第六章 核糖体和核酶 细胞生物学(王金发版)章节总结
- 格式:pdf
- 大小:409.11 KB
- 文档页数:6
第四章细胞质膜本章小结•细胞膜与其他生物膜一样都是由膜脂与膜蛋白构成的。
•膜脂主要包括甘油磷脂、鞘脂和胆固醇。
甘油磷脂是构成膜的主要成分,主要包括磷脂酰胆碱、磷脂酰丝氨酸、磷脂酰乙醇胺和磷脂酰肌醇等;鞘脂是鞘氨醇的衍生物,主要包括神经鞘磷脂、脑苷脂和神经节苷脂等。
•膜蛋白可分为内在蛋白、外在蛋白和脂锚定蛋白3大类。
•内在蛋白可以α单次或多次螺旋、β折叠片或形成大复合物的方式与膜脂结合;外在蛋白靠离子键或其他弱键与膜内在蛋白或膜脂结合;脂锚定蛋白通过与之共价相连的脂肪酸(质膜内侧)或糖基磷脂酰肌醇(质膜外侧)锚定在质膜上。
•膜的流动性与膜的不对称性是生物膜的最基本特性。
•膜的流动性表现:膜脂分子具有侧向扩散、旋转运动、弯曲运动与翻转运动;膜蛋白具有侧向扩散和旋转运动,但不具备翻转运动。
•膜的不对称性表现:膜脂分布的不对称性(质膜外小页SM、PC多,质膜内小页PS、PE多);膜蛋白的不对称性(糖蛋白全部分布于质膜外小页面)。
•膜骨架是细胞质膜与膜内的细胞骨架纤维形成的复合结构,它参与维持细胞的形态、并协助细胞质膜完成多种的生理功能。
•各种不同的膜蛋白与膜脂分子的协同作用不仅为细胞的生命活动提供了稳定的内环境,而且还行驶着物质转运、信号传递、细胞识别等多种复杂的功能。
•胞膜窖是近年来发现的新的细胞质膜结构,可能是窖蛋白与脂筏结合形成的一种特殊结构。
在细胞的胞饮、蛋白质分选、胆固醇的发生、信号转导、肿瘤的发生中具有重要作用。
本章重点与难点•膜脂与膜蛋白的主要类型•不同膜蛋白与膜脂的结合方式•膜脂与膜蛋白的运动方式•膜的流动性与不对称性特征•细胞质膜的基本功能第五章物质的跨膜运输本章小结•细胞质膜具有选择通透性,是细胞与细胞外环境之间物质运输的屏障。
广义的细胞物质运输包括跨膜运输、胞内运输与转细胞运输。
•几乎所有小的有机分子和带电荷的无机离子的跨膜运输都需要膜运输蛋白。
膜转运蛋白包括:载体蛋白、通道蛋白以及微生物分泌的离子载体。
细胞生物学摘要第一章细胞概述细胞是生物体结构和功能的基本单位,也是生命活动的基本单位,由膜包围着含有细胞核或拟核的原生质所组成。
1665 年胡克首先发现细胞(《显微图谱》),1838 年,德国植物学家施莱登创立了植物细胞学说;1939 年,德国动物学家施旺创立了动物细胞学说。
1965 年,Derobtis 将其编著的《普通细胞学》改为《细胞生物学》标志着细胞生物学的诞生,研究细胞及其生物学功能的科学称为细胞生物学。
作为生命活动的结构和功能的基本单位,细胞有着各种形态,但又有一系列的共同点:细胞都具有选择性的膜结构、遗传物质和核糖体,都能进行自我增殖,都有新陈代谢和运动性。
组成细胞的化合物有水、无机盐、小分子有机物(糖、脂、核苷酸及氨基酸等),以及核酸、蛋白质、多糖等生物大分子。
细胞分原核细胞和真核细胞两大类。
原核细胞没有核膜,缺乏多种细胞器,但有核糖体;真核细胞分生物膜体系、遗传信息表达体系、细胞骨架体系。
病毒不具细胞结构,只含核酸和蛋白质,是非细胞的生命体。
第二章细胞生物学研究方法显微成像包括直接成像和间接成像。
显微技术是生物学中最基本的研究技术,包括光学显微技术和电子显微技术。
显微镜是利用透镜的成像原理制成的,主要参数有透镜分辨率、放大率。
光学显微镜因受可见光波长的限制,,最小只能分辨0.2卩m的细微结构,电子束的波长比光波长小得多,因此电子显微镜的使用可使分辨率大提高。
常见的光学显微镜有普通双筒显微镜、荧光显微镜、相差显微镜、暗视野显微镜、倒置显微镜。
电子显微镜是研究亚显微结构的主要工具,包括透射电镜和扫描电镜。
细胞化学技术包括酶细胞化学技术、免疫细胞化学技术等。
流式细胞分选技术是细胞生物学和现代生物技术中的重要技术,可用于分选细胞和染色体。
细胞工程技术是细胞生物学与遗传学的交叉学科,主要利用细胞生物学的原理和方法,结合工程学的技术手段,按照人们预先的设计改变或创造细胞遗传性的技术,主要内容有:细胞融合、细胞生物反应器、染色体转移、细胞器移植、基因转移、细胞及组织培养。
一、核糖体的形态结构⏹ 核糖体唯一的功能是按照m R N A 的指令将氨基酸合成蛋白质多肽链。
使细胞内蛋白质合成的分子机器,是细胞内数量最多的细胞器。
1、 核糖体的类型和化学组成⏹大小两个亚基都是由核糖体R N A 和核糖体蛋白组 成的。
(M g 2+的浓度)⏹ 原核生物(大肠杆菌)的核糖体:⏹ 大亚基50S :33种蛋白质;23S r R N A ,5S r R N A ⏹ 小亚基30S :21种16S rRN A (小亚基 主要由16S r R N A 决定)⏹ 真核细胞核糖体: ⏹ 大亚基60S :49种蛋白质;28S r R N A ,5 S r R N A , 5.8 S r R N A ⏹ 小亚基40S :33种蛋白质;18S r R N A 二、核糖体的生物发生⏹ 1、 核糖体r R N A 基因的转录与加工⏹ 真核生物核糖体由18S 、5.8S 、28S r R N A 和5S r R N A 基因 ⏹ 真核生物有四种r R N A 基因,⏹ 真核生物前r R N A 的修饰:两个特征1. 2以及修饰的意义。
⏹真题再现:03选择前体r R N A 甲基化的重要作用是: A .保证最后的r R N A 能够装配成正确的三级结构B .防止前体r R N A 被加工(x 对加工起引导作用) C .防止成熟r R N A 部分被降解。
二、核糖体的生物发生 ---真核生物的核糖体生物发生 ⏹ 2 5S r R N A 基因的转录与加工 ⏹ 由R N A 聚合酶3转录,使用的是内部启动子。
⏹ 学习重点⏹ 1.关于核糖体的形态结构, 主要学习掌握真核细胞和原核细胞核糖体的化学组成、细菌核糖体的结构模型。
⏹ 2. 核糖体的生物发生是本章的重点内容之一⏹ 3.核糖体的蛋白质合成作用,反义R N A 与核酶⏹ 本章考题近年来主要以小题为主。
第六章 核糖体与核酶2.1原核生物核糖体重组实验:⏹ (1)30S 亚基的蛋白质只和16SR N A 结合,50S亚基质只和23S r R N A 结合⏹ (2)不同种之间提取的30S 亚基的r R N A 和蛋白质可以装 配成有功能的30S 亚基,即不存在种间的差异⏹ (3)原核生物核糖体与真核生物核糖体的亚基彼此不 同,由二者的r R N A 和蛋白质装配成的核糖体没有活性 ⏹ (4)大肠杆菌的核糖体与玉米叶绿素核糖体亚基重组后 具有功能 ⏹(5)线粒体的核糖体亚基同原核生物核糖体亚基之间形 成的杂合核糖体没有功能 真核生物核糖体重组⏹ 边合成边装配,18S r R N A ,5.8r R N A ,28S r R N A在核仁中,边转录边装配,5S r R N A 在细胞核中转录后在运送到核仁里参与装配三、核糖体的功能—蛋白质的合成⏹ 1、 核糖体的功能位点 ⏹ ●A 位点(受位):接收氨酰t R N A 的部位 ⏹ ●P 位点(供位):肽酰t R N A 位点 ⏹ ●E 位点:中间停靠点,而且当E 位点被占据后,A 位点同氨酰t R N A 的亲和力降低,防止氨酰t R N A 的结合,直到核糖体准备就绪 ⏹ ● m R N A 结合位点2、 蛋白质合成的基本过程⏹ 2.1 肽链的起始:⏹ (1)30S 亚基与m R N A 的结合 ⏹ (2)第一个a a —t R N A 进入核糖体(P 位) ⏹ (3)完整起始复合物的装配2、 核糖体的装配⏹ 核糖体是自组装的结构,没有样板或亲体结构所组成的结构。
核糖体与核酶引言:1.核糖体(ribosome)是细胞内的一种核糖蛋白颗粒,其唯一的功能是按照mRNA的指令将氨基酸合成蛋白质多肽链,所以核糖体是细胞内蛋白质合成的分子机器。
6.1 核糖体的形态结构1.核酶是具有催化活性的反义RNA6.1.1 核糖体的类型和化学组成6.1.1.1 核糖体的类型和大小1.核糖体有种类型:细胞质核糖体、线粒体核糖体、叶绿体核糖体2.核糖体分为:真核生物核糖体和原核生物核糖体3.核糖体由大小两个不同的亚基组成,在不进行蛋白质合成时是分开的,各自游离在细胞质中,在进行蛋白质合成时结合在一起4.在真核细胞中,核糖体在进行蛋白质合成时:1.游离在细胞质中称游离核糖体2.附着在内质网的表面,称膜旁核糖体或附着核糖体。
6.1.1.2 核糖体的化学组成1.核糖体的大小两个亚基都是由核糖体RNA(rRNA)和核糖体蛋白质组成。
6.1.2核糖体的蛋白质与rRNA6.1.2.1 核糖体蛋白1. E.coli核糖体21个小亚基,为S1~S21,大亚基的核糖体蛋白命名为L1~L336.1.2.2 核糖体rRNA1.30S核糖体亚基的形态主要是由16S rRNA决定的6.1.3细菌核糖体的结构模型1.S4、S5、S8、S12等4个蛋白定位在核糖体的小亚基上,并且是背向大亚基。
2.小亚基中确定了与信使RNA(mRNA)和转移RNA(tRNA)结合位点3.催化肽键形成的位点位于大亚基,和GTP水解的功能区6.2核糖体的生物发生1.在细胞内,核糖体是自我装配的。
2.核糖体的生物发生包括蛋白质和rRNA的合成、核糖体亚基的组装等。
6.2.1 核糖体rRNA基因的转录与加工1.编码核糖体的基因分为两类:一类是编码蛋白质的基因,另一类是rRNA基因6.2.1.1 编码rRNA基因的过量扩增1.细胞为了满足大量需求的rRNA,在进化的过程中形成了一种机制:增加编码rRNA基因的拷贝数。
2.增加拷贝数有两种方法:1.在染色体上增加rRNA基因的拷贝数2.通过基因扩增6.2.1.2 真核生物18S、5.8S、28S rRNA和5S rRNA基因1.在真核生物的染色体中,18S、5.8S、28S rRNA和5S rRNA基因是串联在一起的,每个基因被间隔区隔开,5S rRNA基因位于不同的染色体上。
名词解释:细胞学说:细胞学说是1838~1839年间由德国的植物学家施莱登和动物学家施旺所提出,直到1858年才较完善。
它是关于生物有机体组成的学说,主要内容有:①细胞是有机体,一切动植物都是由单细胞发育而来,即生物是由细胞和细胞的产物所组成;②所有细胞在结构和组成上基本相似;③新细胞是由已存在的细胞分裂而来;④生物的疾病是因为其细胞机能失常。
细胞全能性:分化细胞保留着全部的核基因组, 它具有生物个体生长、发育所需要的全部遗传信息, 即能够表达本身基因库中的任何一种基因, 也就是说分化细胞具有发育为完整个体的潜能, 称为全能性。
分辨率:指能分辨出的相邻两个物点间最小距离的能力,这种距离称为分辨距离。
分辨距离越小,分辨率越高。
一般规定∶显微镜或人眼在25cm明视距离处,能清楚地分辨被检物体细微结构最小间隔的能力,称为分辨率。
冰冻蚀刻技术:是在冰冻断裂技术的基础上发展起来的更复杂的复型技术。
如果将冰冻断裂的样品的温度稍微升高,让样品中的冰在真空中升华,而在表面上浮雕出细胞膜的超微结构。
当大量的冰升华之后,对浮雕表面进行铂-碳复型,并在腐蚀性溶液中除去生物材料,复型经重蒸水多次清洗后,置于载网上作电镜观察。
放射自显影:放射自显影的原理是利用放射性同位素所发射出来的带电离子(α或β粒子)作用于感光材料的卤化银晶体,从而产生潜影,这种潜影可用显影液显示,成为可见的"像",因此,它是利用卤化银乳胶显像检查和测量放射性的一种方法。
分子杂交:不同来源或不同种类生物分子间相互特异识别而发生结合的过程。
如核酸(DNA、RNA)之间、蛋白质分子之间、核酸与蛋白质分子之间以及自组装单分子膜之间的特异性结合。
PCR技术:在体外利用人工合成的引物,再加上DNA聚合酶和一些合适的底物和因子,通过对温度的控制,使DNA不断处于变形、复性和合成的循环中,达到扩增目的基因的目的。
细胞群体培养克隆培养原代培养:指直接从机体取下细胞、组织和器官后立即进行培养。
第六章核糖体与核酶姓名:李淼学号:09352044 班级:生科一班日期:11.17核糖体是细胞内一种核糖蛋白颗粒,含有rRNA和r蛋白质。
核糖体可分为真核生物核糖体和原核生物核糖体,前者有细胞质核糖体、线粒体核糖体和叶绿体核糖体之分。
核糖体均有大小两个亚基组成,进行蛋白质合成时才结合在一起。
原核生物核糖体沉降系数为70S,由50S大亚基(含33种不同的蛋白质以及23S和5S rRNA)和30S小亚基(含21种蛋白质以及16S rRNA)组成;真核生物核糖体沉降系数为80S,由60S大亚基(含大约49种蛋白质以及28S、5S和5.8S rRNA)和40S 小亚基(含大约33种蛋白质以及18S rRNA)组成。
核糖体的组成成分是蛋白质和rRNA,所以编码核糖体的基因分为两类,一类是编码蛋白质的基因,另一类是rRNA基因。
细胞为了满足大量需求的rRNA,有两种方法扩大rRNA 的拷贝数。
第一是在染色体上增加rRNA基因的拷贝数,第二是通过基因扩增来实现。
真核生物的18S、5.8S和28S rRNA基因首先转录成一个45S的前rRNA,能够转录这3个前rRNA的DNA区域称为一个转录单位。
参与rRNA基因转录的酶是RNA聚合酶I,合成地点是核仁,转录间隔区被讲解掉。
原核生物的16S、23S、5S 3种rRNA基因组成一个转录单位。
5S rRNA是核糖体大亚基的一个组分,原核生物和真核生物都有,并且结构相似。
5SrRNA基因是由RNA聚合酶III 在核仁外转录的,只需要进行简单的加工或者不需要加工。
RNA聚合酶III通常是与位于转录部分内的启动子结合,而不是与转录起始位点上游的启动子结合。
核糖体的功能是进行蛋白质多肽链的合成。
核糖体的中有一个mRNA结合位点和3个tRNA结合位点:A、P、E位点。
A位点是氨酰基位点,是与新掺入的氨酰tRNA结合位点,又叫受位。
主要位于大亚基。
P位点是肽酰tRNA位点,又叫供位。
第六章核糖体和核酶章节提要唐浩能生命科学大学院生命科学大类 13335155核糖体是细胞内一种核糖核蛋白颗粒,其唯一功能是按照mRNA的指令将氨基酸合成蛋白质多肽链。
所以又被称为蛋白质合成的机器。
核糖体由60%的核糖体RNA(rRNA)和40%的核糖体蛋白质组成。
本章内容包括:核糖体的形态结构、核糖体的生物发生、核糖体的功能——蛋白质的合成、反义RNA与核酶。
一、核糖体的形态结构核糖体由三种类型:细胞质核糖体、线粒体核糖体和叶绿体核糖体。
根据在不同生物体内的大小和组成的不同又可以分为真核生物核糖体和原核生物核糖体。
核糖体都是由两个大小不同的亚基组成。
核糖体的化学组成为核糖体RNA 和核糖体蛋白质。
原核生物核糖体沉降系数为70S,由50S大亚基(含33种不同的蛋白质以及23S和5S两种rRNA)和30S小亚基(含21种蛋白质以及16S rRNA)组成;真核生物核糖体沉降系数为80S,由60S大亚基(含大约49种蛋白质以及28S、5S和5.8S rRNA)和40S小亚基(含大约33种蛋白质以及18S rRNA)组成。
二、核糖体的生物发生核糖体的生物发生包括蛋白质和rRNA的合成、核糖体亚基的组装等。
因为细胞需要大量的rRNA,因此在进化过程中形成了一种机制:增加编码rRNA基因的拷贝数。
真核生物的18S、5.8S和28SrRNA基因首先转录成一个45S前rRNA,能够转录该前rRNA的DNA区域称为一个转录单位,意指他们有一个共同的转录起点和终点。
接着45SrRNA转变成32SrRNA,然后变成28S和18S rRNA。
真核生物合成前rRNA之后需要进行加工。
细菌等原核生物的rRNA基因的转录首先是形成16S-23S-5S前体RNA。
然后进行剪切分开。
核糖体的装配是自发进行的,但是其组装部位,在真核生物是在细胞核的核仁部位,在原核生物是在细胞质中。
三、核糖体的功能——蛋白质的合成在原核生物中有4种与RNA分子结合的位点,其中一个是与mRNA结合的位点,另外三个是tRNA结合的位点。
第一章:细胞概述1. 基本概念:主要分清细胞、原生质、细胞质、细胞学、细胞生物学等基本概念;2. 细胞的发现和细胞学说的创立:了解英国学者胡克发现细胞的起因, 以及发现细胞的基本条件。
对于细胞学说, 侧重于学说的基本内容和该学说对细胞科学发展的推动作用。
3. 细胞的基本功能和特性:重点掌握细胞生命的三个最基本的功能: 自我增殖和遗传、新陈代谢和运动性; 并对细胞结构上的同一性有基本的理解。
4. 细胞的分子基础:充分认识细胞是由化学物质构成的, 生命是物质的,是一种特殊形式的物质运动,它是物质、能量和信息诸变量在特定时空的“表演”,其运转有赖于生命系统有组织的守时和对空间环境的合拍。
5. 细胞的类型和结构体系:主要了解真核细胞与原核细胞的结构组成和体系,比较二者的异同。
同时注意动物细胞与植物细胞在结构上的差异。
本章的核心内容是细胞学说的创立和细胞的类型与结构体系。
一、名词解释1、细胞生物学cell biology2、显微结构microscopic structure二、填空题1、细胞生物学是研究细胞基本规律的科学,是在、和三个不同层次上,以研究细胞的、、、和等为主要内容的一门科学。
2、细胞生物学的发展历史大致可分为、、、和分子细胞生物学几个时期三、选择题1、第一个观察到活细胞有机体的是()。
a、Robert Hookeb、Leeuwen Hoekc、Grewd、Virchow2、细胞学说是由()提出来的。
a、Robert Hooke和Leeuwen Hoekb、Crick和Watsonc、Schleiden和Schwannd、Sichold和Virchow3、细胞学的经典时期是指()。
a、1665年以后的25年b、1838—1858细胞学说的建立c、19世纪的最后25年d、20世纪50年代电子显微镜的发明4、()技术为细胞生物学学科早期的形成奠定了良好的基础。
a、组织培养b、高速离心c、光学显微镜d、电子显微镜四、判断题1、细胞生物学是研究细胞基本结构的科学。
2016年考研细胞生物学王金发主编系列一:章节总结汇编系列二:章节课后问答题解析科学教育出版社系列一:章节总结汇编第一章细胞概述1.细胞生物学的概念以及研究内容1.1概念研究细胞及其生物学功能的科学。
1.2研究内容以细胞为研究对象,从细胞的整体水平、亚显微水平、分子水平三个层次,以动态的观点研究细胞和细胞器结构和功能、细胞生活史和各种生命活动规律的学科。
2.细胞生物学的发展简史细胞生物学的发展大致分为四个时期:2.1细胞的发现及细胞学说的创立2.1.1 1665年,胡克利用自己制造的显微镜观察栎树软木塞切片,观察到蜂窝状小室(死细胞),并将其称为“cella”。
1674年,列文虎克利用自制的高倍显微镜,第一次观察到了完整的活细胞。
2.2.2施莱登、施旺提出了细胞学说,即地球上的生物都是由细胞构成的,所有的生活细胞在结构上都是类似的。
后由威尔肖补充,所有的细胞都是来自于已有的细胞的分裂。
细胞学说创立论证了生物界的统一性和生命的共同起源。
2.2细胞学的经典时期1875-1900年,细胞学说的推动,固定和染色技术、显微镜技术的发展,使细胞生物学有了进一步的发展,集中在细胞结构组成以及分裂方面。
2.3实验细胞学时期此时期的特点是利用实验的手段从形态结构的观察深入到生理功能、生物化学、遗传发育机制的研究,并且同相邻学科互相渗透,互相发展。
2.4细胞生物学概念的提出1965年,derobetis将其编著的《普通细胞学》改为《细胞生物学》,标志细胞生物学的诞生。
3.细胞概述3.1细胞的共性3.1.1 细胞结构的共性:都具有选择性的膜结构、遗传物质、核糖体。
选择性膜结构能够维持内环境的稳定性,使物质、能量、信息交流等稳定进行;细胞都具有遗传物质,最早的遗传物质是RNA,后逐渐进化形成DNA;细胞具有核糖体,保证遗传信息能够正常表达。
3.1.2 细胞功能的共性:遗传信息流;繁殖;网络系统式的生化反应和谐体。
细胞遗传信息的复制、表达;细胞都能进行新陈代谢,新陈代谢即是由酶促反应构成及酶调控的网络系统。
细胞生物学章节提要第六章核糖体与核酶细胞生物学章节提要第六章核糖体与核酶第06章总结核糖体与核酶研究方法:足迹、放射性标记(核糖体发现)、原核核糖体重组实验和合成反义RNA干扰。
核糖体(ribsome)是细胞内一种核糖蛋白颗粒(ribonucleoproteinparticle),唯一功能是翻译mrna的指令,将氨基酸合成蛋白质多肽链。
核糖体包括线粒体核糖体、叶绿体核糖体、细胞质核糖体。
真核细胞和原核细胞的核糖体组成不同,由均有两个不同大小的亚基构成。
它有rrna和核糖体蛋白质(ribosomalprotein),原核细胞由50s和30s 两个亚基构成70s的核糖体,真核细胞由60s和40s两个亚基构成80s的核糖体。
核糖体生物发生包括蛋白质和核糖核酸的合成、核糖体亚基的组装等。
在进化过程中,通过增加染色体上rRNA基因的拷贝数和基因扩增,编码rRNA的基因数量增加。
但第一个含有rRNA基因的DNA是如何形成的尚不清楚。
真核18S、5.8S和28s rRNA基因形成一个转录单元,这是转录成45s的前提。
原核生物的16S、23S和5S rRNA基因构成一个转录单元。
与成熟rRNA相比,真核生物的前rRNA含有大量甲基化核苷和大量假尿苷。
原核生物的rRNA基因也是多拷贝的(在真核生物中重复率相对较低),需要转录成前体,然后加工成rRNA。
此外,在真核生物中编码5srrna的基因位于不同的染色体上,而细菌5srrna基因与其他两个rRNA结合形成一个转录单元。
在组装部位,真核生物在核仁中,原核生物在细胞质中。
核糖体的唯一功能是蛋白质合成(proteinsynthetize)。
核糖体中与trna结合位点有a位点(asite)、p位点(psite)、e位点(esite)。
原核生物通过sd序列识别结合,真核生物通mrna5’端甲基化帽子结构识别。
蛋白质合成主要的过程为:链的起始、链的延伸、链的终止。
大约90%以上的真核生物的起始密码子是aug。
第六章核糖体与核酶核糖体(ribosome),是细胞内一种核糖核蛋白颗粒(ribonucleoprotein particle), 其惟一功能是按照mRNA 的指令将氨基酸合成蛋白质多肽链,所以核糖体是细胞内蛋白质合成的分子机器。
核糖体最早是Albert Claude 于20 世纪30 年代后期发现的, 其后又证明了其蛋白质合成功能。
随着分子生物学的发展,核糖体概念的涵意有了进一步的发展。
细胞内除了从事蛋白质合成的核糖体外,还有许多其它功能的核糖核蛋白体颗粒,通常是一些小分子的RNA 同蛋白质组成的颗粒,它们参与RNA 的加工、RNA 的编辑、基因表达的调控等。
6.1核糖体的形态结构核糖体是细胞内数量最多的细胞器,原核细胞和真核细胞都有核糖体,功能也相同,但是结构组成却有很大差别。
6.1.1核糖体的类型和化学组成■核糖体的类型●按存在的部位:有三种类型核糖体,细胞质核糖体、线粒体核糖体、叶绿体核糖体。
1●按存在的生物类型: 分为两种类型,即真核生物核糖体和原核生物核糖体。
原核细胞的核糖体较小,沉降系数为70S,相对分子质量为2.5x103 kDa,由50S 和30S 两个亚基组成(图6-1);而真核细胞的核糖体体积较大,沉降系数是80S,相对分子质量为3.9~4.5x103kDa,由60S 和40S 两个亚基组成。
图6-1 从两个不同角度观察的 E.coli 核糖体的三维结构●Mg2+的浓度对于大小亚基的聚合和解离有很大的影响,体外实验表明:70S 核糖体在Mg2+的浓度小于1mmol/L 的溶液中易解离; 当Mg2+浓度大于10mmol/L,两个核糖体通常形成100S 的二聚体(图6-2)。
图6-2 通过区带离心鉴定核糖体的亚基在低浓度的Mg2+时,完整的核糖体将分成大小两个亚基。
●在组成上,叶绿体中的核糖体与原核生物核糖体相同,但线粒体中核糖体的大小变化较大(表6-1)。
表6-1 不同类型核糖体的大小比较。
细胞生物学名词解释(王金发版)1. 细胞概述1. 细胞(cell)细胞是由膜包围着含有细胞核(或拟核)的原生质所组成, 是生物体的结构和功能的基本单位, 也是生命活动的基本单位。
细胞能够通过分裂而增殖,是生物体个体发育和系统发育的基础。
细胞或是独立的作为生命单位, 或是多个细胞组成细胞群体或组织、或器官和机体;细胞还能够进行分裂和繁殖;细胞是遗传的基本单位,并具有遗传的全能性。
2. 细胞质(cell plasma)是细胞内除核以外的原生质, 即细胞中细胞核以外和细胞膜以内的原生质部分, 包括透明的粘液状的胞质溶胶及悬浮于其中的细胞器。
3. 原生质(protoplasm)生活细胞中所有的生活物质, 包括细胞核和细胞质。
4. 原生质体(potoplast)脱去细胞壁的细胞叫原生质体, 是一生物工程学的概念。
如植物细胞和细菌(或其它有细胞壁的细胞)通过酶解使细胞壁溶解而得到的具有质膜的原生质球状体。
动物细胞就相当于原生质体。
5. 细胞生物学(cell biology)细胞生物学是以细胞为研究对象, 从细胞的整体水平、亚显微水平、分子水平等三个层次,以动态的观点, 研究细胞和细胞器的结构和功能、细胞的生活史和各种生命活动规律的学科。
细胞生物学是现代生命科学的前沿分支学科之一,主要是从细胞的不同结构层次来研究细胞的生命活动的基本规律。
从生命结构层次看,细胞生物学位于分子生物学与发育生物学之间,同它们相互衔接,互相渗透。
6. 细胞学说(cell theory)细胞学说是1838~1839年间由德国的植物学家施莱登和动物学家施旺所提出,直到1858年才较完善。
它是关于生物有机体组成的学说,主要内容有:①细胞是有机体,一切动植物都是由单细胞发育而来,即生物是由细胞和细胞的产物所组成;②所有细胞在结构和组成上基本相似;③新细胞是由已存在的细胞分裂而来;④生物的疾病是因为其细胞机能失常。
7. 原生质理论(protoplasm theory)1861年由舒尔策(Max Schultze)提出, 认为有机体的组织单位是一小团原生质,这种物质在一般有机体中是相似的,并把细胞明确地定义为:“细胞是具有细胞核和细胞膜的活物质”。
王金发《细胞生物学》网络课件讲义全集课程学习:1.细胞概述>>目录1. 细胞概述1.1 细胞的发现及细胞学说的创立1.1.1 细胞的发现1.1.2 细胞学说(cell theory)的创立1.1.3 细胞学理论对细胞学发展的推动作用1.1.4 细胞生物学发展简史1.2 细胞的基本功能和特性1.2.1 细胞的基本功能1.2.2 细胞结构上的相似性1.2.3 细胞的形态1.2.4 细胞的大小及体积的恒定1.2.5 细胞及细胞器的计量单位1.3 细胞的分子基础1.3.1 水是细胞中最主要的物质1.3.2 无机盐1.3.3 小分子有机小分子1.3.4 生物分子的功能分类1.3.5 细胞结构体系的组装1.4 细胞的类型和结构体系1.4.1 原核细胞1.4.2 真核细胞的两种主要类型:动物细胞和植物细胞1.4.3 真核细胞的结构体系1.4.4 真核细胞与原核细胞的比较1.5 病毒--非细胞的生命体1.5.1 病毒是比细胞更小的生命体1.5.2 病毒的生活史1.6 细胞生命的进化1.6.1 细胞生命的起源与进化1.6.2 真核细胞的起源1.6.3 从单细胞向多细胞进化1.7 我国细胞生物学的发展战略1.7.1 细胞生物学的主要研究内容和发展方向1.7.2 我国细胞生物学发展战略学习指导课程学习:1.细胞概述>> 1.1.1 细胞的发现1. 细胞概述所有的生物都是由细胞(cell)构成的。
除了病毒、类病毒等是非细胞的生命体以外,其它生命有机体的结构和功能单位都是细胞。
细菌、酵母等微生物是以单细胞的形式存在,而高等动、植物则是由多细胞构成的,如人大约有3 ×1013个细胞,这些细胞组成不同的组织和器官。
研究细胞及其生物学功能的科学称为细胞生物学(cell biology)。
1.1 细胞的发现及细胞学说的创立第一个发现细胞的是英国学者胡克(Rorbert Hooke),相隔170多年后,德国植物学家施来登(Mathias Schleiden)和动物学家施旺(Theodor Schwann)创立了细胞学说。
细胞生物学期末复习资料整理第一章:1、细胞生物学cell biology:是研究细胞基本生命活动规律的科学,是在显微、亚显微和分子水平上,以研究细胞结构与功能,细胞增殖、分化、衰老与凋亡,细胞信号传递,真核细胞基因表达与调控,细胞起源与进化等为主要内容的一门学科。
P21、什么叫细胞生物学?试论述细胞生物学研究的主要内容。
P3-5答:细胞生物学是研究细胞基本生命活动规律的科学,它是在三个水平(显微、亚显微与分子水平)上,以研究细胞的结构与功能、细胞增殖、细胞分化、细胞衰老开发商地亡、细胞信号传递、真核细胞基因表达与调控、细胞起源与进化等为主要内容的一门科学。
细胞生物学的主要研究内容主要包括两个大方面:细胞结构与功能、细胞重要生命活动。
涵盖九个方面的内容:⑴细胞核、染色体以及基因表达的研究;⑵生物膜与细胞器的研究;⑶细胞骨架体系的研究;⑷细胞增殖及其调控;⑸细胞分化及其调控;⑹细胞的衰老与凋亡;⑺细胞的起源与进化;⑻细胞工程;⑼细胞信号转导。
2、试论述当前细胞生物学研究最集中的领域。
P5-6答:当前细胞生物学研究主要集中在以下四个领域:⑴细胞信号转导;⑵细胞增殖调控;⑶细胞衰老、凋亡及其调控;⑷基因组与后基因组学研究。
人类亟待通过以上四个方面的研究,阐明当今主要威胁人类的四大疾病:癌症、心血管疾病、艾滋病和肝炎等传染病的发病机制,并采取有效措施达到治疗的目的。
3.细胞学说(cell theory) p9细胞学说是1838~1839年间由德国的植物学家施莱登和动物学家施旺所提出,直到1858年才较完善。
它是关于生物有机体组成的学说,主要内容有:①细胞是有机体,一切动植物都是由单细胞发育而来,即生物是由细胞和细胞的产物所组成;②所有细胞在结构和组成上基本相似;③新细胞是由已存在的细胞分裂而来;④生物的疾病是因为其细胞机能失常。
4、细胞学发展的经典时期? P10⑴原生质理论的提出;⑵细胞分裂的研究;⑶重要细胞器的发现。
第六章核糖体和核酶
6.1核糖体的结构和功能
6.1.1核糖体的组成和结构
(1)核糖体的分类
细胞质核糖体,线粒体核糖体,叶绿体核糖体。
真核核糖体,原核核糖体。
(2)核糖体的组成及化学成分
核糖体由大小亚基组成,每个亚基都是由多种蛋白质及rRNA组成。
正常状况下各亚基在细胞质中单独存在,只有在蛋白质合成时才结合在一起。
①真核核糖体
真核核糖体沉降系数为80S,由60S和40S组成,60S由28S rRNA,5.8S rRNA,5S rRNA,及49种蛋白质组成,40S亚基由18S rRNA和33种蛋白质组成。
②原核核糖体
原核核糖体的沉降系数为70S,由50S和30S组成,50S亚基由33种蛋白质和23S rRNA及5S rRNA组成,30S亚基由21种蛋白质及16S rRNA组成。
(3)核糖体的结构
6.1.2核糖体的生物发生
6.1.2.1核糖体rRNA基因的转录和加工
编码rRNA基因过量扩增,增加编码rRNA的基因拷贝数,以适应大量需要的rRNA。
其机制为:在染色体上增加rRNA基因的拷贝数;基因扩增,形成多个核。
(1)真核28S rRNA,5.8S rRNA,18S rRNA及5S rRNA的转录
真核生物中28S rRNA,5.8S rRNA,18S rRNA串联在相同的染色体上,构成一个转录单位,并有大量的重复,在RNA PolmeraseI作用下在核仁转录中形成45S 的前rRNA。
5S rRNA位于不同的染色体上,由RNA PolmeraseIII在核仁外转录形成。
(2)原核23S rRNA,5S rRNA,16S rRNA的转录
原核生物的rRNA基因的重复数比真核少,而且,编码23S rRNA,5S rRNA,16S rRNA的基因位于相同的转录单位中,且其排列顺序为16S-23S-5S.
6.1.2.2核糖体的装配
核糖体亚基的自我装配。
某些蛋白质首先独立地结合到rRNA上,然后作为后一批蛋白的结合框架,最后一些活性所需蛋白再加上去形成整体。
真核生物核糖体在核仁中的装配。
5S rRNA进入核仁与45S rRNA、蛋白质形成80S rRNA颗粒,然后降解为大小两颗粒,大颗粒为55S,含有32S和5S rRNA,32S RNA随后加工形成28S和5.8S两种rRNA,然后和5S rRNA组装成大亚基;小颗粒含有20S的前rRNA,快速加工为18S rRNA。
6.1.3核糖体的功能-蛋白质的合成
(1)核糖体的功能位点
大亚基含有与tRNA作用的三个位点:A位点,氨酰tRNA位点;P位点,肽酰tRNA 位点;E位点,脱氨酰tRNA位点。
小亚基含有与RNA作用的位点:原核中16sRNA的3’端,与mRNA上转录起始位点上游的SD序列互补。
真核中无SD序列,mRNA与小亚基结合依赖于mRNA5’端甲基化的帽子结构。
(2)蛋白质合成的步骤
①蛋白质合成起始:完整核糖体的装配。
/biochem/ppt/14.ppt
②蛋白质合成延伸
/biochem/ppt/14.ppt ③蛋白质合成终止
/biochem/ppt/14.ppt
(3)蛋白质合成的抑制剂
①抗生素
链霉素抑制起始tRNA和非起始tRNA与核糖体的结合,导致肽链合成的提前终止。
氯霉素抑制50S大亚基肽酰转移酶的活性。
②嘌呤毒素
具有与tRNA分子末端类似结构,同时能够与氨基酸结合。
使蛋白质合成延伸与终止阶段不能正常进行,从而导致蛋白质合成的结束。
(4)蛋白质的水解和寿命
N端规则。
遍在蛋白标记需要降解的蛋白质,然后送入蛋白酶体,在其内部被降解。
6.2核酶与RNA成熟
6.2.1小分子RNA和反义RNA
6.2.1.1小分子RNA
由RNA PolmeraseII和RNA PolmeraseIII合成,分为两类:存在于细胞核中的snRNA;存在于细胞质中的scRNA。
小分子RNA与蛋白质组成小核糖核蛋白颗粒,在细胞的正常生命活动总发挥作用。
snRNP参与mRNA的成熟过程,一般是通过互补配对而工作;SRP颗粒参与
蛋白质的合成和运输。
6.2.1.2反义RNA
(1)概念:与mRNA互补的RNA分子。
两个来源:反向转录的产物;其它基因的转录产物。
(2)作用:调控mRNA的翻译,进行基因表达调控。
I类反义RNA:与靶mRNA的SD序列和编码区结合,引起翻译的直接抑制;与mRNA 结合后引起该双链RNA被RNaseIII水解。
II类反义RNA:与mRNA的SD序列的上游非编码区结合,从而抑制靶蛋白的翻译。
III类反义RNA:直接抑制靶mRNA的转录。
如转录抑制复合物RNA是翻译E.coli 中CAP蛋白mRNA的反义RNA,能够与转录中的CAP蛋白mRNA杂交,形成类似的ρ-independent转录终止子,终止mRNA的转录。
6.2.2核酶
(1)核酶的分类
①RNA和蛋白复合物;②小分子RNA;③I、II型内含子。
(2)核酶的作用机制
作用底物可以是自身,也可以是别的RNA分子,具体机制见下。
6.2.3成熟RNA的形成
(1)前体rRNA的加工
反义snRNP介导的前rRNA甲基化和假尿苷的加入。
通过形成双链RNA,最为加工修饰的标志。
①C/D框snRNA。
这类snRNA的5’端由C/D框结构,能够决定何种核苷的核糖甲基化。
②H/HAC框snRNA。
这类反义snRNA的3’端由HAC结构,能够决定那些尿苷被转换为假尿苷。
(2)RNA splicing
①核剪接
GU-AG规律;剪接体;套索的形成和释放。
需要很多snRNP的协调参与。
②I组、II组内含子的剪接
自剪接。
I组内含子:游离的鸟苷结合到内含子的5’剪接点,5’外显子的3’-OH攻击3’外显子的5’端,切除内含子,连接两个外显子。
II组内含子:含有GU-AG序列,不形成剪接体,内含子中的一个腺苷攻击内含子的5’端,形成套索结构,然后内含子的3’端切开,两个外显子连接。
(3)RNA editing
gRNA通过5’锚定序列及内部互补序列与被编辑mRNA结合,作为模版进行
mRNA编辑,替换碱基、增添碱基等,以便形成正确的阅读框等。
gRNA的3’端的寡聚U是被添加的U的供体。