结构力学一二三汇总
- 格式:doc
- 大小:596.00 KB
- 文档页数:9
W=各部件的自由度总和-全部约束总数公式一:W=3m-(2n+r)公式二:W=2J-(b+r)m__刚片数(基础不计)n__单铰数(复铰结点相当于n-1个单铰结点)r__支座链杆数(固定端支座相当于3根链杆,固定铰支座相当于2根链杆)J__结点数b__链杆数W>0, 缺少足够联系,体系几何可变。
W=0, 具备成为几何不变体系所要求的最少联系数目。
W<0, 体系具有多余联系。
结构力学内力图规律1、在无荷载区段,Q 图为一水平直线,而M 图为一倾斜直线;且Q 为正时,M 图由左向右向下斜,Q 为负时,M 由左向右向上斜;2、在均布荷载区段,Q 图为一倾斜直线,且荷载为正,Q 图由左向右向下斜;荷载为负,Q 图由左向右向上斜;M 图为一二次抛物线,且荷载为正,M 图凹向上;剪力为零处,弯矩取得最大值;3、在集中力作用处,Q 图将发生突变,其突变值等于该集中力的大小,且从左向右画图,其突变的方向与该集中力方向相同;M 图将发生转折;4、在集中力偶作用处,Q 图无变化,M 图将发生突变,其突变值等于该集中力偶的大小,突变的方向是从左向右画图顺增逆减。
梁的弯矩图的一般作法归纳:(1)求支座反力(2)选定外力的不连续点(如:集中力、集中力偶作用点、分布载荷的起点和终点等)为控制截面,求出控制截面的弯矩值;(3)分段画弯矩图。
当控制截面间无荷载时,根据控制截面的弯矩值,即可作出直线弯矩图。
当控制截面间有荷载作用时,根控制载面的弯矩值作出直线图形后,还应叠加这一段按简支梁求得的弯矩图。
J 斜梁 分析顺序:先附属部分,后基本部分。
荷载仅在基本部分上,只基本部分受力,附属部分不受力;荷载在附属部分上,除附属部分受力外,基本部分也受力。
两刚片规则: 二个刚片用一个铰和一根不通过此铰的链杆相连,组成的体系是几何不变的,且无多余约束。
二个刚片用不完全相交,也不完全平行的三根链杆相连,组成的体系是几何不变的,且无多余约束。
第二章静定梁与静定刚架§2-1 单跨静定梁一、概述1、单跨静定梁的结构形式:水平梁、斜梁及曲梁简支梁、悬臂梁及伸臂梁。
2、3个内力分量的规定:图示(注:1、附加增量;2、成对出现:作用力与反作用力;3、正负号统一)轴力N(截面上应力沿杆轴切线方向的合力):拉力+,压力-剪力Q(截面上应力沿杆轴法线方向的合力):以绕截面邻近小段隔离体顺时针旋转为+,反之为-弯矩M(截面上应力对截面形心的力矩):弯矩使杆件下部受拉时为正,上侧受拉时为负3、截面法、分离体、平衡方程:求指定截面的内力的基本方法。
图示将指定截面假想截开,切开后截面的内力暴露为外力,取任一局部作为隔离体,作隔离体受力图(荷载、反力、内力组成平面一般力系或平面汇交力系),由隔离体的平衡条件可以确定所求截面的三个内力。
平面一般力系平衡方程的三种形式。
注意:平衡方程的正负和内力的正负是完全不同性质的两套符号系统。
受力平衡条件:平面一般力系,平衡方程不同形式(正负号:同方向同符号)轴力=截面一边的所有外力沿杆轴切线方向的投影代数和;剪力=截面一边的所有外力沿杆轴法线方向的投影代数和;弯矩=截面一边的所有外力对截面形心的力矩代数和。
画隔离体受力图时,注意:(1)隔离体与其周围约束要全部截断,而以相应的约束力代替;(2)约束力要符合约束的性质。
截断链杆以轴力代替,截断受弯构件时以轴力、剪力及弯矩代替,去掉支座时要以相应的支座反力代替。
(3)隔离体是应用平衡条件进行分析的对象。
在受力图中只画隔离体本身所受到的力,不画隔离体施给周围的力;(4)不要遗漏力。
包括荷载及截断约束处的约束力;(5)未知力一般假设为正号方向,已知力按实际方向画。
(6)“三清”:截面左右分清、外力清楚、正负号清楚4、内力图:图示1)定义:表示结构上各截面的内力随横截面位置变化规律的图形。
内力方程式:内力与x(表示横截面位置的变量)之间的函数表达式。
2)几点注意(1)弯矩图画在受拉边、不标明正负,轴力图剪力图画在任一边,标明正负。
结构力学主要知识点一、基本概念1、计算简图:在计算结构之前,往往需要对实际结构加以简化,表现其主要特点,略去其次要因素,用一个简化图形来代替实际结构。
通常包括以下几个方面:A 、杆件的简化:常以其轴线代表B 、支座和节点简化:①活动铰支座、固定铰支座、固定支座、滑动支座;②铰节点、刚节点、组合节点。
C 、体系简化:常简化为集中荷载及线分布荷载D 、体系简化:将空间结果简化为平面结构2、结构分类:A 、按几何特征划分:梁、拱、刚架、桁架、组合结构、悬索结构。
B 、按内力是否静定划分:①静定结构:在任意荷载作用下,结构的全部反力和内力都可以由静力平衡条件确定。
②超静定结构:只靠平衡条件还不能确定全部反力和内力,还必须考虑变形条件才能确定。
二、平面体系的机动分析1、体系种类A 、几何不变体系:几何形状和位置均能保持不变;通常根据结构有无多余联系,又划分为无多余联系的几何不变体系和有多余联系的几何不变体系。
B 、几何可变体系:在很小荷载作用下会发生机械运动,不能保持原有的几何形状和位置。
常具体划分为常变体系和瞬变体系。
2、自由度:体系运动时所具有的独立运动方程式数目或者说是确定体系位置所需的独立坐标数目。
3、联系:限制运动的装置成为联系(或约束)体系的自由度可因加入的联系而减少,能减少一个自由度的装置成为一个联系①一个链杆可以减少一个自由度,成为一个联系。
②一个单铰为两个联系。
4、计算自由度:)2(3r h m W +-=,m 为刚片数,h 为单铰束,r 为链杆数。
A 、W>0,表明缺少足够联系,结构为几何可变;B 、W=0,没有多余联系;C 、W<0,有多余联系,是否为几何不变仍不确定。
5、几何不变体系的基本组成规则:A 、三刚片规则:三个刚片用不在同一直线上的三个单铰两两铰联,组成的体系是几何不变的,而且没有多余联系。
B 、二元体规则:在一个刚片上增加一个二元体,仍未几何不变体系,而且没有多余联系。
《结构力学》知识点归纳梳理(最祥版本)第一章绪论第一节:结构力学的研究对象和任务一、结构的定义:由基本构件(如拉杆、柱、梁、板等)按照合理的方式所组成的构件的体系,用以支承荷载并传递荷载起支撑作用的部分。
注:结构一般由多个构件联结而成,如:桥梁、各种房屋(框架、桁架、单层厂房)等。
最简单的结构可以是单个的构件,如单跨梁、独立柱等。
二、结构的分类:由构件的几何特征可分为以下三类1.杆件结构——由杆件组成,构件长度远远大于截面的宽度和高度,如梁、柱、拉压杆。
2.薄壁结构——结构的厚度远小于其它两个尺度,平面为板曲面为壳,如楼面、屋面等。
3.实体结构——结构的三个尺度为同一量级,如挡土墙、堤坝、大块基础等。
第二节结构计算简图一、计算简图的概念:将一个具体的工程结构用一个简化的受力图形来表示。
选择计算简图时,要它能反映工程结构物的如下特征:1.受力特性(荷载的大小、方向、作用位置)2.几何特性(构件的轴线、形状、长度)3.支承特性(支座的约束反力性质、杆件连接形式)二、结构计算简图的简化原则1.计算简图要尽可能反映实际结构的主要受力和变形特点..............,使计算结果安全可靠;2.略去次要因素,便于分析和计算.......。
三、结构计算简图的几个简化要点1.实际工程结构的简化:由空间向平面简化2.杆件的简化:以杆件的轴线代替杆件3.结点的简化:杆件之间的连接由理想结点来代替(1)铰结点:铰结点所连各杆端可独自绕铰心自由转动,即各杆端之间的夹角可任意改变。
不存在结点对杆的转动约束,即由于转动在杆端不会产生力矩,也不会传递力矩,只能传递轴力和剪力,一般用小圆圈表示。
(2)刚结点:结点对与之相连的各杆件的转动有约束作用,转动时各杆间的夹角保持不变,杆端除产生轴力和剪力外,还产生弯矩,同时某杆件上的弯矩也可以通过结点传给其它杆件。
(3)组合结点(半铰):刚结点与铰结点的组合体。
4.支座的简化:以理想支座代替结构与其支承物(一般是大地)之间的连结(1)可动铰支座:又称活动铰支座、链杆支座、辊轴支座,允许沿支座链杆垂直方向的微小移动。
结构力学考研知识点归纳结构力学是土木工程专业研究生入学考试的重要科目之一,它主要研究建筑结构在外力作用下的内力、变形和稳定性问题。
以下是结构力学考研的一些关键知识点归纳:基本概念和原理- 力的基本概念:力的三要素(大小、方向、作用点)。
- 静力学基本定理:平衡条件、力矩平衡等。
- 材料力学性质:弹性模量、泊松比、屈服强度等。
静定结构分析- 静定梁的内力分析:弯矩、剪力、轴力的计算。
- 静定桁架的内力分析:节点法、截面法。
- 三铰拱和悬索结构的内力分析。
超静定结构分析- 力法、位移法和弯矩分配法的原理和应用。
- 连续梁和框架结构的分析。
- 影响线的概念及其应用。
稳定性分析- 临界载荷的确定方法。
- 欧拉公式及其应用。
- 稳定性与结构形式、材料特性的关系。
能量方法- 虚功原理和最小势能原理。
- 莫尔定理和卡斯特拉诺定理。
- 能量方法在结构分析中的应用。
矩阵位移法- 局部坐标系和全局坐标系的建立。
- 刚度矩阵的组装和边界条件的处理。
- 结构的自由振动分析。
非线性问题- 材料非线性:塑性变形、破坏。
- 几何非线性:大变形问题。
- 接触非线性问题的处理方法。
结构动力分析- 单自由度和多自由度系统的振动分析。
- 地震作用下的结构响应分析。
- 随机振动和疲劳分析。
结构优化设计- 结构优化的基本概念和方法。
- 拓扑优化、形状优化和尺寸优化。
- 优化设计在实际工程中的应用。
结束语结构力学作为一门应用广泛的学科,其知识点繁多且相互关联。
考研复习时,不仅要掌握上述知识点,还要注重理论与实践的结合,通过大量的练习来加深理解。
希望以上的归纳能够帮助考生们更系统地复习结构力学,为考研做好充分的准备。
结构力学主要知识点一、基本概念1、计算简图:在计算结构之前,往往需要对实际结构加以简化,表现其主要特点,略去其次要因素,用一个简化图形来代替实际结构。
通常包括以下几个方面:A、杆件得简化:常以其轴线代表B、支座与节点简化:①活动铰支座、固定铰支座、固定支座、滑动支座;②铰节点、刚节点、组合节点。
C、体系简化:常简化为集中荷载及线分布荷载D、体系简化:将空间结果简化为平面结构2、结构分类:A、按几何特征划分:梁、拱、刚架、桁架、组合结构、悬索结构。
B、按内力就是否静定划分:①静定结构:在任意荷载作用下,结构得全部反力与内力都可以由静力平衡条件确定。
②超静定结构:只靠平衡条件还不能确定全部反力与内力,还必须考虑变形条件才能确定。
二、平面体系得机动分析1、体系种类A、几何不变体系:几何形状与位置均能保持不变;通常根据结构有无多余联系,又划分为无多余联系得几何不变体系与有多余联系得几何不变体系。
B、几何可变体系:在很小荷载作用下会发生机械运动,不能保持原有得几何形状与位置。
常具体划分为常变体系与瞬变体系。
2、自由度:体系运动时所具有得独立运动方程式数目或者说就是确定体系位置所需得独立坐标数目。
3、联系:限制运动得装置成为联系(或约束)体系得自由度可因加入得联系而减少,能减少一个自由度得装置成为一个联系①一个链杆可以减少一个自由度,成为一个联系。
②一个单铰为两个联系。
4、计算自由度:,m为刚片数,h为单铰束,r为链杆数。
A、W>0,表明缺少足够联系,结构为几何可变;B、W=0,没有多余联系;C、W<0,有多余联系,就是否为几何不变仍不确定。
5、几何不变体系得基本组成规则:A、三刚片规则:三个刚片用不在同一直线上得三个单铰两两铰联,组成得体系就是几何不变得,而且没有多余联系。
B、二元体规则:在一个刚片上增加一个二元体,仍未几何不变体系,而且没有多余联系。
C、两刚片原则:两个刚片用一个铰与一根不通过此铰得链杆相联,为几何不变体系,而且没有多余联系。
结构力学知识点总结结构力学是固体力学的一个分支,主要研究工程结构受力和传力的规律,以及如何进行结构优化。
以下是对结构力学主要知识点的总结。
一、结构的计算简图结构计算简图是对实际结构进行力学分析时,经过简化抽象得到的力学模型。
它需要忽略一些次要因素,突出结构的主要特征。
在确定计算简图时,要明确结构的支座形式。
常见的支座有固定支座、可动铰支座和固定铰支座。
固定支座限制结构在水平和竖直方向的移动以及转动;可动铰支座限制结构沿支座链杆方向的移动,允许转动;固定铰支座限制结构在水平和竖直方向的移动,但允许转动。
此外,还需要确定结构的荷载类型。
荷载包括集中荷载和分布荷载。
集中荷载是作用在结构上的一个点的荷载,如重物的压力;分布荷载则是作用在结构一段长度或面积上的荷载,如梁的自重。
二、平面体系的几何组成分析这部分内容主要是判断平面体系的几何不变性。
通过计算自由度,以及运用几何不变体系的组成规则,可以确定体系是否几何不变。
自由度是指确定体系位置所需的独立坐标数。
一个刚片在平面内有三个自由度。
计算平面体系自由度的公式为:W = 3m 2h r ,其中 m为刚片数,h 为单铰数,r 为支座链杆数。
几何不变体系的组成规则包括:两刚片规则、三刚片规则和二元体规则。
两刚片通过一个铰和一根不通过该铰的链杆相连组成几何不变体系;三刚片用不在同一直线上的三个铰两两相连组成几何不变体系;在一个体系上增加或拆除一个二元体不改变体系的几何组成性质。
三、静定结构内力计算静定结构是指在任意荷载作用下,其内力和反力都可以由静力平衡条件唯一确定的结构。
静定梁的内力包括弯矩、剪力和轴力。
计算内力的方法通常是先求出支座反力,然后通过截面法计算指定截面的内力。
弯矩使梁的受拉一侧纤维受拉为正;剪力以使隔离体顺时针转动为正。
静定刚架的内力计算方法与静定梁类似,但需要注意刚架中各杆的内力可能有弯矩、剪力和轴力。
在计算时,要正确判断各杆的内力方向。
静定桁架的内力计算通常采用节点法和截面法。
结构力学知识点总结大全结构力学是研究结构的力学性能和变形规律的学科。
它主要涉及静力学、动力学、损伤和断裂力学等方面的知识。
以下是结构力学的一些基本知识点总结:1.力学基础知识力学基础知识主要包括质点静力学、刚体静力学、力的合成与分解、力矩、杠杆原理等内容。
了解这些基础知识是掌握结构力学的基础。
2.静力学静力学研究物体处于静定平衡状态下的力学性质。
常见的内容包括力的平衡、支持反力的计算、摩擦力等。
3.结构受力分析结构受力分析是指对结构中各个零件所受到的力进行分析和计算,以确定结构的受力情况。
常见的方法有力的平衡法、截面法、力法等。
4.杆件受力分析杆件受力分析是指对杆件在外力作用下的受力情况进行分析和计算。
常见的情况有轴向受力、剪力、弯矩等。
5.梁的受力分析梁是指在跨越两个或多个支点的情况下承受外力的杆件,梁的受力分析主要包括计算梁的弯曲力、剪力和挠度。
6.桁架分析桁架是由多个杆件和节点组成的结构体系,桁架分析主要研究桁架受力分析。
常见的分析方法有截面法、节点反力法等。
7.变形分析变形分析是指对结构在受力作用下的变形情况进行分析和计算。
常见的变形形式有轴向变形、剪切变形、弯曲变形和挠度等。
8.动力学动力学是研究结构在受到外力作用下的运动规律和响应情况。
常见的内容有弹性振动、阻尼振动和地震反应等。
9.材料力学性能材料力学性能是指材料在受力下所表现出的力学特性,包括材料的强度、刚度、蠕变性能等。
10.损伤和断裂力学损伤和断裂力学研究结构中的损伤和断裂行为,包括材料的疲劳断裂、断裂韧性等。
总之,结构力学是研究结构的力学性能和变形规律的学科,涵盖了静力学、动力学、损伤和断裂力学等方面的知识。
掌握这些知识对于设计和分析工程结构至关重要。
结构力学公式大全1、常用截面几何与力学特征表注:1.I称为截面对主轴(形心轴)的截面惯性矩(mm4)。
基本计算公式如下:2.W称为截面抵抗矩(mm3),它表示截面抵抗弯曲变形能力的大小,基本计算公式如下:3.i称截面回转半径(mm),其基本计算公式如下:4.上列各式中,A为截面面积(mm2),y为截面边缘到主轴(形心轴)的距离(mm),I为对主轴(形心轴)的惯性矩。
5.上列各项几何及力学特征,主要用于验算构件截面的承载力和刚度。
2、单跨梁的内力及变形表2.1 简支梁的反力、剪力、弯矩、挠度2.2 悬臂梁的反力、剪力、弯矩和挠度2.3 一端简支另一端固定梁的反力、剪力、弯矩和挠度2.4 两端固定梁的反力、剪力、弯矩和挠度2.5 外伸梁的反力、剪力、弯矩和挠度3.等截面连续梁的内力及变形表3.1 二跨等跨梁的内力和挠度系数注:1.在均布荷载作用下:M=表中系数×ql2;V=表中系数×ql;。
2.在集中荷载作用下:M=表中系数×Fl;V=表中系数×F;。
[例1] 已知二跨等跨梁l=5m,均布荷载q=11.76kN/m,每跨各有一集中荷载F=29.4kN,求中间支座的最大弯矩和剪力。
[解] MB支=(-0.125×11.76×52)+(-0.188×29.4×5)=(-36.75)+(-27.64)=-64.39kN·mVB左=(-0.625×11.76×5)+(-0.688×29.4)=(-36.75)+(-20.23)=-56.98kN[例2] 已知三跨等跨梁l=6m,均布荷载q=11.76kN/m,求边跨最大跨中弯矩。
[解] M1=0.080×11.76×62=33.87kN·m。
3.2 三跨等跨梁的内力和挠度系数注:1.在均布荷载作用下:M=表中系数×ql2;V=表中系数×ql;。
结构力学考点归纳总结第一章一、简化的原则1. 结构体系的简化——分解成几个平面结构2. 杆件的简化——其纵向轴线代替。
3. 杆件间连接的简化——结点通常简化为铰结点或刚结点4. 结构与基础间连接的简化结构与基础的连接区简化为支座。
按受力特征,通常简化为:(1)滚轴支座:只约束了竖向位移,允许水平移动和转动。
提供竖向反力。
在计算简图用支杆表示。
(2)铰支座:约束竖向和水平位移,只允许转动。
提供两个反力。
在计算简图用两根相交的支杆表示。
(3)定向支座:只允许沿一个方向平行滑动。
提供反力矩和一个反力。
在计算简图用两根平行支杆表示。
(4) 固定支座:约束了所有位移。
提供两个反力也一个反力矩。
5. 材料性质的简化——对组成各构件的材料一般都假设为连续的、均匀的、各向同性的、完全弹性或弹塑性的6. 荷载的简化——集荷载和分布荷载§1-4 荷载的分类一、按作用时间的久暂荷载可分为恒载和活载二、按荷载的作用范围荷载可分为集荷载和分布荷载三、按荷载作用的性质荷载可分为静力荷载和动力荷载四、按荷载位置的变化荷载可分为固定荷载和移动荷载第二章几何构造分析几何不变体系:体系的位置和形状是不能改变的讨论的前提:不考虑材料的应变2.1.2 运动自由度SS:体系运动时可以独立改变的坐标的数目。
W:W= (各部件自由度总和a )-(全部约束数总和) W=3m-(3g+2h+b)或w=2j-b-r.注意:j与h的区别约束:限制体系运动的装置2.1.4 多余约束和非多余约束不能减少体系自由度的约束叫多余约束。
能够减少体系自由度的约束叫非多余约束。
注意:多余约束与非多余约束是相对的,多余约束一般不是唯一指定的。
2.3.1 二元体法则约束对象:结点 C 与刚片约束条件:不共线的两链杆;瞬变体系§2-4 构造分析方法与例题1. 先从地基开始逐步组装2.4.1 基本分析方法(1)一. 先找第一个不变单元,逐步组装1. 先从地基开始逐步组装2. 先从内部开始,组成几个大刚片后,总组装二. 去除二元体2.4.3 约束等效代换1. 曲(折)链杆等效为直链杆2. 联结两刚片的两链杆等效代换为瞬铰①.分析:1.折链杆AC 与DB 用直杆2、3代替;2.刚片ECD 通过支杆1与地基相连。
结构力学主要知识点归纳(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--结构力学主要知识点一、基本概念1、计算简图:在计算结构之前,往往需要对实际结构加以简化,表现其主要特点,略去其次要因素,用一个简化图形来代替实际结构。
通常包括以下几个方面:A、杆件的简化:常以其轴线代表B、支座和节点简化:①活动铰支座、固定铰支座、固定支座、滑动支座;②铰节点、刚节点、组合节点。
C、体系简化:常简化为集中荷载及线分布荷载D、体系简化:将空间结果简化为平面结构2、结构分类:A、按几何特征划分:梁、拱、刚架、桁架、组合结构、悬索结构。
B、按内力是否静定划分:①静定结构:在任意荷载作用下,结构的全部反力和内力都可以由静力平衡条件确定。
②超静定结构:只靠平衡条件还不能确定全部反力和内力,还必须考虑变形条件才能确定。
二、平面体系的机动分析1、体系种类A、几何不变体系:几何形状和位置均能保持不变;通常根据结构有无多余联系,又划分为无多余联系的几何不变体系和有多余联系的几何不变体系。
B、几何可变体系:在很小荷载作用下会发生机械运动,不能保持原有的几何形状和位置。
常具体划分为常变体系和瞬变体系。
2、自由度:体系运动时所具有的独立运动方程式数目或者说是确定体系位置所需的独立坐标数目。
3、联系:限制运动的装置成为联系(或约束)体系的自由度可因加入的联系而减少,能减少一个自由度的装置成为一个联系①一个链杆可以减少一个自由度,成为一个联系。
②一个单铰为两个联系。
4、计算自由度:)W+m-=,m为刚片数,h为单铰束,r为链杆数。
2(3rhA、W>0,表明缺少足够联系,结构为几何可变;B、W=0,没有多余联系;C、W<0,有多余联系,是否为几何不变仍不确定。
5、几何不变体系的基本组成规则:A、三刚片规则:三个刚片用不在同一直线上的三个单铰两两铰联,组成的体系是几何不变的,而且没有多余联系。
结构力学总结(通用5篇)结构力学总结篇11、矩阵位移法:局部坐标下单元刚度矩阵:值有几个,4i,2i,6i/l,12i/l/l,EA/l,当u,fx相遇时,是EA/l;当M和theta相遇时,是4i和2i,M和theta在同一杆端时为4,不同杆端为2;当M和v相遇或Fy和theta相遇时,为6i/l;当Fy和v相遇时是12i/l/l.。
符号约定:第”虎“行”虎“列为负,(对角线元素除外,因为”虎“虎”得正)。
局部坐标有单刚,五值一0阵里藏。
大小记忆有决窍,心中有数不用忙。
轴向相遇EA/l,M,theta,4 2 享,6i/l对转剪,两切12 l方上。
符号记忆很方便,负值虎行虎列上,对角非负是特例,余值非负是正常。
x 向右,y向下,从x到y是顺时针,坐标变换时,角度alpha也是顺时针,反之亦然。
你向右,我向下,从右到下顺时针,坐标转换方向同。
从单刚矩阵到结构总体矩阵(从百草园到三味书屋):结构结点位移与相应位置单元杆端位移相同,结构结点固端弯矩与相应位置所有杆端内力之和相等(由杆端内力叠加生成),简称“位移相同,内力叠成”。
等效结点荷载:“敌人的敌人就是朋友” 各单元固端内力先转换到整体坐标系,然后每一结点固端内力就是此结点所有杆端内力之和,结点固端内力反向就是等效结点荷载。
2、力矩分配法:刚结点上有集中力偶时,反向与固端弯矩相加,然后按分配系数反向进行分配就行,集中力偶不属于任何一个杆端。
“敌人的敌人就是朋友”“刚结有力偶,反向加固矩,转刚求配系,反向分杆端。
相加求结果,力偶循天边。
”“北方有佳人,绝世而独立,一顾倾人城,再顾倾人国。
宁不知倾城与倾国,佳人难再得。
”有悬臂部分时,除悬臂外只和一个刚结点相连时,此刚结点可不约束,但悬臂在刚结点处的弯矩可直接求出,与此刚结点相邻的结点为远端,远端由悬臂部分荷载引起的弯矩为悬臂连接的刚结点的一半。
”刚结有悬臂,邻结而有负荷。
此刚不束约,弯矩平衡得。
刚结远端矩,一半由此结。
结构力学知识点总结
基本概念:包括计算简图(如杆件、支座和节点的简化,体系简化等)、结构分类(按几何特征划分如梁、拱、刚架等,按内力是否静定划分如静定结构、超静定结构等)。
结构的组成规则:研究结构在各种效应(如外力、温度效应、施工误差及支座变形等)作用下的响应。
内力和位移计算:包括轴力、剪力、弯矩、扭矩的计算,以及线位移和角位移的计算。
动力响应计算:研究结构在动力荷载作用下的自振周期、振型等。
分析方法:结构力学通常有三种分析的方法,即能量法、力法和位移法。
由位移法衍生出的矩阵位移法后来发展出有限元法,成为利用计算机进行结构计算的理论基础。
计算工具:包括受力分析、弹性力学、杆件理论、振动分析、动力学理论、有限元分析软件、数值计算方法、计算机模拟等。
应用领域:结构力学在生活中的应用非常广泛,主要体现在建筑领域(如建筑设计和施工)、机械工程(如汽车工程)和航空航天工程(如飞机、火箭、卫星等的设计和制造)等方面。
以上仅是结构力学的一些主要知识点,实际上结构力学的内容非常丰富,需要不断学习和实践才能掌握。