Appl.Surf.Sci.252(2006)7523–7531.[10]J.J.Zhang,T.Sun,Y.D.Yan,Y.C.Liang,Mater.Sci.Eng.A 505(2009)65–69.[11]J.J.Zhang,T.Sun,Y.D.Yan,Y.C.Liang,S.Dong,Appl.Phys.A:Mater.Sci.Process.94(2009)593–600.[12]Q.X.Pei,C.Lu,H.P.Lee,Comput.Mater.Sci.41(2007)177–185.[13]Q.X.Pei,C.Lu,H.P.Lee,Y.W.Zhang,Nanoscale Res.Lett.4(2009)444–451.[14]P.Z.Zhu,Y.Z.Hu,T.B.Ma,H.Wang,Appl.Surf.Sci.256(2010)7160–7165.[15]S.M.Foiles,M.I.Baskes,M.S.Daw,Phys.Rev.B 33(1986)7983–7991.[16]M.S.Daw,S.M.Foiles,M.I.Baskes,Mater.Sci.Rep.9(1993)251–310.[17]H.Mehrez,S.Ciraci,Phys.Rev.B 56(1997)12632–12642.P.-z.Zhu et al./Materials Science and Engineering A528 (2011) 4522–45274527[18]C.L.Kelchner,S.J.Plimpton,J.C.Hamilton,Phys.Rev.B58(17)(1998)11085–11088.[19]J.Li,K.J.Van Vliet,T.Zhu,S.Yip,S.Suresh,Nature418(2002)307–310.[20]A.Zimmerman,C.L.Kelchner,J.C.Hamilton,S.M Foiles,Phys.Rev.Lett.87(2001),165507-1-165507-4.[21]S.J.Plimpton,p.Phys.117(1995)1–19.[22]N.Gane,J.Skinner,Wear24(1973)207–217.[23]S.Grac¸a,R.Colac¸o,R.Vilar,Tribol.Lett.31(2008)177–185.[24]K.Hokkirigawa,K.Kato,Tribol.Int.21(1988)51–57.。
Materials Science and Engineering A399(2005)368–376Nanocomposite materials based on polyurethane intercalated intomontmorillonite clayAhmed Rehab∗,Nehal SalahuddinChemistry Department,Faculty of Science,University of Tanta,31527Tanta,EgyptReceived in revised form31March2005;accepted7April2005AbstractPolyurethane organoclay nanocomposites have been synthesized via in situ polymerization method.The organoclay has been prepared by intercalation of diethanolamine or triethanolamine into montmorillonite clay(MMT)through ion exchange process.The syntheses of polyurethane–organoclay hybrids were carried out by swelling the organoclay into different kinds of diols followed by addition of diisocyanate. The nanocomposites with dispersed structure of MMT was obtained as evidence by scanning electron microscope and X-ray diffraction (XRD).The results shows broaden with low intense and shift of the peak characteristic to d001spacing to smaller2θand the MMT is dispersed homogeneously in the polymer matrix.Also,the TGA showed that the nanocomposites have higher decomposition temperature in comparison with the pristine polyurethane.Keywords:Polyurethane nanocomposites;Nanocomposites;Polyurethane organoclay;Intercalated polymers;Layered silicate;Polymer–clay nanocomposite1.IntroductionPolymer composites were widely used in electronic and information products,consumer commodities and the con-struction industry.In these polymer composites,inorganic materials were used to reinforce polymers with the idea of taking advantage of the high heat durability and the high mechanical strength of inorganic and the ease of processing polymers.Clays have been extensively used in the polymers industry either as reinforcing agent to improve the physico-mechanical properties of thefinal polymer or as afiller to reduce the amount of polymer used in the shaped structures, i.e.,to act as a diluent for the polymer,thereby lowering the economic high cost of the polymer systems.The effi-ciency of the clay to modify the properties of the polymer is primarily determined by the degree of its dispersion in the polymer matrix,which in turn depends on the clay’s parti-cle size.However,the hydrophilic nature of the clay surfaces impedes their homogeneous dispersion in the organic poly-∗Corresponding author.Tel.:+2040350804;fax:+2040350804.E-mail addresses:rahmed@.eg,rehab220956@(A.Rehab).mer phase.The interfacial incompatibility between inorganic and organic polymers existed owing to the difference in the nature of their individual intermolecular interaction forces and often caused failures in these inorganic–organic compos-ites.One approach to alleviate the interfacial and the tenacity problem in these polymer composites is to chemically bond the inorganic and polymers through the sol–gel method[1]. The composite materials prepared by sol–gel method suf-fered the drawback of large shrinkage during the removal of the solvent.The other approach is to uniformly disperse the inorganic in the polymer matrix in the nanometer scale to form inorganic–polymer nanocomposites[2].Nanocomposites are a class of composites in which the reinforcing phase dimensions are in the order of nanome-ters[3].Layered materials are potentially well suited for the design of hybrid nanocomposites,because their lamel-lar elements have high in-plane strength,stiffness and a high aspect ratio[4].The smectic clays(e.g.,montmorillonite) and related layered silicates are the materials of choice for polymer nanocomposite design for two principal reasons:first,they exhibit a very rich intercalation chemistry,which allows them to be chemically modified and made compatible with organic polymers for dispersal on a nanometer lengthA.Rehab,N.Salahuddin/Materials Science and Engineering A399(2005)368–376369scale.Second,they occur ubiquitously in nature and can be obtained in mineralogically pure form at low cost.The layered clay–polymer nanocomposites can be prepared by replacing the hydrophilic Na+and Ca+exchange cations of the native clay with more hydrophobic onium ion to form a polymer-clay hybrid through two ways.Thefirst is the inter-calation of a monomer into the clay interlayer and subsequent heat treatment for polymerization[5].The second is the direct intercalation of a preformed polymer into the layered clay[6].Since the development of Nylon-6–clay nanocomposite by Toyota researchers[7],extensive studies on polymer–clay nanocomposites have been investigated in order to obtain new organic–inorganic nanocomposites with enhanced properties.The use of clay or organically modified clay as precursors for preparation of nanocomposites has been studied into various types of polymer systems including polyamide6[8],polyoligo(oxyethylene)methacrylate[9], epoxy[10],polyimide[11],polyester[12],polypropylene [13],polyacrylamide[14],polypyrrol[15],polystyrene[16], poly(p-phenylene vinylene)[17],polyethylene oxide[18], polycaprolactone[19]and polymethyl methacrylate[20].Polyurethane(PU)elastomers are a family of segmented polymers with soft segments derived from polyols and hard segments from isocyanates and chain extenders[21].PU elastomers represent one of the most attractive elastomers because they have the advantages,such as the best abra-sion resistance,outstanding oil resistance and excellent low-temperatureflexibility.They also exhibit the widest variety of hardness and elastic moduli that justfill in the gap between plastics and rubbers.Thefirst example of elastomeric polyurethane–clay nanocomposites with greatly improved performance proper-ties compared to the pristine polymer was reported by Wang and Pinnavaia[22].Preparation,characterization and proper-ties of polyurethane–clay nanocomposites have been reported by a various researchers[23–33].However,there also exist some disadvantages concerning with thermal stability and barrier properties.To overcome the disadvantages,the present work will discuss our initial efforts to synthesis different structure of PU–MMT nanocom-posites.Since the physical properties of the resulting mate-rials are derived from their structures and study the effect of organoclay percentage on the resulting nanocomposites (Scheme1).2.Experimental2.1.MaterialsMontmorillonite(Na-MMT)minerals were supplied by ECC America Inc.,under the trade name Mineral Colloid-BP asfine particles with an average particle size of75m and cation exchange capacity(CEC)of90m equiv./100g and interlayer spacing of9.6˚A.Diethanolamine from Riedel-De Haen AG Seelze-Hannover;triethanolamine from GDR Co.Germany;1,3-butylene glycol,diethylene glycol and triethylene glycol from Aldrich;tolylene-l,4-diisocyanate (TDI)from Fluka were used as supplied.Dimethylformamide (DMF)from Adwic(Egypt)was used after distillation and drying over molekularSieb.2.2.Preparation of materials2.2.1.Preparation of modified clay I a,bThe MMT(10g)was swelled in600ml of distilled water followed by addition of20g diethanolamine dropwise with stirring.The suspension was stirred for24h at room tem-perature followed by addition of dilute HCl(1:1)to obtain slightly acidic medium(pH∼5.5–6)then the stirring was continued for24h at room temperature.The suspension was allowed to stand for a few hours,filtered off using sintered glass(G4),washed many times with distilled water,then dried at∼35◦C under vacuum to yield10.85g of MMT-diethanolamine intercalate product.The product was retreat-ment with diethanolamine by swelling in mixture of300ml DMF and300ml water followed by addition of20g of diethanolamine and the procedure was repeated as previously to give11.05g of MMT-diethanolamine intercalate I a.The intercalation of MMT(10g)with triethanolamine (20g)was carried out by the same procedure described in synthesis of I a to give11.5g of I b.The structural properties were measured directly by infrared(IR),Fig.1;thermo-gravimetric analysis(TGA),Fig.2;calcinations,elemental microanalysis,swelling data and X-ray diffraction(XRD), Fig.3.2.2.2.Preparation polyurethane–MMT compositesThe materials were prepared by swelling the modified clay in the diol followed by addition of the diisocyanate as in the following procedure.0.52g of I a swelled in4.66g(50mmol) of1,3-butylene glycol for∼5h with stirring followed by addition8.87g(50mmol)of tolylene-2,4-diisocyanate with stirring at room temperature(∼20◦C).The polymerization was started after a few minutes(the viscosity of the mix-ture was increased)and completed very fast.After about2h, the formed solid product was suspended in DMF then pre-cipitated in distilled water.The white powder product was filtered off and washed several times with water then dried under reduced pressure at−35◦C to give13.2g(94%yield) of(II a).The other samples(II b–h)were prepared by the same procedure using different amount of modified clay(I a)with different diols and another modified clay(I b)with the same diisocyanate as illustrated in Table1.2.2.3.Preparation of linear polymersThe linear polyurethanes were prepared by polycondensa-tion technique using a mixture of diol and diisocyanate as in the following procedure:2.83g(30mmol)of1,3-butylene glycol was cooled in ice bath then added3.6ml(4.35g, 30mmol)of2,4-tolylene diisocyanate with stirring.The mix-ture was stirred for a few minutes then the temperature370 A.Rehab,N.Salahuddin/Materials Science and Engineering A399(2005)368–376Fig.1.Infrared spectra of the organoclay I a,b and PU–organoclay nanocom-posites II a–h and linear polyurethanes III a–d.increased gradually to the room temperature(∼20◦C)for about2h.The formed solid product was dissolved in DMF then precipitated in distilled water.The white powder was filtered off,washed several times with water then dried under reduced pressure at∼35◦C to give5.3g(74%yield)of prod-uct III a.The other samples(III b–d)were prepared by the same procedure using different diols and the same diisocyanate as illustrated in Table2.2.2.4.Analytical proceduresInfrared spectra were carried out on a Perkin-Elmer1430 Ratio-recording infrared spectrophotometer using the potas-sium bromide disc technique in the wavenumber range of 4000–400cm−1.Thermogravimetric analysis was obtained by using a TGA 50Shimadzu(thermal gravimetric analyzer).The heating rate was10◦C/min in all cases in the temperature range ∼30–800◦C in nitrogen atmosphere.Calcination measurements:A definite weight of the sam-ple was introduced into a porcelain crucible and dried in an electric oven at120◦C overnight,then introduced into an ignition oven and the temperature was increased to1000◦C and adjusted at this temperature for15h.The loading of each sample expressed as the weight loss by ignition per100g of the dry sample.The data of all prepared samples are listed in Table4.X-ray diffraction measurements were carried out using a Phillips powder diffractometer equipped with a Ni-filtered Cu K␣radiation(λ=1.5418˚A)at scanning rate0.005◦s−1, diverget slit0.3◦.Measurements were made for the dried product to examine the interlayer activity in the composite as prepared.Morphology of the composite was examined by a Joel JXA-840scanning electron microscopy(SEM)equipped with an energy dispersive X-ray detector to examine the mor-phology and particle size of MMT in the polymer–MMT composites.Specimen was deposited on double-sided scotch tape and examined at their fracture surface.3.Results and discussionTo disperse MMT nanolayers in a polyurethane matrix, it was necessary tofirst replace the hydrophilic inor-ganic exchange cations of the native mineral with more organophilic diethanolamine or triethanolamine.The ion exchange was carried out between sodium cation in MMT and ammonium groups in diethanolamine or triethanolamine.The presence of these group in the galleries of MMT renderstheScheme1.Synthesis of intercalated polyurethanes.A.Rehab,N.Salahuddin /Materials Science and Engineering A 399(2005)368–376371MMT organophilic and promote the absorption of diol into the interlayer of MMT and improve the particle–matrix inter-actions,since diethanolamine and triethanolamine contains functional group which react with diisocyanate.Polyurethane nanocomposites were prepared by solvation of the organoclay with the diol.It was found that the modified clay was swelled easily in the diols at room temperature.This solvation was followed by adding the diisocyanate.The synthesis of new organic–inorganic nanocomposite materials was achieved by the intercalation of polyurethane onto functionalized montmorillonite clay through in situ polycondensation polymerization technique.Thenanocom-Fig.2.TGA thermogram of PU–organoclay nanocomposites (a)II a–d with different ratios of organoclay I a and linear polyurethanes III a ,(b)II e–h with different diols,(c)TGA thermogram of linear polyurethanes III a–d .372 A.Rehab,N.Salahuddin/Materials Science and Engineering A399(2005)368–376Table1Polymerization data of intercalated samples II a–hRun Modified clay b Diol Diisocyanate a Productg wt%c Type d g mmol g mmol g Yield(%) II a0.523.831,3-Bu-G 4.66508.875013.293.9II b 1.177.981,3-Bu-G 4.62508.875011.377.1II c 1.6510.911,3-Bu-G 4.63508.875014.092.4II d 2.8017.211,3-Bu-G 4.60508.875014.092.5II e0.5943.749TEG7.12478.184710.6567.21II f0.5913.703DEAm 5.80559.575510.7967.61II g0.5953.717DEG 5.84559.575511.8574.03II h0.2563.6411,3-Bu-G 2.4325 4.35255.5178.37a Diisocyanate is2,4-tolylene diisocyanate.b Modified clay in all cases is I a except in the sample II h the modified clay is I b.c wt%=(weight of dry modified clay/total weight of all components introduce the polymerization process).d1,3-Bu-G,butane diol;DEAm,diethanolamine;DEG,diethylene glycol;TEG,triethylene glycol.Table2Polymerization data of linear polymer samples III a–dRun Diol Diisocyanate b Product Type a g mmol g mmol g Yield(%) III a1,3-Bu-G2.83304.35305.31173.97III b DEG3.25304.35301.23316.22III c TEG4.556304.35305.08357.07III d DEAm4.4404.35305.36661.33a1,3-Bu-G,butane diol;DEAm,diethanolamine;DEG,diethylene glycol; TEG,triethylene glycol.b Diisocyanate is2,4-tolylene diisocyanate.posites were synthesized through the intercalation of diols into organoclay I a,b interlayers followed by addition of TDI to produce the intercalated polyurethanes II a–h.The yields of the products were ranging from67%to94%,as shown in Table1.It was found that the1,3-butylene glycol gives high yields than the other diols in the polymerization into organoclay.The different ratios of organoclay used during the polymerization do not appear as an important factor to affect the yield percent of the product.It was found that the percentages of yield in the nanocomposites is higher than the yield percentage of linear polyurethane(Table2),which may be attributed to catalytic effect for the clay.The struc-tural composition and properties of the product materials was determined by several analytical techniques.The data in Table3illustrate that a high intercalation yields for I a,b occurred.Also,the swelling data indicated that the organoclay I a,b account for higher swelling in the organic solvents and lower swelling in water.While,the affinity to water still present due to the presence of OH group(I b>I a). Moreover,the swelling behavior increased in the polar and aprotic solvents than the non-polar solvent(the swelling followed the order DMF>1,4-dioxane>water>acetone> benzene.The IR spectra of all the prepared samples were illustrated in Fig.1and Table3.The spectra of modified clay I a,b shows that the reported NH stretch band near3425cm−1and NH bend band near1630cm−1are shifted quite substantially to regions associated with+NH3vibration which facilitate the ion exchange with MMT.A characteristic band at464cm−1 for Si–O and at3626cm−1for OH group are shown.This free OH band at3626cm−1in organoclay was disappeared in nanocomposite indicating the strong interaction are occur-ring between OH group in organoclay and the isocyanate forming the isocyanate paring the+NH3band near1630cm−1in organoclay with nanocomposite,it is clear that this band is shifted to higher wavelength near1710cm−1 indicating that an interaction occur between organoclay and the polymer.The spectra of polyurethane III a shows the absorbance appeared at1724cm−1that was assigned to hydrogen-bonded urethane carbonyl(C O),1413cm−1to a secondary urethane amide(C–NH).The spectra of the syn-thesized PU–modified clay shows II a,peaks at1712was caused by the stretching of urethane carbonyl group(C O) and the2927and2864cm−1were due to the asymmetric and symmetric C–H stretching vibration.The3317cm−1peak resulted from the N–H group in hydrogen bonding;the main features of various bond vibration and hydrogen bonding of these PU–modified clay nanocomposites remained the same as that of neat PU.These results deduce that there were no major chemical structural changes in PU,owing to the pres-ence of organoclay.Table3Characterization of modified montmorillonite clayRun no.Microanalysis Loading Swelling(%)IR(ν,cm−1)C%H%N%wt%mmol/100g a Acetone H2O Bz DMF Dioxane Free OH CH aliphatic N+Si0I a 3.2 1.9 1.413.6111.437142301689534342930,285215201046,523,464I b 6.3 2.9 1.3517104.61332031932818133582934,289914891045,523,465a Number of mmol of nitrogen per100g of clay,from calcination;(loss of weight/molecular weight)×1000.A.Rehab,N.Salahuddin/Materials Science and Engineering A399(2005)368–376373Fig.3.XRD pattern of the organoclay I a and PU–organoclay nanocomposites(a)II a–d,(b)II a and II e–g and(c)II h.Table4X-ray diffraction and thermal analysis data for the intercalated samplesSample X-ray data a Calcination TGA data b2θd-Spacing Polymer(%)Clay(%)Weight loss(%)infirst stage Weight loss(%)in second stage Residue I a 6.214.2611.788.316.5–83.5I b 6.3513.9415.684.420.3–79.7II a 5.914.9896.963.0455.141.53.4II b 6.014.7397.22.859.533.86.7II c 6.014.7389.5410.4658.432.510.1II d 5.715.5090.689.3257.428.114.5II e Shoulder>49––50.840.98.3II f 4.519.6496.43.654.442.82.8II g 4.519.6498.11.962.234.43.4II h 4.022.09––51.541.71.8a2θ(◦);d-spacing(˚A).b First stage≈30–350◦C,second stage350–800◦C and residue at800◦C.374 A.Rehab,N.Salahuddin/Materials Science and Engineering A399(2005)368–376Thermal analysis of polyurethane and intercalated mate-rials were determined by both calcination and TGA data listed in Table4and Fig.2a–c.The data and thefigure shows the weight loss encountered during heating the PU–modified clay materials were ranging from85%to98%as determined by both TGA and calcination.The associated weight loss evi-dent in TGA curves is nearly compatible with the calcination measurements.The TGA curves for all samples indicate that there are two stages of decomposition.Thefirst stage is the major and sharp,which involve the thermal decomposition of the intercalated polymers,specially the polymers present on the surfaces of the layers of the clay.The decomposition tem-perature in this stage was started at≈200◦C and take place to≈350◦C,which corresponds the weight loss ranging from 54%to62%.In this stage,there is no clear difference between the samples.Also,it was found that the composites degrade slightly faster than the pure polymer.This may be attributed to the degradation of the small molecules between the interlay-ers.The second stage is broad,in which the weight loss rang-ing from32%to42%in the temperature range≈300–700◦C. In this stage,the composites displayed higher thermal resis-tance than pure polymers.This stage was attributed to further decomposition of the rest intercalated polymers,specially the polymers present in the interlayers of the clay or some salts in the interlayer of the clay or interval the clay mineral loses OH groups and the crystallographic structure collapsed [9].The crystal structure of MMT consists of two-dimensional layers formed by fusing two silica tetrahedral sheets to an edge-shared octahedral sheet of aluminum hydroxide.Stack-Fig.4.(a)Scanning electron micrograph of PU–organoclay nanocomposites II d,(b)Elemental mapping for Si of PU–organoclay nanocomposites II d.A.Rehab,N.Salahuddin/Materials Science and Engineering A399(2005)368–376375ing of layers of clay particles are held by weak dipolar or van der Waals forces[34].XRD is powerful technique to observe the extent of silicate dispersion,ordered or disordered struc-ture in the polyurethane nanocomposites.Fig.3a and c show typical XRD for the organoclay I a,b.The001reflection has sharp intense peak at2Θ=6.2,6.35for I a and I b,respec-tively.The d001spacing was calculated and listed in Table4 from peak positions using Bragg’s law d=λ/2sinθ.It is clear that the d-spacing for Na-MMT(9.6˚A)increased to(14.26, 13.94˚A)since the small inorganic Na+cation is exchanged by onium group in ethanolamine and diethanol amine through an ion exchange process.Fig.3a–c presents three series of XRD corresponding to polyurethane clay nanocomposites: (a)with different ratios of organoclay,(b)with different types of diols and(c)with different types of organoclay.In polyurethane clay nanocomposites II a–d,the position of the peak corresponding to intercalated organoclay show some change to smaller2Θ=6.0–5.7as in Table4and Fig.3a.It is note worthy that the sharp peak obtained in organoclay I a due to a more narrow distribution of the interlamellar spac-ing become broad and have small intensity.The intensity decrease(i.e.,broadness increase)with decreasing the per-centage of organoclay.This suggests that the stacking of the silicate layers become disordered.In one earlier work[35], the same results obtained for polymethyl methacrylate–MMT composites.On the contrary,it is interesting tofind that at constant ratio of organoclay,the peak characteristic to001 plane in II f,g is shifted to higher d-spacing=19.64˚A.This confirmed that the polyurethane is intercalated between the layers.However in II e,XRD is featureless of ordered struc-ture and there is no apparent peak of the clay that can be detected as in Table4and Fig.3b.It is clear that the type of diol affect on the structure of the resulting nanocompos-ites.This diol is used to swell the organoclay before addition toluene diisocyanate Fig.3c.In II h,the peak characteristic to001is shifted to smaller2Θ=4and the intensity of the peak is small.The broadness of the peak may suggest that clay show some mixture of intercalated and exfoliated struc-ture.However,the exfoliated structure of the silicate layers is not judged from only this diffractograms.These results con-firm that modified MMT with different chemical structure, different percentage of clay lead to various degree of the dispersion in the polymer matrix.These results similar to the one described using another structures in PU nanocomposites [36].SEM examination of the fracture surface of the compression-molded samples did not reveal the inorganic domains at the maximum possible magnification.Fig.4a shows a micrograph of the fracture surface at9000magnifica-tions.It is observed that there is no mineral domains could be seen.The search for any aggregation was aided by an energy dispersion X-ray probe.An image for element mapping for Si was shown in Fig.4b.The uniformity of the white dots representative of Si,indicates that the mineral domain are submicron and are homogenously dispersed in the polymer matrix.4.ConclusionA series of polyurethane organoclay nanocomposites were synthesized by in situ polymerization using different kinds of diols and toluene diisocyanate in the presence of montmoril-lonite clay modified with diethanolamine or triethanolamine. The infrared spectroscopy confirms the interaction between the polymer and silicate layers.X-ray analysis showed that the d-spacing increased to about22˚A or more with some dis-order for low MMT content,whereas for higher content,the intercalated clay rearranged to a minor extent.SEM results confirm the dispersion of nanometer silicate layers in the polyurethane matrix.References[1]A.Morikawa,Y.Iyoku,M.A.Kakimoio,Polym.J.24(1992)689.[2]R.Krishnamoori,R.A.Vaia,E.P.Giannelis,Chem.Mater.8(1996)1728.[3]R.P.Andres,S.Datta,D.B.Janes,C.P.Hubiak,R.Reifenberger,in:H.S.Nalwa(Ed.),The Handbook of Nanostructured Materials andTechnology,Academic Press,Das Deigo,1998.[4]T.J.Pinnavaia,Science220(1983)365.[5]A.Moet,A.Akelah,Mater.Lett.18(1993)97.[6]A.Moet,A.Akelah,N.Salahuddin,A.Hiltner,E.Baer,Mater.Res.Symp.Proc.351(1994)163.[7]uki,M.Kawasumi,Y.Kojima,A.Okada,T.Kurauchi,O.Kamigaito,J.Mater.Res.8(1993)1174.[8]R.D.Davis,J.W.Gilman,D.L.VanderHart,Polym.Degrad.Stab.79(2003)111.[9]N.Salahuddin,A.Rehab,Polym.Int.52(2003)241.[10]N.Salahuddin,A.Moet,A.Hiltner,E.Baer,Eur.Polym.J.38(2002)1477.[11]T.Agag,T.Koga,T.Takeichi,Polymer42(2001)3399.[12]X.Kornmann,L.A.Berglund,J.Sterte,E.P.Giannelis,Polym.Eng.Sci.38(1998)1351.[13]X.Liu,Q.Wu,Polymer42(2001)10013.[14]T.Yanagisawa,C.Yokoyama,K.Kuroda,C.Kato,Bull.Chem.Soc.Jpn.63(1990)47.[15]J.W.Kim,F.Liu,H.J.Choi,S.H.Hong,J.Joo,Polymer44(2003)289.[16]J.Wang,J.Du,J.Zhu,C.A.Wilkie,Polym.Degrad.Stab.11(2002)249.[17]C.O.Oriakhi,X.Zhang,M.M.Lerner,Appl.Clay Sci.15(1999)109.[18]H.W.Chen,F.C.Chang,Polymer42(2001)9763.[19]B.Lepoittevin,M.Devalckenaere,N.Pantoustier,M.Alexandre,D.Kubies,C.Calberg,R.J´e rˆo me,P.Dubois,Polymer43(2002)4017.[20]J.Du,J.Zhu,C.A.Wilkie,J.Wang,Polym.Degrad.Stab.11(2002)377.[21]K.Iwata,Handbook of Polyurethane Resins,The Nikkan KogyoShinbun Ltd.,Tokyo,Japan,1987(in Japanese,Chapters1and2).[22]Z.Wang,T.J.Pinnavaia,Chem.Mater.10(1998)3769.[23]S.Solarski,S.Benali,M.Rochery, E.Devaux,M.Alexan-dre, F.Monteverde,P.Dubois,J.Appl.Polym.Sci.95(2005) 238.[24]X.Cao,L.J.Lee,T.Widya,C.Macosko,Polymer46(2005)775.[25]J.W.Xiong,Y.H.Liu,X.H.Yang,X.L.Wang,Polym.Degrad.Stab.86(2004)549.[26]P.Ni,J.Li,J.S.Suo,S.B.Li,J.Appl.Polym.Sci.94(2004)534.376 A.Rehab,N.Salahuddin/Materials Science and Engineering A399(2005)368–376[27]S.Y.Moon,J.K.Kim,C.Nah,Y.S.Lee,Eur.Polym.J.40(2004)1615.[28]W.J.Choi,S.H.Kim,Y.J.Kim,S.C.Kim,Polymer45(2004)6045.[29]B.Han,A.M.Cheng,G.D.Ji,S.S.Wu,J.Shen,J.Appl.Polym.Sci.91(2004)2536.[30]I.Rhoney,S.Brown,N.E.Hudson,R.A.Pethrick,J.Appl.Polym.Sci.91(2004)1335.[31]Y.Chen,S.Zhou,H.Yang,G.Gu,L.Wu,J.Colloid Interface Sci.279(2004)370.[32]M.Song,K.J.Yao,Mater.Sci.Technol.20(2004)989.[33]T.Takeichi,Y.Guo,J.Appl.Polym.Sci.90(2003)4075.[34]R.E.Grim,Clay Mineralogy,McGraw-Hill,New York,1968.[35]N.Salahuddin,M.Shehata,Polymer42(2001)8379.[36]T.K.Chen,Y.I.Tien,K.H.Wei,Polymer41(2000)1345.。