2020年武汉中考大纲考试说明公布
- 格式:docx
- 大小:13.62 KB
- 文档页数:3
2020年武汉中考各科考试说明之数学数学:适度增加“反比例函数”的考查【变化】试题难度系数为0.7,与去年持平。
数与代数、图形与几何、统计与概率、综合与实践四个领域在试题中所比重,与去年持平。
与去年有所不同的是,命题原则中增加了第5条,即教育性原则。
在数学知识与要求层次上。
首先,在数与代数部分,“反比例函数”在2017年的知识目标是要求灵活运用反比例函数解决某些问题。
但今年的知识目标是要求灵活运用反比例函数解决简单实际问题。
对知识点的要求,更加具体化。
其次,在图形与几何板块,2017年在“图形的投影知识”的考查目标是要求理解“生活中的图片”,今年在“图形的投影知识”目标变为理解“视图与展开图在现实生活中的应用”。
另外,在题型事例上也有变化。
选择题部分增加了第16例题,此题是2017年中考第10题。
例题第14题仍然是找规律,但2017年是图形规律题,今年调整为数字规律题。
此题是七年级上册第43页的例4题。
解答题中例3题在2017年是一次函数的运用,今年的例3题调整为反比例函数与一次函数的综合。
由于对反比例函数的要求更加具体,也就是适当增加了对反比例函数知识的考查。
【建议】复习时,建议考生注重基础知识、基本图形和基本方法的训练,平时复习要回归教材,不宜随意加大习题难度,不要花大量时间做“繁、难、怪”试题,多做些中档题。
也不要过早围绕往年中考题进行“题海战术”,不妨梳理3年来所学的知识与方法,形成体系。
2019-2020学年数学中考模拟试卷一、选择题1.某种速冻水饺的储藏温度是-18℃±2℃,四个冷藏室的温度如下,则不适合储藏此种水饺的是( )A .-17℃B .-22℃C .-18℃D .-19℃2.对于命题“如果∠1+∠2=90°,那么∠1≠∠2.”能说明它是假命题的是( )A .∠1=50°,∠2=40°B .∠1=40°,∠2=50°C .∠1=30°,∠2=60°D .∠1=∠2=45°3.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若a =4,b =5,则该矩形的面积为( )A.50B.40C.30D.204.若抛物线y =x 2﹣6x+m 与x 轴没有交点,则m 的取值范围是( )A .m >9B .m≥9C .m <﹣9D .m≤﹣95.如图,曲线2C 是双曲线15:(0)C y x x=>绕原点O 逆时针旋转45︒得到的图形,P 是曲线2C 上任意一点,过点P 作直线PQ l ⊥于点Q ,且直线l 的解析式是y x =,则POQ △的面积等于( )A .5B .52C .72D .56.如图,ABC ∆内接于⊙O ,25OAC ∠=︒,则ABC ∠的度数为()A .110°B .115°C .120°D .125°7.如图,四边形ABCD 内接于⊙O ,E 是BC 延长线上一点,下列等式中不一定成立的是( )A .∠1=∠2B .∠3=∠5C .∠BAD=∠DCED .∠4=∠68.一次函数y 1=x +1与y 2=-2x +4图像交点的横坐标是( )A.4B.2C.1D.09.如图,在平面直角坐标系中,函数y =x 和y =﹣2x 的图象分别为直线l 1,l 2,过点(﹣1,0)作x 轴的垂线交l 2于点A 1…过点A 1作y 轴的垂线交l 1于点A 2,过点A 2作x 轴的垂线交l 2于点A 3,过点A 3作y 轴的垂线交l 1于点A 4,……依次进行下去,则点A 2019的坐标是( )A .(﹣21008,21009)B .(21008,﹣21009)C .(21009,﹣21010)D .(21009,21010)10.在平面直角坐标系中,正方形A 1B 1C 1D 1,D 1E 1E 2B 2,A 2D 2C 2D 2,D 2E 3E 4B 3,A 3B 3C 3D 3,…,按如图所示的方式放置,其中点B 1在y 轴上,点C 1,E 1,E 2,C 2,E 3,E 4,C 3,…,在x 轴上已知正方形A 1,B 1,C 1,D 1,的边长为1,∠OB 1C 1=30°,B 1C 1∥B 2C 2∥B 3C 3,…,则正方形A n B n ∁n D n 的边长是( )A .12n ⎛⎫ ⎪⎝⎭B .112n -⎛⎫ ⎪⎝⎭C .33D .133-11.计算22m n m n n m+--的结果为( ) A.22m n +B.m n +C.m n -D.n m -12.休闲广场的边缘是一个坡度为i =1:2.5的缓坡CD ,靠近广场边缘有一架秋千.秋千静止时,底端A 到地面的距离AB =0.5m ,B 到缓坡底端C 的距离BC =0.7m .若秋千的长OA =2m ,则当秋千摆动到与静止位置成37°时,底端A′到坡面的竖直方向的距离A′E 约为( )(参考数据:sin37°=0.60,cos37°=0.80,tan37°=0.75)A .0.4mB .0.5mC .0.6mD .0.7m二、填空题 13.在平面直角坐标系中,点A (﹣4,3)关于原点对称的点A′的坐标是_____.14.计算432x x ⋅的结果等于__________.15.正比例函数的图像与反比例函数的图象相交于A 、B 两点,其中点A(2,n),且n>0,当时,的取值范围是___________________.16.二次函数2y ax bx c =++的图象如图所示,给出下列说法:①ab 0<;②方程2ax bx c 0++=的根为1x 1=-,2x 3=;③a b c 0++>;④当x 1>时,y 随x 值的增大而增大;⑤当y 0>时,1x 3-<<.其中,正确的说法有________(请写出所有正确说法的序号).1712418618.已知⊙O 的半径为2cm ,弦AB 长为3,则这条弦的中点到弦所对劣弧中点的距离为_____cm .三、解答题19.(1) 计算:(04cos301212+-(2) 解不等式组:()21571023x x x x ⎧+>-⎪⎨+>⎪⎩20.计算:(1)1(2)18sin 45-︒+;(2)(a+3)(a ﹣1)﹣(a+2)(a ﹣2).21.如图,在平面直角坐标系中,直线122y x=-+分别交x轴,y轴于点A,B抛物线2322y ax x=--经过点A,且交x轴于另外一点C,交y轴于点D.(1)求抛物线的表达式;(2)求证:AB⊥BC;(3)点P为x轴上一点,过点P作x轴的垂线交直线AB于点M,交抛物线于点Q,连结DQ,设点P的横坐标为m,当以B,D,Q,M为顶点的四边形是平行四边形时,求m的值.22.如图,已知在矩形ABCD中,E是BC边上的一个动点,点F,G,H分别是AD,AE,DE的中点.(1)求证:四边形AGHF是平行四边形;(2)若BC=10cm,当四边形EHFG是正方形时,求矩形ABCD的面积.23.如图,在△ABC中,AB=AC,点D是BC边上一点,且AD=BD,⊙O是△ACD的外接圆(1)求证:直线AB是⊙O的切线;(2)若AB=10,BC=16,求⊙O的半径.24.如图,M、N是边长为6的正方形ABCD的边CD上的两个动点,满足AM=BN,连接AC交BN于点E,连接DE交AM于点F,连接CF.(1)求证:DE=BE;(2)判断DE与AM的位置关系,并证明;(3)判断线段CF是否存在最小值?若存在,求出来,若不存在,说明理由.25.2014年11月,某市某中学结合语文阅读素养评估活动,以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图①和图②提供的信息,解答下列问题:(1)在这次抽样调查中,一共调查了多少名学生?(2)请把折线统计图(图①)补充完整;(3)求出扇形统计图(图②)中,体育部分所对应的圆心角的度数;(4)如果这所中学共有学生3600名,那么请你估计最喜爱科普类书籍的学生人数.【参考答案】***一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12答案 B D B A B B D C C D B D二、填空题13.(4,﹣3).2x14.715.或16.①②④17.6-18.1三、解答题x<.19.(1) 1; (2)2【解析】【分析】(1)根据特殊角的三角函数值和零指数幂的意义得到原式=4×2,然后合并即可.(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:(1)原式=4×2;(2)()21571023x xxx⎧+>-⎪⎨+>⎪⎩①②解①得:x<3,解②得:x<2,则不等式组的解集为x<2.【点睛】本题考查特殊角的三角函数值、零指数幂、解一元一次不等式组等,解题关键是熟练掌握三角函数值、零指数幂、解一元一次不等式组的方法.20.(1)(2)2a+1.【解析】【分析】(1)将每一项解出然后合并同类项即可(2)多项式乘多项式之后,再合并同类项即可【详解】(1)原式=2=(2)原式=a2﹣a+3a﹣3﹣a2+4=2a+1.【点睛】此题主要考查特殊角的三角函数以及整式乘法21.(1)y=12x2﹣32x﹣2;(2)见解析;(3)m的值是2或或1【解析】【分析】(1)令y=﹣12x+2=0,解得:x=4,即可求解,然后把点A的坐标代入抛物线解析式,借助于方程求得a的值即可;(2)把由函数图象上点的坐标特征求得点B、C的坐标,然后利用两点间的距离公式和勾股定理的逆定理证得结论;(3)以B、D、Q,M为顶点的四边形是平行四边形时,利用|MQ|=BD即可求解.【详解】(1)令y =﹣12x+2=0,解得:x =4,y =0,则x =2, 即:点A 坐标为:(4,0). 代入2322y ax x =--中,得16a ﹣8=0,得a =12. ∴该抛物线解析式为:y =12x 2﹣32x ﹣2. (2)由(1)知,抛物线解析式为:y =12x 2﹣32x ﹣2. ∴当y =0时,x 1=﹣1,x 2=4,的C (﹣1,0).故OC =1.于是AB 2=20,BC 2=5,AC 2=25.从而AB 2+BC 2=AC 2.∴AB ⊥BC ;(3)由(1)知,抛物线解析式为: 213222y x x =--. 当x =0时,y =2,得D (0,﹣2),∴BD =4.当MQ =(﹣12m+2)﹣213222m m ⎛⎫-- ⎪⎝⎭=212m -﹣m ﹣4=4时,得m =2或m =0(舍去).当MQ =(12m 2﹣32m ﹣2)﹣(﹣12m+2)=212m ﹣m ﹣4=4时,得m =m =1.综上所述,m 的值是2或1.【点睛】主要考查了二次函数综合题,需要注重二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.22.(1)详见解析;(2)50.【解析】【分析】(1)根据三角形中位线定理和平行四边形的判定解答即可;(2)利用正方形的性质和矩形的面积公式解答即可.【详解】证明:(1)∵点F ,G ,H 分别是AD ,AE ,DE 的中点,∴FH ∥AE ,GH ∥AD ,∴四边形AGHF 是平行四边形;(2)当四边形EGFH 是正方形时,连接EF ,可得:EF ⊥GH 且EF =GH , ∵在△BEC 中,点,H 分别是BE ,CE 的中点,∴GH =12BC =12AD =5cm ,且GH ∥BC , ∴EF ⊥BC ,∵AD ∥BC ,AB ⊥BC ,∴AB =EF =GH =5cm ,∴矩形ABCD 的面积=211010502AB AD cm ⨯=⨯⨯=. 【点睛】此题考查正方形的性质,关键是根据三角形中位线定理和平行四边形的判定和正方形的性质解答.23.(1)详见解析;(2)12524【解析】【分析】(1)连接AO 并延长交⊙O 于E ,连接DE ,根据各边的关系,利用等量代换求出∠E =∠BAD ,再根据直径所对应的的圆周角等于90°,所以∠E+∠DAE =90°,等量代换∠BAD+∠DAE =90°,即可证出.(2) 过A 作AF ⊥BC 于F ,利用相似三角形求出BD 的长度,然后利用等腰三角形的三线合一性质求出BF 的长度,再根据勾股定理求出AF 的长,最后利用三角函数,根据比值关系求出AE 的长,即可知道⊙O 的半径.【详解】(1)证明:连接AO 并延长交⊙O 于E ,连接DE ,∵AB =AC ,AD =BD ,∴∠B =∠BAD ,∠B =∠C ,∴∠C =∠E ,∴∠E =∠BAD ,∵AE 是⊙O 的直径,∴∠ADE =90°,∴∠E+∠DAE =90°,∴∠BAD+∠DAE =90°,即∠BAE =90°,∴直线AB 是⊙O 的切线;(2)解:过A 作AF ⊥BC 于F ,∵∠B =∠BAD ,∠B =∠C ,∴∠BAD =∠C ,∵∠B =∠B ,∴△BAD ∽△BCA ,∴BDBA=BABC∴BD=2BABC=254,∴AD=BD=254,∵AB=AC,AF⊥BC,∴BF=12BC=8,∴AF=22AB BF-=6,∵∠E=∠C=∠B,∴sinE=sinB,∴AFAB=ADAE,∴AE=125 12,∴⊙O的半径为12512÷2=12524.即⊙O的半径为125 24【点睛】本题考查切线的判定和圆半径的求解,本题要熟练掌握等腰三角形的性质、同弧所对的圆周角相等、相似三角形成比例、勾股定理等知识点.24.(1)见解析;(2)DE⊥AM,见解析;(3)存在最小值,最小值为353.【解析】【分析】(1)证明△DAE≌△BAE(SAS)即可解决问题.(2)想办法证明∠DAM=∠EDC即可.(3)存在最小值.如图,取AD的中点O,连接OF、OC,利用三角形三边关系解决问题即可.【详解】解:(1)证明:在正方形ABCD中,AD=AB,∠DAE=BAE,又AE为公共边,∴△DAE≌△BAE(SAS),∴DE=BE.(2)结论:互相垂直.理由::在正方形ABCD中,AD=BC=CD,∠ADC=∠BCD=90°,∵AM=BN,∴Rt△ADM≌Rt△BCN(HL),∴∠DAM=∠CBN由(1)知DE=BE,又CD=CB,CE为公共边,∴△DCE≌△BCE(SSS),∴∠CDE=∠CBE∵∠ADF+∠CDE=∠ADC=90°∴∠DAF+∠ADF=90°∴∠DFA=180°﹣90°=90°即DE⊥AM.(3)存在最小值.如图,取AD的中点O,连接OF、OC,则OF=DO=12AD=3,在Rt△OCD中,OC22223635DO DC++=根据三角形的三边关系,OF+CF>OC,∴当O、F、C三点共线时,CF的长度最小,最小值为OC﹣OF=353.【点睛】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,三角形的三边关系等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用三角形三边关系解决最值问题,属于中考压轴题.25.(1)300名学生;(2)见解析;(3)48°;(4)960(人).【解析】【分析】(1)用文学的人数除以所占的百分比计算即可得解;(2)根据所占的百分比求出艺术和其它的人数,然后补全折线图即可;(3)用360°乘以体育部分人数所占比例即可得;(4)用总人数乘以科普所占的百分比,计算即可得解.【详解】解:(1)90÷30%=300(名),故一共调查了300名学生;(2)艺术的人数:300×20%=60名,其它的人数:300×10%=30名;折线图补充如图;(3)扇形统计图(图2)中,体育部分所对应的圆心角的度数为360°×40300=48°;(4)估计最喜爱科普类书籍的学生人数为3600×80300=960(人).【点睛】本题考查的是折线统计图和扇形统计图的综合运用,折线统计图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况,扇形统计图中每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.也考查了利用样本估计总体.2019-2020学年数学中考模拟试卷一、选择题 1.把a•1a-的根号外的a 移到根号内得( ) A.aB.﹣aC.﹣a -D.a -2.不等式组1224x x -<⎧⎨≥⎩的解集为( )A.2≤x<3B.2<x <3C.x <3D.x≥23.根据以下程序,当输入x =2时,输出结果为( )A.﹣1B.﹣4C.1D.114.已知反比例函数3(k y k x -=为常数),当0x <时,y 随x 的增大而减小,k 的取值范围是() A .k <0B .k 0C .k <3D .k >35.若a =326,b =11,则实数a ,b 的大小关系为( ) A .a >bB .a <bC .a =bD .a≥b6.一个公园有,,A B C 三个入口和,D E 二个出口,小明进入公园游玩,从“A 口进D 口出”的概率为( ) A .12B .13C .15D .167.若5-m m-3()>0,则( ) A .m <5B .3≤m<5C .3≤m≤5D .3<m <58.如图,AB 是⊙O 的直径,点C 、D 在⊙O 上,且点C 、D 在AB 的异侧,连接AD 、BD 、OD 、OC ,若∠ABD =15°,且AD ∥OC ,则∠BOC 的度数为( )A.120°B.105°C.100°D.110°9.下列汽车标志中,不是轴对称图形的是( )A. B. C. D.10.下列式子运算正确的是( ) A.3231-=-B.235+=C.13223=D.()()3103101+-=-11.如图,在菱形ABCD 中,60ABC ∠=︒,E 为BC 边的中点,M 为对角线BD 上的一个动点。
武汉2020年或将实行新中考:科目及分值有变化武汉2020年或将实行新中考:科目及分值有变化据了解,武汉新中考或将在2020年开始实施,2023年形成基于初中学业水平考试成绩、学生综合素质评价结果的高中阶段学校考试招生录取模式、管理机制。
就是说,2017年秋季入学的初一学生,或将成为首批参加武汉新中考的学生。
根据《意见稿》中公布的《武汉市初中学业水平考试方案》,武汉市初中学业水平考试的科目为:语文、数学、外语、物理、化学、生物、道德与法治、历史、地理、体育与健康、音乐、美术、综合实践活动(信息技术教育)、生命安全教育、心理健康教育,共15科。
其中,语文,数学,外语,物理和化学,道德与法治和历史,理化生实验操作、体育与健康,均以原始分计入招生录取总分。
生物和地理(合卷)、音乐、美术、生命安全教育和心理健康教育(合卷)、综合实践活动(信息技术教育)按80分及以上、79-70分、69-60分、59分以下为A、B、C、D四个等级呈现。
以等级方式纳入高中阶段学校招生录取依据。
分值方面:语文、数学、外语(含听说测试)实行纸笔分卷考试。
卷面分值分别为120分。
道德与法治和历史、物理和化学、地理和生物分别实行纸笔合卷笔试(均为闭卷)。
各科卷面分值为:物理70分,道德与法治、历史各60分,化学、生物、地理各50分。
物理、化学、生物实验操作考试,包括平时成绩、现场操作和实验报告撰写,每科10分,共30分。
体育与健康实行现场测试和平时考核相结合的考试方式。
平时成绩15分(3个学年,每学年5分),现场测试35分,总分50分。
音乐、美术实行纸笔测试、实践测试和平时考核相结合的考试方式。
音乐纸笔测试60分(含视听测试30分),实践测评30分,平时考核10分(5个学期,每学期2分),总分100分。
美术纸笔测试35分,实践测评50分,平时考核15分(5个学期,每学期3分),总分100分。
综合实践活动(信息技术教育)实行纸笔测试、技能测试和平时考核相结合的考试方式,纸笔测试和技能测试统一机考。
武汉物理中考大纲考试说明摘要:一、前言二、考试目标1.知识与技能2.过程与方法3.情感态度与价值观三、考试内容1.力与运动2.电磁学3.光学4.热学四、考试形式与试卷结构1.考试形式2.试卷结构五、备考建议正文:【前言】武汉物理中考大纲旨在对初中物理教学进行科学、合理的评价,引导初中物理教学沿着素质教育的方向发展,为高中物理教学提供有效的教学反馈信息。
大纲的制定遵循了教育性、科学性、公平性和导向性的原则。
【考试目标】二、考试目标(一)知识与技能学生应掌握初中物理的基本概念、基本原理和基本方法,理解并能运用所学知识解决实际问题。
(二)过程与方法学生应掌握科学探究的基本过程和方法,具备初步的科学实验能力,能运用所学知识分析、解决实际问题。
(三)情感态度与价值观学生应形成科学的世界观,树立科学精神,培养科学思维习惯,提高科学素养。
【考试内容】三、考试内容(一)力与运动1.力的概念、分类、作用效果2.牛顿三定律3.作用力与反作用力4.运动的基本概念5.匀速直线运动与变速直线运动6.圆周运动(二)电磁学1.静电场2.电流与电路3.磁场与电磁感应4.交流电与电磁波(三)光学1.光的性质2.光的折射与反射3.光的干涉与衍射4.光的偏振与光的全反射(四)热学1.热力学基本概念2.热力学第一定律3.热力学第二定律4.热力学过程【考试形式与试卷结构】四、考试形式与试卷结构(一)考试形式物理中考采用闭卷、笔试形式。
(二)试卷结构试卷满分100分,考试时间100分钟。
试卷分为选择题、填空题、简答题和计算题四部分。
【备考建议】五、备考建议1.熟悉考试大纲,了解考试要求。
2.扎实掌握初中物理基础知识,形成知识网络。
3.加强实验训练,提高实验操作能力。
4.培养科学思维方法,提高解决问题的能力。
武汉中考“考纲”出炉名师详解中考说明语文:名句赏析分值加大试卷结构武汉市中考语文试卷在试卷结构及难度上,和去年基本保持一致。
试卷包括第Ⅰ卷和第Ⅱ卷,第Ⅰ卷为选择题(30分),包含“基础知识”、“阅读”等;第Ⅱ卷为非选择题(90分),包含“阅读”、“语言运用”、“写作”等。
全部试卷采用填空题、选择题、问答题、写作题等多种题型。
试卷满分为120分。
基础知识和语言运用约占20%,阅读约占40%,写作约占40%。
难度系数为0.65左右。
考试变化去年开始,武汉市中考语文试卷与我省高考语文试卷,在试卷结构上就有几分相似了,中考考纲向着高考考纲贴近:明确考查学生识记、理解、分析综合、鉴赏评价、表达应用和探究等六项能力。
值得关注的是,中考考试说明中的“语文试卷(样题)”中,第四大题明确了中考的方向:即文言翻译题的分值从6分降至4分;“名句积累”部分的分值从8分增至10分,该题不光考查学生的名句积累,还有一题专门考查考生对名句的赏析。
这一变化在的中考中已经有所体现,引导学生提升人文素养。
复习建议1.复习还应回归课本。
比如试卷中的基础题,答案都在课本中。
回归课本的方法,就是反复地归纳总结,强化积累。
2.复习名句积累时不应只停留在会背会写,而应该进一步去理解其中包含的情感。
3.对于往年中考中的失分点,还要有针对性地弥补,尽全力去突破。
一是文言文翻译。
实际上中考文言文考查的知识点都在书上,重视实词、虚词的理解;另外拿到文言文句子后,第一件事就是分析句子成分,将句子理顺,然后再着手翻译。
二是大现代文阅读。
学生们失分主要是在审题出现偏差,回答没有扣题、答非所问。
中考阅读是踩点给分,阅读题问什么,该怎么回答,一般都有套路,建议学生带着目的来答题,对照标准答案找到答题规律。
三是作文题。
作文是得分“大头”,建议考生们从现在起准备素材本,利用剪贴、记录关键词句的方式来积累素材,同时考生们还可以相互交流,不断增加、更新素材。
在审题立意方面,也应加强训练,建议拿到作文题和材料后,首先立意,即写出自己文章的中心,并围绕中心写出三至五个支撑中心的材料,再列出提纲。
2019-2020年中考各科目考试说明解读语文:新课标首次登上中考舞台今年中考,《义务教育语文课程标准(2011年版)》(俗称“新课标”)将正式登上中考历史舞台,中考命题,将力求体现“新课标”的新精神、新理念、新要求,主要变化如下:文言文阅读。
今年考试说明在“试题示例”中出现了课内外比较阅读题型。
将“浅易”的课外文言内容逐步渗透到课内并与课内文言内容结合考查,就是“加强课外阅读”、“多读书”、“重视积累”的具体要求。
现代文阅读。
今年进一步提出了“理清思路”的“新课标”要求,即“要从‘词句理解、文意把握、理清思路、要点概括、内容探究、作品感受’等方面考查学生阅读的水平”。
“非连续性文本”出现在考试内容中。
这是“新课标”提出的新的语文教学概念,今年考试说明第八部分“试卷结构”中,“非连续性文本”与“议论文、说明性文章、新闻”的考查分值约占整份试卷的10%;同时,考试说明还提供了“非连续性文本”的“试题示例”,为中考语文复习提供了范例。
xx年考试说明对“试题示例”中的试题作了较大的调换与修改,所调换和修改的试题均是符合“新课标”要求的试题。
数学:避免出现偏题怪题今年数学学科考试说明依旧遵循《数学课程标准》的基本理念,以第三学段(7—9年级)的知识与技能目标为基准,考查学生对基础知识与基本技能的理解和掌握程度。
注重对学生的应用意识和创新意识的考查,提倡评价标准多样化,促进学生的个性化发展。
试题素材、背景来源于学生所能理解的生活现实、数学现实和其他学科现实,同时考虑城乡学生认知的差异性,避免出现偏题、怪题。
英语:去掉附加题中考英语科考试说明主要有三大变化:一是去掉附加题;二是对各大题要求的文字表述进行一些修改,使其更清楚、准确;三是将根据语言知识填写题调整2个小题为“根据音标写出单词”的考查。
《课标》要求初中毕业学生学会使用1500-1600个单词和200-300个习惯用语或固定搭配,除教材外,课外阅读量应累计达到15万个单词以上。
武汉中考数学考试说明解读
数学:对答题规范性要求高
【考试变化】
考试成绩由等级制改为分数制呈现,对于数学成绩优异(115分以上)的学生利好。
学生要分分必争,在原有程度上提高做题档位。
为了划出区分度,难点设置会增加,即难点较为分散,但总难度系数会保持不变。
根据去年情况来看,网上评卷高效公平,对答题规范性要求高。
【备考建议】
1、基础性原则。
中考七成是基础题,所以基础知识的复习不能丢。
2、针对性原则。
学生要将三年数学知识进行归纳整合,查漏补缺。
3、诊断功能。
复习课上,要高度重视试题的检测,不能将试题一做了之,要及时发现自己存在的问题。
提高审题能力、分析问题的能力、相互联系的能力、计算能力、综合能力。
学会“一题多解”和“多题一解”。
4、规范性原则。
推理要符合逻辑,书写要规范。
教材是最好的复习材料,要将教材上的试题吃透,并学会其表述模式。
5、复习重视中档试题。
另外,还要重视综合题的训练,例如圆、二次函数等试题。
从近几年中考24、25题综合题来看,平时注重训练,善于归纳总结的学生得分较高。
做题时要注意发现隐含条件。
2020中考说明(物理部分)一、命题依据及原则1.命题的依据2020年理科综合中考命题,以教育部制定的《义务教育化学课程标准(2011年版)》、《义务教育物理课程标准(2011版)》和《义务教育生物课程标准(2011年版)》,人民教育出版社出版的《义务教育教科书·化学》、《义务教育教科书·物理》和《义务教育教科书·生物学》为依据,体现课程改革的新理念。
2.命题的原则(1)导向性:正确发挥考试指导教学的导向作用,注重能力,注重引导教师改进教学方法;以学生为本,让学生学会学习、学会生活。
力求避免用“死记硬背”的方式对付考试。
(2)基础性:面向全体学生,注重考查初中理科基础知识和基本技能。
在考试内容上,选择学生熟悉的、发生在身边的事情作为素材,考查学生的科学素养。
命题中,要克服繁、难、偏、怪等方面的试题,不出似是而非、脱离实际的题目;淡化对概念、定义的文字辨析。
(3)发展性:以对学生今后可持续学习和终身发展具有重要意义的理科基础知识、基本技能、基本方法和基本思想观点等知识作为考查的重点内容,关注其掌握情况。
(4)时代性:强化初中理科知识与社会、生产、生活和科学技术的联系,考查学生分析问题、解决问题的能力。
注重题目情景的真实性。
通过设置真实的问题情境引导学生进行探究,实现对学生科学素养的考查。
(5)开放性:适当增加开放性试题,做到试题形式多样化、思维角度多元化。
注重考查学生的创新意识和实践能力。
(6)科学性:严格按照命题的程序和要求组织命题,试题做到科学、严谨,避免出现知识性、技术性的错误。
评分标准的制定做到科学、合理、明确,有利于评卷操作。
二、考试形式《理科综合》卷由物理、化学、生物三科组成,卷面总分为130分,其中物理60分,化学40分,生物30分。
《理科综合》考试时间为120分钟。
《理科综合》卷由卷Ⅰ和卷Ⅱ组成,试卷版面10个。
卷Ⅰ为选择题,采用2B铅笔填涂卡作答,机读阅卷。
2024武汉中考方案一、总体说明本方案旨在为2024年武汉中考提供全面的指导和规范,以确保考试公平、公正、有序地进行。
本方案将明确考试的基本方针和原则、考试科目与分值、考试方式、时间安排以及体育考试项目等内容。
二、2024年武汉中考的基本方针和原则1. 坚持立德树人,促进学生全面发展。
2. 科学、公平、公正、有序地组织考试。
3. 注重基础知识的掌握和基本技能的提升。
4. 突出学科特点,发挥学生的特长和优势。
三、考试科目与分值1. 语文:满分120分,考试时长150分钟。
2. 数学:满分120分,考试时长120分钟。
3. 英语:满分120分,考试时长120分钟。
4. 文综(历史、地理):满分80分,考试时长90分钟。
5. 理综(物理、化学):满分130分,考试时长150分钟。
6. 体育与健康:满分50分。
四、考试方式1. 语文、数学、英语、文综(历史、地理)、理综(物理、化学)采用闭卷笔试形式。
2. 体育与健康采用现场测试形式。
五、时间安排1. 语文:上午9:00-11:30。
2. 数学:下午14:30-16:30。
3. 英语:下午14:30-16:30。
4. 文综(历史、地理):下午14:30-16:00。
5. 理综(物理、化学):下午16:30-18:30。
6. 体育与健康:5月中旬,具体时间另行通知。
六、体育考试项目1. 必考项目:男生1000米跑,女生800米跑。
2. 选考项目:篮球运球绕杆往返、足球运球绕杆往返、排球垫球(以上三项任选一项)。
武汉市考试说明及中考大纲随着我国教育改革的深入推进,中考制度也在不断地完善和优化。
作为全国重要的教育城市之一,武汉市的中考制度也不断地进行改革和调整。
下面就让我们来了解一下武汉市中考的考试说明及考试大纲。
一、考试说明1.考试时间武汉市中考一般在6月份进行,具体考试时间由市教育局确定。
考试时间一般为两天,每天两个科目,每个科目考试时间为120分钟。
2.考试科目中考考试科目包括语文、数学、英语、物理、化学、生物、历史、地理、政治等九门科目。
其中,语文、数学、英语三门科目是必考科目,其他科目属于选考科目。
3.考试形式武汉市中考采用笔试形式,包括选择题、填空题、解答题等多种题型。
4.考试内容中考考试内容以初中各学科的基本知识、基本技能和基本能力为主,具体内容根据各科目的考试大纲确定。
二、考试大纲中考考试大纲是学生备考的重要依据,各科目的考试大纲都有详细的内容要求和考试要点。
下面是武汉市中考各科目的考试大纲要点: 1.语文主要考查学生对语言文字的运用能力和语言文字的分析、解释能力。
考试内容涉及阅读理解、写作、词语运用等方面。
2.数学主要考查学生对数学基本概念、基本方法和基本技能的掌握能力。
考试内容包括代数、几何、函数、数与量等方面。
3.英语主要考查学生的听、说、读、写四项英语语言技能。
考试内容包括词汇、语法、阅读、写作等方面。
4.物理主要考查学生对物理基本概念、基本定律和基本技能的掌握能力。
考试内容包括力学、热学、电学等方面。
5.化学主要考查学生对化学基本概念、基本定律和基本技能的掌握能力。
考试内容包括化学反应、化学键、化学方程式等方面。
6.生物主要考查学生对生物基本概念、基本原理和基本技能的掌握能力。
考试内容包括生物分类、生态系统、遗传与进化等方面。
7.历史主要考查学生对历史基本概念、基本事实和基本技能的掌握能力。
考试内容包括历史事件、历史人物、历史文化等方面。
8.地理主要考查学生对地理基本概念、基本事实和基本技能的掌握能力。
2020年初中毕业暨高中阶段教育学校招生考试说明语文一、考试性质初中毕业生学业考试是基础教育课程改革的一项重要内容,其结果既是衡量学生是否达到毕业规范的主要依据,又是高中阶段学校招生的重要依据之一。
初中毕业生语文学业考试是全面贯彻国家教育方针,体现义务教育性质,面向全体学生,真实、全面地反映初中毕业生在语文学科学习能力方面所应达到水平的考试。
初中毕业生语文学业考试要有利于推进语文课程和学科教案的改革,要有利于促进学生语文素养的形成与发展,有利于全面提高语文学科的教育教案质量,建立科学的语文教案评价体系,因而,初中毕业生语文学业考试不仅要考查学生对语文知识的掌握情况和语文能力的发展情况,还要考查学生语文学习过程和方法的情况,以及学生在情感、态度和价值观方面的发展状况。
二、考试依据及范围初中毕业生语文学业考试依据教育部制订的《义务教育语文课程规范(2011年版)》所规定的内容和要求,全面考查初中毕业生在七~九年级学段的语文学习情况。
考查内容不受教材内容的限制,着重考查学生的阅读能力和表达能力。
三、考试方式考试采用闭卷、笔试的方式;全卷满分120分,考试时间为120分钟。
四、试卷结构1.试卷内容及赋分①积累与运用35分:单项选择题14分,以考查语文基础知识为主,每题2分;非选择题21分,含古诗文默写7分左右、诗歌鉴赏4分左右、名著导读4分左右、综合性学习6分左右。
现代文阅读——30分左右。
设置一个小阅读(说明文或议论文选段),3个选择题,共6分。
放在第一大题选择题第8-10小题处;设置两个大阅读(记叙文、议论文或记叙文、说明文,大小阅读的文体不重复),共计24分左右。
②阅读45分文言文阅读——15分左右。
③写作40分(二选一,任选一题作文)2.题型考试的主要题型有:选择题、填充题、问答题(含答案开放的表述题)、古文翻译题、图表题、写作题等。
3.试卷难度较易题60%;中难题30%;较难题10%。
预估整卷试卷难度系数在0.6~0.65之间。
2020年武汉中考考试说明出炉·数学数学减少基础题增加中档题武钢实验学校数学教研组长、高级教师陈凤兰【变化】综合与实践四个领域在试题中所占比重与去年一致。
知识目标要求与去年一致,但是容易题,中档题和难题的比由原来的7:2:1变为6:3:1,显然减少了容易题,增加了中档题的题量。
题型示例在去年的基础上作了比较大的调整,尤其是选择题,概括为第一类是题目变了,但是考查的目标没有变,例如选择题中的例12例13例14;第二类是由原来的单一考查一个知识点变为多个知识点的考查;第三把选择题中三角形为背景的题删掉,换成了一个考查与圆相关的计算,在填空题中增加了一个考查图形与几何中线段长度的计算;第四,变化或增加的题型示例都有一定的综合性,强调学生运用数学知识的能力。
尤其是解答题中例17考查了初中数学的核心内容和重要的数学思想方法,难度大。
另外,删掉了选择题中两个传统的容易题,二次根式的意义和科学记数法,取而代之的是利用平方根、立方根定义计算求值及运用数形结合的方法比较实数的大小或正负。
【建议】复习时,建议考生注重基础知识、基本图形和基本方法的训练及基本能力的培养,尤其是第一轮复习要回归教材,引导学生梳理三年来所学知识之间的联系,构建知识结构体系,抓好基础题和中档题的训练,特别是有一定综合性的中档题,不建议花大量时间做偏题怪题难题,也不要刻意围绕往年中考题做点对点的训练。
2019-2020学年数学中考模拟试卷一、选择题1.二次函数y =ax 2+bx+c (a≠0)的图象如图所示,有下列结论:①abc >0;②a+b+c =2;③a 12>;④b >1,其中正确的结论个数是( )A.1个B.2 个C.3 个D.4 个2.不等式组111324(1)2()x x x x a -⎧-<-⎪⎨⎪--⎩…有3个整数解,则a 的取值范围是( ) A .﹣6≤a<﹣5 B .﹣6<a≤﹣5C .﹣6<a <﹣5D .﹣6≤a≤﹣53.若反比例函数3k y x +=的图像经过点()3,2-,则k 的值为( ) A.9-B.3C.6-D.94.如图,两个小正方形的边长都是1,以A 为圆心,AD 为半径作弧交BC 于点G ,则图中阴影部分的面积为( )A. B. C. D.5.关于x 的一元二次方程2(2)0x m x m -++=根的情况是( ) A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根D.无法确定6.如图,四边形ABCD 内接于⊙O ,E 是BC 延长线上一点,下列等式中不一定成立的是( )A .∠1=∠2B .∠3=∠5C .∠BAD=∠DCED .∠4=∠67.将一幅三角尺如图所示的方式摆放(两条直角边在同一条直线上,且两锐角顶点重合),连接另外两条锐角顶点,并测得147∠=,则2∠的度数为( )A .60°B .58°C .45°D .43°8.如图,双曲线y =6x(x >0)经过线段AB 的中点M ,则△AOB 的面积为( )A .18B .24C .6D .129.下列四个不等式组中,其中一个不等式组的解集在数轴上的正确表示如图所示,这个不等式组是( )A .23x x ≥⎧⎨>-⎩B .23x x ⎧⎨<-⎩…C .23x x ≥⎧⎨<-⎩D .23x x ⎧⎨>-⎩…10.计算a 2•(a 2)3的结果是( )A.a 7B.a 10C.a 8D.a 1211.在4, 5, 6, 6, 9这组数据中,去掉一个数后,余下的数据的中位数不变,且方差减小,则去掉的数是( ) A .4B .5C .6D .712.如图,已知BC 是圆柱底面的直径,AB 是圆柱的高,在圆柱的侧面上,过点A 、C 嵌有一圈路径最短的金属丝,现将圆柱侧面沿AB 剪开,所得的圆柱侧面展开图是( )A. B .C. D .二、填空题13.矩形纸片ABCD,AB=9,BC=6,在矩形边上有一点P,且DP=3.将矩形纸片折叠,使点B与点P重合,折痕所在直线交矩形两边于点E,F,则EF长为________.14.如图,圆内接四边形ABCD中,∠BCD=90°,AB=AD,点E在CD的延长线上,且DE=BC,连结AE,若AE=4,则四边形ABCD的面积为_____.15.若2n(n≠0)是关于x的方程x2﹣2mx+2n=0的根,则m﹣n的值为______.16.计算432x x⋅的结果等于__________.17.如图,小华买了一盒福娃和一枚奥运徽章,已知一盒福娃的价格比一枚奥运徽章的价格贵120元,则一盒福娃价格是____元.18.如果一个三角形两边为3cm,7cm,且第三边为奇数,则三角形的周长是_________.三、解答题19.先化简,再求值:222441,24x xxx x-+⎛⎫-÷=⎪-⎝⎭其中20.阅读下列材料,并解决相关的问题按照一定顺序排列的一列数称为数列,排在第一位的数称为第1项,记为a1,依此类推,排在第n位的数称为第n项,记a n,一般地,如果一个数列从第2项起,每一项与它前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫做等差数列的公差,公差用字母d表示,如数列1,3,5,7,9…为等差数列,其中a1=1,d=2(1)等差数列1,6,11,16…公差d为,第11项是.(2)若一个等差数列的公差为d=3,第2项为10,求第1项a1和第n项a n(用含n的表达式表示).21.现有一次函数y=mx+n和二次函数y=mx2+nx+1,其中m≠0,(1)若二次函数y=mx2+nx+1经过点(2,0),(3,1),试分别求出两个函数的解析式.(2)若一次函数y=mx+n经过点(2,0),且图象经过第一、三象限.二次函数y=mx2+nx+1经过点(a,y1)和(a+1,y2),且y1>y2,请求出a的取值范围.(3)若二次函数y=mx2+nx+1的顶点坐标为A(h,k)(h≠0),同时二次函数y=x2+x+1也经过A点,已知﹣1<h<1,请求出m的取值范围.22.如图,已知A、B、C、D四点顺次在同一条直线上,AE∥FD,AE=FD,AB=CD,求证:∠ACE=∠DBF.23.已知二次函数y=﹣x2+2mx﹣m2﹣1(m为常数).(1)证明:不论m为何值,该函数的图象与x轴没有公共点;(2)当自变量x的值满足﹣3≤x≤﹣1时,与其对应的函数值y的最大值为﹣5,求m的值.24.为弘扬泰山文化,某校举办了“泰山诗文大赛”活动,从中随机抽取部分学生的比赛成绩,根据成绩(成绩都高于50分),绘制了如下的统计图表(不完整):组别分数人数第1组90<x≤1008第2组80<x≤90 a第3组70<x≤8010第4组60<x≤70 b第5组50<x≤60 3请根据以上信息,解答下列问题:(1)求出a,b的值;(2)计算扇形统计图中“第5组”所在扇形圆心角的度数;(3)若该校共有1800名学生,那么成绩高于80分的共有多少人?25.小红和小明在操场做游戏,规则是:每人蒙上眼睛在一定距离外向设计好的图形内掷小石子,若掷中阴影部分则小红胜,否则小明胜,未掷入图形内则重掷一次.(1)若第一次设计的图形(图1)是半径分别为20cm和30cm的同心圆.求游戏中小红获胜的概率你认为游戏对双方公平吗?请说明理由.(2)若第二次设计的图形(图2)是两个矩形,其中大矩形的长为80cm、宽为60cm,且小矩形到矩形的边宽相等.要使游戏对双方公平,则边宽x应为多少cm?【参考答案】*** 一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 C B A A A D B D D C AD二、填空题 13.2或210. 14.8 15.1216.72x 17.18.15cm 、17cm 、19cm . 三、解答题 19.2,12x x++ 【解析】 【分析】先计算括号内的减法,然后把分式的除法转换为乘法的形式,通过约分将分式化为最简形式后,再把x 的值代入进行计算即可. 【详解】解: 222441,4x x x x -+⎛⎫-÷ ⎪-⎝⎭()()()2222,2x x x x x +--=⋅- 2.x x+=当2x =时,原式=221 2.2+=+ 【点睛】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键. 20.(1)5,51;(2)a n =3n+4. 【解析】【分析】(1)根据定义直接计算即可;(2)由a 2=a 1+d ,a 3=a 1+2d ,a 4=a 1+3d…可知:序列号n 比d 的系数小1,故:a n =a 1+(n-1)d . 【详解】(1)如果一个数列a 1,a 2,a 3,a 4,…是等差数列,且公差为d ,那么根据定义可得到:a 2﹣a 1=d ,a 3﹣a 2=d ,a 4﹣a 3=d ,……a n ﹣a n ﹣1=d , 所以a 2=a 1+d ,a 3=a 2+d =a 1+2d ,a 4=a 1+3d ,…… 由此可得a n =a 1+(n ﹣1)d (用a 1和d 的代数式表示); 由此可得:d =6﹣1=5,第11项是:1+10×5=51, 故答案为:5,51;(2)由题意得:a 1=10﹣3=7,由(1)得:a n =a 1+(n ﹣1)d =7+3(n ﹣1)=3n+4. 【点睛】本题考查数字的变化类,解题的关键是明确题意,知道什么是等差数列,会用等差数列解决问题. 21.(1)y =x ﹣2,y=12-x 2+32+1;(2)a <12;(3)m <﹣2或m >0. 【解析】 【分析】(1)直接将点代入函数解析式,用待定系数法即可求解函数解析式;(2)点(2,0)代入一次函数解析式,得到n =−2m ,利用m 与n 的关系能求出二次函数对称轴x =1,由一次函数经过一、三象限可得m >0,确定二次函数开口向上,此时当 y 1>y 2,只需让a 到对称轴的距离比a +1到对称轴的距离大即可求a 的范围.(3)将A (h ,k )分别代入两个二次函数解析式,再结合对称抽得h =n2m-,将得到的三个关系联立即可得到11h m =-+,再由题中已知−1<h <1,利用h 的范围求出m 的范围. 【详解】(1)将点(2,0),(3,1),代入一次函数y =mx+n 中,0213m nm n =+⎧⎨=+⎩, 解得12m n =⎧⎨=-⎩,∴一次函数的解析式是y =x ﹣2,再将点(2,0),(3,1),代入二次函数y =mx 2+nx+1,04211931m n m n =++⎧⎨=++⎩,解得1232m n ⎧=-⎪⎪⎨⎪=⎪⎩,∴二次函数的解析式是213122y x =-++. (2)∵一次函数y =mx+n 经过点(2,0), ∴n =﹣2m ,∵二次函数y =mx 2+nx+1的对称轴是x =n2m-, ∴对称轴为x =1,又∵一次函数y =mx+n 图象经过第一、三象限, ∴m >0, ∵y 1>y 2, ∴1﹣a >1+a ﹣1, ∴a <12. (3)∵y =mx 2+nx+1的顶点坐标为A (h ,k ), ∴k =mh 2+nh+1,且h =n2m-, 又∵二次函数y =x 2+x+1也经过A 点, ∴k =h 2+h+1, ∴mh 2+nh+1=h 2+h+1, ∴11h m =-+, 又∵﹣1<h <1, ∴m <﹣2或m >0. 【点睛】本题考点:点与函数的关系;二次函数的对称轴与函数值关系;待定系数法求函数解析式;不等式的解法;数形结合思想是解决二次函数问题的有效方法. 22.见解析. 【解析】 【分析】根据平行线的性质可得到∠A=∠D ,根据等式的性由已知AB=CD 可得AC=BD ,从而可利用SAS 来判定△AEC ≌△DFB ,再根据全等三角形的对应角相等即可得到:∠ACE=∠DBF . 【详解】解:证明:∵AE ∥DF , ∴∠A =∠D .∴AB+BC =CD+BC . 即AC =BD .在△AEC 和△DFB 中,AE DF A D AC BD =⎧⎪∠=∠⎨⎪=⎩, ∴△AEC ≌△DFB (SAS ), ∴∠ACE =∠DBF . 【点睛】此题主要考查学生对全等三角形的判定方法的理解及运用,掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键. 23.(1)见解析;(2)m 的值为﹣5或1. 【解析】 【分析】(1)根据判别式的值得到△=﹣4<0,然后根据判别式的意义得到结论;(2)利用配方法得到y =﹣(x ﹣m )2﹣1,则抛物线的对称轴为直线x =m ,讨论:当m <﹣3时,根据二次函数性质得到x =﹣3时,y =﹣5,所以﹣(﹣3﹣m )2﹣1=﹣5;当﹣3≤m≤﹣1时,x =m ,y 的最大值为﹣1,不合题意;当m >﹣1时,利用二次函数的性质得到x =﹣1时,y =﹣5,所以﹣(﹣1﹣m )2﹣1=﹣5,然后分别解关于m 的方程即可得到满足条件的m 的值. 【详解】(1)证明:△=4m 2﹣4×(﹣1)×(﹣m 2﹣1) =﹣4<0,所以﹣x 2+2mx ﹣m 2﹣1=0没有实数解,所以不论m 为何值,该函数的图象与x 轴没有公共点; (2)解:y =﹣x 2+2mx ﹣m 2﹣1=﹣(x ﹣m )2﹣1, 抛物线的对称轴为直线x =m ,当m <﹣3时,﹣3≤x≤﹣1,y 随x 的增大而减下,则x =﹣3时,y =﹣5, 所以﹣(﹣3﹣m )2﹣1=﹣5,解得m 1=﹣5,m 2=﹣1(舍去); 当﹣3≤m≤﹣1时,x =m ,y 的最大值为﹣1,不合题意;当m >﹣1时,﹣3≤x≤﹣1,y 随x 的增大而增大,则x =﹣1时,y =﹣5, 所以﹣(﹣1﹣m )2﹣1=﹣5,解得m 1=1,m 2=﹣3(舍去); 综上所述,m 的值为﹣5或1. 【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y =ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质. 24.(1)a =12,b =7;(2)27°;(3)900人 【解析】(1)根据第三组人数和所占比例求出抽取学生人数,再根据抽取学生人数和比例分别求出第2组和第4组人数;(2)求出第五组人数所占比例,可得“第5组”所在扇形圆心角的度数;(3)先求出成绩高于80分人数所占比例,根据全校人员可得成绩高于80分的人数.【详解】解:(1)抽取学生人数10÷25%=40(人),第2组人数40×30%=12(人),第4组人数 40﹣8﹣12﹣10﹣3=7(人),∴a=12,b=7;(2)360°×340=27°,∴“第5组”所在扇形圆心角的度数为27°;(3)1800×81240+=900(人),∴成绩高于80分的共有900人.【点睛】本题考查了统计图和样本估计总体,熟练掌握条形统计图与扇形统计图是解题的关键.25.(1)游戏对双方不公平.(2)边宽x为10cm时,游戏对双方公平.【解析】【分析】(1)根据几何概率的求法:小红获胜的概率就是阴影部分面积与总面积的比值,小明获胜的概率就是阴影之外的部分面积与总面积的比值即可判断游戏是否公平;(2)由于游戏公平,则两部分面积相等,由此列出方程求解即可.【详解】(1)P(小红获胜)=22232539πππ⨯-⨯=⨯,P(小明获胜)=1-59=49,∴游戏对双方不公平;(2)根据题意可得:(80﹣2x)(60﹣2x)=2400即x2﹣70x+600=0,∴x1=10,x2=60(不符合题意,舍去)∴边宽x为10cm时,游戏对双方公平.【点睛】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.2019-2020学年数学中考模拟试卷一、选择题1.如果解关于x的分式方程2122m xx x-=--时出现增根,那么m的值为A.-2 B.2 C.4 D.-42.如图所示,点A是双曲线y=1x(x>0)上的一动点,过A作AC⊥y轴,垂足为点C,作AC的垂直平分线双曲线于点B,交x轴于点D.当点A在双曲线上从左到右运动时,四边形ABCD的面积()A.不变B.逐渐变小C.由大变小再由小变大D.由小变大再由大变小3.如图,点M是正方形ABCD边CD上一点,连接MM,作DE⊥AM于点E,BF⊥AM于点F,连接BE,若AF =1,四边形ABED的面积为6,则∠EBF的余弦值是()A.21313B.31313C.23D.13134.如图,在扇形AOB中,∠AOB=90°,OA=2,点C、D分别为OA、OB的中点,分别以C、D为圆心,以OA、OB为直径作半圆,两半圆交于点E,则阴影部分的面积为()A.142π- B.12π- C.184π- D.142π+5.下列运算正确的是().A. B.C. D.6.将抛物线y=﹣3x2+1向左平移2个单位长度,再向下平移3个单位长度,所得到的抛物线为()A.y=﹣3(x﹣2)2+4 B.y=﹣3(x﹣2)2﹣2C.y=﹣3(x+2)2+4 D.y=﹣3(x+2)2﹣27.如图,已知在平面直角坐标系中有两点A(0,1),B(3,0),动点P在线段AB上运动,过点P作y轴的垂线,垂足为点M,作x轴的垂线,垂足为点N,连接MN,则线段MN的最小值为()A.1 B.3C.33D.328.已知|a|=3,b2=16,且|a+b|≠a+b,则代数式a﹣b的值为()A.1或7 B.1或﹣7 C.﹣1或﹣7 D.±1或±79.下列说法错误的是()A.两组对边分别平行的四边形是平行四边形B.两组对边分别相等的四边形是平行四边形C.一组对边平行,另一组对边相等的四边形是平行四边形D.一组对边平行且相等的四边形是平行四边形10.已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC的长为()A.25cm B.45cm C.25cm或45cm D.23cm或43cm11.如图,边长为4个单位长度的正方形ABCD的边AB与等腰直角三角形EFG的斜边FG重合,△EFG以每秒1个单位长度的速度沿BC向右匀速运动(保持FG⊥BC),当点E运动到CD边上时△EFG停止运动,设△EFG的运动时间为t秒,△EFG与正方形ABCD重叠部分的面积为S,则S关于t的函数大致图象为()A.B.C.D.12.下列运算正确的是()A.a8÷a2=a6B.(a+b)2=a2+b2C.a2•a3=a6D.(﹣a2)3=a6二、填空题13.某中学生物兴趣小组调查了本地区几棵古树的生长年代,记录数据如下(单位:年):200,240,220,200,210.这组数据的中位数是__.14.如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是AD的中点,弦CE⊥AB于点F,过点D的切线交EC的延长线于点G,连接AD,分别交CF、BC于点P、Q,连接AC.给出下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心;④AP•AD=CQ•CB.其中正确的是_____(写出所有正确结论的序号).15.如图,已知点A(2,3)和点B(0,2),点A在反比例函数y= kx的图象上.作射线AB,再将射线AB绕点A按逆时针方向旋转45°,交反比例函数图象于点C,则点C的坐标为________.16.某学习小组为了探究函数y=x2﹣|x|的图象和性质,根据以往学习函数的经验,列表确定了该函数图象上一些点的坐标,表格中的m=_____.x …﹣2 ﹣1.5 ﹣1 ﹣0.5 0 0.5 1 1.5 2 …y … 2 0.75 0 ﹣0.25 0 ﹣0.25 0 m 2 …17.如图,在直角坐标系xOy中,已知点A(0,1),点P在线段OA上,以AP为半径的⊙P周长为1.点M从A开始沿⊙P按逆时针方向转动,射线AM交x轴于点N(n,0),设点M转过的路程为m(0<m<1).(1)当m=14时,n=_____; (2)随着点M 的转动,当m 从13变化到23时,点N 相应移动的路径长为_____.18.某学习小组设计了一个摸球试验,在袋中装有黑、白两种除颜色外完全相同的小球,在看不到球的前提下,随机从袋中摸出一个球,记下颜色,再把它放回去,不断重复.下表是由试验得到的一组统计数据: 摸球的次数n 100 200 300 400 500 600 摸到白球的次数m 69 139 213 279 351 420 摸到白球的频率mn0.690.690.710.6980.7020.70从这个袋中随机摸出一个球,是白球的概率为_____.(结果精确到0.1) 三、解答题19.已知:正方形ABCD ,等腰直角三角板的直角顶点落在正方形的顶点D 处,使三角板绕点D 旋转.(1)当三角板旋转到图1的位置时,猜想CE 与AF 的数量关系,并加以证明; (2)在(1)的条件下,若DE :AE :CE =1:7:3,求∠AED 的度数;(3)若BC =4,点M 是边AB 的中点,连结DM ,DM 与AC 交于点O ,当三角板的边DF 与边DM 重合时(如图2),若OF =53,求DF 和DN 的长. 20.先化简,再求值:(a ﹣2b )(a+2b )﹣(a ﹣2b )2+8b 2,其中a =﹣6,b =1321.计算011|31|2019()3tan 303--+---22.为了让更多的失学儿童重返校园,某社区组织“献爱心手拉手”捐款活动. 对社区部分捐款户数进行调查和分组统计后,将数据整理成如图所示的统计图(图中信息不完整). 已知A 、B 两组捐款户数的比为1 : 5.请结合图中相关数据回答下列问题.请结合以上信息解答下列问题.(1) A组捐款户数为,本次调查样本的容量是;(2) C组捐款户数为,请补全“捐款户数直方图”;(3) 若该社区有500户住户,请根据以上信息估计,全社区捐款不少于300元的户数是多少?23.解不等式组:523(1)37122x xx x->+⎧⎪⎨-≥-⎪⎩,并把它的解在数轴上表示出来.24.为了掌握我区中考模拟数学试题的命题质量与难度系数,命题教师选取一个水平相当的初三年级进行调研,将随机抽取的部分学生成绩(得分为整数,满分为130分)分为5组:第一组55∼70;第二组70∼85;第三组85∼100;第四组100∼115;第五组115∼130,统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图,观察图形的信息,回答下列问题:(1)本次调查共随机抽取了__ _名学生;(2)补全频数分布直方图;(3)将得分转化为等级,规定:得分低于70分评为“D”,70∼100分评为“C”,100∼11评为“B”,115∼130分评为“A”,根据目前的统计,请你估计全区该年级4500名考生中,考试成绩评为“B”级及其以上的学生大约有多少名?25.如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,DE=3,连结DB,过点E作EM∥BD,交BA的延长线于点M。
2020年武汉中考大纲考试说明公布今年中考文化考试共5份试卷(含1份合卷)、6门学科。
所有学科均实行网上阅卷,考试成绩均以分数方式呈现,满分520分。
其中语文、数学和英语分别为120分,物理、化学合卷120分,思想品德40分。
自去年历史退出武汉中考后,今年中考科目试卷结构、考点、题型均保持稳定,各科难度值没有变化,英语、理化中涉及考试内容有部分微调。
由于今年英语考试范围和内容,将参考新目标教材,听力第一、第二节题量有调整,大对话、短文理解的信息量略有增加,信息处理、理解的难度略有加大。
《中考考试说明》是武汉今年中考命题的主要依据,也是考生备考的重要参考。
武汉市教科院副院长朱长华介绍,今年的中考考纲并未像往年一样提供各科样卷,而是增加了大量题型示例。
对于这一变化,他表示,题型示例呈现出更大的信息容量,旨在为学生提供更多的考查范例。
【语文】与去年相比,今年中考语文学科考点、题型变化不大。
考点还是字音、字形、词义、病句修改、语段理解、阅读、作文等内容构成,全卷采用填空题、选择题、问答题、写作题等题型。
试卷满分120分,基础知识、综合性学习、口语交际约占20%,阅读、写作各约占40%。
难度系数0.65左右。
【数学】今年数学学科题型依旧为选择题、填空题和解答题三种题型。
选择题共10小题,每题3分,共30分;填空题共6小题,每题3分,共18分;解答题共8题,共72分。
在试题比重上,数与代数约占45%、空间与图形约占40%、统计与概率约占15%,综合与实践的考查融合在以上三块内容中。
容易题、中等题、难题的比约为7:2:1,难度系数为0.65左右。
【英语】今年英语考试范围和内容将参考新目标教材(Goforit!7~9年级修订版),考试词汇依据《2015年武汉市初中毕业生英语学业考试词汇表》。
考试难度与去年基本持平,试卷上有个别地方进行了微调,具体调整如下:1、听力测试部分的第一、第二节题量有调整,考试内容仍然是情景反应和日常对话理解,今年将注重基本听力能力的测试,大对话、短文理解的信息量略有增加,信息处理、理解的难度略有加大。
2020年武汉中考语文的考试说明和复习建议一、命题依据与指导思想(略)二、命题原则1.公平性原则。
2.科学性原则。
3.整体性原则。
4.可操作性原则。
三、考试内容及要求初中毕业生语文学业考试的内容包括识字与写字、阅读、写作、口语交际和综合性学习五个方面。
(一)识字与写字识字方面,考查学生对常用字的字形、字音、字义的掌握情况;写字方面,考查学生书写的正确、端正、整洁。
(二)阅读阅读主要考查现代文阅读、文言文阅读、优秀诗文的记诵积累等。
优秀诗文的记诵积累以语文课程标准的推荐篇目(80篇段)为考查范围。
(三)写作写作重在考查学生规范、熟练地运用语言文字叙述、状物、抒情、表达思想观点的能力。
要求能写记叙文、说明文、议论文和日常应用文。
(四)口语交际口语交际着重考查学生在具体交际情境中倾听、表达、应对的能力,以及学生的参与意识和情感态度。
口语交际的考查可以有多种形式。
根据武汉市的实际情况,目前拟采用在纸笔测试中设置口语交际情境,让学生用笔解答的考查形式。
(五)综合性学习综合性学习重在考查学生的探究精神、创新意识和综合运用能力。
主要体现为语文知识和能力的综合运用、语文课程与其他课程的沟通、书本学习与实践活动的紧密结合。
综合性学习的考查内容是丰富、开放的,考查的形式也应是灵活多样的。
根据武汉市实际情况,目前拟采用在纸笔测试中设计体现综合性学习特点和要求的试题进行考查。
四、考试形式与试卷结构考试采用纸笔闭卷测试的方式。
考试时间150分钟。
考试成绩以等级制呈现。
试卷结构分为“积累与运用”、“阅读”、“写作”三大板块,主要采用选择题、填充题、问答题、写作题等多种题型。
试卷满分120分,积累与运用30分,阅读40分,作文50分。
难度系数为0.65左右。
不考繁难偏题吃透题型示例荆楚网消息 (楚天金报) 点评:金报名师团采写:本报记者赵莉考试说明的新变化1.与去年相比,今年考试说明删除了“考试的结果即是衡量是否达到初中阶段毕业标准的主要依据”,意味着中考语文毕业考试的意味在转淡,命题空间将更大。
年武汉中考考试说明变化解读20XX年武汉中考考试说明变化解读昨日,《xx年武汉市初中毕业生学业考试说明》出炉。
与往年相比,今年中考试题总体变化不大,局部试题有微调。
武汉市教育科学研究院副院长朱长华介绍,今年中考试题的难度系数和试卷结构并没有特别大的变化,让学生有信心参加中考,只是在题干、设问方式上做了一些调整,充分考查学生学科能力,重视学生的核心素养。
记者就此采访了武汉市第六初级中学等学校初三年级老师,对《考试说明》做出了解读。
与往年相比,今年中考题型、知识点、难易度都变化不大,语文、英语局部题目有调整,但不会影响复习节奏。
语文:新增了“标准使用标点”武汉市第六初级中学语文教师陈浩介绍,《考试说明》中新增了“标准使用标点”、“文言文断句”的考点。
结合元月调考,今年中考里或将没有以往的语段考查,新增考查标点符号运用的选择题。
《考试说明》样卷里给出了文言文断句题,这一题型也在元月调考中出现过,考生在复习备考时应多做准备。
数学:减少了繁杂的运算中考数学延续以往的特点和精神,24道题题量、知识点不变。
综合近几年中考试题来看,考试减少了阅读量、书写量和繁杂的运算,力求解题严谨、简洁。
根据《考试说明》里的例题,解答题xx年原第13题,是二次函数图形题,今年换成了14题,是一道反比例的解答题。
武汉市中考试卷中反比例的解答题极少出现,今年在样题中替换经典例题出现,这一变化值得重点研究。
样题中解答题局部增加了一道例题(第11题),是对xx年中考试卷中关于二次函数应用、特别是求极值问题的再次强调。
近年来,二次函数应用题是热点题型,说明应该重点关注。
与往年相比,数学试题中有更多教材原题的变形,建议考生在最后备考阶段回归教材。
英语:信息理解难度略有加大英语方面,根据《考试说明》,今年中考英语难度与去年根本持平。
听力测试局部的第一节和第二节题量有微调,考试内容仍然是情景反响和日常对话的理解和应用;大对话和独白理解的信息量略有增加,信息理解和处理的难度略有加大。
来自;2442723084一定要重视!!!2020年中考考试说明——道德与法治一、考试范围考试范围是教育部制定的《义务教育思想品德课程标准》(2011年版)规定的学习内容,人民教育出版社出版《道德与法治》教材,以及2019年5月至2020年4月国内外重大时事。
二、考试形式考试形式为开卷、笔试。
三、试卷结构(一)内容结构与比例道德知识16%左右,法律知识32%左右,国情、国策知识约44%,一年来的重大时事约8%。
(二)题型结构与比例试题分为选择题和非选择题,选择题12道,共24分,占总分的48%(时政2个,道德2个,法律5个,国情3个)。
非选择题4道,共26分,占总分的52%(道德1个,4分;法律1个,8分;国情2个,14分)。
四、考试内容与要求【心理道德】1、体会父母为抚养自己付出的辛劳,尊敬父母和长辈。
学会与父母平等沟通,调适“逆反”心理。
增强与家人共创共享家庭美德的意识和能力(七上第七课)2、理解情绪的多样性、复杂性,学会调解和控制情绪,保持乐观、积极的心态(七下第四课)3、学会换位思考,学会理解与宽容,尊重、帮助他人,与人为善。
领会诚实是一种可贵的品质,知道诚实才得到信任,努力做诚实的人。
(八上第四课)4、知道责任的社会基础,体会承担责任的意义,懂得承担责任可能需要付出代价,知道不承担责任的后果,努力做一个负责任的公民。
(八上第六课)【法律】1.知道法律是由国家制定和认可,由国家强制力保证实施的一种特殊行为规范。
我国公民在法律面前一律平等。
(七下第九课)2.知道不履行法律规定的义务或做出法律所禁止的行为都是违法行为,理解任何违法行为都要承担相应的法律责任,受到一定的法律制裁。
(八上第五课)3.知道法律对未成年人的特殊保护,了解家庭保护、学校保护、社会保护和司法保护的基本内容。
掌握获得法律帮助和维护合法权益的方式和途径,提高运用法律的能力。
(七下第十课)4.人教版八下第一、二、四单元内容(宪法、权利与义务、自由平等、公平正义)5.人教版九上第二单元民主与法治【国情国策】1.知道我国的人口、资源、环境等状况,了解计划生育、保护环境、合理利用资源的政策,形成可持续发展意识。
2020届湖北省中考语文考试说明(征求意见稿)Ⅰ.考试形式与试卷结构一、考试形式:考试采用闭卷、笔试形式。
试卷满分150分,考试时间150分钟。
二、题型:试卷包括单项选择题、多项选择题、填空题、古文断句题、古文翻译题、简答题、写作题等。
三、试卷结构:试卷包括语言文字运用、古代诗文阅读、现代文阅读、名著阅读、写作等五个部分。
语言文字运用约20分,6题左右。
考查字音、字形、词语使用、病句辨析修改、语言简明连贯得体、仿写、续写、改写、缩写、扩写等,题型为选择题、简答题。
古代诗文阅读约32分,7题左右。
包括文言文阅读、古代诗歌阅读与鉴赏、名句名篇默写。
文言文阅读重点考查文言实词的理解、文言文断句、文章文意及写法的把握与分析、重点语句的翻译等;古代诗歌阅读重点考查诗歌内容的理解、情感的把握与写法赏析等。
题型:选择题、断句题、古文翻译题、简答题。
现代文阅读约32分,8题左右。
包括实用类文本阅读、文学类文本阅读。
文学类文本阅读以小说、散文为主,着重考查学生感受形象、体验情感、品味语言的水平。
实用类文本阅读采用选取议论文、说明性文章、新闻、科技作品、数据、图表等文本类型组成的多文本阅读形式,考查学生把握文章基本观点、发现观点与材料之间的联系、获取主要信息、得出有意义的结论、领会作品中所体现的科学精神和科学思想方法。
题型为选择题、简答题。
名著阅读约6分,1小题。
着重考查学生对名著整本书阅读的情况,名著选择的范围为“考试内容”所要求的10部。
写作60分,1小题。
考查学生能写记叙性文章、简单的议论性、说明性文章。
全卷共23小题左右。
Ⅱ.命题原则与考查目标及要求2020年中考语文命题以《义务教育语文课程标准》(2011年版)为依据,以考查学生语言基础、阅读和写作能力为主要内容,坚持立德树人的精神引领,强调传递正能量,注重语文学科的思维品质,结合教学实际,着力体现对语文核心素养的考查。
一、命题原则1. 坚持立德树人的精神引领,体现鲜明的时代特色命题的选材要突出汉语言文化特色,注意体现鲜明的时代特色、深刻的文化内涵和思想引领,同时注意体现地方特色;要注重在传统文化中融入时代元素,既要选取传统的诗文名篇,也要有聚焦社会现实、反映社会热点、具有地方文化特色的各种类型的文本。
2020年武汉市中考方案一、考试科目我市初中学业水平考试的科目包括目前开设的所有国家课程和省教育厅要求开设的地方课程,共15科。
具体为:语文、数学、外语、物理、化学、生物、道德与法治、历史、地理、体育与健康、音乐、美术、综合实践活动(信息技术教育)、生命安全教育、心理健康教育。
二、考试方式及分值语文、数学、外语(含听说测试)实行纸笔分卷考试。
卷面分值分别为120分。
道德与法治和历史、物理和化学、地理和生物分别实行纸笔合卷笔试(均为闭卷)。
各科卷面分值为:物理70分,道德与法治、历史各60分,化学、生物、地理各50分。
物理、化学、生物实验操作考试,包括现场操作和实验报告撰写,每科10分,共30分。
体育与健康实行现场测试和平时考核相结合的考试方式。
平时成绩15分(3个学年,每学年5分),现场测试35分,总分50分。
音乐、美术实行纸笔测试、实践测试和平时考核相结合的考试方式。
音乐纸笔测试60分(含视听测试30分),实践测评30分,平时考核10分(5个学期,每学期2分),总分100分。
美术纸笔测试35分,实践测评50分,平时考核15分(5个学期,每学期3分),总分100分。
综合实践活动(信息技术教育)实行纸笔测试、技能测试和平时考核相结合的考试方式,纸笔测试和技能测试统一机考。
纸笔测试和技能测试各40分,平时考核20分(4个学期,每学期5分),总分各100分。
生命安全教育、心理健康教育实行合卷统一机考,各50分,总分100分。
三、考试时间语文、数学、外语、物理、化学、道德与法治、历史7科纸笔测试安排在九年级第二学期,时间为每年6月20—21日。
音乐、美术、生命安全教育、心理健康教育、综合实践活动(信息技术教育)考试及体育与健康现场测试、理化生实验操作测试,安排在九年级第二学期,时间为每年3—4月份。
生物、地理考试时间安排在八年级第二学期,时间为每年6月22日。
外语(听力考试)于每年6月20—21日与纸笔测试同时进行,外语(口语测试)待条件成熟后组织实施。
2020年武汉中考大纲考试说明公布
今年中考文化考试共5份试卷(含1份合卷)、6门学科。
所有学
科均实行网上阅卷,考试成绩均以分数方式呈现,满分520分。
其
中语文、数学和英语分别为120分,物理、化学合卷120分,思想
品德40分。
自去年历史退出武汉中考后,今年中考科目试卷结构、考点、题型均保持稳定,各科难度值没有变化,英语、理化中涉及考试内容
有部分微调。
由于今年英语考试范围和内容,将参考新目标教材,
听力第一、第二节题量有调整,大对话、短文理解的信息量略有增加,信息处理、理解的难度略有加大。
《中考考试说明》是武汉今年中考命题的主要依据,也是考生备考的重要参考。
武汉市教科院副院长朱长华介绍,今年的中考考纲
并未像往年一样提供各科样卷,而是增加了大量题型示例。
对于这
一变化,他表示,题型示例呈现出更大的信息容量,旨在为学生提
供更多的考查范例。
【语文】
与去年相比,今年中考语文学科考点、题型变化不大。
考点还是字音、字形、词义、病句修改、语段理解、阅读、作文等内容构成,全卷采用填空题、选择题、问答题、写作题等题型。
试卷满分120分,基础知识、综合性学习、口语交际约占20%,阅读、写作各约
占40%。
难度系数0.65左右。
【数学】
今年数学学科题型依旧为选择题、填空题和解答题三种题型。
选择题共10小题,每题3分,共30分;填空题共6小题,每题3分,
共18分;解答题共8题,共72分。
在试题比重上,数与代数约占45%、空间与图形约占40%、统计
与概率约占15%,综合与实践的考查融合在以上三块内容中。
容易题、中等题、难题的比约为7:2:1,难度系数为0.65左右。
【英语】
今年英语考试范围和内容将参考新目标教材(Goforit!7~9年级
修订版),考试词汇依据《2015年武汉市初中毕业生英语学业考试
词汇表》。
考试难度与去年基本持平,试卷上有个别地方进行了微调,具体调整如下:
1、听力测试部分的第一、第二节题量有调整,考试内容仍然是
情景反应和日常对话理解,今年将注重基本听力能力的测试,大对话、短文理解的信息量略有增加,信息处理、理解的难度略有加大。
2、在考试词汇方面,《2015年武汉市初中毕业生英语学业考试
词汇表》在2014年版的基础上有所增减,选进了一些使用频率高的
常用动词、动词短语、形容、副词作为考试词汇。
3、阅读理解材料的篇幅长度略有增加,文长在300词左右,所
选材料会涉及西方习俗、文化以及价值观念等内容。
阅读理解共3
篇材料,A篇仍为应用文,B篇和C篇多为记叙文。
4、第Ⅱ卷第五大题“词与短语填空”仍为5个单句,考点以课
本内容为主,形式仍采用6选5。
【物理】
物理总分值为70分。
试卷结构保持不变,第I卷12道单选题共36分,第II卷非选择题7小题共40分,试题量按照70分钟时间
设置。
在内容分布上,主题一“物质”约占10%、主题二“运动和
相互作用”约占45%、主题三“能量”约占45%,其中涉及考查学生
科学探究能力的内容约占35%,难度系数为0.65左右。
【化学】
物理总分值为50分。
试卷结构保持不变,第I卷8道单选题共
24分,第II卷非选择题5小题共26分,试题量按照50分钟时间
设置。
在内容分布上,“身边的化学物质”约占40%、“物质构成的奥秘”约占12%、“物质的化学变化”约占36%、“化学与社会发展”约占12%,有关科学探究能力及化学实验技能的考查融入以上各知识内容之中,占37%—40%,难度系数为0.65左右。
【思想品德】
思想品德学业考试内容整合为3个部分:“我在成长”占8分、“法律与我同行”占12分、“承担责任,融入社会”占20分。
全卷满分40分,试题全部为四选一的单项选择题,共的30小题,难度系数为0.85左右。