高中数学人教b版高一必修二同步教案:圆柱、圆锥、圆台和球4
- 格式:doc
- 大小:780.00 KB
- 文档页数:2
1.1.3.圆柱、圆锥、圆台和球[学习目标].1.通过观察实物和几何模型,总结出圆柱、圆锥、圆台和球的结构特征.2.能根据圆柱、圆锥、圆台和球的定义和结构特征,掌握它们的相关概念、分类和表示方法.[知识链接](1)如图①,在直角三角形ABC 中,sin B =AC AB ,cos B =BCAB .(2)如图②,圆内接三角形ABC ,AC 过圆心,则∠B =90°.........①......②........③.(3)如图③,在△ABC 中,DE ∥BC ,则AD DB =AEEC .[预习导引]1.圆柱、圆锥和圆台(1)一个半圆绕着它的直径所在的直线旋转一周所形成的曲面叫球面;球面围成的几何体,叫做球.(2)球面被经过球心的平面截得的圆叫做球的大圆;被不经过球心的平面截得的圆叫做球的小圆.(3)球的截面的性质:①球的截面是一个圆面;②球心与截面圆心的连线垂直于截面;③球半径R、截面圆半径r,则球心到截面的距离d(4)球面距离是指经过两点的大圆在这两点之间的一段劣弧的长度.(5)在球面上,两点之间的最短距离,就是经过这两点的大圆在这两点间的一段劣弧的长度,我们把这个弧长叫做两点的球面距离.3.组合体由柱、锥、台、球等基本几何体组合而成的几何体叫做组合体.要点一.旋转体的结构特征例1.判断下列各命题是否正确.(1)圆柱上底面圆上任一点与下底面圆上任一点的连线都是圆柱的母线;(2)一直角梯形绕下底所在直线旋转一周,所形成的曲面围成的几何体是圆台;(3)圆锥、圆台中过轴的截面是轴截面,圆锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形;(4)到定点的距离等于定长的点的集合是球.解.(1)错.由圆柱母线的定义知,圆柱的母线应平行于轴.(2)错.直角梯形绕下底所在直线旋转一周所形成的几何体是由一个圆柱与一个圆锥组成的简单组合体,如图所示.(3)正确.(4)错.应为球面.规律方法.1.圆柱、圆锥、圆台和球都是一个平面图形绕其特定边(弦)旋转而成的几何体,必须准确认识各旋转体对旋转轴的具体要求.2.只有理解了各旋转体的生成过程,才能明确由此产生的母线、轴、底面等概念,进而判断与这些概念有关的命题的正误.跟踪演练1.下列叙述中正确的个数是(..)①以直角三角形的一边为轴旋转所得的旋转体是圆锥;②以直角梯形的一腰为轴旋转所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆;④用一个平面去截圆锥,得到一个圆锥和一个圆台.A.0B.1C.2D.3答案.A解析.①应以直角三角形的一条直角边所在直线为轴旋转才可以得到圆锥;②以直角梯形垂直于底边的一腰所在直线为轴旋转才可以得到圆台;③它们的底面为圆面;④用平行于圆锥底面的平面截圆锥才可得到一个圆锥和一个圆台.故四句话全不正确.要点二.简单组合体的结构特征例2.如图所示,已知AB是直角梯形ABCD与底边垂直的一腰.分别以AB,CD,AD为轴旋转,试说明所得几何体的结构特征.解.(1)以AB边为轴旋转所得旋转体是圆台,如图(1)所示.(2)以CD边为轴旋转所得旋转体为一组合体:上部为圆锥,下部为圆台,再挖去一个小圆锥.如图(2)所示.(3)以AD边为轴旋转得到一个组合体,它是一个圆柱上部挖去一个圆锥.如图(3)所示.规律方法.1.平面图形以一边所在直线为轴旋转时,要过有关顶点向轴作垂线,然后想象所得旋转体的结构和组成.2.必要时作模型培养动手能力.跟踪演练2.如图(1)、(2)所示的图形绕虚线旋转一周后形成的立体图形分别是由哪些简单几何体组成的?解.图(1)、图(2)旋转后的图形如图所示分别是图①、图②.其中图①是由一个圆柱O1O2和两个圆台O2O3,O3O4组成的;图②是由一个圆锥O5O4,一个圆柱O3O4及一个圆台O1O3中挖去圆锥O2O1组成的.要点三.有关几何体的计算问题例3.如图所示,用一个平行于圆锥SO 底面的平面截这个圆锥,截得圆台上、下底面的面积之比为1∶16,截去的圆锥的母线长是3 cm ,求圆台O ′O 的母线长.解.设圆台的母线长为l ,由截得圆台上、下底面面积之比为1∶16,可设截得圆台的上、下底面的半径分别为r,4r .过轴SO 作截面,如图所示. 则△SO ′A ′∽△SOA ,SA ′=3 cm. ∴SA ′SA =O ′A ′OA . ∴33+l =r 4r =14. 解得l =9(cm), 即圆台的母线长为9 cm.规律方法.用平行于底面的平面去截柱、锥、台等几何体,注意抓住截面的性质(与底面全等或相似),同时结合旋转体中的经过旋转轴的截面(轴截面)的性质,利用相似三角形中的相似比,构设相关几何变量的方程组而得解.跟踪演练3.一个圆台的母线长为12 cm ,两底面面积分别为4π cm 2和25π cm 2.求: (1)圆台的高;(2)截得此圆台的圆锥的母线长. 解.如图,将圆台恢复成圆锥后作其轴截面,设圆台的高为h cm ,截得该圆台的圆锥的母线为x cm ,由条件可得圆台上底半径r ′=2 cm ,下底半径r =5 cm. (1)由勾股定理得h =122-(5-2)2=315(cm). (2)由三角形相似得:x -12x =25,解得x =20(cm).答.(1)圆台的高为315 cm ,(2)截得此圆台的圆锥的母线长为20 cm.1.下列几何体是台体的是(..)................... 答案.D解析.台体包括棱台和圆台两种,A 的错误在于四条侧棱没有交于一点,B 的错误在于截面与圆锥底面不平行.C 是棱锥,结合棱台和圆台的定义可知D 正确. 2.图1是由下列哪个平面图形绕轴O ′O 旋转而成的组合体(..)答案.D解析.组合体上半部分是圆锥,下半部分是一个圆台,因此应该是由上半部分为三角形,下半部分为梯形的平面图形旋转而成的,观察四个选项得D 正确. 3.下面几何体的截面一定是圆面的是(..) A.圆台 B.球 C.圆柱 D.棱柱答案.B解析.截面可以从各个不同的部位截取,截得的截面都是圆面的几何体只有球.4.下列命题:①通过圆台侧面上一点,有无数条母线;②圆锥的顶点与底面圆周上任意一点的连线是圆锥的母线;③在圆台上、下两底面的圆周上各取一点,则这两点的连线是圆台的母线;④圆柱的任意两条母线相互平行.其中正确的是(..)A.①②B.②③C.①③D.②④答案.D解析.①③错误,②④正确.5.一个圆锥的母线长为20 cm,母线与轴的夹角为30°,则圆锥的高为________cm.答案.10 3解析.h=20cos 30°=10 3.1.圆柱、圆锥、圆台的关系如图所示.2.处理台体问题常采用还台为锥的补体思想.3.处理组合体问题常采用分割思想.4.重视圆柱、圆锥、圆台的轴截面在解决几何量中的特殊作用,切实体会空间几何平面化的思想.。
)圆柱的底面:垂直于轴的边旋转而成的圆面叫做圆柱的底面。
(4)圆柱的侧面:平行于轴的边旋转而成的曲面叫做圆柱的侧面。
(5)圆柱的母线:不论旋转到什么位置,不垂直于轴的边都叫做圆柱的母线。
(6)圆柱的轴截面:经过圆柱的轴所作的截面叫做圆柱的轴截面。
概念解读:(1)连结圆柱上底面圆周上的一点和下底面圆周上一点的线段,不一定在侧面上,因此不一定是母线;(2)把圆柱的侧面按一条母线展开后是一个矩形,它的长是底面圆的周长,宽和母线长相等。
2.圆柱的表示法:圆柱1OO.3.圆柱的性质:(1)圆柱的底面是两个互相平行的等圆面,平行于底面的截面也和底面是等圆面;(2)圆柱的轴截面有无数个,并且都是全等的矩形;(3)圆柱的母线有无数条,它们相互平行,并且均等于圆柱的高;(4)连结圆柱两底面圆心的线段是圆柱的高,和母线长相等。
例1圆柱的轴截面是边长为5cm的正方形ABCD,则圆柱侧面上从A到C的最短距离为()A.10cm B C.D.二.圆锥1.圆锥的有关概念:(1)圆锥:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫做圆锥。
(2)圆锥的轴:旋转轴叫做圆锥的轴。
直线SO . (3) 圆锥的高:在轴上的这条边(或它的长度)叫做圆锥的高。
(4)圆锥的底面:垂直于轴的边旋转而成的圆面叫做圆锥的底面。
(5)圆锥的侧面:三角形的斜边绕轴旋转而成的曲面叫做圆锥的侧面。
(6)圆锥的母线:不论旋转到什么位置,斜边所在的边都叫做圆锥的母线。
(7)圆锥的轴截面:经过圆锥的轴所作的截面叫做圆锥的轴截面。
2. 圆锥的表示法:圆锥SO .3. 圆锥的性质:(1)圆锥的底面是一个圆面,平行于底面的截面也是一个圆面;(2)圆锥的轴截面有无数个,并且都是全等的等腰三角形;(3)过顶点的圆锥的截面都是等腰三角形,它的腰就是圆锥的两条母线;(4)连结顶点与底面圆周上任意一点的线段,都是圆锥的母线。
例2 点1O 为圆锥的高中靠近顶点的一个三等分点,过1O 与底面平行的截面面积是底面面积的( )A .13 B .23 C .14 D .19三.圆台 1.圆台的有关概念:(1(2(3(4(5(6(7)圆台的轴截面:经过圆台的轴所作的截面叫做圆台的轴截面。
圆柱、圆锥、圆台和球(2)教学目标:1、理解球面、球体和组合体的基本概念,2、掌握球的截面的性质,3、掌握球面距离的概念.教学重点:球的截面的性质及应用,会求球面上两点之间的距离教学过程:复习引入1、圆柱、圆锥、圆台,它们分别由矩形、直角三角形、直角梯形旋转而成的。
2、通过篮球、排球、足球等等球体的形象引出课题.新授1、球的概念:球也可以由一个平面图形旋转得到。
半圆以它的直径为旋转轴,旋转所成的曲面叫球面。
球面所围成的几何体叫球体,简称球。
指出球心、半径、直径。
值得注意的是:1)球面与球体是两个不同的概念,我们要注意它们的区别与联系。
2)球面的概念可以用集合的观点来描述。
球面是由点组成的,球面上的点有什么共同的特点呢?与定点的距离等于定长的所有点的集合(轨迹)叫球面。
如果点到球心的距离小于球的半径,这样的点在球的内部.否则在外部.3)球的表示:用表示球心的字母表示球,比如,球O.2、球的截面的性质:用一个平面去截球,得到一个截面,截面是圆面,把过球心的截面圆叫大圆,不过球心的截面圆叫小圆.球的截面有什么性质呢?连接球心与截面圆心,连线OO 1与截面圆O 1会有什么关系呢?1) 球心与截面圆心的连线垂直于截面。
2) 设球心到截面的距离为d ,截面圆的半径为r ,球的半径为R ,则:r=22d R3、练习一:判断正误:(对的打√,错的打×)(1)半圆以其直径为轴旋转所成的曲面叫球。
( )(2)到定点的距离等于定长的所有点的集合叫球。
( )(3)球的小圆的圆心与球心的连线垂直于这个小圆所在平面。
( )(4)经过球面上不同的两点只能作一个大圆。
( )(5)球的半径是5,截面圆的半径为3,则球心到截面圆所在平面的距离为4。
( )4、关于地球的几个概念:地球可以近似的看作一个球体,为了描述地球上某地的地理位置,我们在地球上规定了经线、纬线、南极、北极等概念。
5、球面距离:假如我们要坐飞机从北京到巴西去,选择怎样的航线航程最短呢?我们把球面上过两点的大圆,在这两点之间的劣弧的长叫球面上两点间的球面距离。
1.1.3 圆柱、圆锥、圆台一.教学目标1.德育教育目标:通过新闻实例使学生们认识到节约粮食的重要性2.教学目标:(1)知识与技能目标:理解圆柱、圆锥、圆台的定义,掌握它们的几何特征,并认识它们的图形。
(2)过程与方法目标:利用旋转的方法生成圆柱、圆锥、圆台等几何体。
(3)情感、态度与价值观目标:激情投入、高效学习,通过空间观察、合作研究和想象解决问题。
二.教学重难点:重点:圆柱、圆锥、圆台的概念生成。
难点:母线及其相关性质的理解和简单应用。
三.教学过程:(一)教学引入观察装最大扬州炒饭的大碗图片,从旋转体引入新课。
观察图片让学生回答图中物体是哪些常见的几何体。
(二)新课过程知识探究一.圆柱的结构特征1.圆柱观察下面的物体,说说它们有何共同点?学生回答并思考圆柱可以由什么几何图形经过怎样旋转得到?(1)通过道具手动演示和课件动态演示圆柱产生过程(2)总结得出圆柱及圆柱的底面、侧面、母线和轴的定义(3)从点、线、面三方面讨论构成圆柱这个几何体的元素的特征底面圆柱母线1. 圆柱可以由矩形旋转得到,圆锥可以由什么平面图形旋转得到?圆台可以由什么图形旋转得到?如何旋转?2.请同学们仿照圆柱中关于轴、底面、侧面、母线的定义,找出圆锥的轴、底面、侧面、母线。
类比得到棱台的方法找出得到圆台的另一种方法探索与研究对于圆锥、圆柱、圆台:(1)平行于底面的截面是什么样的图形?(2)过轴的截面(简称轴截面)分别是什么样的图形?(3)侧面展开图分别是什么图形?(4)圆柱、圆锥、圆台之间有什么关系?上底面 轴 侧面 母线 下底面(前三个问题通过学生分组讨论得出结论)应用举例例1 用一个平行于圆锥底面的平面截这个圆锥,截得圆台上下底面半径的比是1:4,截去的圆锥的母线长是3cm,求圆台的母线长.思想方法:把立体几何问题转化为平面几何问题求解上底缩小上底扩大 圆柱体 圆锥体 圆台体 A 0 A' O ' x y x 4s 0A A’ o’巩固练习1. 一个圆柱的母线长为5,底面半径为 2,求圆柱的轴截面的面积.2.一个圆台的母线长为5,上底面和下底面直径分别为2和8,求圆台的高.(学生板演)小结:(1) 旋转体;(2) 圆柱、圆锥、圆台的定义及特征性质;作业:(1)教材第13页 练习B 第4题(2)思考:球的定义及特征性质.O CB DA O ' A O ' DB E O C。
球的概念和性质(第一课时)【教学目标】一、知识目标1、掌握球的定义,能正确区分球体与球面;2、理解球的截面是圆面,球面的截线是圆;3、掌握球的性质及其应用。
二、能力目标1、通过圆的定义和性质去猜想、发现、证明球的定义和性质,引导学生用类比的方法进行学习,培养学生的探索精神,提升学生的思维能力;2、学会将球的有关问题转化为圆或三角形等平面问题来处理,培养学生的“化归”思想;3、通过多种模型、课件演示,研究性学习材料等,培养学生观察问题、分析问题、解决问题的能力和空间想象能力,提升学生的数学素质。
三、情感目标1、体会客观世界中事物与事物之间普遍联系的辩证唯物主义观点;2、培养学生用联系的观点、类比的思想分析解决问题;3、培养学生不断地认识世界、改造世界的探索精神。
【教学重点】球的概念、性质及其应用;球有关立体图和轴截面图形的画法【教学难点】一、球的有关立体图和轴截面图形的画法;二、将球的有关问题转化为圆或三角形的问题来处理。
【教学过程】一、设置情境初中时,我们已经学过了圆,下面谁来回忆一下圆的定义?1、定义:平面内到定点的距离等于定长的点的集合是一个圆。
问题1:从圆的定义看,圆是否包括圆周以内的点?(说明:“圆”实际上是一条“曲线”,而不是一个圆面。
)问题2:谁来给圆面下一个定义?(强调:小于或等于。
)2、类比1:平面图形——二维空间立体图形——三维空间长方形长方体圆球3、引入:这就是我们今天要学习的一种新的几何体——球。
板书课题:球(一)球,对大家来说都很熟悉,数学中规定:把球的表面叫球面;由球面和球面内部所组成的几何体,称为“球体”,简称“球”。
问题3:谁能模仿圆和圆面给球面和球下定义?板书:1、球的定义(自然得出:在空间内,到一个定点的距离等于定长的点的集合是一个球面;到一个定点的距离小于或等于定长的点的集合是一个球。
)教师强调:我们平时所讲的“球”指“球体”不是“球面”。
4、设问:球面和球还有其它定义方法吗?球体又会有哪些性质呢?二、探索研究1、球的定义师:拿一个硬币放在桌子上旋转,问学生看到了什么图形?从而得出球面的旋转定义,让学生自己来表述。
《球的概念和性质》教学设计
北票市高级中学杨丹丹
课型新授课
课时1课时
教学目标
㈠知识和技能
1、理解球体的概念。
2、掌握球的截面的性质。
3、掌握球面距离的概念。
㈡过程与方法
通过本节课学习,培养学生空间想象能力,通过复习初中所学圆的知识引导学生用类比的方法来研究球的相关问题。
㈢情感、态度与价值观
通过生活实例引出球的概念,使学生体会到生活中处处有数学,激发学生的学习兴趣。
教学重点对旋转概念的再认识,及球的截面的性质的应用
教学难点球面距离的概念和应用
教学方法与手段
基于对课程理念的理解和对教材的分析,运用问题情境可以使学生较快的进入数学知识情景,使学生对数学知识结构作主动性的扩展,通过问题的导引,学生对数学问题探究,进行数学建构,并能运用数学知识解决问题,让学生有运用数学成功的体验。
本课采用教师在学生原有的知识经验和方法上,引导学生提出问题、解决问题的教学方法,体现以学生为主体,教师主导作用的教学思想。
教学手段:采用多媒体辅助教学,增强直观性,增大课堂容量,提高效率。
教学过程设计。
1.1 空间几何体的结构1.1.3 圆柱、圆锥、圆台、球(张伟)一、教学目标(一)核心素养通过这节课学习,了解圆柱、圆锥、球的定义,培养空间想象能力,体会立体几何的特点.(二)学习目标1.通过实例,了解圆柱、圆锥、球的定义和性质.2.会识别圆柱、圆锥的展开图.3.会处理和圆柱、圆锥、球的截面有关的简单问题.(三)学习重点1.圆柱、圆锥、球的概念.2.圆柱、圆锥、球的性质.(四)学习难点1.利用圆柱、圆锥的展开图处理最短路径问题.2.球的截面.3.棱柱、棱锥的外接球和内切球问题.二、教学设计(一)课前设计1.预习任务(1)读一读:阅读教材第4页至第6页,填空:圆柱的定义:以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的旋转体叫做圆柱.旋转轴叫做圆柱的轴;垂直于旋转轴的边旋转而成的圆面叫做圆柱的底面;平行于轴的边旋转而成的曲面叫做圆柱的侧面,圆柱的侧面又称为圆柱面,无论转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线.圆锥的定义:以直角三角形的一条直角边所在的直线为旋转轴,其余两边旋转而形成的面所围成的旋转体叫做圆锥.旋转轴叫做圆锥的轴;垂直于旋转轴的边旋转而成的圆面称为圆锥的底面;不垂直于旋转轴的边旋转而成的曲面叫做圆锥的侧面,圆锥的侧面又称为圆锥面,无论转到什么位置,这条边都叫做圆锥侧面的母线.圆台的定义:以直角梯形垂直于底边的腰所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫做圆台.还可以看成是用平行于圆锥底面的平面截这个圆锥,截面与底面之间的部分.旋转轴叫做圆台的轴;垂直于旋转轴的边旋转而成的圆面称为圆台的底面;不垂直于旋转轴的边旋转而成的曲面叫做圆台的侧面,无论转到什么位置,这条边都叫做圆台侧面的母线.球的定义:以半圆的直径所在的直线为旋转轴,将半圆旋转一周所形成的曲面称为球面,球面所围成的旋转体称为球体,简称球.半圆的圆心称为球心,连接球面上任意一点与球心的线段称为球的半径,连接球面上两点并且过球心的线段称为球的直径.大家观察课本第2页的图,结合定义,找出其中的圆柱、圆锥、圆台、球.大家举例说明,生活中那些物体含有圆柱、圆锥、圆台、球?2.预习自测(1)圆柱的轴截面一定为()A.矩形B.正方形C.菱形D.梯形【答案】A.【知识点】圆柱的定义【解题过程】圆柱的轴截面不一定为正方形,B错;但一定为矩形【思路点拨】以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的旋转体叫做圆柱.(2)以直角梯形垂直于底边的腰所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫做()A.圆柱B.圆锥C.圆台D.球【答案】C.【知识点】圆台的定义【解题过程】圆台的有轴、底面、侧面、母线,本题中垂直于底边的腰所在的直线是圆台的轴线,另一条腰是母线,故选C.【思路点拨】空间想象出由一平面图形得到的旋转体.(3)球的截面一定是()A.圆B.圆或三角形C.圆或矩形D.圆或椭圆【答案】A.【知识点】球的定义。
教学目标:1.认识圆柱、圆锥和圆台和球的结构特征;2.了解圆柱、圆锥和圆台和球的概念;教学重点:圆柱、圆锥和圆台和球的概念和结构特征.教学难点:组合体的结构特征;教学过程:一、圆柱、圆锥、圆台和球1.问题情境:(1)下列几何体有什么共同特征?结论:这些图形都是空间中的轴对称图形,可以通过旋转而生成.(2)我们初中研究过的圆柱、圆锥也可以通过这种方法生成,那么它们分别是什么样的平面图形通过旋转而成的?数学理论:将矩形、直角三角形分别绕着它的一边、一直角边所在直线旋转一周,形成的几何体分别叫做圆柱、圆锥.(3)其实在日常的生产和生活中,还有很多的几何体是这样得到的,我们日常生活中用到的一次性纸杯是我们初中学过的圆柱或圆锥吗?如果不是,它又是如何生成的?数学理论:我们将直角梯形绕着它的垂直于底边的腰所在的直线旋转一周,形成的几何体叫做圆台.2.数学应用(1)探究一:还有其他方法可以生成圆柱吗?(2)探究二:圆柱、圆锥、圆台之间有何关系?①平行于底面截圆锥可以得到圆台;②将圆柱的一个底面变为其圆心时形成的几何体是圆锥.(3)探究三:球是通过什么图形旋转得到的?二、旋转体和旋转面的概念一般地,一条平面曲线绕它所在平面内的一条定直线旋转所形成的曲面叫做旋转面,封闭的旋转面围成的几何体称为旋转体.三、组合体的概念1.数学理论:我们观察周围的物体,除了柱、锥、台、球等基本几何体外,还有大量的几何体是由柱、锥、台、球等基本几何体组合而成的,这些几何体叫做组合体。
2.数学应用例1如图,将直角梯形ABCD绕AB、DC、AD边所在直线旋转一周,由此形成的几何体是由哪些简单几何体构成的?(1)(2)(3)例2指出下图中的几何体是由哪些简单几何体构成的?四、小结(1)圆柱、圆锥和圆台和球的概念;(2)圆柱、圆锥和圆台和球的结构特征;(3)组合体的结构特征;五、直角△ABC中,∠A=90°,将△ABC分别绕AB,AC,BC三边所在直线旋转一周,由此形成的几何体是什么简单几何体或是由哪些简单几何体构成的?ABCDABCDABCD。
多面体与球一、教学目标:1.知识与技能:①.掌握球的截面的性质,会构造直角三角形解决多面体外接球的面积,体积等问题。
②.通过寻求如何判断直棱柱和正棱锥外接球的球心,进一步要求学生树立转化思想(通过“截面”把立体几何问题转化为平面问题)2.过程与方法:以启发引导,讲解习题为主线,用一题多变突破重难点。
培养学生空间想象能力、运算求解能力,体会转化,类比等数学思想在解题中的运用。
二、教学重点:能准确判断出直棱柱和正棱锥外接球的球心,会构造直角三角形解决球的有关问题。
三、教学难点:能够根据多面体的结构特征寻出多面体外接球的球心和半径.四、教学过程(1)..考情播报:纵观近5年全国卷,简单几何体的外接内切球的问题是立体几何的一个重点,也是高考考查的一个热点,其中又以三棱锥的外接球的考查居多。
(2).知识回顾:1.(12年全国卷,T8)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为( )A.6π B.43π C.46π D.63π(设计意图:掌握球的截面的性质,会构造直角三角形求出球的半径解决球的面积,体积等问题。
) 小结:球的性质①.球心与截面圆心的连线垂直于截面;②.球心O 到截面的距离d 与球的半径R 及截面的半径r 的关系:22r R d -=(3)例题与练习题型一:直棱柱的外接球2.(2017全国2卷,T15)长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为 3,直三棱柱111C B A ABC -的各个顶点都在同一球面上,已知,3===BC AC AB ,61=AA 则该球的体积为 ;(设计意图:掌握直棱柱的外接球的球心是上下底面外心的连线的中点,并会用正弦定理R Aa2sin =求三角形外接圆的半径)A4,已知三棱锥D-ABC 的各个顶点都在同一球面上,若ABC DA 面⊥, 120=∠BAC ,2===AD AC AB ,则该球的体积为 ;变式: 若一个三棱锥的三条侧棱两两垂直,且侧棱长均为3 ,则其外接球的表面积是 ;(设计意图:会将含有线面垂直关系棱锥补成直棱柱解决问题)。
课题:柱体、锥体、台体的表面积与体积(一)一、教学目标1、知识与技能(1)通过对柱、锥、台体的研究,掌握柱、锥、台的表面积的求法。
(2)能运用公式求解,柱体、锥体和台的全积,并且熟悉台体与柱体和锥体之间的转换关系。
(3)培养学生空间想象能力和思维能力。
2、过程与方法(1)让学生经历几何全的侧面展一过程,感知几何体的形状。
(2)让学生通对照比较,理顺柱体、锥体、台体三间的面积的关系。
3、情感与价值通过学习,使学生感受到几何体面积的求解过程,对自己空间思维能力影响。
从而增强学习的积极性。
二、教学重点、难点重点:柱体、锥体、台体的表面积计算难点:台体表面积公式的推导三、学法与教学用具1、学法:学生通过阅读教材,自主学习、思考、交流、讨论和概括,通过剖析实物几何体感受几何体的特征,从而更好地完成本节课的教学目标。
2、教学用具:实物几何体,投影仪四、教学设想一、复习准备:1. 讨论:正方体、长方体的侧面展开图?→正方体、长方体的表面积计算公式?2. 讨论:圆柱、圆锥的侧面展开图?→圆柱的侧面积公式?圆锥的侧面积公式?二、讲授新课:1. 教学表面积计算公式的推导:①讨论:如何求棱柱、棱锥、棱台等多面体的表面积?(展开成平面图形,各面面积和)②练习:求各面都是边长为10的等边三角形的正四面体S-ABC的表面积.一个三棱柱的底面是正三角形,边长为4,侧棱与底面垂直,侧棱长10,求其表面积.③讨论:如何求圆柱、圆锥、圆台的侧面积及表面积?(图→侧→表)圆柱:侧面展开图是矩形,长是圆柱底面圆周长,宽是圆柱的高(母线), S=2,S=2,其中为圆柱底面半径,为母线长。
圆锥:侧面展开图为一个扇形,半径是圆锥的母线,弧长等于圆锥底面周长,侧面展开图扇形中心角为360rlθ=⨯,S圆锥侧=rlπ, S圆锥表=()r r lπ+,其中为r圆锥底面半径,l为母线长。
圆台:侧面展开图是扇环,内弧长等于圆台上底周长,外弧长等于圆台下底周长,侧面展开图扇环中心角为360R rlθ-=⨯,S圆台侧=()r R lπ+,S圆台表=22()r rl Rl Rπ+++.④练习:一个圆台,上、下底面半径分别为10、20,母线与底面的夹角为60°,求圆台的表面积. (变式:求切割之前的圆锥的表面积)2. 教学表面积公式的实际应用:①例1:一圆台形花盆,盘口直径20cm,盘底直径15cm,底部渗水圆孔直径1.5cm,盘壁长15cm. 为美化外表而涂油漆,若每平方米用100毫升油漆,涂200个这样的花盘要多少油漆?(黑板上画图)讨论:油漆位置?→如何求花盆外壁表面积?列式→计算→变式训练:内外涂②练习:粉碎机的上料斗是正四棱台性,它的上、下底面边长分别为80mm、440mm,高是200mm, 计算制造这样一个下料斗所需铁板的面积.(黑板上画图)3. 小结:表面积公式及推导;实际应用问题三、巩固练习:1. 已知底面为正方形,侧棱长均是边长为5的正三角形的四棱锥S-ABCD,求其表面积.2. 圆台的上下两个底面半径为10、20, 平行于底面的截面把圆台侧面分成的两部分面积之比为1:1,求截面的半径.3. ,求这个圆锥的表面积.*4. 圆锥的底面半径为2cm,高为4cm,求圆锥的内接圆柱的侧面积的最大值.*5. 面积为2的菱形,绕其一边旋转一周所得几何体的表面积是多少?四、小结:(见黑板版书)五、作业。
《圆柱、圆锥、圆台和球》教案教学目标1.认识组成我们生活的世界的各种各样的旋转体.2.认识和掌握圆柱、圆锥、圆台、球体的几何结构特征.3.理解球和球面距离的概念、平面与球的各种位置关系.教学重难点重点:1圆柱、圆锥、圆台和球的概念及相关概念;2旋转体的概念。
难点:1圆柱、圆锥、圆台和球的性质及简单应用;2圆柱、圆锥、圆台的轴截面的性质;3球的截面的性质教学过程一、情景导入探究点一圆柱、圆锥、圆台的结构特征观察下面的几何体,你可能会判定它们分别是圆柱、圆锥、圆台.为什么你会判定它们分别是圆柱、圆锥、圆台呢?问题1圆柱、圆锥、圆台分别具有哪些性质?哪些性质可以分别作为圆柱、圆锥和圆台集合的特征性质?答:通过观察可以看出,圆柱、圆锥和圆台可以分别看作以矩形的一边、直角三角形的一直角边、直角梯形中垂直于底边的腰所在的直线为旋转轴,将矩形、直角三角形、直角梯形分别旋转一周而形成的曲面所围成的几何体(如图)问题 2 类比棱柱、棱锥、棱台中的底面、侧面、侧棱、高这些概念,在圆柱、圆锥、圆台中相应的有关概念是如何定义的?答:旋转轴叫做所围成的几何体的轴:在轴上的这条边(或它的长度)叫做这个几何体的高,垂直于轴的边旋转而成的圆面叫做这个几何体的底面:不垂直于轴的边旋转而成的曲面叫做这个几何体的侧面,无论旋转到什么位置,这条边都叫做侧面的母线.问题3 对圆柱、圆锥、圆台过轴的截面(简称轴截面)分别是什么样的图形?答:分别是矩形、等腰三角形、等腰梯形.问题4 圆柱、圆锥、圆台如何用字母表示?答:圆柱、圆锥、圆台用表示它的轴的字母表示,如问题1中的图中圆柱OO ′、圆锥SO 、圆台OO ′.问题5 圆柱、圆锥、圆台都是旋转体,它们在结构上有哪些相同点和不同点?三者的关系如何?当底面发生变化时,它们能否互相转化?答:它们的相同点是:它们都是由平面图形旋转得到的; 不同点是:圆柱和圆台有两个底面,圆锥只有一个底面,圆柱的两个底面是半径相等的圆,圆台的两个底面是半径不等的圆,圆锥只有一个底面; 当底面发生变化时,它们能相互转化,即圆台的上底面扩大,使上下底面全等,就是圆柱; 圆台的上底面缩为一个点就是圆锥例1 用一个平行于圆锥底面的平面截这个圆锥,截得圆台上下底面半径的比是14∶,截去的圆锥的母线长是3 cm ,求圆台的母线长(如图所示).解: 设圆台的母线长为y ,截得的圆锥底面与原圆锥底面半径分别是x ,4x ,根据相似三角形的性质得3/(3)/4y x x +=解此方程得9y =. 因此,圆台的母线长为9 cm .探究点二 球的结构特征问题 1 一个半圆绕着它的直径所在的直线旋转一周,半圆运动的轨迹是怎样的空间图形?答:半圆运动的轨迹是一个球面.问题2 球面的定义是怎样的?球心、球半径、球的直径是如何定义的?答:球面可以看作一个半圆绕着它的直径所在的直线旋转一周所形成的曲面,球面围成的几何体,叫做球.形成球的半圆的圆心叫球心; 连接球面上一点和球心的线段叫做球的半径;连接球面上两点且通过球心的线段叫做球的直径.如图中点O 为球心,OA 为球的半径,AB 为球O 的直径.问题3 如何用字母表示一个球?答:一个球用表示它的球心的字母来表示,例如球O .问题4 用集合的观点如何定义球面?答:球面可以看作空间中到一个定点的距离等于定长的点的集合.问题5 用一个平面去截一个球,如何说明截面是圆面?答:如图所示,设OO d '=,对于平面α与球面的交线上任意一点P ,O P r '=,是一个定值.因此,平面α截球面所得到的交线是以O ′为圆心,以r 为半径的一个圆,即截面是一个圆面.问题6 阅读教材14-15页,你能说出什么是球的大圆?什么是球的小圆?什么是球面距离吗?什么是旋转体?什么是组合体?答:(1)球面被经过球心的平面截得的圆叫做球的大圆;被不经过球心的平面截得的圆叫做球的小圆在球面上,两点之间的最短距离就是经过这两点的大圆在这两点间的一段劣弧的长度,这个弧长叫做两点的球面距离.(2)圆柱、圆锥、圆台、球等几何体,都是由一个平面图形绕着一条直线旋转产生的曲面所围成的几何体,这类几何体叫做旋转体.(3)现实世界中物体表示的几何体,除了柱体、锥体、台体、球体等简单几何体外,还有大量的几何体是由简单几何体组合而成的,这些几何体叫做简单组合体.例2 我国首都靠近北纬40°纬线.求北纬40°纬线的长度约等于多少km (地球半径约为6 370 km , 3.141 6π≈, 400.7660cos ︒=).解:如图所示,设A 是北纬40°圈上的一点,AK 是它的半径,所以OK AK ⊥.设c是北纬40°的纬线长,40AOB OAK ∠∠︒==····· 402 3.141663700.7660 3.066104c AK OAcos OAK OAcos πππ∴∠︒≈⨯⨯⨯≈⨯∧=2=2=2 (km).即北纬40°的纬线长约为3.066×104 km.二、课堂小结1.圆柱的平行于轴线的截面是一个以上、下底面圆的弦和母线组成的矩形.2.圆锥的过顶点且与底面相交的截面是一个由两条母线和底面圆的弦组成的等腰三角形;圆锥的母线l 、高h 和底面圆的半径R 的关系为222l h R ∧=∧+∧.3.圆台的母线l 、高h 和上下两底面圆的半径r 、R 组成一个直角梯形,圆台的有关计算问题,常归结为解这个直角梯形.“还台为锥”也是解决圆台问题的主要方法.4.球面与球体是有区别的.球面仅仅指球的表面,而球体不仅包括球的表面,也包括球面所包围的空间.三、巩固练习1.圆锥的轴截面是正三角形,则圆锥的高与母线的长分别为________.2.圆台的轴截面中,上、下底面边长分别为2 cm ,10 cm ,高为3 cm ,则圆台母线的长为________ cm .3.在半径为25 cm 的球内有一个截面,它的面积是49(2)cm π∧,求球心到这个截面的距离.四、布置作业课后练习A 、B .。
1.1.3圆柱、圆锥、圆台和球第一课时教学目标:1.能根据几何结构特征理解空间旋转体形成过程;2.认识圆柱、圆锥、圆台和球的结构特征;3.掌握圆柱、圆锥、圆台和球的截面及它们之间的关系.教材分析及教材内容的定位:教材先让学生思考圆柱、圆锥、圆台、球的生成规律,然后给出它们的定义,让学生初步理解“旋转体”的概念.教学中可结合实物模型或计算机演示圆柱、圆锥、圆台、球的生成过程,引导学生思考圆柱、圆锥、圆台、球的结构特征;也可以类比棱柱、棱锥、棱台的生成过程认识圆柱、圆锥、圆台的结构特征;类比圆的定义得出球面的定义.教学重点:让学生感受大量空间实物及模型、概括出圆柱、圆锥、圆台和球的概念.教学难点:难点是区分一个旋转体由哪些基本几何体构成.教学方法:观察、发现、探究.探究学习为主,发挥同学之间合作关系.教学过程:一、问题情境1.复习棱柱、棱锥、棱台的有关概念.小结:移——缩——截.2.旋转会产生什么样的结果呢?仔细观察下面的几何体,它们有什么共同特点或生成规律?二、学生活动通过观察、思考、交流、讨论得出结论. 三、建构数学1.圆柱、圆锥、圆台的概念;2.圆柱、圆锥、圆台的相关概念(轴、高、底面、母线);思考:圆柱、圆锥、圆台之间有何关系?(引导学生从概念的形成和结构特征来分析三者之间的关系)3.球面及球的概念;半圆绕着它的直径所在的直线旋转一周而形成的曲面叫做球面,球面围成的几何体叫做球体.球面也可以看作空间中到一个定点的距离等于定长的点的集合 4.球的相关概念(球心、球半径、球的表示); 5.旋转面、旋转体的概念(引导学生总结). 四、数学运用 1.例题.例1 将直角梯形ABCD 绕AB 边所在的直线旋转一周,由此形成的几何体是有哪些简单的几何体构成的?例2 以下几何体是由哪些简单几何体构成的?例3(课本P12例1)把一个圆锥截成一个圆台,已知圆台的上下底面半径是1∶4,母线长为 4cm ,求圆锥的母线长.2.练习.ABC D 图1图2(1)①如图1将平行四边形ABCD 绕AB 边所在的直线旋转一周,由此形成的几何体是由哪些简单几何体构成的?②如图2钝角三角形ABC 绕AB 边所在的直线旋转一周,由此形成的几何体是由哪些简单几何体构成的?(图1) (图2)(2)下列命题中的说法正确的有________①以直角三角形的一边为轴旋转所得的旋转体是圆锥; ②以直角梯形的一腰为轴旋转所得的旋转体是圆台; ③圆柱、圆锥、圆台的底面都是圆;④圆锥侧面展开图为扇形,这个扇形所在圆的半径等于圆锥的底面圆的半径.⑤在圆柱的上下底面上各取一点,这两点的连线是圆柱的母线 五、要点归纳与方法小结 本节课学习了以下内容:1.圆柱、圆锥、圆台和球的有关概念; 2.圆柱、圆锥、圆台和球的结构特征; 3.圆柱、圆锥、圆台和球的应用.CD ABABC。
人教版高中必修2(B版)1.1.3圆柱、圆锥、圆台和球课程设计一、前言在高中数学课程中,圆柱、圆锥、圆台和球是一个非常基础的几何形体。
掌握这些形体的相关理论和计算方法,对于学生的数学素养提升至关重要。
本课程设计将以人教版高中必修2(B版)的1.1.3节为基础,针对圆柱、圆锥、圆台和球这四个几何形体进行深入探究。
通过本课程的学习,希望学生能够掌握这些形体的定义、计算公式以及实际应用。
二、教学目标1.理解圆柱、圆锥、圆台和球的定义,掌握每种几何形体的特征和属性;2.掌握计算圆柱、圆锥、圆台和球的面积和体积的方法;3.能够运用所学内容解决实际问题。
三、教学内容1. 圆柱1.定义:圆柱是由一个圆面和平行于这个圆面的两个圆柱面组成的几何体。
2.特征:底面、顶面相等且平行,侧面由矩形组成。
3.计算公式:–圆柱的面积:$S=2\\pi rh+2\\pi r^2$–圆柱的体积:$V=\\pi r^2h$2. 圆锥1.定义:圆锥是由一个圆锥面和圆锥顶点连线沿着圆锥面滑动形成的几何体。
2.特征:底面为圆形,侧面由顶点、底面上任意一点以及圆锥母线(连接顶点与底面上任意一点的线段)组成。
3.计算公式:–圆锥的面积:$S=\\pi r l + \\pi r^2$–圆锥的体积:$V=\\dfrac{1}{3}\\pi r^2h$3. 圆台1.定义:圆台是由一个圆台面和与圆台面平行的另一个圆台面以及连接它们的矩形侧面组成的几何体。
2.特征:底面为圆形,顶面为另一个圆形,侧面由矩形组成。
3.计算公式:–圆台的面积:$S=\\pi (r_1+r_2) l+\\pi r_1^2+\\pi r_2^2$–圆台的体积:$V=\\dfrac{1}{3}\\pi(r_1^2+r_2^2+r_1r_2)h$4. 球1.定义:球是由所有到球心距离等于半径的点构成的几何体。
2.特征:球面上任意一点到球心的距离都相等。
3.计算公式:–球的面积:$S=4\\pi r^2$–球的体积:$V=\\dfrac{4}{3}\\pi r^3$四、教学过程1.理论讲解:介绍每种几何形体的定义、特征、计算公式以及解题思路。
人教B 版 数学 必修2:圆柱、圆锥、圆台和球(2)
教学目标:1、理解球面、球体和组合体的基本概念,
2、掌握球的截面的性质,
3、掌握球面距离的概念.
教学重点:球的截面的性质及应用,会求球面上两点之间的距离
教学过程:
复习引入
1、圆柱、圆锥、圆台,它们分别由矩形、直角三角形、直角梯形旋转而成的。
2、通过篮
球、排球、足球等等球体的形象引出课题.
新授
1、球的概念:球也可以由一个平面图形旋转得到。
半圆以它的直径为旋转轴,旋转所成的曲面叫球面。
球面所围成的几何体叫球体,简称球。
指出球心、半径、直径。
值得注意的是:
1)球面与球体是两个不同的概念,我们要注意它们的区别与联系。
2)球面的概念可以用集合的观点来描述。
球面是由点组成的,球面上的点有什么共同的特点呢?与定点的距离等于定长的所有点的集合(轨迹)叫球面。
如果点到球心的距离小于球的半径,这样的点在球的内部.
否则在外部.
3)球的表示:用表示球心的字母表示球,比如,球O.
2、球的截面的性质:用一个平面去截球,得到一个截面,截面是圆面,把过球心的截面圆叫大圆,不过球心的截面圆叫小圆.
球的截面有什么性质呢?连接球心与截面圆心,连线OO 1与截面圆O 1会有什么关系呢?
1) 球心与截面圆心的连线垂直于截面。
2) 设球心到截面的距离为d ,截面圆的半径为r ,球的半径为R ,则:r=22d R
3、练习一:
判断正误:(对的打√,错的打×)
(1)半圆以其直径为轴旋转所成的曲面叫球。
( )
(2)到定点的距离等于定长的所有点的集合叫球。
( )
(3)球的小圆的圆心与球心的连线垂直于这个小圆所在平面。
( )
(4)经过球面上不同的两点只能作一个大圆。
( )
(5)球的半径是5,截面圆的半径为3,则球心到截面圆所在平面的距离为4。
( )
4、关于地球的几个概念:地球可以近似的看作一个球体,为了描述地球上某地的地理位置,我们在地球上
规定了经线、纬线、南极、北极等概念。
5、球面距离:假如我们要坐飞机从北京到巴西去,选择怎样的航线航程最短呢?我们把球面上过两点的大圆,在这两点之间的劣弧的长叫球面上两点间的球面距离。
因此,飞机、轮船都尽可能以大圆弧为航线航行。
6、例1 我国首都北京靠近北纬40度。
(1)求北纬40°纬线圈的半径约为多少千米。
(2)求北纬40度纬线的长度约为多少千米(地球半径约为6370千米)。
7、 练习二:
1)填空
(1)设球的半径为R ,则过球面上任意两点的截面圆中,最
大面积是 。
(2)过球的半径的中点,作一个垂直于这条半径的截面,则
这截面圆的半径是球半径的 。
(3)在半径为R 的球面上有A 、B 两点,半径OA 、OB 的夹角
是n °(n <180=,求A 、B 两点的球面距离。
2) 地面上,地球球心角1′所对的大圆弧长约为1海里,一海里约是多
少千米?
3) 思考题:地球半径为R ,A 、B 是北纬45°纬线圈上两点,它们的经度差是90°,求A 、 B 两地的球面
距离。
8、 组合体
请举出一些由柱、锥、台组合而成的几何体的实例
课堂练习:教材第16页 练习A 、B
小结:
a) 半圆以它的直径为旋转轴,旋转所成的曲面叫做球面。
球面所围成的几何体叫做球体.
b) 以过球心的平面截球面,截面圆叫大圆。
以不经过球心的平面截球面,截面圆叫小圆.
c) 球心和截面圆心的连线垂直于截面,由勾股定理,有:22d R r -=.
d) 把地球看作一个球时,经线就是球面上从北极到南极的半个大圆。
赤道是一个大圆,其余的纬线
都是小圆.
球面距离是球面上过两点的大圆在这两点之间的劣弧的长度.
课后作业:略。