(完整)第六章:平面图形的认识知识点总结,推荐文档
- 格式:doc
- 大小:139.14 KB
- 文档页数:6
七年级数学6章知识点七年级数学的第六章主要涉及到三个部分:平面图形的认识、定理与推论、空间图形的认识。
这些内容都是数学中非常基础的概念,是后续学习的重要基石。
本文将逐一介绍这些知识点,并尽可能用通俗易懂的语言来让学生掌握这些基础知识。
一、平面图形的认识平面图形是指在平面上展开的图形,包括三角形、四边形、多边形等。
其中三角形是最基本的平面图形,是由三条线段连接成的一个三角形;四边形则是由四条线段连接成的四边形。
多边形则是由多条线段连接成的多边形,如五边形、六边形等。
除了基础的三角形、四边形和多边形之外,还有一些特殊的平面图形,如圆形、椭圆形等。
其中圆形是指由一个圆心和圆周上所有点组成的图形,而椭圆则是由两个焦点和其距离之和为常数的所有点组成的图形。
二、定理与推论在平面图形中,有很多定理和推论,用来描述不同图形之间的关系。
其中一些比较重要的定理和推论包括:1.相等定理相等定理主要是用于判断两个图形是否相等。
包括:全等三角形的判定、等腰三角形的判定、等角三角形的判定等。
2.平行定理平行定理是用来判断两条直线是否平行。
其中包括平行线性质、平行四边形性质等。
3.垂直定理垂直定理主要是用来判断两条直线是否垂直。
包括垂线性质、垂直平分线等。
4.中线定理中线定理是用于描述三角形中线特点的。
其中包括中线定理、三角形中位线定理等。
三、空间图形的认识空间图形是指存在于三维空间中的图形,包括球体、长方体、正方体等。
其中球体是最基本的空间图形,是由一个球心和球面上的所有点组成的图形;长方体则是由长方体的六个面所组成的图形;而正方体则是从长方体中特殊的一种,所有的面都是正方形。
四、结语七年级数学的第六章知识点,主要涉及到了平面图形的认识、定理与推论、空间图形的认识等方面。
这些知识点是数学中非常基础的概念,但是也是非常重要的基础。
希望各位同学在学习的过程中认真掌握这些基础知识,以便更好地应对后续的学习和考试。
小学平面图形知识点汇总平面图形是小学数学中的一个重要内容,它包括了各种形状、性质和计算方法。
通过学习平面图形,可以培养学生的观察力、逻辑思维和解决问题的能力。
下面是小学平面图形知识点的汇总,以帮助学生更好地理解和应用这些概念。
一、基本图形1. 线段:线段是由两个不同点A和B决定的有限长度的线段AB,可以用一条直线段来表示。
2. 直线:直线是两个方向相反的无限延伸的线段,可以用带箭头的线段来表示。
3. 线条:线条是有限数量的线段连接在一起形成的图形。
4. 折线:折线是由若干线段连接在一起形成的图形,其中每个内角都小于180度。
5. 封闭曲线:封闭曲线是一条起点和终点相同的曲线,可以将它看作是由一根笔一次完成的。
二、多边形1. 三角形:三角形是由三条线段组成的多边形,其中每个内角都小于180度。
2. 四边形:四边形是由四条线段组成的多边形,包括矩形、正方形、菱形、平行四边形等。
3. 多边形:多边形是由至少三条线段组成的多边形,如五边形、六边形等。
三、图形的性质和判断1. 对称性:图形具有对称性时,可以将图形沿着某条轴线折叠后两边完全重合。
2. 相似性:两个图形如果形状相同,但大小不同,就称它们为相似图形。
3. 直角:直角是一个内角为90度的角,可以用一个小方块来表示。
4. 平行线:平行线是在同一个平面内永不相交的线段,可以用两个相同间隔的箭头来表示。
5. 垂直线:垂直线是与另一条线段正交(90度)的线段,可以用一个右上角来表示。
6. 线段长度比较:通过测量线段的长度,可以判断两条线段的长短,并进行比较。
四、图形的计算1. 周长:周长是封闭曲线的长度,可以通过将图形的边长相加来计算。
2. 面积:面积是图形所占的二维空间大小,可以通过测量和计算来确定,如长方形的面积为长乘以宽。
五、图形的应用1. 物体图形:学生可以用平面图形的概念来描述和绘制日常生活中的物体,如书本、饼干等。
2. 路线图:通过平面图形的理解,学生可以制作和阅读地图,确定路径和方位。
七年级数学第六章平面图形的认识课标要求:1.点、线、面、角(1)通过实物和具体模型,了解从物体抽象出来的几何体、平面、直线和点等(参见例59)。
(2)会比较线段的长短,理解线段的和、差,以及线段中点的意义。
(3)掌握基本事实:两点确定一条直线。
(4)掌握基本事实:两点之间线段最短。
(5)理解两点间距离的意义,能度量两点间的距离。
(6)理解角的概念,能比较角的大小。
(7)认识度、分、秒,会对度、分、秒进行简单的换算,并会计算角的和、差。
(8)理解对顶角、余角、补角等概念,探索并掌握对顶角相等、同角(等角)的余角相等,同角(等角)的补角相等的性质。
2. 相交线、平行线和垂线(9)理解垂线、垂线段等概念,能用三角尺或量角器过一点画已知直线的垂线。
(10)理解点到直线的距离的意义,能度量点到直线的距离。
(11)掌握基本事实:过一点有且只有一条直线与已知直线垂直。
(12)掌握基本事实:过直线外一点有且只有一条直线与这条直线平行。
(13)能用三角尺和直尺过已知直线外一点画这条直线的平行线。
重点难点:1. 线段、角的有关计算.2. 平行与垂直的相关作图及性质的应用.知识梭理:一.线段、射线、直线1. 基本概念线和线相交的地方是点点通常表示一个物体的位置.例如,在交通图上用点来表示城市的位置.直线上两个点和它们之间的部分叫做,这两个点叫做线段的端点.在日常生活中,一根拉紧的绳子、一根竹竿、人行横道线都给我们以线段的形象.把线段向一方无限延伸所形成的图形叫做.把线段向两方无限延伸所形成的图形叫做2.两点之间的所有连线中,最短。
我们把这条线段的长,就叫做;3. 点、直线、射线和线段的表示1)、线段有两种表示方法:线段AB与线段BA,表示同一条线段。
或用一个小腹有诗书气自华写字母表示,线段a。
2),如射线l,或射线OP(3)、直线也有两种表示方法:直线MN或直线NM,或用一个小写字母表示:直线a4).(1)线段有两种表示方法:一种是__ __________,另外一种是_____ ____________.(2)射线的表示方法:_____________________,注意____________.(3)直线也有两种表示方法:一种是____________,另外一种是5.线段、射线和直线的异同点二.角1:角的概念①静态定义:有公共端点的两条射线组成的图形叫做角,这个公共顶点是角的顶点,这两条射线是角的两条边。
初三下册数学重点知识梳理为了帮助初三学生更好地复习数学,以下是初三下册数学的重点知识梳理。
本文将以章节的形式进行梳理,并提供相关的知识点和要点。
第一章分式1.1 分式的概念- 分式的定义:分子和分母都是整式的式子叫做分式。
- 分式的性质:分式可以化成小数,也可以化成整式。
- 分式的运算:加法、减法、乘法和除法。
1.2 分式的运算法则- 分式的加法和减法:分子一样时,分子相加减,分母保持不变。
- 分式的乘法:分子相乘,分母相乘。
- 分式的除法:分子乘以分母倒数。
1.3 分式方程- 分式方程的解法:将分式方程转化为整式方程进行求解。
第二章比例与类比2.1 比例的概念- 比例的定义:两个具有相同单位的数之间的等比关系称为比例。
- 比例的性质:比例中的两个比值相等。
2.2 比例的运算法则- 比例的四则运算:比例的加、减、乘、除。
2.3 类比的概念- 类比的定义:两个比例相等称为类比。
- 类比的性质:类比中的两个比例相等。
2.4 类比的运算法则- 类比的四则运算:类比的加、减、乘、除。
第三章直线3.1 直线的概念- 直线的定义:两点确定一条直线。
- 直线的性质:直线没有弯曲,无限延伸,任意两点都在直线上。
3.2 直线的倾斜角- 直线的倾斜角:直线与水平线的夹角称为倾斜角。
- 倾斜角的计算:倾斜角的计算方法。
3.3 直线的表示方法- 直线的一般式方程:Ax + By + C = 0。
- 直线的斜截式方程:y = kx + b。
第四章数据与概率4.1 数据的统计- 数据的收集:调查、观察、实验等。
- 数据的整理:整理数据并绘制统计图表。
- 数据的分析和解读:根据统计图表进行数据分析和解读。
4.2 概率的概念- 概率的定义:某一事件发生的可能性的大小。
- 概率的运算法则:加法原理、乘法原理。
4.3 概率的应用- 概率的计算:通过概率的运算法则计算事件发生的概率。
- 概率的统计:通过实际的统计数据进行概率的研究。
M O a第六章:平面图形的认识第一节:直线、射线、线段知识点1:概念线段:一段拉直的棉线可近似地看作线段,线段有两个端点。
线段的画法:(1)画线段时,要画出两个端点之间的部分,不要画出向任何一方延伸的情况.(2)以后我们说“连结 ”就是指画以A 、B 为端点的线段. 射线:将线段向一个方向无限延长,就形成了射线,射线有一个端点。
如手电筒、探照灯射出的光线等。
射线的画法:画射线 一要画出射线端点 ;二要画出射线经过一点,并向一旁延伸的情况. 直线:将线段向两个方向无限延长就形成了直线,直线没有端点。
如笔直的铁轨等。
直线的画法:用直尺画直线,但只能画出一部分,不能画端点。
知识点2:线段、直线、射线的表示方法:(1) 点的记法:用一个大写英文字母(2) 线段的记法:①用两个端点的字母来表示 ②用一个小写英文字母表示 如图:记作线段AB 或线段BA , 记作线段a ,与字母顺序无关 此时要在图中标出此小写字母温馨提示:线段是直线(或射线)的一部分;2.线段不可向两方无限延伸,但可度量;3.延长线常化成虚线;4.延长线段AB 是指按A 到B 的方向延长,延长线段BA 是指按B 到A 的方向延长.(3) 射线的记法:用端点及射线上一点来表示,注意端点的字母写在前面 如图:记作射线OM,但不能记作射线MO温馨提示:1.射线是直线的一部分;2.射线是像一方无限延伸,有一个端点,不能度量,不能比较大小;3.射线可作反向延长线,不存在射线的延长线。
(4) 直线的记法:①用直线上两个点来表示 ②用一个小写字母来表示 如图:记作直线AB 或直线BA , 记作直线l与字母顺序无关。
此时要在图中标出此小写字母 知识点3:线段、射线、直线的区别与联系:联系:三者都是直的,线段向一个方向延长可得到射线,线段向两个方向延长可得到直线,故射线、线段都是直线的一部分,线段是射线的一部分。
区别:直线可以向两方延伸,射线可以向一方无限延伸,线段不能延伸,三者的区别见下表:B A lA 知识点4:直线的基本性质(重点)(1) 经过一点可以画无数条直线(2) 经过两点只可以画一条直线直线的基本性质:经过两点有且只有一条直线(也就是说:两点确定一条直线) 注:“确定”体现了“有”,又体现了“只有”。
七年级数学下册《平面图形的认识》知识点
苏教版
一、探索直线平行的条
两条直线互相平行的条件即两条直线互相平行的判定定理,共有三条:
①同位角相等,两直线平行;
②内错角相等,两直线平行;
③同旁内角互补,两直线平行。
二、探索平行线的性质
平行线的定义:在同一平面内,永不相交的两条直线叫做平行线。
如:AB平行于cD,写作AB∥cD
平行公理:过直线外一点有且只有一条直线与已知直线平行。
平行公理的推论:平行同一直线的两直线平行。
三、认识三角形知识点
三角形:由不在同一直线上的三条线段首尾顺次相接组成的图形叫三角形。
三角形的特征:
①不在同一直线上;
②三条线段;
③首尾顺次相接;
④三角形具有稳定性。
四、图形的平移
概念
在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移。
性质
平移前后图形全等;
对应点连线平行或在同一直线上且相等。
五、多边形的内角和与外角和
多边形的知识点
n边形有n个顶点、n条边、n个内角.
在多边形的知识中,难点是对角线.从一个顶点可以引条对角线,则从n个顶点可引n条.但是,从"这一点引向另一点"与"由另一点引向这一点"重复,所以,n边形共有n/2条对角线.
多边形的内角和定理
多边形的内角和等于·180°.
我们可以看到,内角和随着边数的变化而变化.边数每增加1,内角和就增加180°。
交点、垂直、垂足
两条直线相交,只有一个交点(intersection p oint). 两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直(perpen dicular),其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足(foot of a perpendicular).
直线AB 、CD 互相垂直,记作“AB ⊥CD ”.两直线互相垂直时,所成的四个角都是直角. ⊥垂直号
建筑工人在砌墙时,常用一端系有铅锤的线,来检查所砌的墙面是否和水平面垂直,如图1.这条带铅锤的线叫做铅垂线.测量时,这条线在空中自由摆动划出了圆弧,当它静止下来时,铅垂线和地面成直角.当铅垂线与墙壁面平行时,自然墙面和水平面就垂直了.
在平面几何中,把相交成直角的两条直线叫做两条直线互相垂直.“垂直”用“⊥”表示,读作“垂直于”.在图2中,直线AB 和CD 垂直时,记作:AB ⊥CD . 垂直号简便易写,是几何学里常用的符号之一.空间直线和平面垂直,平面和平面垂直,两条异面直线互相垂直等,都是通过平面里两条直线的垂直来判定的,因而可以看作是平面几何里垂直概念的拓广. 如果一条直线和一个平面内的任何一条直线都垂直,就说这条直线和这个平面垂直. 如图3中,直线l 垂直于平面α,记作:l ⊥α.
可以证明:只要直线l 垂直于平面α内两条相交直线,就有l ⊥α. 同样,两个平面相交,如果所成的二面角是直二面角,叫做两个平面互相垂直. 图4中,当平面α和平面β垂直时,记作α⊥β. 也可以证明:若平面α通过一条垂直于平面β的直线,则α⊥β.
C A
D B
垂直号“⊥”十分形象地表达了直线与直线、直线与平面、平面与平面的垂直关系,是几何中常用的符号之一.
图3图4。
平面图形的认识知识点(总5页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--平面图形的认识(二)平行一、平行:1、在同一平面内,不相交的两条直线叫做平行线.2、平行线的定义包含三层意思:①“在同一平面内”是前提条件;②“不相交”是指两条直线没有交点;③平行线指的是”两条直线”,而不是两条射线或两条线段.3、平行公理:经过一条直线外一点有一条并且只有一条直线与已知直线平行.4、推论:(平行线的传递性):设a、b、c是三条直线,如果a二、三线八角:两条直线AB、CD与直线EF相交,交点分别为E、F,如图,则称直线AB、CD 被直线EF所截,直线EF为截线.两条直线AB、CD被直线EF所截可得8个角,即所谓“三线八角”.(一)、这八个角中有:1、对顶角:∠1与∠3,∠2与∠4,∠5与∠7,∠6与∠8.2、邻补角有:∠1与∠2,∠2与∠3,∠3与∠4,∠4与∠1,∠5与∠6,∠6与∠7,∠7与∠8,∠8与∠5.(二)、同位角,内错角,同旁内角:1、同位角:两条直线被第三条直线所截,在二条直线的同侧,且在第三条直线的同旁的二个角叫同位角.如图中的∠1与∠5分别在直线AB、CD的上侧,又在第三条直线EF的右侧,所以∠1与∠5是同位角,它们的位置相同,在图中还有∠2与∠6,∠4与∠8,∠3与∠7也是同位角.2、内错角:两条直线被第三条直线所截,在二条直线的内侧,且在第三条直线的两旁的二个角叫内错角.如上图中∠2与∠8在直线AB、CD的内侧(即AB、CD之间),且在EF的两旁,所以∠2与∠8是内错角.同理,∠3与∠5也是内错角.3、同旁内角:两条直线被第三条直线所截,在两条直线的内侧,且在第三条直线的同旁的两个角叫同旁内角.如上图中的∠2与∠5在直线AB、CD内侧又在EF的同旁,所以∠2与∠5是同旁内角,同理,∠3与∠8也是同旁内角.4、因此,两条直线被第三条直线所截,共得4对同位角,2对内错角,2对同旁内角.三、直线平行的条件(判定):1、两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行,简记为:同位角相等,两直线平行2、两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行,简记为:内错角相等,两直线平行3、两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行,简记为:同旁内角互补,两直线平行四、平行线的性质:1、两条平行线被第三条直线所截,同位角相等.简记为:两直线平行,同位角相等2、两条平行线被第三条直线所截,内错角相等.简记为:两直线平行,内错角相等3、两条平行线被第三条直线所截,同旁内角互补,简记为:两直线平行,同旁内角互补平移一、平移的概念:把图形上所有点都按同一方向移动相同的距离叫作平移。
七年级下册数学第六章知识点七年级下册数学的第六章是“图形的认识”,主要介绍了平面图形的分类、性质和计算。
以下是本章的知识点解析。
一、平面图形的分类平面图形按照边的性质分类,可以分为以下四类:1. 三角形:包括直角三角形、等腰三角形、等边三角形和斜角三角形等。
2. 四边形:包括矩形、正方形、菱形、平行四边形、梯形等。
3. 多边形:包括五边形、六边形、七边形、八边形、n边形等。
4. 圆形:指以圆心为中心的所有点到圆心的距离相等的图形。
二、平面图形的性质1. 三角形a) 直角三角形:三条边中有一条边是直角(即90度),直角所在的两条边称为直角边,其他边称为斜边。
b) 等腰三角形:两条边相等的三角形。
c) 等边三角形:三条边相等的三角形。
d) 斜角三角形:以上三角形外的其他三角形。
2. 四边形a) 矩形:四条边两两相等,且都是直角的四边形。
b) 正方形:四条边相等,且都是直角的四边形。
c) 菱形:四条边相等,但不一定都是直角的四边形。
d) 平行四边形:对边平行的四边形。
e) 梯形:至少有一对对边平行的四边形。
3. 多边形a) 内角和公式:n边形的内角和等于180°×(n-2)b) 正多边形:n条边相等、n个内角相等、每个内角度数为(180×(n-2))÷n。
4. 圆形a) 半径:指圆心到圆上任一点的距离。
b) 直径:指穿过圆心的任意一条线段。
c) 周长:圆的周长等于直径的长度π×d(d为圆的直径)。
d) 面积:圆的面积等于半径的平方π×r²(r为半径)。
三、平面图形的计算1. 三角形的面积计算:S=(底边长×高)÷2。
2. 四边形的面积计算:S=底边×高。
(注:有些四边形的面积计算公式不同)3. 圆的面积计算:S=π×r²。
4. 常见图形的周长和面积:表格略以上就是七年级下册数学第六章“图形的认识”的知识点解析,平面图形的分类、性质和计算方法非常重要,希望同学们能够认真学习,掌握这些知识点。
M O a第六章:平面图形的认识第一节:直线、射线、线段知识点1:概念线段:一段拉直的棉线可近似地看作线段,线段有两个端点。
线段的画法:(1)画线段时,要画出两个端点之间的部分,不要画出向任何一方延伸的情况.(2)以后我们说“连结 ”就是指画以A 、B 为端点的线段. 射线:将线段向一个方向无限延长,就形成了射线,射线有一个端点。
如手电筒、探照灯射出的光线等。
射线的画法:画射线 一要画出射线端点 ;二要画出射线经过一点,并向一旁延伸的情况. 直线:将线段向两个方向无限延长就形成了直线,直线没有端点。
如笔直的铁轨等。
直线的画法:用直尺画直线,但只能画出一部分,不能画端点。
知识点2:线段、直线、射线的表示方法:(1) 点的记法:用一个大写英文字母(2) 线段的记法:①用两个端点的字母来表示 ②用一个小写英文字母表示 如图:记作线段AB 或线段BA , 记作线段a ,与字母顺序无关 此时要在图中标出此小写字母温馨提示:线段是直线(或射线)的一部分;2.线段不可向两方无限延伸,但可度量;3.延长线常化成虚线;4.延长线段AB 是指按A 到B 的方向延长,延长线段BA 是指按B 到A 的方向延长.(3) 射线的记法:用端点及射线上一点来表示,注意端点的字母写在前面 如图:记作射线OM,但不能记作射线MO温馨提示:1.射线是直线的一部分;2.射线是像一方无限延伸,有一个端点,不能度量,不能比较大小;3.射线可作反向延长线,不存在射线的延长线。
(4) 直线的记法:①用直线上两个点来表示 ②用一个小写字母来表示 如图:记作直线AB 或直线BA , 记作直线l与字母顺序无关。
此时要在图中标出此小写字母 知识点3:线段、射线、直线的区别与联系:联系:三者都是直的,线段向一个方向延长可得到射线,线段向两个方向延长可得到直线,故射线、线段都是直线的一部分,线段是射线的一部分。
区别:直线可以向两方延伸,射线可以向一方无限延伸,线段不能延伸,三者的区别见下表:B A lA 知识点4:直线的基本性质(重点)(1) 经过一点可以画无数条直线(2) 经过两点只可以画一条直线直线的基本性质:经过两点有且只有一条直线(也就是说:两点确定一条直线) 注:“确定”体现了“有”,又体现了“只有”。
如图:经过点K 可以画无数条直线 经过点A 、B 只可以画一条直线温馨提示:两条射线(或线段)未必一定有交点 知识点5:两点的距离连接两点的线段的长度,叫做这两点的距离。
它是线段的长度,是数量,不是线段本身知识点6:两点的距离连接所有两点的线中,线段最短,简述为两点之间,线段最短。
● ●2)1(-=n n N 如图,若点C 将线段AB 分为线段相等的两条线段AC 和BC ,则点C 为线段AB 的中点 ● ● ●A C B温馨提示:1.一条线段的中点只有一个;2.某一点要成为线段的中点必须同时满足两个条件:点必须在这条线段上;它把这条线段分成相等的两条线段。
知识点8:线段的计数问题阅读下表:(1)根据表中规律可得到线段总数N 与线段上点数n(包括线段的两个端点)存在着如下的关系第二节:角——余角、补角知识点1:角的定义角是有两条具有公共顶点的射线组成的。
两条射线的公共点叫做这个角的顶点。
两条射线叫做角的两边。
角也可以看成时一条射线绕它的顶点旋转而成的。
温馨提示:1.因为射线是向一方无限延伸的,所以角的两边无所谓长短,即角的大小与它的边长无关。
2.角的大小可以度量,也可以比较。
3.根据角的度数,角可以分成锐角、直角、钝角、平角和周角。
锐角:大于ο0小于ο90;直角:等于ο90;钝角:大于ο90小于ο180;平角:等于ο180(不能说成平角就是一条直线);周角:等于ο360(不能说成周角就是一条射线)4.两条射线组成的图形叫做角或者角是由一条射线旋转而成的,这两种说法都是错误的 知识点2:角的表示●通常用三个大写字母表示,表示顶点的字母在中间。
●在不引起混淆的情况下,也可以用表示顶点的大写字母表示角。
●也可以用希腊字母(α,β,γ)或数字表示角。
概念:以度、分、秒为基本单位的角的度量制,叫做角度制。
1°=60′,1′=60″ ,1°=3600″,1周角=360ο,1平角=180ο.温馨提示:1.角的度、分、秒是60进制的。
2.在进行度分秒运算时,由低级单位向高级单位转换或者由高级单位向低级单位转换,要逐级转换,不能越级。
知识点4:角平分线(见课本)知识点5:角的计数问题数角与之前数线段是同一类问题,同样可从角的顶点出发引出n 条射线,共有角的个数为:知识点6:余角、补角余角:如果两个角的和是一个直角,那么这两个角互为余角,其中一个角是另一个角的余角 补角:如果两个角的和是一个平角,那么这两个角互为补角,其中一个角是另一个角的补角 性质:●同角或等角的余角相等。
●同角或等角的补角相等。
温馨提示:●钝角没有余角;●互为余角和补角是两个角之间的关系;如:ο180321=∠+∠+∠,不能说他们3个角互补。
●互为余角、补角只与角的度数有关,与角的位置无关,只要他们的度数等于90ο或者180ο,那一定互为余角或者补角。
知识点7:方向角1.定义:一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达成北(南)偏东(西)××度。
2.度量:方向角系分由南北起算,角度值在零度及九十度之间。
3.表示方式:在角度值之前冠以南北字样,其后则书出东西字样。
正北:北偏东0度或者北偏西0度。
正南:南偏东0度或者南偏西0度。
正东:北偏东90度或者南偏东90度。
正西:北偏西90度或者南偏西90度。
东北:北偏东45度。
西北:北偏西45度。
东南:南偏东45度 西南:南偏西45度知识点8:时针、分针的夹角(1)普通钟表相当于圆,其时针或分针走一圈均相当于走过360°角;(2)钟表上的每一个大格(时针的一小时或分针的5分钟)对应的角度是:οο3012360=;(3)时针每走过1分钟对应的角度应为:οο5.06012360=⨯;(4)分针每走过1分钟对应的角度应为:οο660360=。
计算举例:例1. 如图1所示,当时间为7:55时,计算时针与分针夹角的度数(不考虑大于180°的角)。
解析:依据常识,我们应该以时针、分针均在12点时为起始点进行计算。
由于分针在时针前面,我们可以先算出分针走过的角度,再减去时针走过的角度,即可求出时针与分针夹角的度数。
分针走过的角度为:55×6°=330°时针走过的角度为:οοο5.2375.055307=⨯+⨯ 则时针与分针夹角的度数为:οοοοοο5.925.2373306555.055307=-=⨯-⨯+⨯ 例2. 如图2所示,当时间为7:15时,计算时针与分针夹角的度数(不考虑大于180°的角)。
解析:此题中分针在时针的后面,与上题有所不同,我们应该先算出时针走过的角度,再去减去分针走过的角度,即可求出时针与分针夹角的度数。
时针走过的角度为:οοο5.2175.015307=⨯+⨯分针走过的角度为:οο90615=⨯则时针与分针夹角的度数为:οοο5.127905.217=-总结规律从上述两例我们可以总结出规律如下:当分针在时针前面,可以先算出分针走过的角度,再减去时针走过的角度,即可求出时针与分针夹角的度数;当分针在时针后面,可以先算出时针走过的角度,再减去分针走过的角度,即可求出时针与分针夹角的度数。
用字母和公式表示:当时间为m 点n 分时,其时针与分针夹角的度数为:(1)分针在时针前面:()οοο5.0306⨯+⨯-⨯n m n (2)分针在时针后面:()οοο65.030⨯-⨯+⨯n n m 依据此公式可以求出任意时刻时针与分针夹角的度数,计算起来非常便捷。
如果题目中涉及到秒,我们可以先把秒换算为分,再套用上述规律和公式进行计算即可。
第三节:相交线与平行线知识点1:直线的位置关系在同一平面内直线与直线的位置关系只有两种:相交与平行。
知识点2:垂直当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,他们的交点叫做垂足。
知识点3:垂直的性质平面内...,过一点有且仅有一条直线与已知直线垂直。
(必须强调在同一平面内)知识点4:垂线段最短连接直线外一点与直线上各点的所有线段中,垂线段最短,简述为垂线段最短。
注:直线外一点到这条直线的垂线段只有一条。
知识点5:点到直线的距离直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
知识点6:相交线中的角——对顶角概念见课本知识点7:对顶角性质对顶角相等温馨提示:●判断两个角是否互为对顶角关键是看这两个角是否有公共顶点,一个角的两边是否为另一个角的两边的反向延长线。
●对顶角也是成对出现的●两条直线相交所构成的四个角中,有两两对顶角。
●若两个角互为对顶角,那么这两个角一定相等。
反之若两个角相等,不一定是互为对顶角。
知识点8:平行线在同一个平面内,不相交的两条直线叫做平行线。
平行符号“//”。
知识点9:平行公理公理:经过直线外一点,有且只有一条直线与这条直线平行。
推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行。