有交易费用和分红的欧式期权定价公式
- 格式:pdf
- 大小:138.77 KB
- 文档页数:3
注会财管期权价值计算公式期权价值计算公式。
期权是一种金融工具,它给予持有者在未来某个时间点以特定价格买入或卖出标的资产的权利。
期权的价值取决于很多因素,包括标的资产价格、行权价格、剩余时间、波动率等。
为了对期权的价值进行准确的计算,我们可以使用期权价值计算公式来进行估值。
期权价值计算公式通常分为两种,欧式期权和美式期权。
欧式期权是指期权在到期日才能行使的期权,而美式期权是指期权在任何时间点都可以行使的期权。
以下分别介绍欧式期权和美式期权的价值计算公式。
欧式期权价值计算公式。
对于欧式期权,其价值可以通过Black-Scholes期权定价模型来计算。
Black-Scholes期权定价模型是由费希尔·布莱克和梅隆·斯科尔斯在1973年提出的,它是一个用来计算欧式期权价格的数学模型。
Black-Scholes期权定价模型的公式如下:\[ C = S_0N(d_1) Xe^{-rt}N(d_2) \]其中,C是期权的价格,S0是标的资产的当前价格,X是期权的行权价格,r是无风险利率,t是期权的剩余时间,N(d1)和N(d2)分别是标准正态分布函数在d1和d2处的取值。
在这个公式中,d1和d2的计算公式如下:\[ d_1 = \frac{ln(\frac{S_0}{X}) + (r + \frac{\sigma^2}{2})t}{\sigma\sqrt{t}} \]\[ d_2 = d_1 \sigma\sqrt{t} \]其中,σ是标的资产的波动率。
通过这个公式,我们可以计算出欧式期权的价格。
这个公式考虑了标的资产价格、行权价格、无风险利率、剩余时间和波动率等因素,因此可以比较准确地估计期权的价值。
美式期权价值计算公式。
对于美式期权,由于其可以在任何时间点行使,因此其价值计算要复杂一些。
美式期权的价值通常通过数值方法来计算,其中最常用的方法是蒙特卡洛模拟。
蒙特卡洛模拟是一种基于随机抽样的数值计算方法,通过模拟标的资产价格的未来走势,来估计期权的价值。
期权定价—期权定价公式什么是期权定价?期权定价是指确定期权在市场上的合理价格的过程。
期权是一种金融工具,它授予买方在未来某一特定时间点购买或出售标的资产的权利,而不是义务。
期权的价格取决于多种因素,包括标的资产价格、行使价格、到期时间、无风险利率和波动率等。
期权定价的目标是确定一个公平的市场价格,使得买卖双方在交易中均获得合理回报。
对于买方来说,期权的价格应该对应于未来可能获得的收益;对于卖方来说,期权的价格应该对应于承担的风险以及可能获得的收益。
期权定价公式的重要性期权定价公式是用于计算期权合理价格的数学模型。
它基于一些假设和前提条件,通过对相关变量进行运算,得出期权的价格。
期权定价公式对于市场参与者来说具有重要意义,它为投资者提供了一个参考,可以帮助他们做出更明智的投资决策。
期权定价公式的提出可以追溯到20世纪70年代初,当时经济学家Fischer Black 和 Myron Scholes 提出了著名的Black-Scholes模型。
该模型基于一些假设,包括期权在到期前不支付股息、标的资产价格在特定时间内的变动是连续且满足几何布朗运动以及市场不存在无风险套利机会等。
Black-Scholes模型是第一个用于计算期权价格的理论模型,它提供了一个简单而有效的方法来评估期权的价格。
在此之后,许多其他的期权定价模型相继被提出,如Binomial模型、Trinomial模型、Monte Carlo模拟和Heston模型等。
这些模型都是基于不同的假设和计算方法,用于满足不同的情景和需求。
期权定价公式的基本要素期权定价公式通常包括以下几个基本要素:1.标的资产价格(S):标的资产是期权所关联的基础资产,它可以是股票、商品、外汇等。
标的资产价格是期权定价的一个重要变量,它代表了期权的内在价值。
2.行使价格(X):行使价格是期权合约约定的价格,买方可以在到期时基于该价格购买或者出售标的资产。
行使价格与标的资产价格之间的差异会影响期权的价值。
期权定价公式期权定价公式是:期权价格=内在价值+时间价值。
期权定价模型,由布莱克与斯科尔斯在20世纪70年代提出。
该模型认为,只有股价的当前值与未来的预测有关;变量过去的历史与演变方式与未来的预测不相关。
模型表明,期权价格的决定非常复杂,合约期限、股票现价、无风险资产的利率水平以及交割价格等都会影响期权价格。
期权是购买方支付一定的期权费后所获得的在将来允许的时间买或卖一定数量的基础商品的选择权。
期权价格是期权合约中唯一随市场供求变化而改变的变量,其高低直接影响到买卖双方的盈亏状况,是期权交易的核心问题。
在国际衍生金融市场的形成发展过程中,期权的合理定价是困扰投资者的一大难题。
随着计算机、先进通讯技术的应用,复杂期权定价公式的运用成为可能。
简单期权定价模型。
我们把股价随机末态简化为两个等效的等概率量子态,要么50%的概率上涨到+1X的右边一个标准差处,要么50%的概率下跌到-1X的左边一个标准差处。
显然,对于认购期权,在-1X末态的行权收益是0;在+1X末态的行权收益是S*(1+σ)-K。
其中S是当前(初态)股价,K是到期日的行权价。
根据初态=末态期望值的原理,认购期权价格C=0.5*0+0.5*[S*(1+σ)-K]= 0.5*[S*(1+σ)-K]。
这对于平值和浅度虚值期权是适用的。
对于平值期权K=S,C=0.5*S*σ。
比如,当前股价S=3.3元,月波动率为σ=6%,那么行权价K=3.3元,剩余T=30天期限的平值认购期权价格就是,C=0.5*3.3*6%=0.0990元。
对于深度实值期权,当股价末态为-1X处,仍然会有行权收益。
所以,认购期权价格C=0.5*[S*(1-σ)-K]+0.5*[S*(1+σ)-K]=S-K。
比方说,对于深度实值期权实三K=3.0元,当股价从当前价S=3.3元下跌至末态(-1X处)ST=3.1元,仍然会有3.1-3.0=0.1元的行权收益。
所以,实三期权价格C=S-K=3.3-3.0=0.3元。
期权定价理论期权定价理论是衡量期权合约价格的数学模型。
它基于一系列假设和推导出的公式,通过评估期权的相关因素来确定其合理的市场价格。
这些因素包括标的资产价格、期权执行价格、期限、波动率以及无风险利率等。
期权的定价理论中最著名的模型是布莱克-斯科尔斯模型(Black-Scholes Model)。
该模型基于以下假设:市场无摩擦,即不存在交易费用和税收;标的资产价格服从连续时间的几何布朗运动;期权可以在任意时间点以市场价格进行买卖。
布莱克-斯科尔斯模型通过以下公式计算欧式期权的价格:C = S0 * N(d1) - X * e^(-r * T) * N(d2)其中,C是期权的市场价格,S0是标的资产的当前价格,N()是标准正态分布函数,d1和d2分别是两个维度上的标准正态分布变量,X是期权的行权价格,r是无风险利率,T是期权剩余时间。
布莱克-斯科尔斯模型的原理是通过构建组合,使得期权价格与标的资产价格的变动相对冲,从而消除风险。
通过调整组合中的权重,可以确定合理的期权价格。
这一模型在市场上得到广泛应用,被视为期权定价的标准模型之一。
除了布莱克-斯科尔斯模型外,还有其他一些期权定价模型,如考虑股息的期权定价模型、跳跃扩散模型等。
这些模型在不同情况下,可以更准确地预测期权价格。
需要注意的是,期权定价理论是基于一系列假设和前提条件建立的。
市场实际情况中可能存在不符合这些假设的情况,因此实际期权价格可能与模型计算结果存在一定的差异。
此外,期权定价也受到市场供求关系、交易量以及市场情绪等因素的影响。
总之,期权定价理论是一种基于数学模型的方法,用于评估期权合约的合理价格。
布莱克-斯科尔斯模型是最著名的期权定价模型之一,通过构建相对冲抗风险的组合来确定期权价格。
然而,需要注意实际市场中的差异和其他影响因素。
期权定价理论是金融衍生品定价的核心理论之一,它对金融市场的有效运行和风险管理起着重要作用。
期权是一种约定,赋予期权持有人在未来某个特定时间以特定价格买入或卖出某个标的资产的权利,而不是义务。
欧式期权定价基本原理及其计算公式信阳师范学院(自然科学版)第19卷第2期2006年4月JournalofXinyangNormalUniversity(NaturalScienceEdition)V o1.19No.2Apr.2006综述?评论?争鸣?欧式期权定价基本原理及其计算公式孙胜利,豁祖顺.(1.清华大学数学科学系,北京100084;2.商丘职业技术学院,河南商丘476000:3.信用职业技术学院,河南信阳464OOO)摘要:文献【1]给出了买入和卖出期权定价的基本概念,费产定价定理和资产定价的数学结构,本史进一步阐述了欧式买入和卖出期权定价的基本原理殛其数学模型,并导出Slack-Scholes期权定价公式.关键词:Redundant债权;期权;套利;完备市场;Slack-Scholes公式中图分类号:0157.5文献标识码:A文章编号:1003-0972(2OO6)02.0233-03令=(五).,表示一项风险资产的价格序列,那么,就具有一种"风险,为了降低这种风险,我们可以利用"期权"即在时刻按照O时刻规定的价格买人权利.这个规定的价格称为"履约价格",这就是一个期权即买人期权.类似地,履约价格为的卖出期权在时刻的盈利表示为日(n,)=(一(埘)).这就是卖出期权.但它们是彼此联系的【,即一K=(+)'一(一),称为平价公式.考虑期权日=F()r=F(Xr;O≤J《T),它是的轨道函数.若有右连左极轨道有F.D—R+,其中D是右连左极函数:[0,]一只+组成的空间.若期权只能在截止日期实施,则称欧式期枕令日是上的随机变量.它表示一个未定债权.令表示它在t时刻的价值(或价格).从传统概率论观点可知=E{圳,如果考虑通货膨胀,把时问价值贴现回去,并且假定一个固定的利息率为,和时刻的盈利,那么可用£,={万}取代={圳.根据"无套利机会"原,-/'理,用新的概率P'来代替P,使得证券价格x=(置)l10.r是鞅,只需选P'使得的期望为常数,即'{}为常数.其中E'表示在概率测度P'下的数学期望.从而,未定债权日的"无套利价格"不是{圳,而是'{圳,否则就会存在无风险的套利机会,其中P是实际控制证券变化的概率,而P'是人为计算出来的概率我们通过{}=E'{}来求P',然后得到P'近.II12,,似等于P'=1f1一l+Il,那么在P'下,'\\—//仍旧是二项的,但是此时它的均值为几P,方差为nP'(1'一P'),则((2以一n)/)均值为一(+)/,方差●渐近收敛到1.由中心极限定理,当n趋于无穷,s.收敛到一个对数正态分布:logS.均值为l0昏so一1/2t,方差为.厶这样St=Soe~p(o-,/iZ一.:1t),其中z在P'下为N(0,I)分布.这个方法就称为"二项式近似"方法].1Redundant债权若给定一个证券价格过程s.根据数值不变性,取R.;1.令=(s,;r《t),F-=VN,其中Ⅳ是(r2,F,P)中F的零测度集合,且F=V.,并取=n.那么,对某个给定的,s上的一个未定债权是一个随机变量日EFr.如果是一个非常数的随机过程,就可能改变所取的最小子域,那么利率过程将是(R.,s.),而不只是es..由金融资产定价理论可知,存在投资策略(口,b),使得它在时刻是日或尽可能地接近扭定义l令s为一项风险证券的价格过程,R为一项无风险债券的价格过程,并把它设为常数过程1.未定债权日EFr称为~dundant.当存在可容许的自融资策略(口.b). I1使得日口o+6.风+上atd~.+上asd~s-若把s标准化并记M=(1/R)S.那么,日在下为redundant,则有(对所有t,取R.一1)H=ao^f0+b0+.r【atdg,.如果P'是一个等价鞅测度使得是鞅,且日在P'下的数学期望有限,那么有'{圳=E'{口o+60}+-fE'{【口I埘.},若期望都是存在的,则有{圳=E'{口.矾+bo}+O.定理1设为redundant未定债权,并存在等价鞅测度P'满足日EL'(M),那么,存在日的惟一无套利价格E'{圳.证明由于对任一个等价鞅测度'{圳是不变收稿日期:2005-03-24;it订日期:2005-10-20作者简介:孙胜利(1963.),男,河南民权人,副教授,清华大学访问学者,主要从事随机分析与金融数学研究.233第19卷第2期信阳师范学院(自然科学版)2OO6年4月的,设Q.和Q:是两个等价鞅测度,那么,r{日f={ao+6oI+{【asdMsl,i=I,2?.r但是E口.{【}=0,且EQ.{aoMo+bol=aoMo+bo,由于ao,%和bo在0时刻是已知的,不失一般性.取它们为常数.假设有一个价格仃>E'{H}=a0+6o,那么用策略口=(口.)舢(忽视交易的手续费),在时刻要交给期权的买方金额为日,那么就无风险地获得了仃一n0+6o>0的利润,这是一个套利机会.另一方面,如果以仃<a0Mo+6.的价格购入债权金额为,那么时刻可以无风险地获得(口0+60)一仃的利润.定义2如果日是一个redundant债权,那么存在一个可容许的自融资策略(a,6),使得日=no+6o+JI.dM.,则称策略为复制债权且推论如果日是一个redundant债权,那么可以用一个自融资的方式复制债权日,且最初资本等于E'{Hf.P是标准化价格过程的任意等价鞅测度.令工'(M)表示P'意义下策略的集合.如果让完备市场(见下面定义)定义在P'下,实际上定义在P下更合适,但如果能在一个良好的情况下价格过程是P下的局部鞅,那么这个问题就解决了.定义3如果每个债权HEL'(,dP')对工()是redundant的,即对任意日∈L'(,dP'),存在一个可容许的自融资投资策略(口,b),口L'(M),满足H=‰Mo+,r,r占o+【asdM,,且(【as)..是一致可积,则称市场模型(肘.工'(M),P')是完备的.实际上.一个完备市场就是其中的每个债权都redundant,即每个未定债权都是可复制的.可料表示这条性质是非常好的性质,但只有极少数的鞅具有这个性质,比如布朗运动,补偿泊松过程和Azema鞅【3】,这样一来绝大多数的模型都不是完备的,并且绝大部分操作者也都认为实际的金融市场不是完备的.我们有下面的结果:定理2若存在惟一P',使JIlf是局部鞅仅当市场完备定理3若有连续轨道,存在惟一P'使』l,是意义下的一鞅当且仅当市场完备由于日是redundant债权.那么目的无套利价格是E'{日},对任意等价鞅测度P(如果曰是redundant,那么E'{驯在每个P下都相等).然而,如果一个良好的市场模型不是完备的,那么(i)会出现不可复制的债权;(ii)等价鞅测度不惟一.所以,当日是redundant时,总存在复制策略若日不是redundant时,它不可能被复制;这种情况只能在某种恰当的意义下尽可能处理(例如expectedsquared errorloss),称这种策略为对冲策略.2342寻找复制策略'实际上要计算出一个复制策略的精确表示是比较困难的,而计算出对冲策略的精确表示就更难了,然而在一些简单情况下还是有精确表示的;若没有精确表示时候,但可用数值技巧来准确的近似对冲策略.一个相对简单标准形式的未定债权形式为日=,(Sr),其中s是风险证券的价格.欧式买人和卖出期权是相关联的[1],但两者之间的区别是(—sr)'是值域[0,K]的有界随机变量,而(s,一)是一个无界的随机变量.我们通过一个数值变换取R;1,并设=,(5r)是一个redundant债权,在t时刻债权的一个复制自融资投资组合价值是=E{,(s,)l}=口o+bo+【d.现作一系列假设来进行更简单的分析.假设1若S在某个等价局部鞅测度P'下是马尔可夫过程.在假设1下有=E's)J}=E'Sr)J},但由测度论可知,对每个t,存在函数9(t,?)使得E'{,(Sr)ISI}=9(t,S.).假设2若9(t,)对£是,而对是.根据伊藤公式=E'{_,(Sr)I}=(t,)=(o,so)+【,(5,s,一)d.一+【,一)山+^l^,寺上"(5,.)d[s,s]:+∑{(s,)一(j,SJ.)一(s,.)△S.}.假设3若s有连续轨道.由假设3和伊藤公式可推出=妒(f,)=妒(o,)+【妒,(J,)aS.+.(s,S,)ds+妒"(j,)d[s,s]..(1)由于在O'下是鞅,(1)的右边也一定在P'下是鞅,这需要l.(j,)山+寺l"(s,)d[s,s].=0?(2)为了使(2)式成立,自然就要求[s,s]有几乎处处绝对连续的轨道.但可让假设的更强一些,即假设[s,s]有一个特殊的结构:假设4[s,s]=【III(s,)ds,h为+×一的联合.-7测函数.由此可知,当tp为偏微分方程i1III(5,). (s,)警(s,)=o,(边界条件9(,);))的解时,(2)一定成立.如果结合假设1—4,便得到一个具有二次变差【h(5, s.)ds的连续马尔可夫过程{S.},一个明显的满足条件的孙胜利,等:欧式期权定价基本原理及其计算公式过程就是随机微分方程=.II(5,s.)dB,+b(s,S,,r≤5)(Is的解,其中是P下的标准布朗运动,.s在P'下是连续马尔可夫过程,且二次变差[s,s].=【^(1,s.).(Is满足假设条件,所以,二次变差具有轨道性质,在等价概率测度P' 改变时它是不变的,但是马尔可夫性呢?为什么当b是依赖轨道的时候,s在P'下是马尔可夫过程吗?因为P等价于P,可以令Z=dP/dP,且Z>0口.8. (dP).令={ZI}(它显然是鞅),由Girsanov定理,)dB.一Z-~[Z,)dBr]I(3)是一个P'鞅.若假设=1+【Z.dB.,因为B有鞅表示且z是鞅,那么(3)变为.II(S)dB.一..II(S)山;.II(5,S,)dB.一上.II(J,s.)山-如果取=b(J,;r≤s)/h(s,sI),那么有sl=【.II(J,sJ)dB.+【6(J,S,;r≤5)山是P'下的鞅;于是有=+是一个P'鞅;因为【肘,肘]=[B,B].=I,由Levy定理它是一个P'一布朗运动,并且有.=h(t,s.)dM,,从而S是P'下的马尔可夫过程.最后构造P'.由于半鞅S的随机指数是"指数方程"dr,=d置的解,其中=1.而这个解为=exp(五一1[,]:)n(1+)e,如果连续,那么=exp(X,一÷[,剐.),记作=g()..只需dg,=l-l,Z,dB.;令ⅣI=【dB.,并且有=()..然后设=一b(t;S,;r≤t)/h(t,),且令dP'=dP,因为Z>0a.s.(dP),所以有P和P'等价.为此假设有一个价格过程dS,=h(t,)凹.+6(t,S,;r≤t)dt.现在我们用dP'=dP来构造P',其中=().且=二爵..令妒为边值问题()()()=0(4((T,x)=,(),其中(t,)对t是',而对是)的(惟一)解,那么=(I,s|)=(o,)十(5,S.),所以,由这4个约束性更强的假设,便找到了所需的复制策略!即口=却(5,s.)/Ox.并且也得到了价值过程II,=(t,s1),通过解偏微分方程(4)即可得到.假如没有显式解,但也可以用数值近似求得.从而得出结论:风险资产的价格过程S是服从一个由布朗运动导出的随机微分方程.注1尽管假设价格过程服从SDE,dS,=h(I,)+b(t;S,;r≤I)dt.但是我们看到PDE(4)中根本没有漂移系数6,这样价格和复制策略中也不会含有b,经济学的解释有两层:首先,漂移系数b已经在市场价格中反映出来了,它是建立在证券的基本原则上的;第二,重要的是风险的程度,而它已经在h这一项中反映了.注2假设2不是一个宽泛的假设,因为是一个PDE的解,并希望能发现这个解的规律.当,为光滑的时候它是对的(当然典型例子l,()=(K—)不是光滑的),问题出现在边界上,而不是内部,这样对适当的,我们可以解决边界项,实际上,这项分析可以解决欧式买入卖出期权的情形.3Black—Scholes公式由上面可假设S服从一个常系数线性SDE:dS,=+dt,so=1(5)令五=.+,有(=S.dX,,So=1,则S.=().=e呐一(I/2).(5)的过程5是几何布朗运动,在这种简单的情形下PDE(4)的解可以表示为:'I)=佣1))e(6)在欧式买入期权的情形中有,()=(—K),那么可得=叫(10g素+1_f)))一K(l0g素一l2(-I)))),其中(z)=l_..LJI*~ae-w2/1d".对欧式买入期权还可以计算出复制策略(岳log+())-(7)下面我们计算欧式买人期权的价格(这里假设So=s)=(,0)=(1og素+1))一叫kg素一)),(8)(7)和(8)就是着名的Black-Scholcs期权公式,R=1.当存在利息率的时候,情况会有什么变化,为此假设有一个常数利息率r,则R.=e一,则公式(8)变成;=(,0)=(1og素十(r+12))一e(10g素+(r一))).(9)(下转第238页)235第19卷第2期信阳师范学院(自然科学版)2OO6年4月较大的小波系数,需要对阈值多次减半才能得以扫描到,这是本文算法的不足.参考文献:[I]M3~I.ATS.A~oryforMulti-resolutionDecomposition-t帅AnalysisandMachineIntelligence,1989,11(7):674-693-[2]SHAPIROJM.EmbeddingImageCodingUsingZerotreesofWaveletcD[J]'IEEETransa ctionsonSignalProe~sa~ing,1993,41(12):3445-3462.[3]ISO/IECFCD15444.I.JPEG2000StillimageCodingSystem【S/0L].httrC/March,20OO.[4]黄卓君,马争鸣.一种零树与游程相结合的小波图像编码方法[J].中国图象图形,2001,6(11):1118—1124-AnOrderedQuad.treeAlgorithmBased0nWa_veletTransformFENGY an(DepartmentofComputerScience,XinyangNormalUniversity,Xinyang464OOO,China) Abstract:AnimprovedalgorithmispresentedbasedondiscussingthealgorithmofEZW.Na melythelowestfre—quencysubbandisencodedseparately.theorderedquad-treeisdefinedinhighfrequencysub bandsSOthattheimportantwaveletcoefficientsaretransmittedbypriority,andtherun—lengthisapplied.Theoreticalanalysisand experimentalresultsshowthattheschemeisbetterthantheEZWintheaspectsofencoding/de codingtimeandrecoveryimagequality.Keywords:EZW;imagecoding;orderedquad—tree责任编校:郭红建(上接第235页)这些相对简单,精确,且容易计算的公式使得计算欧式买入卖出期权变得十分简单,这可能是由几何布朗运动构造出的价格模型比较简单,且Black-Scholcs公式中不出现漂移系数,但有时候它对真实市场模拟的并不精确.Black.scholea公式的应用广泛.如风险管理方法的设参考文献:计.融资和投资策略等;①期权定价公式可用于一般衍生物期权定价;②期权定价理论及其公式可用于债务定期和贷款担保;③期权定价理论及其公式可用于投资决策.一般来说,凡是具有期权特点的问题(已知目标.求初始投资)都可以利用Black—sc}10k期权定价理论和方法进行研究.[I]宋福庆,孙胜利.期权定价的数学模型[J].安阳师范学院,2005(2):14-16.[2]COXJ,ROSSS,RUBINSTEINM.OptionPricing:口鼢r归dApproach[1].J.FinancialEcon,1979(7):229-263.[3]DELBAENF,scHAcHERMAYERW.TheExistenceofAbsolutelyContinuousLocalM artingaleMeasures[J].AnnApplProbab,1995(5):926-945.[4]DRITSCHELM,pleteMarketswithDiscontinuousSecurityPrice[J].F inanceStochastice,1999(3):203-214.[5]DELBAENF,sc卧cHE砌AYERW.AGeneralV ersionoftheFundamentalTheoremofAssetPricing[J].MathAnn.1994(300);463-520.[6]DELBAENF,sc卧cHERMAⅥ'Rw.TheFundamentalTheorem向r占DHStochasticP,∞艄[J].MathAnn,1998(312):215-250.[7]孙胜利,刘永建.欧式期权定价原理及其应用[J].河南科学,2005,23(6):794-797.[8]DALANGR,MORTONA.WILLINGERw.Equi~le.zMartingaleMeasuresand110Arb itrageinStochaaic,&MarketMode/,[J].StochastiesStochasticRep,1990(29):185-201. TheBasicTheoryandAccountformulaofthePricingoftheEuropeanOptions SUNSheng.1il..HUOZu.shun(1.DepartmentofMathematicsScience,TsinghuaUniversity,Beijing100084,China;2.ShangqiuV ocational&TechnicalCollege,Shangqiu476000.China;3.XinyangV ocational&TechnicalCollege,Xinyang464OOO,China)Abstract:ThebasictheoryofbuyingandsellingtheassetpricingoftheEuropeanoptionsin[I]i sgiven.1'}le articleprobesintothebasictheoryofpricingEuropeanputandcalloptionandmathematicalm odeloftheEuro-pearloptions,andtheBlack.Scholesoptionformula.Keywords:redundantdebtee;options;arbitrage;completemarkets;black.scholesformula 责任编校:郭红建238。
沪深300股指期权相关定价公式 ① 无收益沪深300股指欧式期权的BS 定价模型()12()()r T t c SN d Xe N d --=-()21()()r T t p Xe N d SN d --=---其中:21d = 221d d ==-②有收益沪深300股指欧式期权的BS 定价模型1)已知沪深300指数的收益现值为I只要用S I -代替上面两式中的S ,即可求出固定收益沪深300股指欧式看涨与看跌期权的价格。
固定收益沪深300股指欧式看涨期权的布莱克-舒尔斯期权定价公式为:()12()()()r T t c S I N d Xe N d --=--固定收益沪深300股指欧式看跌期权的布莱克-舒尔斯期权定价公式为:()21()()()r T t p Xe N d S I N d --=----2)红利连续支付且为常数q当沪深300指数的收益为按连续复利计算的固定收益率q (单位为年)时,只要将()q T t Se --代替上面两式中的S 就可求出支付连续复利收益率沪深300指数的欧式看涨和看跌期权的价格。
取固定连续复利收益率的沪深300股指欧式看涨期权的布莱克-舒尔斯期权定价公式为:()()12()()q T t r T t c Se N d Xe N d ----=-取固定连续复利收益率的沪深300股指欧式看跌期权的布莱克-舒尔斯期权定价公式为:()()21()()r T t q T t p Xe N d Se N d ----=---③利用股指期货来对冲指数期权所需的头寸为e−rT∗*N(d1)/3/β(看涨)e−rT∗∗N(d1)β为股指期货相对于现货指数的贝塔值。
3∗ββe q(T∗−T)∗e−rT∗*(1-N(d1))*A1/A2 (看跌)其中q为沪深300指数收益率T 为指数期权到期时间T*为指数期货到期时间A1为指数的乘数A2为指数期货的乘数1 基差=现货价格—期货价格基差率=基差/现货价格(基差是指某一时刻、同一地点、同一品种的现货价与期货价的差。