聚焦三角函数考点
- 格式:pdf
- 大小:163.71 KB
- 文档页数:4
三角函数包含的知识点总结一、基本概念1. 三角函数的定义三角函数是由角的正弦、余弦、正切等与该角的变量之间的关系来定义的。
在以角为自变量的函数中,这些关系通常用三角函数名称来表示。
角度单位可以是度,也可以是弧度。
2. 正弦、余弦、正切、余切的定义正弦(sin)、余弦(cos)、正切(tan)、余切(cot)是最基本的四个三角函数,它们的定义如下:正弦:sinθ = 对边/斜边余弦:cosθ = 邻边/斜边正切:tanθ = 对边/邻边余切:cotθ = 邻边/对边3. 三角函数的周期性正弦、余弦、正切、余切都是周期函数,周期为2π或π,即f(x+2π) = f(x),或者f(x+π) = f(x)。
4. 三角函数的定义域和值域正弦、余弦、正切的定义域是全体实数;正弦、余弦的值域是[-1,1],而正切的值域是整个实数集。
二、性质与公式1. 倒数公式tanθ = 1/cotθ,cotθ = 1/tanθsinθ = 1/cscθ,cscθ = 1/sinθcosθ = 1/secθ,secθ = 1/cosθ2. 三角函数的和差化积公式sin(A±B) = sinAcosB±cosAsinBcos(A±B) = cosAcosB∓sinAsinBtan(A±B) = (tanA±tanB)/(1∓tanAtanB)3. 三角函数的倍角公式sin2A = 2sinAcosAcos2A = cos^2A−sin^2Atan2A = 2tanA/(1−tan^2A)4. 三角函数的半角公式sin((1/2)A) = ±√[(1−cosA)/2]cos((1/2)A) = ±√[(1+cosA)/2]tan((1/2)A) = ±√[(1−cosA)/(1+cosA)]5. 三角函数的辅助角公式sin(180°−A) = sinAcos(180°−A) = −cosAtan(180°−A) = −tanAcot(180°−A) = −cotA6. 三角函数的同角变换sin(π−A) = sinAcos(π−A) = −cosAtan(π−A) = −tanAcot(π−A) = −cotA7. 三角函数的万能公式sinA+sinB = 2sin(A+B/2)cos(A−B/2)sinA−sinB = 2cos(A+B/2)sin(A−B/2)8. 三角恒等式sin^2A+cos^2A = 1,cot^2A+1 = csc^2A,tan^2A+1 = sec^2A三、函数图像和性质1. 正弦函数的图像和性质正弦函数y=sin(x)的图像是在直角坐标系中绕原点作周期为2π的振动,函数的最大值为1,最小值为-1,且为奇函数。
高中三角函数知识点总结《精华版》一、三角函数的定义:1. 正弦函数(sin):在单位圆上,其中一角的正弦值等于该角顶点的对边与斜边的比值。
2. 余弦函数(cos):在单位圆上,其中一角的余弦值等于该角顶点的邻边与斜边的比值。
3. 正切函数(tan):在单位圆上,其中一角的正切值等于该角顶点的对边与邻边的比值。
二、基本性质:1.三角函数的值域:正弦和余弦的值域为[-1,1],正切的值域为实数集。
2. 正弦函数和余弦函数的关系:sin²θ + cos²θ = 13.三角函数的周期性:正弦和余弦函数的周期为2π,正切函数的周期为π。
三、三角函数与四象限:1. 在第一象限,sinθ和cosθ均为正数。
2. 在第二象限,sinθ为正,cosθ为负。
3. 在第三象限,sinθ和cosθ均为负数。
4. 在第四象限,sinθ为负,cosθ为正。
四、三角函数的图像及性质:1.正弦函数的图像:从原点出发向右为起始点,振动幅度为1,曲线在零点上下交替。
2.余弦函数的图像:从峰值(1或-1)出发向右为起始点,振动幅度为1,曲线在零点上下交替。
3.正切函数的图像:振动幅度无限增加,从0开始。
五、常见角的正弦、余弦和正切值的计算:1. 0度:sin0 = 0,cos0 = 1,tan0 = 0。
2. 30度:sin30° = 1/2,cos30° = √3/2,tan30° = 1/√33. 45度:sin45° = √2/2,cos45° = √2/2,tan45° = 14. 60度:sin60° = √3/2,cos60° = 1/2,tan60° = √35. 90度:sin90° = 1,cos90° = 0,tan90° = 无穷大。
六、三角函数的基本性质:1.奇偶性:正弦函数是奇函数,余弦函数是偶函数,正切函数是奇函数。
高考三角函数知识点总结一、基本概念和性质1.弧度制:单位圆上的弧所对应的圆心角的大小定义为该弧的弧度。
1弧度等于圆周的1/2π。
2. 三角函数:正弦函数sin(x)、余弦函数cos(x)、正切函数tan(x)、余切函数cot(x)、正割函数sec(x)和余割函数csc(x)。
3.三角恒等式:包括同角三角恒等式、余角三角恒等式、反三角函数同角恒等式等。
4.周期性:正弦函数、余弦函数、正割函数和余割函数的周期都是2π;正切函数和余切函数的周期是π。
二、基本关系式1.正弦函数:在直角三角形中,正弦函数是指对于一个锐角三角形,三角形的对边和斜边的比值。
- sin(x) = a / c,其中a是对边,c是斜边。
- sin(x) = y / r,其中y是斜边在y轴上的投影,r是半径。
2.余弦函数:在直角三角形中,余弦函数是指对于一个锐角三角形,三角形的邻边和斜边的比值。
- cos(x) = b / c,其中b是邻边,c是斜边。
- cos(x) = x / r,其中x是斜边在x轴上的投影,r是半径。
3.正切函数:在直角三角形中,正切函数是指对于一个锐角三角形,三角形的对边和邻边的比值。
- tan(x) = a / b,其中a是对边,b是邻边。
- tan(x) = y / x,其中y是斜边在y轴上的投影,x是斜边在x轴上的投影。
4.余切函数:余切函数是正切函数的倒数。
- cot(x) = 1 / tan(x)。
5.正割函数:在直角三角形中,正割函数是指对于一个锐角三角形,三角形的斜边和邻边的比值的倒数。
- sec(x) = 1 / cos(x)。
6.余割函数:在直角三角形中,余割函数是指对于一个锐角三角形,三角形的斜边和对边的比值的倒数。
- csc(x) = 1 / sin(x)。
三、平面内角与弧度制之间的关系1.弧度制与度数之间的转换:-弧度=度数×π/180-度数=弧度×180/π2.弧度制下的角的性质:-一个圆上的圆心角的弧度数等于该弧所对应的弧的弧度数。
千里之行,始于足下。
2024届全国新高考数学精准复习三角函数知识点总结2024届全国新高考数学考试中,三角函数是一个重要的知识点。
以下是三角函数的主要内容和考点总结:1. 基本概念:- 弧度与角度的转换:1弧度=180°/π,1度=π/180弧度。
- 正弦、余弦、正切、余切、正割、余割的定义与关系。
2. 三角函数的图像与性质:- 正弦函数和余弦函数的图像特点:周期为2π,在x轴上的零点为kπ,振幅为1。
- 正切函数的图像特点:周期为π,在x轴上的零点为kπ,无振幅。
- 三角函数的奇偶性:正弦函数是奇函数、余弦函数是偶函数、正切函数是奇函数。
- 三角函数的周期性:正弦、余弦函数的周期为2π,正切函数的周期为π。
3. 三角函数的性质与关系:- 三角函数的基本关系:tanx=sinx/cosx,cotx=1/tanx,secx=1/cosx,cscx=1/sinx。
- 三角函数的倒数关系:sinx=1/cscx,cosx=1/secx,tanx=1/cotx。
- 三角函数的平方关系:sin^2x+cos^2x=1,1+tan^2x=sec^2x,1+cot^2x=csc^2x。
4. 三角函数的性质与特殊值:- 正弦函数和余弦函数的取值范围:-1≤sinx≤1,-1≤cosx≤1。
第1页/共2页锲而不舍,金石可镂。
- 正切函数和余切函数的取值范围:tanx属于R,cotx属于R。
- 三角函数的特殊值:sin0=0,cos0=1,sin90°=1,cos90°=0,tan45°=1,cot45°=1。
5. 三角函数的解析式与性质:- sin(x±y)=sinxcosy±cosxsiny。
- cos(x±y)=cosxcosy∓sinxsiny。
- tan(x±y)=(tanx±tany)/(1∓tanxtany)。
三角函数的关键知识点总结与归纳三角函数是数学中重要的概念之一,涉及到三角形和角度的关系。
它有着广泛的应用领域,包括计算机图形学、物理学和工程等。
在本文中,将总结和归纳三角函数的关键知识点,以便对该主题有一个全面的了解。
一、三角函数的基本定义三角函数包括正弦函数、余弦函数和正切函数。
它们的定义如下:1. 正弦函数(sine function):在一个直角三角形中,正弦函数的值等于斜边与对边的比值,用sin表示。
2. 余弦函数(cosine function):在一个直角三角形中,余弦函数的值等于斜边与邻边的比值,用cos表示。
3. 正切函数(tangent function):在一个直角三角形中,正切函数的值等于对边与邻边的比值,用tan表示。
二、三角函数的性质1. 周期性:正弦函数和余弦函数的周期都是2π,即在每个2π的间隔内重复自身的值。
正切函数的周期是π,即在每个π的间隔内重复自身的值。
2. 定义域和值域:正弦函数和余弦函数的定义域是实数集合,值域是[-1, 1]。
正切函数的定义域是实数集合除去所有使得余弦函数为零的点,值域是整个实数集合。
3. 奇偶性:正弦函数是奇函数,即sin(-x) = -sin(x);余弦函数是偶函数,即cos(-x) = cos(x);正切函数是奇函数,即tan(-x) = -tan(x)。
4. 三角函数的相互关系:正弦函数与余弦函数之间存在着一个特殊的关系,即sin(x) = cos(x - π/2)。
三、三角函数的重要公式1. 三角函数的和差公式:正弦函数的和差公式:sin(a + b) = sin(a) * cos(b) + cos(a) * sin(b)余弦函数的和差公式:cos(a + b) = cos(a) * cos(b) - sin(a) * sin(b)正切函数的和差公式:tan(a + b) = (tan(a) + tan(b)) / (1 - tan(a) * tan(b))2. 三角函数的倍角公式:正弦函数的倍角公式:sin(2a) = 2 * sin(a) * cos(a)余弦函数的倍角公式:cos(2a) = cos^2(a) - sin^2(a) = 2 * cos^2(a) - 1 = 1 - 2 * sin^2(a)正切函数的倍角公式:tan(2a) = (2 * tan(a)) / (1 - tan^2(a))四、常用三角函数的特殊值1. 正弦函数和余弦函数的特殊值:sin(0) = 0,sin(π/6) = 1/2,sin(π/4) = √2/2,sin(π/3) = √3/2,sin(π/2) = 1cos(0) = 1,cos(π/6) = √3/2,cos(π/4) = √2/2,cos(π/3) = 1/2,cos(π/2) = 02. 正切函数的特殊值:tan(0) = 0,tan(π/6) = 1/√3,tan(π/4) = 1,tan(π/3) = √3,tan(π/2) = 无穷大五、三角函数的应用三角函数在数学、物理、工程等领域有着广泛的应用。
高三复习:三角函数-知识点、题型方法
归纳
一、知识点概述
1. 三角函数的定义和性质
- 正弦函数、余弦函数、正切函数的定义及其在数轴上的周期性;
- 三角函数的基本性质和关系:正弦函数与余弦函数的关系,正切函数与正弦函数、余弦函数的关系。
2. 三角函数的图像与性质
- 正弦函数、余弦函数的图像、特征和性质;
- 正切函数的图像、特征和性质。
3. 三角函数的基本变换
- 函数y = A · sin(Bx + C) + D的图像、特征和性质;
- 函数y = A · cos(Bx + C) + D的图像、特征和性质;
- 函数y = A · tan(Bx + C) + D的图像、特征和性质。
二、题型方法归纳
1. 计算题
- 利用三角函数的定义和性质,求解给定角的正弦、余弦、正切值;
- 利用三角函数的图像和性质,求解特定函数值。
2. 解方程和不等式
- 利用三角函数的定义和性质,解三角方程和三角不等式。
3. 图像分析题
- 分析三角函数的图像特征,如振幅、周期、对称轴等;
- 利用函数的基本变换,画出特定三角函数图像。
4. 证明题
- 利用三角函数的基本性质和关系,进行数学推导和证明。
三、总结
三角函数是高中数学的重要内容,通过复和掌握三角函数的知识点和题型方法,可以帮助学生提高解题能力和应用能力。
在复过程中,建议注重基本概念的理解、公式的记忆和方法的灵活运用,以及多做相关题目进行巩固和实践。
以上是三角函数复习的知识点和题型方法归纳,希望对你的高三复习有所帮助。
祝你学业进步,取得好成绩!。
三角函数是高中数学中的重要内容,涉及到三角函数的定义、性质、图像、公式等方面的知识。
下面是对三角函数知识点的归纳总结:一、三角函数的定义1. 正弦函数(sin):在直角三角形中,对边与斜边的比值。
2. 余弦函数(cos):在直角三角形中,邻边与斜边的比值。
3. 正切函数(tan):在直角三角形中,对边与邻边的比值。
4. 余切函数(cot):在直角三角形中,邻边与对边的比值。
5. 正割函数(sec):在直角三角形中,斜边与邻边的比值。
6. 余割函数(csc):在直角三角形中,斜边与对边的比值。
二、三角函数的性质1. 奇偶性:sin和cos函数是奇函数,tan和cot函数是偶函数。
2. 周期性:sin和cos函数的周期为2π,tan和cot函数的周期为π。
3. 值域:sin和cos函数的值域为[-1, 1],tan和cot函数的值域为实数集。
4. 单调性:sin和cos函数在每个周期内单调递增或递减,tan和cot函数在每个周期内单调递增。
5. 对称性:sin和cos函数关于原点对称,tan和cot函数关于坐标轴对称。
三、三角函数的图像1. 正弦函数的图像:在直角坐标系中,以x轴为始边,以角θ为终边的一条线段。
2. 余弦函数的图像:在直角坐标系中,以x轴为始边,以角θ为终边的一条线段。
3. 正切函数的图像:在直角坐标系中,以x轴为始边,以角θ为终边的一条线段。
4. 余切函数的图像:在直角坐标系中,以x轴为始边,以角θ为终边的一条线段。
5. 正割函数的图像:在直角坐标系中,以x轴为始边,以角θ为终边的一条线段。
6. 余割函数的图像:在直角坐标系中,以x轴为始边,以角θ为终边的一条线段。
四、三角函数的基本公式1. 和差公式:sin(a+b) = sina * cosb + cosa * sinb;cos(a+b) = cosa * cosb - sina * sinb;tan(a+b) = (tana + tanb) / (1 - tana * tanb);cot(a+b) = (1 / tana + 1 / tanb) / (1 / tana * 1 / tanb - 1);sec(a+b) = secab / (cosa * cosb - sina * sinb);csc(a+b) = cscab / (cosa * cosb + sina * sinb)。
三角函数1、角的概念的推广:平面内一条射线绕着端点从一个位置旋转到另一个位置所的图形。
按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角, 一条射线没有作任何旋转时,称它形成一个零角。
射线的起始位置称为始边,终止位置称为终边。
2、象限角的概念:在直角坐标系中,使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,角的终边在第几象限,就说这个角是第几象限的角。
如果角的终边在坐标轴上,就认为这个角不属于任何象限,称作轴线角。
3、终边相同的角的表示:(1)α终边与θ终边相同(α的终边在θ终边所在射线上)⇔2()k k αθπ=+∈Z ,注意:相等的角的终边一定相同,终边相同的角不一定相等.【例1】与角1825-的终边相同,且绝对值最小的角的度数是 ,合 弧度。
(2)α终边与θ终边共线(α的终边在θ终边所在直线上) ⇔()k k αθπ=+∈Z . (3)α终边与θ终边关于x 轴对称⇔2()k k αθπ=-+∈Z . (4)α终边与θ终边关于y 轴对称⇔2()k k απθπ=-+∈Z . (5)α终边与θ终边关于原点对称⇔2()k k απθπ=++∈Z . (6)α终边在x 轴上的角可表示为:,k k Z απ=∈;α终边在y 轴上的角可表示为:,2k k Z παπ=+∈;α终边在坐标轴上的角可表示为:,2k k Z πα=∈. 【例2】α的终边与6π的终边关于直线x y =对称,则α=____________。
4、α与2α的终边关系:由“两等分各象限、一二三四”确定.【例3】若α是第二象限角,则2α是第_____象限角。
5.弧长公式:||l R α=,扇形面积公式:211||22S lR R α==,1弧度(1rad)57.3≈.【例4】已知扇形AOB 的周长是6cm ,该扇形的中心角是1弧度,求该扇形的面积。
6、任意角的三角函数的定义:、设α是任意一个角,P (,)x y 是α的终边上的任意一点(异于原点),它与原点的距离是0r =>,那么sin ,cos y x r r αα==,()tan ,0yx xα=≠,cot x y α=(0)y ≠,【例5】(1)已知角α的终边经过点P(5,-12),则ααcos sin +的值为 。
复习:三角函数复习1、角度制的概念和推广 正角:逆 负角:顺零角:没有旋转2、所有与α终边相同的角,连同α在内,可以构成一个集合:{}Z k k S ∈+⋅==,3600αββ例题:已知α是第二象限角,求下列角所在的象限 ①2α②3α③α2 答:①一、三 ②一、三、四 ③三、四及y 轴负半轴3、弧度制rad 18010π=,815730.57)180(1000'=≈=πradrad π=0180 rad π=03604、 弧长α⋅=r l 扇形面积公式α22121r lr S ==扇形 5、三角函数的定义(22y x r +=)r y =αsin , r x =αcos , xy=αtan 6、三角函数在各个象限的正负口决:123,321,331根3 ++--+--++-+-αsin αcos αtan8、同角三角函数基本关系式①、平方关系 1cos sin 22=+αα αα22cos 1tan 1=+ ②、商数关系 αααcos sin tan = ③、导数关系 1cot tan =⋅αα9、中间量关系ααααcos sin 21cos sin ⋅+±=+ ααααcos sin 21cos sin ⋅-±=-10、诱导公式(奇变偶不变)公式一:终边相同的角的同一三角函数值相等=⋅+)2sin(παk )2cos(πα⋅+k = )2tan(πα⋅+k =公式二:)sin(απ-= 公式三:)sin(απ+=)cos(απ-= )cos(απ+= )tan(απ-= )tan(απ+=公式四:)sin(α-= 公式五:)2sin(απ-=)cos(α-= )2cos(απ-= )tan(α-= )2tan(απ-=公式六: )2sin(απ-= 公式七:)2sin(απ+=)2cos(απ-= =+)2cos(απ)2tan(απ-= )2t a n (απ+=正弦改为余弦,或余弦改为正弦,一般采用公式六,注意函数名变角不动余弦化正弦比较自由11、和角、差角公式βαβαβαs i n s i n c o s c o s )c o s( =± (左右符号相反) βαβαβαs i n c o s c o s s i n )s i n (±=± (左右符号相同)βαβαβαtan tan 1tan tan )tan(-+=+βαβαβαtan tan 1tan tan )tan(+-=-12、二倍角公式 αααc o s s i n 22s i n= ααα22s i n c o s 2c o s-= 1cos22-=αα2sin 21-=ααα2t a n 1t a n 22t a n-=13、降幂公式14、半角公式:(正负由2α所在象限确定) 2cos 12cosαα+±=,2cos 12sin αα-±= αααααααsin cos 1cos 1sin cos 1cos 12tan-=+=+-±= 15、万能公式2t a n 12t a n 2s i n 2ααα+=2tan 12tan 1cos 22ααα+-= 2tan 12tan2tan 2ααα-=上同下反22cos 1cos 2αα+=22cos 1sin 2αα-=22cos 1cos 2αα+=2cos 12cos 2αα+=22cos 14cos 2αα+=24cos 12cos 2αα+=16、辅助角公式)sin(cos sin 22ϕαα++=+x b a b a常用结论:)4sin(2cos sin π+=+x x x)4sin(2cos sin π-=-x x x )6sin(2cos sin 3π+=+x x x17、正弦函数①定义域:R ②值域:]1,1[- ①定义域:R ②值域:]1,1[- ③单调性:]22,22[ππππ+-k k ③单调性:]2,2[πππ+k k]232,22[ππππ++k k ]22,2[ππππ++k k ④对称性:(涉及到求某些量的最值时用回代法) ④对称性x y sin =的对称轴为2ππ+=k x ,Z k ∈ x y cos =的对称轴为πk x =x y sin =的对称中心为)0,(πk ,Z k ∈ x y cos =的对称中心为)0,2(ππ+k⑤周期性:π2 (ωπ2min =T ) ⑤周期性:π2 (ωπ2min =T )⑥奇偶性: ★形如x A y ωsin = ⑥奇偶性: ★形如x A y ωcos =或者或者)sin(πωk x A y += )(Z k ∈都是奇函数 )(Z k ∈都是偶函数⑦最值:当22ππ+=k x 时,1max =y ⑦最值:当πk x 2=时,1max =y当22ππ-=k x 时,1min -=y 当ππ-=k x 2时,1min -=y⑧解三角不等式:以整数π为基准,采用左减右加,从而确定交点的横坐标 ⑨限定情况下的值域求法由x 的范围求出整体的范围,然后画图从图上直接读出值域)cos(πωk x A y +=。
三角函数最全知识点总结三角函数是高中数学中的重要内容,主要包括正弦函数、余弦函数、正切函数等。
下面将对这些三角函数的定义、性质以及常用的解题方法进行总结。
一、正弦函数(sin):1. 定义:在单位圆上,任选一点P与x轴正方向的夹角为θ,P点的纵坐标y即为θ的正弦值,记作sinθ。
正弦函数的定义域为实数集,值域为[-1,1]。
2. 周期性:sin(θ+2π)=sinθ,sin(θ+π)=-sinθ。
其中π为圆周率。
3. 奇偶性:sin(-θ)=-sinθ,即正弦函数关于原点对称。
4. 正负性:当θ为锐角时,sinθ>0;当θ为钝角时,sinθ<0。
5. 值域变化:当θ从0增加到π/2时,sinθ从0增加到1,然后再从1减小到0。
二、余弦函数(cos):1. 定义:在单位圆上,任选一点P与x轴正方向的夹角为θ,P点的横坐标x即为θ的余弦值,记作cosθ。
余弦函数的定义域为实数集,值域为[-1,1]。
2. 周期性:cos(θ+2π)=cosθ,cos(θ+π)=-cosθ。
3. 奇偶性:cos(-θ)=cosθ,即余弦函数关于y轴对称。
4. 正负性:当θ为锐角时,cosθ>0;当θ为钝角时,cosθ<0。
5. 值域变化:当θ从0增加到π/2时,cosθ从1减小到0。
三、正切函数(tan):1. 定义:正切值tanθ等于θ的正弦值除以θ的余弦值,即tanθ=sinθ/cosθ。
正切函数的定义域为实数集,值域为实数集。
2. 周期性:tan(θ+π)=tanθ。
3. 奇偶性:tan(-θ)=-tanθ,即正切函数关于原点对称。
4. 正负性:当θ为锐角时,tanθ>0;当θ为钝角时,tanθ<0。
四、反三角函数:1. 反正弦函数:定义域为[-1,1],值域为[-π/2,π/2]。
记作arcsin x或sin⁻¹x。
2. 反余弦函数:定义域为[-1,1],值域为[0,π]。
完整版)三角函数知识点总结三角函数知识要点:1.角度集合:①与角度α(0°≤α<360°)终边相同的角的集合:β|β=k×360°+α,k∈Z②终边在x轴上的角的集合:β|β=k×180,k∈Z③终边在y轴上的角的集合:β|β=k×180+90,k∈Z④终边在坐标轴上的角的集合:β|β=k×90°,k∈Z⑤终边在y=x轴上的角的集合:β|β=k×180°+45°,k∈Z⑥终边在y=-x轴上的角的集合:β|β=k×180°-45°,k∈Z2.角度关系:⑦若角度α与角度β的终边关于x轴对称,则α=360°k-β⑧若角度α与角度β的终边关于y轴对称,则α=360°k+180°-β⑨若角度α与角度β的终边在一条直线上,则α=180°k+β⑩角度α与角度β的终边互相垂直,则α=360°k+β±90°3.角度与弧度的互换关系:360°=2π,180°=π,1°=0.≈57.30°=57°18′注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零。
4.弧长与扇形面积公式:弧长公式:l=|α|×r扇形面积公式:s=lr=|α|×r²5.三角函数:设α是一个任意角,在α的终边上任取(异于原点的)一点P(x,y),与原点的距离为r,则sinα=y/r;cosα=x/r;tanα=y/x;cotα=x/y;secα=r/x;cscα=r/y。
6.三角函数在各象限的符号:(一全二正弦,三切四余弦)7.三角函数线:正弦线:MP;余弦线:OM;正切线:AT。
8.重要结论:sinx|>|cosx|。
三角函数的定义域:对于三角函数f(x)=sinx、f(x)=cosx、f(x)=tanx、f(x)=cotx、f(x)=secx、f(x)=cscx,它们的定义域分别为{x|x∈R}、{x|x∈R}、{x|x∈R且x≠kπ+π,k∈Z}、{x|x∈R且x≠kπ,k∈Z}、{x|x∈R且x≠kπ+π/2,k∈Z}、{x|x∈R且x≠kπ,k∈Z}。
三角函数知识点一、任意角的三角函数1、终边在x 轴上的角的集合为 ,终边在y 轴上的角的集合为 ,终边在坐标轴上的角的集合为 .2.象限角是指: .3.区间角是指: .4.弧度制的意义:圆周上弧长等于半径长的弧所对的圆心角的大小为1弧度的角,它将任意角的集合与实数集合之间建立了一一对应关系.5.弧度与角度互化:180º= 弧度,1º= 弧度,1弧度= ≈ º.6.弧长公式:l = ;扇形面积公式:S = .7.定义:设P(x, y)是角α终边上任意一点,且 |PO| =r ,则sin α= ; cos α= ;tan α= ;8.三角函数的符号与角所在象限的关系:910.三角函数线:在图中作出角α的正弦线、余弦线、正切线.二、同角三角函数的基本关系及诱导公式1.同角公式:(1) 平方关系:sin 2α+cos 2α=1,1+tan 2α= ,1+cot 2α= (2) 商数关系:tanα= ,cotα=(3) 倒数关系:tanα =1,sinα =1,cotα =1 2.诱导公式:- + -+cos x ,+ + - - sin x ,- + + - tan x ,x y O xyO x y O规律:奇变偶不变,符号看象限3.同角三角函数的关系式的基本用途:根据一个角的某一个三角函数值,求出该角的其他三角函数值;化简同角三角函数式;证明同角的三角恒等式.4.诱导公式的作用:诱导公式可以将求任意角的三角函数值转化为0°~90º角的三角函数值.三、两角和与差的三角函数1.两角和的余弦公式的推导方法: 2.基本公式sin(α±β)=sinα cosβ±cosα sinβ cos(α±β)= ; tan(α±β)= . 3.公式的变式tanα+tanβ=tan (α+β)(1-tanα tanβ) 1-tanα tanβ=)tan(tan tan βαβα++4.常见的角的变换: 2α=(α+β)+(α-β);α=2βα++2βα-α=(α+β)-β =(α-β)+β 2βα+=(α-2β)-(2α-β); )4()4(x x ++-ππ=2π四、二倍角的正弦、余弦、正切1.基本公式:sin2α= ; cos2α= = = ; tan2α= . 2.公式的变用:1+cos2α= ; 1-cos2α= .五、三角函数的化简和求值1.三角函数式的化简的一般要求:① 函数名称尽可能少; ② 项数尽可能少;③ 尽可能不含根式; ④ 次数尽可能低、尽可能求出值. 2.常用的基本变换方法有:异角化同角、异名化同名、异次化同次. 3.求值问题的基本类型及方法① “给角求值”一般所给的角都是非特殊角,解题时应该仔细观察非特殊角与特殊角之间的关系,通常是将非特殊角转化为特殊角或相互抵消等方法进行求解.② “给值求值”即给出某些角的三角函数(式)的值,求另外的一些角的三角函数值,解题关键在于:变角,使其角相同;③ “给值求角”关键也是:变角,把所求的角用含已知角的式子表示,由所求得的函数值结合该函数的单调区间求得角.4.反三角函数arcsinα、arccosα、arctanα分别表示[2,2ππ-]、[0,π]、(2,2ππ-)的角.六、三角函数的恒等变形(一)、三角恒等式的证明1.三角恒等式的证明实质是通过恒等变形,消除三角恒等式两端结构上的差异(如角的差异、函数名称的差异等).2.证三角恒等式的基本思路是“消去差异,促成同一”,即通过观察、分析,找出等式两边在角、名称、结构上的差异,再选用适当的公式,消去差异,促进同一.3.证明三角恒等式的基本方法有:⑴ 化繁为简;⑵ 左右归一;⑶ 变更问题. (二)、三角条件等式的证明1.三角条件等式的证明就是逐步将条件等价转化为结论等式的过程,须注意转化过程确保充分性成立.2.三角条件等式的证明,关键在于仔细地找出所附加的条件和所要证明的结论之间的内在联系,其常用的方法有:⑴ 代入法:就是将结论变形后将条件代入,从而转化为恒等式的证明. ⑵ 综合法:从条件出发逐步变形推出结论的方法.⑶ 消去法:当已知条件中含有某些参数,而结论中不含这些参数,通过消去条件中这些参数达到证明等式的方法.⑷ 分析法:从结论出发,逐步追溯到条件的证明方法,常在难于找到证题途径时用之.七、三角函数的图象与性质1.用“五点法”作正弦、余弦函数的图象.“五点法”作图实质上是选取函数的一个 ,将其四等分,分别找到图象的 点, 点及“平衡点”.由这五个点大致确定函数的位置与形状. 2.y =sinx ,y =cosx ,y =tanx 的图象. 函数y =sinx y =cosx y =tanx 图象注:⑴ 正弦函数的对称中心为 ,对称轴为 . ⑵ 余弦函数的对称中心为 ,对称轴为 . ⑶ 正切函数的对称中心为 .3.“五点法”作y =Asin(ωx +ϕ)(ω>0)的图象.令x'=ωx +ϕ转化为y =sinx',作图象用五点法,通过列表、描点后作图象. 4.函数y =Asin(ωx +ϕ)的图象与函数y =sinx 的图象关系.振幅变换:y =Asinx(A>0,A≠1)的图象,可以看做是y =sinx 的图象上所有点的纵坐标都 ,(A>1)或 (0<A<1)到原来的 倍(横坐标不变)而得到的.周期变换:y =sinωx(ω>0,ω≠1)的图象,可以看做是把y =sinx 的图象上各点的横坐标 (ω>1)或 (0<ω<1)到原来的 倍(纵坐标不变)而得到的.由于y =sinx 周期为2π,故y =sinωx(ω>0)的周期为 .相位变换:y =sin(x +ϕ)(ϕ≠0)的图象,可以看做是把y =sinx 的图象上各点向 (ϕ>0)或向 (ϕ<0)平移 个单位而得到的.由y =sinx 的图象得到y =Asin(ωx +ϕ)的图象主要有下列两种方法:或说明:前一种方法第一步相位变换是向左(ϕ>0)或向右(ϕ<0)平移 个单位.后一种方法第二步相位变换是向左(ϕ>0)或向右(ϕ<0)平移 个单位.八、三角函数的性质1.三角函数的性质函 数 y =sinx y =cosx y =tanx 定义域 值 域 奇偶性 有界性 周期性 单调性最大(小)值2.函数y =sinx 的对称性与周期性的关系.⑴ 若相邻两条对称轴为x =a 和x =b ,则T = . ⑵ 若相邻两对称点(a ,0)和(b ,0) ,则T = .⑶ 若有一个对称点(a ,0)和它相邻的一条对称轴x =b ,则T = . 注:该结论可以推广到其它任一函数.九、三角函数的最值1.一元二次函数与一元二次方程一元二次函数与一元二次方程(以后还将学习一元二次不等式)的关系一直是高中数学函数这部分内容中的重点,也是高考必考的知识点.我们要弄清楚它们之间的对应关系:一元二次函数的图象与x 轴的交点的横坐标是对应一元二次方程的解;反之,一元二次方程的解也是对应的一元二次函数的图象与x 轴的交点的横坐标. 2.函数与方程两个函数()y f x =与()y g x =图象交点的横坐标就是方程()()f x g x =的解;反之,要求方程()()f x g x =的解,也只要求函数()y f x =与()y g x =图象交点的横坐标.3.二分法求方程的近似解二分法求方程的近似解,首先要找到方程的根所在的区间(,)m n ,则必有()()0f m f n ⋅<,再取区间的中点2m np +=,再判断()()f p f m ⋅的正负号,若()()0f p f m ⋅<,则根在区间(,)m p 中;若()()0f p f m ⋅>,则根在(,)p n 中;若()0f p =,则p 即为方程的根.按照以上方法重复进行下去,直到区间的两个端点的近似值相同(且都符合精确度要求),即可得一个近似值.。
完整版)高三三角函数专题复习(题型全面)三角函数考点1:三角函数的概念三角函数是以角度或弧度为自变量的函数,包括正弦函数、余弦函数、正切函数等。
考点2:三角恒等变换三角恒等变换包括两角和、差公式、倍角半角公式、诱导公式、同角的三角函数关系式等。
考点3:正弦函数、余弦函数、正切函数的图像和性质正弦函数、余弦函数、正切函数的定义域、值域、最值、单调区间、最小正周期、对称轴对称中心等性质都需要掌握。
考点4:函数y=Asin(x)(A,)的图像与性质函数y=Asin(x)(A,)的定义域、值域、最值、单调区间、最小正周期、对称轴对称中心等性质也需要掌握。
此外,该函数的图像还可以通过一定的变换得到。
一、三角函数求值问题1.三角函数的概念例1.若角的终边经过点P(4a,3a)(a0),则sin=-3/5.2.公式法例2.设(0,π/2),若sin=1/2,则2cos()=√3.练1.已知角的终边上一点的坐标为(sinθ。
cosθ)(θ∈(π/2,π)),则sin=-cosθ。
3.化简求值例3.已知为第二象限角,且sin=15/17,求sin(+π/4)的值。
练:1.已知sin=1/5,则sin4-cos4的值为-24/25.2.已知tan(θ+)=1/2,求tanθ和sin2θ-cosθ.sinθ+2cos2θ的值。
4.配凑求值例4.已知,∈(π/3,π/2),且sin(+)=-√3/2,sin(-)=1/2,求cos(+)的值。
练:1.设α∈(π/12,π/3),β∈(0,π/6),且sin(α+β)=-√3/2,sin(β-α)=-1/2,则cos(α+β)=1/2.1.已知三角函数的值,求其他三角函数的值已知 $sin\alpha = \frac{4}{5}$,$cos\beta = \frac{3}{5}$,$cos(\alpha - \beta) = \frac{1}{2}$,$sin(\beta + \theta) =\frac{3}{5}$,求 $sin(\alpha + \beta)$ 和 $tan(\alpha - 2\beta)$。
高考总复习专题——三角函数(一)一、知识点梳理:1. ①与α(0°≤α<360°)终边相同的角的集合(角α与角β的终边重合):{}Z k k ∈+⨯=,360|αββ②终边在x 轴上的角的集合: {}Z k k ∈⨯=,180| ββ ③终边在y 轴上的角的集合:{}Z k k ∈+⨯=,90180|ββ ④终边在坐标轴上的角的集合:{}Z k k ∈⨯=,90| ββ ⑤终边在y =x 轴上的角的集合:{}Z k k ∈+⨯=,45180| ββ ⑥终边在x y -=轴上的角的集合:{}Z k k ∈-⨯=,45180| ββ⑦若角α与角β的终边关于x 轴对称,则角α与角β的关系:βα-=k 360 ⑧若角α与角β的终边关于y 轴对称,则角α与角β的关系:βα-+= 180360k ⑨若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k 180 ⑩角α与角β的终边互相垂直,则角α与角β的关系: 90360±+=βαk 2. 角度与弧度的互换关系:360°=2π 180°=π 1°=0.01745 1=57.30°=57°18′ 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.、弧度与角度互换公式: 1rad =π180°≈57.30°=57°18ˊ. 1°=180π≈0.01745(rad )3、弧长公式:r l ⋅=||α. 扇形面积公式:211||22s lr r α==⋅扇形 4、三角函数:设α是一个任意角,在α的终边上任取(异于原点的)一点P (x,y )P 与原点的距离为r ,则 ry =αsin ; rx=αcos ; x y =αtan ; yx =αcot ; x r =αsec ;. yr =αcsc .5、三角函数在各象限的符号:(一全二正弦,三切四余弦)正切、余切余弦、正割-----+++++-+正弦、余割o o o x yx yxyyx▲SIN \COS 三角函数值大小关系图sinxcosx 1、2、3、4表示第一、二、三、四象限一半所在区域12341234sinxsinx sinx cosxcosx cosx roxya 的终边P (x,y )TMA OPxy6、正弦、余弦、正切函数的图像和性质定义域 RR值域 ]1,1[+-]1,1[+-R 周期性 π2 π2π奇偶性 奇函数偶函数 奇函数单调性]22,22[ππππk k ++-上为增函数;]223,22[ππππk k ++上为减函数(Z k ∈)()]2,12[ππk k -;上为增函数()]12,2[ππ+k k上为减函数(Z k ∈)⎪⎭⎫⎝⎛++-ππππk k 2,2上为增函数(Z k ∈)1-1y=sinx-3π2-5π2-7π27π25π23π2π2-π2-4π-3π-2π4π3π2ππ-πoy x1-1y=cosx-3π2-5π2-7π27π25π23π2π2-π2-4π-3π-2π4π3π2ππ-πoy xy=tanx3π2ππ2-3π2-π-π2oyx⎭⎬⎫⎩⎨⎧∈+≠∈Z k k x R x x ,21|ππ且xy tan =xy cos =x y sin =7、同角三角函数的基本关系式:1)αααtan cos sin = 2)1cos sin 22=+αα 3)αααcot sin cos = 4)1cot tan =⋅αα8、诱导公式:2k παα±把的三角函数化为的三角函数,概括为:“奇变偶不变,符号看象限” 三角函数的公式:(一)基本关系公式组二 公式组三 公式组四 公式组五 公式组六 x x k x x k x x k x x k cot )2cot(tan )2tan(cos )2cos(sin )2sin(=+=+=+=+ππππ x x x x x x x x c o t )c o t (t a n )t a n (c o s )c o s (s i n )s i n (-=--=-=--=- x x x x x x x x c o t )c o t (t a n )t a n (c o s )c o s (s i n )s i n (=+=+-=+-=+ππππ x x x x xx x x cot )2cot(tan )2tan(cos )2cos(sin )2sin(-=--=-=--=-ππππxx x x xx x x cot )cot(tan )tan(cos )cos(sin )sin(-=--=--=-=-ππππ9、了解正弦、余弦、正切函数的图象的画法,会用“五点法”画正弦、余弦函数和函数sin()y A x ωϕ=+的简图,并能由图象写出解析式.⑪“五点法”作图的列表方式;⑫求解析式sin()y A x ωϕ=+时处相ϕ的确定方法:代(最高、低)点法、公式1x ϕω=-. 正弦型函数sin()y A x ωϕ=+的图象变换方法如下: 先平移后伸缩sin y x =的图象ϕϕϕ<−−−−−−−→向左(>0)或向右(0)平移个单位长度得sin()y x ϕ=+的图象()ωωω−−−−−−−−−→横坐标伸长(0<<1)或缩短(>1)1到原来的纵坐标不变 得sin()y x ωϕ=+的图象()A A A >−−−−−−−−−→纵坐标伸长(1)或缩短(0<<1)为原来的倍横坐标不变 得sin()y A x ωϕ=+的图象(0)(0)k k k ><−−−−−−−→向上或向下平移个单位长度得sin()y A x k ϕ=++的图象. 先伸缩后平移sin y x =的图象(1)(01)A A A ><<−−−−−−−−−→纵坐标伸长或缩短为原来的倍(横坐标不变)得的图象(01)(1)1()ωωω<<>−−−−−−−−−→横坐标伸长或缩短到原来的纵坐标不变 得sin()y A x ω=的图象(0)(0)ϕϕϕω><−−−−−−−→向左或向右平移个单位得sin ()y A x x ωϕ=+的图象(0)(0)k k k ><−−−−−−−→向上或向下平移个单位长度得sin()y A x k ωϕ=++的图象. 10、从图象归纳对称轴和对称中心;sin y x =的对称轴是2x k ππ=+()k Z ∈,对称中心是(,0)k π()k Z ∈;cos y x =的对称轴是x k π=()k Z ∈,对称中心是(,0)2k ππ+()k Z ∈tan y x =的对称中心是(,0)()2k k Z π∈。
三角函数知识点归纳总结一、基本概念1. 弧度在圆的单位圆上,任一弧所对圆心角的度数为 360°时,所对的弧长的长度就叫做一般的弧度,而这个角叫做一般的夹角。
2. 正弦、余弦和正切在直角三角形ABC中,三角形的三个顶点表示角A、B和C,如图所示。
其中,边AB为三角形中垂直于∠A的直角边,边BC为与∠A相邻且对∠A的斜边,边CA 为与∠A相邻的边。
这三个边关系称为AB为∠A的对边,BC为边边,AC为斜边。
由于三角形ABC是直角三角形,所以∠B和∠C是由直角∠A描述的。
据此定义三角形中成功的关于角A的三边,为了确定ABC中出现其他任何三角定向。
在三角形ABC中,三角函数可定义为:(1)正弦:sinA = 垂直于∠A的边的长度斜边的长度(,x为斜边);(2)余弦:cosA = 临边与∠A相邻边的长度(,x为斜边);(3)正切:tanA = 垂直于∠A的边的长度,邻边与∠A的边的长度。
二、三角函数的周期性与奇偶性1. 正弦函数正弦函数在数学中通常用符号sin表示。
正弦函数是一个周期函数,并且这个周期是2π,即sin(x+2π) = sinx。
正弦函数也是一个奇函数。
奇函数的定义是f(x) = -f(-x)。
因此,sin(-x) = -sinx,即sin函数是对称的。
2. 余弦函数余弦函数在数学中通常用符号cos表示。
余弦函数也是一个周期函数,并且这个周期是2π,即cos(x+2π) = cosx。
余弦函数是一个偶函数。
偶函数的定义是f(x) = f(-x)。
因此,cos(-x) = cosx,即cos函数是关于y轴对称的。
3. 正切函数正切函数在数学中通常用符号tan表示。
正切函数也是一个周期函数,周期是π,即tan(x+π) = tanx。
正切函数是一个奇函数。
tan(-x) = -tanx。
三、三角函数的性质1. 正弦和余弦函数的关系sin^2(x) + cos^2(x) = 12. 三角函数的复合(1)求三角函数值的和差化积的方法sin(x ± y) = sinx•cosy ± cosx•sinycos(x ± y) = cosx•cosy ∓ sinx•sinytan(x ± y) = [tanx ± tany] / [1 ∓ tanxtany](2)求三角函数值的积化和差的方法sinA • sinB = ½ • [cos(A - B) - cos(A + B)]cosA • cosB = ½ • [cos(A - B) + cos(A + B)]sinA • cosB = ½ • [sin(A + B) + sin(A - B)](3)特殊和差的公式sin(α±β) = sinαcosβ±cosαsinβcos(α±β) = cosαcosβ∓sinαsinβtan(α±β) = [tanα±tanβ]÷[1∓tanαtanβ]3. 三角函数的基本图像通过图像大致可以知道函数的周期性、奇偶性和极值特点。
高考三角函数知识点归纳三角函数是高中数学中的一大重要内容,也是高考数学中的重点难点。
下面将围绕高考数学三角函数知识点进行归纳。
1.弧度制与角度制:-角度制:一个圆的周长定义为360度,1度等于圆周长的1/360。
-弧度制:一个圆的半径为1时,一个弧长等于半径的弧度数为1弧径(弧度)。
弧度应该是弧长和半径数的比值。
2.正弦、余弦、正切:- 正弦:在直角三角形中,对于一个锐角,将其对边的长度除以斜边的长度,所得的比值称为这个锐角的正弦,记作sin。
- 余弦:在直角三角形中,对于一个锐角,将其邻边的长度除以斜边的长度,所得的比值称为这个锐角的余弦,记作cos。
- 正切:在直角三角形中,对于一个锐角,将其对边的长度除以邻边的长度,所得的比值称为这个锐角的正切,记作tan。
3.基本三角函数的基本性质:- 周期性:sin和cos的周期都为2π,tan的周期为π。
- 奇偶性:sin是奇函数,cos是偶函数,tan是奇函数。
- 五个特殊值:sin0=0,sin30°=1/2,sin45°=√2/2,sin60°=√3/2,sin90°=1;cos0°=1,cos30°=√3/2,cos45°=√2/2,cos60°=1/2,cos90°=0;tan0°=0,tan30°=1/√3,tan45°=1,tan60°=√3,tan90° 不存在。
4.三角恒等式:- 余弦的平方加正弦的平方等于1:cos²x + sin²x = 1;- 倒角公式:sin(2x)=2sin(x)cos(x),cos(2x)=cos²(x)-sin²(x);- 和差公式:sin(x+y)=sinxcosy+cosxsiny, cos(x+y)=cosxcosy-sinxsiny。
高考数学三角函数知识点总结及练习三角函数总结及统练本文旨在总结和统练三角函数的基础知识,包括以下内容:一、基础知识1.集合S表示与角α终边相同的角的集合,其中β=2kπ+α,k∈Z。
2.三角函数是x、y、r三个量的比值,共有六种定义。
3.三角函数的符号口诀为“一正二弦,三切四余弦”。
4.三角函数线包括正弦线MP=sinα、余弦线OM=cosα和正切线AT=tanα。
5.同角三角函数的关系包括平方关系、商数关系和倒数关系,可以用“凑一拆一,切割化弦,化异为同”的口诀记忆。
6.诱导公式口诀为“奇变偶不变,符号看象限”,其中包括正弦、余弦、正切和余切的公式。
7.两角和与差的三角函数包括正弦、余弦、正切和余切的公式,以及三角函数的和差化积公式。
8.二倍角公式包括sin2α=2sinαcosα、cos2α=2cos2α-1=1-2sin2α=cosα-sinα、tan2α=2tanα/1-tan2α,以及对应的cos、tan公式。
9.三角函数的图象和性质,包括函数y=sinx、y=cosx和y=tanx的定义和定义域。
总之,三角函数是数学中的重要概念,掌握其基础知识对于研究高等数学和其他相关学科都有很大的帮助。
对于函数 $y=\sin x$,其定义域为 $[-\pi/2,\pi/2]$,值域为$[-1,1]$。
当 $x=2k\pi+\pi/2$ 时,函数取最大值 $1$;当$x=2k\pi-\pi/2$ 时,函数取最小值$-1$。
函数的周期为$2\pi$,是奇函数。
在区间 $[2k\pi-\pi/2,2k\pi+\pi/2]$ 上是增函数,在区间$[2k\pi-\pi,2k\pi]$ 上也是增函数,其中$k\in\mathbb{Z}$。
在区间 $[2k\pi,2k\pi+\pi]$ 上是减函数。
对于函数 $y=Asin(\omega x+\phi)$,当 $A>0$ 且$\omega>0$ 时,函数图像可以通过将横坐标缩短到原来的$\dfrac{1}{\omega}$ 倍,纵坐标伸长为原来的 $A$ 倍,再将图像左移$\dfrac{\phi}{\omega}$ 个单位得到。
三角函数基本知识点三角函数是中学数学中的一个重要概念,是研究角和角度的函数关系的数学工具。
它是高中数学的基础,也是理工科学习的重要基础知识点。
本文将重点介绍三角函数的基本概念、性质和应用。
一、三角函数的基本概念1.角度和弧度制度量:角度是研究角的大小的度量单位,以°表示;弧度是角的大小的度量单位,以弧长与半径相等的单位弧长表示。
2. 基本三角函数:常用的三角函数有正弦函数sinθ、余弦函数cosθ、正切函数tanθ,它们分别表示角θ的正弦值、余弦值和正切值。
三角函数的定义可以通过单位圆在平面直角坐标系中的投影来理解。
3. 三角函数的周期性:正弦函数和余弦函数的最小正周期为2π,即sin(θ+2π)=sinθ,cos(θ+2π)=cosθ;正切函数的最小正周期为π,即tan(θ+π)=tanθ。
二、三角函数的性质1. 三角函数的奇偶性:正弦函数是奇函数,即sin(-θ)=-sinθ;余弦函数是偶函数,即cos(-θ)=cosθ;正切函数是奇函数,即tan(-θ)=-tanθ。
2.三角函数的正负关系:在单位圆上,正弦函数在0到π/2之间为正,余弦函数在0到π之间为正,正切函数在0到π/2之间为正。
3. 三角函数的周期关系:对于正弦函数和余弦函数,sin(θ+2kπ)=sinθ,cos(θ+2kπ)=cosθ,其中k为整数;对于正切函数,tan(θ+πk)=tanθ,其中k为整数。
4.三角函数的互等关系:通过对三角函数的定义进行代数运算,可以得到一些重要的三角函数互等关系,如正切函数与正弦函数、余弦函数的关系等。
三、三角函数的应用1.三角函数在几何图形中的应用:三角函数在三角形的边与角、面积和高、周长和半周长等方面有广泛应用,如利用正弦定理和余弦定理求解三角形的边长和角度。
2.三角函数在物理学中的应用:三角函数在物理学中有许多应用,如在匀速圆周运动中,利用正弦函数和余弦函数可以描述物体的位置、速度和加速度等随时间变化的关系。
考点梳理:三角函数章节涉及的15个必考点全梳理必考点1 象限角及终边相同的角(1)任意角、角的分类:①按旋转方向不同分为正角、负角、零角. ②按终边位置不同分为象限角和轴线角. (2)终边相同的角:终边与角α相同的角可写成α+k ·360°(k ∈Z ). 【典例1】如果,那么与终边相同的角可以表示为A .B .C .D .【解析】由题意得,与终边相同的角可以表示为.故选B .【小结】象限角的两种判断方法(1)图象法:在平面直角坐标系中,作出已知角并根据象限角的定义直接判断已知角是第几象限角. (2)转化法:先将已知角化为k ·360°+α(0°≤α<360°,k ∈Z )的形式,即找出与已知角终边相同的角α,再由角α终边所在的象限判断已知角是第几象限角.【典例2】若α是第三象限的角, 则2απ-是 ( )A. 第一或第二象限的角B. 第一或第三象限的角C. 第二或第三象限的角D. 第二或第四象限的角【解析】α是第三象限角, 322,2k k k Z πππαπ∴+<<+∈, 3224k k παπππ∴+<<+, 31,422422k k k k παπππππππαπ∴--<-<--∴-+<-<-+,故当k 为偶数时, 12πα-是第一象限角;故当k 为奇数时, 12πα-是第三象限角,故选B.【小结】象限角与轴线角(终边在坐标轴上的角)的集合表示 (1)象限角:象限角 集合表示第一象限角 {α|k ·360°<α<k ·360°+90°,k ∈Z } 第二象限角 {α|k ·360°+90°<α<k ·360°+180°,k ∈Z } 第三象限角 {α|k ·360°+180°<α<k ·360°+270°,k ∈Z } 第四象限角{α|k ·360°+270°<α<k ·360°+360°,k ∈Z }(2)轴线角:角的终边的位置集合表示终边落在x 轴的非负半轴上 {α|α=k ·360°,k ∈Z } 终边落在x 轴的非正半轴上 {α|α=k ·360°+180°,k ∈Z } 终边落在y 轴的非负半轴上 {α|α=k ·360°+90°,k ∈Z } 终边落在y 轴的非正半轴上 {α|α=k ·360°+270°,k ∈Z } 终边落在y 轴上 {α|α=k ·180°+90°,k ∈Z } 终边落在x 轴上 {α|α=k ·180°,k ∈Z } 终边落在坐标轴上{α|α=k ·90°,k ∈Z }必考点2 弧度制、扇形的弧长及面积公式(1)弧度制:①1弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角.②规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零,|α|=lr ,l 是以角α作为圆心角时所对圆弧的长,r 为半径.③用“弧度”做单位来度量角的制度叫做弧度制.比值lr 与所取的r 的大小无关,仅与角的大小有关.(2)弧度与角度的换算:360°=2π弧度;180°=π弧度. (3)弧度制下l =|α|·r ,S =12lr ,此时α为弧度.扇形面积公式,扇形中弦长公式,扇形弧长公式在角度制下,弧长l =n πr 180,扇形面积S =n πr 2360,此时n 为角度,它们之间有着必然的联系.【典例3】(2018·湖北高考模拟(理))《九章算术》是中国古代第一部数学专著,成于公元一世纪左右,系统总结了战国、秦、汉时期的数学成就.其中《方田》一章中记载了计算弧田(弧田就是由圆弧和其所对弦所围成弓形)的面积所用的经验公式:弧田面积=(弦×矢+矢×矢),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.按照上述经验公式计算所得弧田面积与其实际面积之间存在误差.现有圆心角为,弦长为的弧田.其实际面积与按照上述经验公式计算出弧田的面积之间的误差为( )平方米.(其中,)A .15B .16C .17D .18 【解析】因为圆心角为,弦长为,所以圆心到弦的距离为半径为40,因此根据经验公式计算出弧田的面积为,实际面积等于扇形面积减去三角形面积,为,因此两者之差为,选B.【典例4】(2019·河南高考模拟(理))已知圆O 与直线l 相切于A ,点,P Q 同时从点A 出发,P 沿着直线l 向右、Q 沿着圆周按逆时针以相同的速度运动,当Q 运动到点A 时,点P 也停止运动,连接OQ ,OP (如图),则阴影部分面积1S ,2S 的大小关系是( )A .12S S =B .12S S ≤C .12S S ≥D .先12S S <,再12S S =,最后12S S > 【解析】如图所示,因为直线l 与圆O 相切,所以OA AP ⊥, 所以扇形的面积为1122AOQ S AQ r AQ OA =⋅⋅=⋅⋅扇形,12AOP S OA AP ∆=⋅⋅, 因为AQ AP =,所以扇形AOQ 的面积AOP AOQ S S ∆=扇形, 即AOP AOQ AOB AOB S S S S ∆-=-扇形扇形扇形,所以12S S =,【典例5】一个扇形的周长为20 cm ,当扇形的圆心角α等于多少弧度时,这个扇形的面积最大?并求出这个扇形的最大面积.【解析】 设扇形的半径为r cm ,则弧长为l =(20-2r ) cm . 由0<l <2πr ,得0<20-2r <2πr ,∴10π+1<r <10.于是扇形的面积为S =12(20-2r )r =-(r -5)2+25(10π+1<r <10).当r =5时,l =10,α=2,S 取到最大值,此时最大值为25 cm 2.故当扇形的圆心角α等于2弧度时,这个扇形的面积最大,最大面积是25 cm 2. 【小结】应用弧度制解决问题的方法(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度;(2)求扇形面积最大值的问题时,常转化为二次函数的最值问题,利用配方法使问题得到解决; (3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形.必考点3 三角函数的定义1.任意角的三角函数定义:设α是一个任意角,角α的终边与单位圆交于点P (x ,y ),那么 (1)点P 的纵坐标叫角α的正弦函数,记作sin α=y ; (2)点P 的横坐标叫角α的余弦函数,记作cos α=x ;(3)点P 的纵坐标与横坐标之比叫角α的正切函数,记作tan α=yx .它们都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数.将正弦函数、余弦函数和正切函数统称为三角函数,通常将它们记为: 正弦函数y =sinx ,x ∈R ; 余弦函数 y =cosx ,x ∈R ; 正切函数 y =tanx ,x ≠π2+k π(k ∈Z ).2.三角函数在各象限内的符号口诀是:一全正、二正弦、三正切、四余弦 【典例6】(2008·全国高考真题(文))若,且,则是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角 【解析】,则的终边在三、四象限;则的终边在三、一象限,,,同时满足,则的终边在三象限.【典例7】已知角的终边在射线上,则等于( )A. B. C. D.【解析】由题得在第四象限,且,所以【典例8】(江西高考真题(文))已知角θ的顶点为坐标原点,始边为x 轴的正半轴,若()4,p y 是角θ终边上一点,且25sin 5θ=-,则y=_______. 【解析】根据正弦值为负数,判断角在第三、四象限,再加上横坐标为正,断定该 角为第四象限角.=【典例9】已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是( ) A .(-2,3] B .(-2,3) C .[-2,3)D .[-2,3] 【解析】 ∵00cos ,sin αα≤>,∴角α的终边落在第二象限或y 轴的正半轴上. ∴39020a a ⎧-≤⎨+>⎩∴23-a <≤.故选A.【小结】1.已知角α终边上一点P 的坐标,则可先求出点P 到原点的距离r ,然后利用三角函数的定义求解.2.已知角α的终边所在的直线方程,则可先设出终边上一点的坐标,求出此点到原点的距离,然后利用三角函数的定义求解相关的问题.若直线的倾斜角为特殊角,也可直接写出角α的三角函数值.必考点4 同角三角函数的基本关系式同角三角函数的基本关系式(1)平方关系:sin 2α+cos 2α=1(α∈R ). (2)商数关系:tan α=sin αcos α⎝⎛⎭⎫α≠k π+π2,k ∈Z .【典例10】(2019·北京高考模拟(文))已知3(,)22ππα∈,且tan α=sin α=( )A .33-B .36-C .36 D【解析】因为3(,)22ππα∈,sin tan cos ααα==>0,故3(,)2παπ∈,即sin αα=, 又22sin cos 1αα+=, 解得:sin α=36-,故选 :B【典例11】(2020·金华市江南中学高一月考)已知sin cos sin cos x xx x+-=2,则tan x =____,sin x cos x =____.【解析】将sin cos sin cos x x x x +-=2左端分子分母同除以cos x ,得tan 12tan 1x x +=-,解得tan 3x =, 2222sin cos tan 33sin cos sin cos tan 13110x x x x x x x x ====+++. 【小结】1.同角三角函数关系式的三种应用方法--“弦切互化法”、““1”的灵活代换法”、“和积转换法” (1)利用sin 2α+cos 2α=1可实现α的正弦、余弦的互化,注意()222124sin cos sin cos sin cos tanπθθθθθθ=+=+-=等;(2)由一个角的任一三角函数值可求出这个角的另外两个三角函数值,因为利用“平方关系”公式,需求平方根,会出现两解,需根据角所在的象限判断符号,当角所在的象限不明确时,要进行分类讨论. 2. 利用sin αcos α=tan α可以实现角α的弦切互化.(1)若已知tan α=m ,求形如a sin α+b cos αc sin α+d cos α(或a sin 2α+b cos 2αc sin 2α+d cos 2α)的值,其方法是将分子、分母同除以cos α(或cos 2α)转化为tan α的代数式,再求值,如果先求出sin α和cos α的值再代入,那么运算量会很大,问题的解决就会变得繁琐.(2)形如a sin 2α+b sin αcos α+c cos 2α通常把分母看作1,然后用sin 2α+cos 2α代换,分子、分母同除以cos 2α再求解.必考点5 sin α±cos α与sin αcos α的关系及应用三角函数求值与化简必会的三种方法 (1)弦切互化法:主要利用公式tan α=;形如,22asin x bsinxcosx ccos x ++等类型可弦化切(2)“1”的灵活代换法: ()222124sin cos sin cos sin cos tanπθθθθθθ=+=+-=等.(3)和积转换法:利用()()22212,()2sin cos sin cos sin cos sin cos θθθθθθθθ±=±++-=的关系进行变形、转化.【典例12】(2018·河北高考模拟(理))已知,,则的值为( )A .B .C .D .【解析】∵,∴,∴,又∵,∴,∴,∴,故选B.【典例13】(2020·永州市第四中学高一月考)已知22sin 2sin cos 01tan 2k αααπαα+⎛⎫=<< ⎪+⎝⎭.试用k 表示sin cos αα-的值.【解析】()22sin sin cos 2sin 2sin cos sin 1tan 1cos ααααααααα++=++()2sin cos sin cos sin cos αααααα+=+2sin cos k αα== ()222sin cos sin cos 2sin cos αααααα-=+-12sin cos αα=-1k =-,当04πα<<时,sin cos αα<,此时sin cos 1k αα-=--, 当42ππα≤<时,sin cos αα≥,此时sin cos 1k αα-=-【典例14】(2019·天津高考模拟)已知,则的值是()A. B. C. D.【解析】,则即故选D.【典例15】(2019·山东高三期末(理))已知,,则()A. B. C.或 D.或【解析】由题意知,,①,即,,为钝角,,,,,②由①②解得,,故选B.【小结】(1)应用公式时注意方程思想的应用:对于sinα+cosα,sinαcosα,sinα-cosα这三个式子,利用(sinα±cosα)2=1±2sinαcosα,可以知一求二.(2)注意公式逆用及变形应用:1=sin2α+cos2α,sin2α=1-cos2α,cos2α=1-sin2α.必考点6 诱导公式及其应用六组诱导公式角函数 2k π+α(k ∈Z )π+α-απ-απ2-α π2+α 正弦 sin_α -sin_α -sin_α sin_α cos_α cos_α 余弦 cos_α -cos_α cos_α -cos_α sin_α -sin_α 正切tan_αtan_α-tan_α-tan_α对于角“k π2±α”(k ∈Z )的三角函数记忆口诀“奇变偶不变,符号看象限”,“奇变偶不变”是指“当k 为奇数时,正弦变余弦,余弦变正弦;当k 为偶数时,函数名不变”.“符号看象限”是指“在α的三角函数值前面加上当α为锐角时,原函数值的符号”【典例16】(2016·全国高考真题(文))已知θ是第四象限角,且sin (θ+)=,则tan (θ–)= .【解析】∵θ是第四象限角, ∴,则,又sin (θ),∴cos(θ).∴cos()=sin (θ),sin ()=cos (θ).则tan (θ)=﹣tan ().故答案为:.【典例17】(2020·永州市第四中学高一月考)已知α是第四象限角,3sin cos tan()22()tan()sin()f ππααπααπαπα⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭=---.(1)化简()f α.(2)若33cos 25πα⎛⎫-= ⎪⎝⎭,求()f α的值. 【解析】(1)3sin()cos()tan()22()tan()sin()f ππααπααπαπα-+-=---sin()sin (tan )2tan sin πααααα---=-cos sin tan tan sin ααααα=-cos α=- (2)因为3cos()2πα-3cos()2πα=-3sin 5α=-=,所以3sin 5α=-.因为α是第四象限角,所以4cos 5α=,所以4()cos 5f αα=-=-.【小结】1.用诱导公式求值时,要善于观察所给角之间的关系,利用整体代换的思想简化解题过程.常见的互余关系有-α与+α,+α与-α,+α与-α等,常见的互补关系有-θ与+θ,+θ与-θ,+θ与-θ等.2. 利用诱导公式化简求值的步骤:(1)负化正;(2)大化小;(3)小化锐;(4)锐求值.必考点7 同角公式、诱导公式的综合应用【典例18】(2020·山东诸城�高一期中)已知3sin 5α=-,且α是第________象限角.从①一,②二,③三,④四,这四个选项中选择一个你认为恰当的选项填在上面的横线上,并根据你的选择,解答以下问题:(1)求cos ,tan αα的值;(2)化简求值:3sin()cos()sin 2cos(2020)tan(2020)πααπαπαπα⎛⎫--+ ⎪⎝⎭+-.【解析】(1)因为3sin 5α=-,所以α为第三象限或第四象限角; 若选③,24sin 3cos 1sin ,tan 5cos 4ααααα=--=-==; 若选④,24sin 3cos 1sin ,tan 5cos 4ααααα=-===-; (2)原式sin cos (cos )cos tan()ααααα-=-sin cos tan ααα-=-sin cos sin cos αααα=2cos α=2315⎛⎫=-- ⎪⎝⎭1625=【典例19】设tan(α+8π7)=m ,求证:sin (15π7+α)+3cos (α-13π7)sin (20π7-α)-cos (α+22π7)=m +3m +1.证法一:左=sin[π+(87π+α)]+3cos[(α+8π7-3π)]sin[4π-(α+87π)]-cos[2π+(α+8π7)]=-sin (α+8π7)-3cos (α+8π7)-sin (α+8π7)-cos (α+8π7)=tan (α+8π7)+3tan (α+8π7)+1=m +3m +1=右∴等式成立.证法二:由tan(α+8π7)=m ,得tan(α+π7)=m .左边=sin[2π+(π7+α)]+3cos[2π-(π7+α)]sin[2π+π-(π7+α)]-cos[2π+π+(π7+α)]=sin (π7+α)+3cos (π7+α)sin[π-(π7+α)]-cos[π+(π7+α)]=sin (π7+α)+3cos (π7+α)sin (π7+α)+cos (π7+α)=tan (π7+α)+3tan (π7+α)+1=m +3m +1=右边,∴等式成立. 【小结】1.利用诱导公式化简三角函数的基本思路:(1)分析结构特点,选择恰当公式;(2)利用公式化成单角三角函数;(3)整理得最简形式.2.化简要求:(1)化简过程是恒等变形;(2)结果要求项数尽可能少,次数尽可能低,结构尽可能简单,能求值的要求出值.3.三角恒等式的证明一般有三种方法:①一端化简等于另一端;②两端同时化简使之等于同一个式子;③作恒等式两端的差式使之为0.4证明条件恒等式,一般有两种方法:一是在从被证等式一边推向另一边的适当时候将条件代入,推出被证等式的另一边,这种方法称作代入法;二是直接将条件等式变形,变形为被证的等式,这种方法称作推出法,证明条件等式时,不论使用哪一种方法,都要依据要证的目标的特征进行变形.巩固1.(2020·甘肃省会宁县第四中学高二期末(文))sin780︒的值为( )A .B .12-C .12D .2【解析】()sin 780sin 72060sin 60︒=︒+︒=︒=,故选:D巩固2.(2020·昆明市官渡区第一中学高一月考)若-2π<α<0,则点P(tanα,cosα)位于 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【解析】∵-2π<α<0,∴tanα<0,cosα>0,∴点P(tanα,cosα)位于第二象限,故选B巩固3.(2019·伊美区第二中学高一月考)已知4sin 5θ=,()0,θπ∈,则tan θ等于( ). A .43B .34C .43±D .34±【解析】因为4sin 5θ=,()0,θπ∈,则由22sin cos 1θθ+=, 解得35cos θ=±,故可得43sin tan cos θθθ==±.故选:C .巩固4.(2020·河南项城市第三高级中学高一月考)α是第二象限角,且31cos 24πα⎛⎫+=⎪⎝⎭,则cos α=( )A .B .14-C .14D 【解析】因为31cos 24πα⎛⎫+=⎪⎝⎭,由诱导公式可得,1sin 4α=,因为22sin cos 1αα+=,α是第二象限角,所以cos 4α===-.故选:A巩固5.(2020·江西省铜鼓中学高一期末)一个扇形的圆心角为150°,面积为53π,则该扇形半径为( )A .4B .1CD .2【解析】圆心角为51506πα==,设扇形半径为R ,2215152326S R R ππα=⋅⇒=⨯,解得2R =.选D巩固6.(2020·吉林高三月考(理))若4sin cos 3θθ-=,且3π,π4θ⎛⎫∈ ⎪⎝⎭,则sin(π)cos(π)θθ---=( )A .3-B .3C .43-D .43【解析】由题意,416sin cos 12sin cos 39θθθθ-=⇒-=,则72sin cos 09θθ=-<,由于3π,π4θ⎛⎫∈ ⎪⎝⎭,则sin(π)cos(π)sin cos θθθθ---=+===.故选A.巩固7.(2018·全国延安�高三一模(文))已知()()sin 3cos sin 2πθπθθ⎛⎫++-=-⎪⎝⎭,则2sin cos cos θθθ+=( )A .15B .25C .35D .5【解析】由已知()()sin 3cos sin cos 3cos sin tan 2,2πθπθθθθθθ⎛⎫++-=-⇒-=-⇒=⎪⎝⎭则22222sin cos cos tan 13sin cos cos .sin cos tan 15θθθθθθθθθθ+++===++ 故选C.巩固8.(2020绵阳江油中学高三开学考试(文)已知()0,απ∈,1sin 23πα⎛⎫-=- ⎪⎝⎭,则()tan απ+=( )A B .-C .D .-【解析】因为1sin cos 23παα⎛⎫-==-⎪⎝⎭,且()0,απ∈所以sin 3α==,所以sin tan cos ααα==-()tan tan απα+==- D巩固9.(2019·历下·山东师范大学附中高三月考)【多选题】在平面直角坐标系xOy 中,角α顶点在原点O ,以x 正半轴为始边,终边经过点()()1,0P m m <,则下列各式的值恒大于0的是( ) A .sin tan ααB .cos sin αα-C .sin cos ααD .sin cos αα+【解析】由题意知sin 0α<,cos 0α>,tan 0α<. 选项Asin 0tan αα>; 选项B ,cos sin 0αα->; 选项C ,sin cos 0αα<; 选项D ,sin cos αα+符号不确定. 故选:AB.巩固10.(2020·山东临沂·高一期末)【多选题】对于①sin 0θ>,②sin 0θ<,③cos 0θ>,④cos 0θ<,⑤tan 0θ>,⑥tan 0θ<,则θ为第二象限角的充要条件为( ) A .①③B .①④C .④⑥D .②⑤【解析】若θ为第二象限角,则sin 0θ>,cos 0θ<,tan 0θ<. 所以,θ为第二象限角sin 0cos 0θθ>⎧⇔⎨<⎩或sin 0tan 0θθ>⎧⎨<⎩或cos 0tan 0θθ<⎧⎨<⎩.故选:BC.巩固11.(2020·福建泉州·高一期末)在平面直角坐标系中,角α的顶点在原点,始边与x 轴非负半轴重合,角α的终边经过点34,55P ⎛⎫-⎪⎝⎭,则sin α=___________,tan α=_________. 【解析】∵角α的终边经过点34,55P ⎛⎫- ⎪⎝⎭,∴||1OP =,∴4sin ,t 344455355an 1αα-=--===-.巩固12.(2019·北京顺义·牛栏山一中高三月考)已知tan 2α,且α为第二象限角,则sin α=______;cos α=_______.【解析】α为第二象限角 sin 0α∴>,cos 0α<,由22sin tan 2cos sin cos 1ααααα⎧==-⎪⎨⎪+=⎩得:sin cos αα⎧=⎪⎪⎨⎪=⎪⎩巩固13.(2018·浙江丽水·高一期末)在平面直角坐标系中,角α的顶点与原点重合,始边与x 轴的非负半轴重合,终边过点(1)P -,则tan α=_______;cos sin αα-=_______. 【解析】∵角α终边过点(1)P -,||2OP =,∴t an α==1sin 2α-=,cos α=cos sin αα-=.巩固14.(2019·海南高三月考)已知角α的终边经过点1(,33P -- (1)求sin ,cos ,tan ααα的值;(25sin(3)2cos()ππαα-++ 【解析】(1)由题意角α的终边经过点1(,3P -,可得1r OP ==,根据三角函数的定义,可得1sin ,tan 3ααα==-=. (25sin(3)2cos()ππαα-++=tan (14α===-⨯=.巩固15.(2020·全国高一课时练习)在平面直角坐标系中,角α的终边在直线3x +4y =0上,求sin α-3cos α+tan α的值.【解析】当角α的终边在射线y =-34x (x >0)上时,取终边上一点P (4,-3), 所以点P 到坐标原点的距离r =|OP |=5, 所以sin α=y r =35-=-35,cos α=x r =45,tan α=yx =-34. 所以sin α-3cos α+tan α=-35-125-34=-154. 当角α的终边在射线y =-34x (x <0)上时,取终边上一点P ′(-4,3), 所以点P ′到坐标原点的距离r =|OP ′|=5, 所以sin α=y r =35,cos α=x r =-45,tan α=yx =-34. 所以sin α-3cos α+tan α=35-3×45⎛⎫- ⎪⎝⎭-34=35+125-34=94.综上,sin α-3cos α+tan α的值为-154或94.巩固16.(2020·永州市第四中学高一月考)已知α是第四象限角,3sin cos tan()22()tan()sin()f ππααπααπαπα⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭=---. (1)化简()f α. (2)若33cos 25πα⎛⎫-= ⎪⎝⎭,求()f α的值. 【解析】(1)3sin()cos()tan()22()tan()sin()f ππααπααπαπα-+-=---sin()sin (tan )2tan sin πααααα---=-cos sin tan tan sin ααααα=-cos α=- (2)因为3cos()2πα-3cos()2πα=-3sin 5α=-=,所以3sin 5α=-因为α是第四象限角,所以4cos 5α=,所以4()cos 5f αα=-=-必考点8 “五点法”做函数()sin y A x h ωϕ=++的图象“五点法”作图:先列表,令30,,,,222x ππωϕππ+=,求出对应的五个错误!未找到引用源。