杭电数字信号处理实验7
- 格式:doc
- 大小:111.50 KB
- 文档页数:6
数字信号处理综合实验一、实验目的本实验旨在通过数字信号处理技术的综合应用,加深对数字信号处理原理和方法的理解,提高学生的实际操作能力和问题解决能力。
二、实验原理数字信号处理是利用数字计算机对摹拟信号进行采样、量化和编码,然后进行数字运算和处理的技术。
本实验主要涉及以下几个方面的内容:1. 信号采集与预处理:通过摹拟信号采集电路将摹拟信号转换为数字信号,然后进行预处理,如滤波、降噪等。
2. 数字滤波器设计:设计和实现数字滤波器,包括FIR滤波器和IIR滤波器,可以对信号进行滤波处理,提取感兴趣的频率成份。
3. 时域和频域分析:对采集到的信号进行时域和频域分析,如时域波形显示、功率谱密度估计等,可以了解信号的时域和频域特性。
4. 信号重构与恢复:通过信号重构算法对采集到的信号进行恢复,如插值、外推等,可以还原信号的原始特征。
三、实验内容根据实验原理,本实验的具体内容包括以下几个部份:1. 信号采集与预处理a. 使用摹拟信号采集电路将摹拟信号转换为数字信号,并通过示波器显示采集到的信号波形。
b. 对采集到的信号进行预处理,如去除噪声、滤波等,确保信号质量。
2. 数字滤波器设计a. 设计并实现FIR滤波器,选择合适的滤波器类型和参数,对采集到的信号进行滤波处理。
b. 设计并实现IIR滤波器,选择合适的滤波器类型和参数,对采集到的信号进行滤波处理。
3. 时域和频域分析a. 对采集到的信号进行时域分析,绘制信号的时域波形图,并计算信号的均值、方差等统计指标。
b. 对采集到的信号进行频域分析,绘制信号的功率谱密度图,并计算信号的频域特性。
4. 信号重构与恢复a. 使用插值算法对采集到的信号进行重构,恢复信号的原始特征。
b. 使用外推算法对采集到的信号进行恢复,还原信号的原始特征。
四、实验步骤1. 搭建信号采集电路,将摹拟信号转换为数字信号,并通过示波器显示采集到的信号波形。
2. 对采集到的信号进行预处理,如去除噪声、滤波等,确保信号质量。
《数字信号处理》实验一、实验要求1.上机期间不允许玩游戏。
若发现,以实验不通过记分。
实验不通过者,本课程成绩记为0分。
2.每个同学上机前应认真准备与实验相关的知识,搞清理论概念。
上机期间认真独立完成实验内容,不能相互抄袭。
3.对在3次上机时间内完成实验的同学,采取当场验收方式确定成绩。
否则,需提交所做实验的源程序和结果软件,并同时提交实验报告,两者缺一不可。
4.实验报告要求写明实验内容、实现方法、实验结果(附所有结果曲线)及对相关结果的说明与讨论。
二、实验内容1.利用傅立叶级数展开的方法,自由生成所需的x(t);2.通过选择不同的采样间隔T(分别选T>或<1/2f c),从x(t)获得相应的x(n)(作出x(n)图形);3.对获得的不同x(n)分别作傅立叶变换,分析其频率响应特性(给出幅频与相频特性曲线);4.利用巴特沃思、切比雪夫或椭圆滤波器设计数字滤波器(滤波特性自定),要求通过改变滤波器参数或特性(低通、高通、带通或带阻)设计至少两种数字滤波器,分析所设计滤波器(画出频率特性曲线),并对上述给出的不同x(n)分别进行滤波(画出滤波结果),然后加以讨论;5.利用窗函数设计法或频率采样法设计数字滤波器(滤波特性自定),要求通过改变滤波器参数或特性(低通、高通、带通或带阻等)设计至少两种数字滤波器,分析所设计滤波器(画出频率特性曲线),并对上述给出的不同x(n)分别进行滤波(画出滤波结果),然后加以讨论。
三、实验工具可采用MA TLAB高性能数字计算和可视化软件中的Signal Processing Toolbox 完成上述实验。
四、实验时间、地点11月19日下午2:00(在计算中心E楼205、208机房)、12月17日下午2:00(在计算中心E楼2024、207、208机房)、12月24日上午8:00(在计算中心E楼203、2037、208机房)。
《数字信号处理》实验一、实验要求1.上机期间不允许玩游戏。
若发现,以实验不通过记分。
实验不通过者,本课程成绩记为0分。
2.每个同学上机前应认真准备与实验相关的知识,搞清理论概念。
上机期间认真独立完成实验内容,不能相互抄袭。
3.对在3次上机时间内完成实验的同学,采取当场验收方式确定成绩。
否则,需提交所做实验的源程序和结果软件,并同时提交实验报告,两者缺一不可。
4.实验报告要求写明实验内容、实现方法、实验结果(附所有结果曲线)及对相关结果的说明与讨论。
二、实验内容1.利用傅立叶级数展开的方法,自由生成所需的x(t);2.通过选择不同的采样间隔T(分别选T>或<1/2f c),从x(t)获得相应的x(n)(作出x(n)图形);3.对获得的不同x(n)分别作傅立叶变换,分析其频率响应特性(给出幅频与相频特性曲线);4.利用巴特沃思、切比雪夫或椭圆滤波器设计数字滤波器(滤波特性自定),要求通过改变滤波器参数或特性(低通、高通、带通或带阻)设计至少两种数字滤波器,分析所设计滤波器(画出频率特性曲线),并对上述给出的不同x(n)分别进行滤波(画出滤波结果),然后加以讨论;5.利用窗函数设计法或频率采样法设计数字滤波器(滤波特性自定),要求通过改变滤波器参数或特性(低通、高通、带通或带阻等)设计至少两种数字滤波器,分析所设计滤波器(画出频率特性曲线),并对上述给出的不同x(n)分别进行滤波(画出滤波结果),然后加以讨论。
三、实验工具可采用MA TLAB高性能数字计算和可视化软件中的Signal Processing Toolbox 完成上述实验。
四、实验时间、地点12月16日晚上(在计算中心E楼202、205机房)、12月17日下午2:00(在计算中心E楼2024、207、208机房)、12月24日上午8:00(在计算中心E楼203、2037、208机房)。
2011年8月30日。
《数字信号处理》实验指导书(实验报告)Digital Signal Processing Laboratory湛柏明编蒋伟荣审班级:姓名:湖北汽车工业学院电子信息科学系二〇〇六年十二月修订前言《信号与系统》、《数字信号处理》是电子信息类专业的两门主要技术基础课程,是电子信息类专业本科生的必修课程,也是电子信息类专业硕士研究生入学必考课程。
该课程的任务在于研究信号与系统理论的基本概念和基本分析方法,使学生初步认识如何建立信号与系统的数学模型,如何经适当的数学分析求解,并对所得结果给予物理解释,赋予物理意义。
该课程的基本理论和方法大量用于计算机信息处理的各个领域,特别是通信、数字语音处理、数字图像处理、数字信号分析等领域应用更为广泛。
通过实验,配合《信号与系统》和《数字信号处理》课程的教学、加强学生对信号与系统理论的感性认识、提高学生的综合能力具有重要的意义。
长期以来,《信号与系统》和《数字信号处理》课程一直采用黑板式的单一教学方式,学生仅依靠做习题来巩固和理解教学内容,对课程中大量的应用性较强的内容不能实际动手设计、调试、分析,严重影响和制约了教学效果。
由于黑板式教学,课程中大量的信号分析结果缺乏可视化的直观表现,学生自己设计系统也不能直观地得到系统特性的可视化测试结果,学生将大量的时间和精力用于繁杂的手工数学运算,而未真正理解所得结果在信号处理中的实际意义。
近年来,计算机多媒体教序手段的运用逐步普及,大量优秀的科学计算和系统仿真软件不断涌现,为我们实现计算机辅助教学和学生上机实验提供了很好的平台。
通过对这些软件的分析和对比,我们选择MATLAB语言作为辅助教学工具,借助MATLAB强大的计算能力和图形表现能力,将《信号与系统》和《数字信号处理》中的概念、方法和相应的结果,以图形的形式直观地展现给学生,大大的方便学生迅速掌握和理解教学内容。
然而,我们意识到,按照之前的《信号与系统》和《数字信号处理》课程的各8个实验学时进行实验,实验效果比较不尽如人意,由于实验学时数太少,没有给学生更的时间先去了解MATLAB语言,以至于使实验课流于形式,由于实验学时太少,也导致我们无法安排更为细致的具有综合型和设计型的实验项目。
《数字信号处理》实验报告实验名称数字信号处理实验(民航无线电监测关键技术研究)实验时间一、实验目的:通过实验,理解和掌握民航无线电监测关键技术中调制解调、FIR 数字滤波器、多采样率数字信号处理、FFT、语音数字信号处理、静噪等技术,培养学生对数字信号处理技术的兴趣,并提高学生基于数字信号处理技术的工程应用能力。
二、实验环境:Matlab三、实验原理、内容与分析(包括实验内容、MATLAB程序、实验结果与分析)实验总体框图如上图所示,主要实现民航无线电监测关键技术中调制解调、FIR 数字滤波器、多采样率数字信号处理、FFT、语音数字信号处理、静噪等技术。
1.有限长单位脉冲(FIR)滤波器的设计FIR 数字滤波器是一种非递归系统,其冲激响应h(n)是有限长序列,其差分方程表达式为:系统传递函数可表达为:N-1 为FIR 滤波器的阶数。
在数字信号处理应用中往往需要设计线性相位的滤波器,FIR 滤波器在保证幅度特性满足技术要求的同时,很容易做到严格的线性相位特性。
为了使滤波器满足线性相位条件,要求其单位脉冲响应h(n)为实序列,且满足偶对称或奇对称条件,即h(n)=h(N-1-n)或h(n)=-h(N-1-n)。
这样,当N 为偶数时,偶对称线性相位FIR 滤波器的差分方程表达式为:由上可见FIR 滤波器不断地对输入样本x(n)延时后,再做乘法累加算法,将滤波器结果y(n)输出,因此,FIR 实际上是一种乘法累加运算。
而对于线性相位FIR 而言,利用线性相位FIR 滤波器系数的对称特性,可以采用结构精简的FIR 结构将乘法器数目减少一半。
2.AM 调制解调AM 调制解调过程如下:3.多采样率数字信号处理一般认为,在满足采样定理的前提下,首先将以采样率F1 采集的数字信号进行D/A 转换, 变成模拟信号,再按采样率F2 进行A/D 变换,从而实现从F1 到F2 的采样率转换。
但这样较麻烦,且易使信号受到损伤,所以实际上改变采样率是在数字域实现的。
实验要求1.每个实验进行之前须充分预习准备,实验完成后一周内提交实验报告;2.填写实验报告时,分为实验题目、实验目的、实验内容、实验结果、实验小结五项;3.实验报告要求:实验题目、实验目的、实验内容、实验结果四项都可打印;但每次实验的实验内容中的重要代码(或关键函数)后面要用手工解释其作用。
实验小结必须手写!(针对以前同学书写实验报告时候抄写代码太费时间的现象,本期实验报告进行以上改革)。
实验一信号、系统及系统响应实验目的:1. 掌握使用MATLAB进行函数、子程序、文件编辑等基本操作;2. 编写一些数字信号处理中常用序列的3. 掌握函数调用的方法。
实验内容:1.在数字信号处理的基本理论和MATLAB信号处理工具箱函数的基础上,可以自己编写一些子程序以便调用。
(1)单位抽样序列δ(n-n0)的生成函数impseq.m(2)单位阶跃序列u(n-n0)的生成函数stepseq.m(3)两个信号相加的生成函数sigadd.m(4)两个信号相乘的生成函数sigmult.m(5)序列移位y(n)=x(n-n0)的生成函数sigshift.m(6)序列翻褶y(n)=x(-n)生成函数sigfold.m(7)奇偶综合函数evenodd.m(8)求卷积和2.产生系列序列,并绘出离散图。
(1) x1(n)=3δ(n-2)-δ(n+4) -5≤n≤5(2) x3(n)=cos(0.04πn)+0.2w(n) 0≤n≤50其中:w(n)是均值为0,方差为1 的白噪声序列。
3.设线性移不变系统的抽样响应h(n)=(0.9)^n*u(n),输入序列x(n)=u(n)-u(n-10),求系统的输出y(n).实验二 系统响应及系统稳定性1.实验目的(1)掌握 求系统响应的方法。
(2)掌握时域离散系统的时域特性。
(3)分析、观察及检验系统的稳定性。
2.实验原理与方法在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。
最新数字信号处理实验报告一、实验目的本次实验旨在加深对数字信号处理(DSP)理论的理解,并通过实践操作掌握数字信号处理的基本方法和技术。
通过实验,学习如何使用相关软件工具进行信号的采集、分析、处理和重构,提高解决实际问题的能力。
二、实验内容1. 信号采集与分析- 使用数字示波器采集模拟信号,并将其转换为数字信号。
- 利用傅里叶变换(FFT)分析信号的频谱特性。
- 观察并记录信号的时域和频域特性。
2. 滤波器设计与实现- 设计低通、高通、带通和带阻滤波器。
- 通过编程实现上述滤波器,并测试其性能。
- 分析滤波器对信号的影响,并调整参数以优化性能。
3. 信号重构实验- 应用所学滤波器对采集的信号进行去噪处理。
- 使用逆傅里叶变换(IFFT)重构经过滤波处理的信号。
- 比较重构信号与原始信号的差异,评估处理效果。
三、实验设备与材料- 计算机及DSP相关软件(如MATLAB、LabVIEW等)- 数字示波器- 模拟信号发生器- 数据采集卡四、实验步骤1. 信号采集- 连接并设置好数字示波器和模拟信号发生器。
- 生成一系列不同频率和幅度的模拟信号。
- 通过数据采集卡将模拟信号转换为数字信号。
2. 滤波器设计- 在DSP软件中设计所需的滤波器,并编写相应的程序代码。
- 调整滤波器参数,如截止频率、增益等,以达到预期的滤波效果。
3. 信号处理与重构- 应用设计的滤波器对采集的数字信号进行处理。
- 利用IFFT对处理后的信号进行重构。
- 通过对比原始信号和重构信号,评估滤波器的性能。
五、实验结果与分析- 展示信号在时域和频域的分析结果。
- 描述滤波器设计参数及其对信号处理的影响。
- 分析重构信号的质量,包括信噪比、失真度等指标。
六、实验结论- 总结实验中所学习到的数字信号处理的基本概念和方法。
- 讨论实验中遇到的问题及其解决方案。
- 提出对实验方法和过程的改进建议。
七、参考文献- 列出实验过程中参考的书籍、文章和其他资源。
数字信号处理实验报告实验名称: 实验七冲击响应不变法IIR 数字滤波器设计实验时间: 2014 年 12 月 2 日 学号: 201211106134 姓名: 孙舸 成绩:评语:一、 实验目的:1、掌握构成一个频率响应与给定的滤波特性相接近的模拟滤波器的设计原理;2、掌握用冲激响应不变法设计IIR 数字滤波器的基本原理和算法;3、了解数字滤波器和模拟滤波器的频率响应特性,掌握相应的计算方法,分析用冲激响应不变法获得的数字滤波器频率响应特性中出现的混叠现象。
二、 实验原理与计算方法:1、冲激响应不变法设计IIR 数字滤波器的基本原理和算法采用冲激响应不变法设计数字滤波器,就是使其单位样值响应)(n h 与相应的模拟滤波器的冲激响应)(t h a 在抽样点处的量值相等,即)()()(nT h t h n h a nTt a === (1)其中T 为抽样周期。
因此用冲激响应不变法设计IIR 数字滤波器的基本步骤,就是首先根据设计要求确定相应的模拟滤波器的传递函数)(s H a ,经Laplace 反变换求出冲激响应)(t h a 后,对它进行抽样得到的)(nT h a 等于数字滤波器的单位样值响应)(n h ,再经z 变换所得)(z H 就是数字滤波器的传递函数。
如果模拟滤波器的传递函数)(s H a 的N 个极点i s 都是单极点,则可以将)(s H a 写成部分分式展开的形式∑=-=Ni iia s s A s H 1)( (2) 那么,经Laplace 反变换求出的模拟滤波器的冲激响应)(t h a 为)()(1t u e A t h Ni t s i a i ∑==相对应的数字滤波器的单位样值响应为)()()(1n u eA t h n h Ni nTs i nTt a i ∑====对上式作z 变换,得∑∑∑∑∑=-=∞=-∞==--===ni T s iN i n nTn s in nTs i Ni n zeA z eA eA zz H i i i 11111)( (3)由上面的推导可见,只要模拟滤波器的传递函数)(s H a 的N 个极点i s 都是单极点,当已经求出各个极点值i s 和部分分式的系数i A 后,则可以从模拟滤波器的传递函数的表达式(2)直接得到数字滤波器的传递函数)(z H 的表达式(3)。
【精品】数字信号处理实验报告
1 实验目的
本次实验的目的是在MATLAB软件环境中运用数字信号处理理论,通过实验操作来检验用于数字信号处理的算法的正确性,以便明确数字信号处理理论在实际应用中的重要作用。
2 实验原理
数字信号处理实验的原理是使用MATLAB进行数字信号处理算法实验,首先,设置一些用于数字信号处理的参数,如传输函数、离散时间区间、采样频率、滤波器类型等;其次,按照信号处理的算法进行编程实现,搭建一个数字信号处理系统,在MATLAB下对信号进行处理,包括采样、滤波和量化等;最后,对处理后的信号进行数字分析,监测数字信号处理后的变化趋势,验证数字信号处理算法的正确性。
3 实验步骤
(1) 建立信号处理实验系统:选择一个常见的信号处理算法,运用MATLAB软件分别编写信号发生程序、信号采样程序、滤波程序和信号量化程序;
(2) 运行实验程序:实验同学可以自行设置参数,如传输函数、离散时间区间、采样频率、滤波器类型等,调整完毕后,点击“run”,运行实验程序;
(3) 观察实验结果:运行完毕后,可以观察MATLAB的图形结果,以此来分析信号处理算法的性能;
(4) 对结果进行分析:经过上述实验操作后,可以根据所得到的实验结果来判断信号处理算法的性能,如输出信号的噪声抑制能力、良好的时域和频域性能等,从而验证信号处理理论在实际应用中的价值。
4 总结。
一、实验目的1. 理解数字信号处理的基本概念和原理。
2. 掌握离散时间信号的基本运算和变换方法。
3. 熟悉数字滤波器的设计和实现。
4. 培养实验操作能力和数据分析能力。
二、实验原理数字信号处理(Digital Signal Processing,DSP)是利用计算机对信号进行采样、量化、处理和分析的一种技术。
本实验主要涉及以下内容:1. 离散时间信号:离散时间信号是指时间上离散的信号,通常用序列表示。
2. 离散时间系统的时域分析:分析离散时间系统的时域特性,如稳定性、因果性、线性等。
3. 离散时间信号的变换:包括离散时间傅里叶变换(DTFT)、离散傅里叶变换(DFT)和快速傅里叶变换(FFT)等。
4. 数字滤波器:设计、实现和分析数字滤波器,如低通、高通、带通、带阻滤波器等。
三、实验内容1. 离散时间信号的时域运算(1)实验目的:掌握离散时间信号的时域运算方法。
(2)实验步骤:a. 使用MATLAB生成两个离散时间信号;b. 进行时域运算,如加、减、乘、除等;c. 绘制运算结果的时域波形图。
2. 离散时间信号的变换(1)实验目的:掌握离散时间信号的变换方法。
(2)实验步骤:a. 使用MATLAB生成一个离散时间信号;b. 进行DTFT、DFT和FFT变换;c. 绘制变换结果的频域波形图。
3. 数字滤波器的设计和实现(1)实验目的:掌握数字滤波器的设计和实现方法。
(2)实验步骤:a. 设计一个低通滤波器,如巴特沃斯滤波器、切比雪夫滤波器等;b. 使用MATLAB实现滤波器;c. 使用MATLAB对滤波器进行时域和频域分析。
4. 数字滤波器的应用(1)实验目的:掌握数字滤波器的应用。
(2)实验步骤:a. 采集一段语音信号;b. 使用数字滤波器对语音信号进行降噪处理;c. 比较降噪前后的语音信号,分析滤波器的效果。
四、实验结果与分析1. 离散时间信号的时域运算实验结果显示,通过MATLAB可以方便地进行离散时间信号的时域运算,并绘制出运算结果的时域波形图。
数字信号处理实验报告一、实验目的本次数字信号处理实验的主要目的是通过实际操作和观察,深入理解数字信号处理的基本概念和方法,掌握数字信号的采集、处理和分析技术,并能够运用所学知识解决实际问题。
二、实验设备与环境1、计算机一台,安装有 MATLAB 软件。
2、数据采集卡。
三、实验原理1、数字信号的表示与采样数字信号是在时间和幅度上都离散的信号,可以用数字序列来表示。
在采样过程中,根据奈奎斯特采样定理,为了能够准确地恢复原始信号,采样频率必须大于信号最高频率的两倍。
2、离散傅里叶变换(DFT)DFT 是将时域离散信号变换到频域的一种方法。
通过 DFT,可以得到信号的频谱特性,从而分析信号的频率成分。
3、数字滤波器数字滤波器是对数字信号进行滤波处理的系统,分为有限冲激响应(FIR)滤波器和无限冲激响应(IIR)滤波器。
FIR 滤波器具有线性相位特性,而 IIR 滤波器则在性能和实现复杂度上有一定的优势。
四、实验内容与步骤1、信号的采集与生成使用数据采集卡采集一段音频信号,或者在 MATLAB 中生成一个模拟信号,如正弦波、方波等。
2、信号的采样与重构对采集或生成的信号进行采样,然后通过插值算法重构原始信号,观察采样频率对重构信号质量的影响。
3、离散傅里叶变换对采样后的信号进行DFT 变换,得到其频谱,并分析频谱的特点。
4、数字滤波器的设计与实现(1)设计一个低通 FIR 滤波器,截止频率为给定值,观察滤波前后信号的频谱变化。
(2)设计一个高通 IIR 滤波器,截止频率为给定值,比较滤波前后信号的时域和频域特性。
五、实验结果与分析1、信号的采集与生成成功采集到一段音频信号,并在MATLAB 中生成了各种模拟信号,如正弦波、方波等。
通过观察这些信号的时域波形,对不同类型信号的特点有了直观的认识。
2、信号的采样与重构当采样频率足够高时,重构的信号能够较好地恢复原始信号的形状;当采样频率低于奈奎斯特频率时,重构信号出现了失真和混叠现象。
数字信号处理实验报告
数字信号处理是指利用数字技术对模拟信号进行采样、量化、编码等处理后,再通过数字信号处理器进行数字化处理的技术。
在数字信号处理实验中,我们通过对数字信号进行滤波、变换、解调等处理,来实现信号的处理和分析。
在实验中,我们首先进行了数字信号采集和处理的基础实验,采集了包括正弦信号、方波信号、三角波信号等在内的多种信号,并进行了采样、量化、编码等处理。
通过这些处理,我们可以将模拟信号转换为数字信号,并对其进行后续处理。
接着,我们进行了数字信号滤波的实验。
滤波是指通过滤波器对数字信号进行处理,去除其中的噪声、干扰信号等不需要的部分,使其更加纯净、准确。
在实验中,我们使用了低通滤波器、高通滤波器、带通滤波器等多种滤波器进行数字信号滤波处理,得到了更加干净、准确的信号。
除了滤波,我们还进行了数字信号变换的实验。
数字信号变换是指将数字信号转换为另一种表示形式的技术,可以将信号从时域转换到频域,或者从离散域转换到连续域。
在实验中,我们使用了傅里叶变换、离散傅里叶变换等多种变换方式,对数字信号进行了变换处理,得到了信号的频谱信息和其他相关参数。
我们进行了数字信号解调的实验。
数字信号解调是指将数字信号转换为模拟信号的技术,可以将数字信号还原为原始信号,并进行后续处理。
在实验中,我们使用了频率解调、相干解调等多种解调方式,将数字信号转换为模拟信号,并对其进行了分析和处理。
总的来说,数字信号处理实验是一项非常重要的实验,可以帮助我们更好地理解数字信号处理的原理和方法,为我们今后从事相关领域的研究和工作打下坚实的基础。
《数字信号处理实验》实验1 常用信号产生实验目的:学习用MATLAB编程产生各种常见信号。
实验内容:1、矩阵操作:输入矩阵:x=[1 2 3 4;5 4 3 2;3 4 5 6;7 6 5 4]引用 x的第二、三行;引用 x的第三、四列;求矩阵的转置;求矩阵的逆;2、单位脉冲序列:产生δ(n)函数;产生δ(n-3)函数;3、产生阶跃序列:产生U(n)序列;产生U(n-n0)序列;4、产生指数序列:x(n)=0.5n⎪⎭⎫⎝⎛4 35、产生正弦序列:x=2sin(2π*50/12+π/6)6、产生取样函数:7、产生白噪声:产生[0,1]上均匀分布的随机信号:产生均值为0,方差为1的高斯随机信号:8、生成一个幅度按指数衰减的正弦信号:x(t)=Asin(w0t+phi).*exp(-a*t)9、产生三角波:实验要求:打印出程序、图形及运行结果,并分析实验结果。
实验2 利用MATLAB 进行信号分析实验目的:学习用MATLAB 编程进行信号分析实验内容:1数字滤波器的频率响应:数字滤波器的系统函数为:H(z)=21214.013.02.0----++++z z z z , 求其幅频特性和相频特性:2、离散系统零极点图:b =[0.2 0.1 0.3 0.1 0.2];a=[1.0 -1.1 1.5 -0.7 0.3];画出其零极点图3、数字滤波器的冲激响应:b=[0.2 0.1 0.3 0.1 0.2];a=[1.0 -1.1 1.5 -0.7 0.3];求滤波器的冲激响应。
4、 计算离散卷积:x=[1 1 1 1 0 0];y=[2 2 3 4];求x(n)*y(n)。
5、 系统函数转换:(1)将H(z)=)5)(2)(3.0()1)(5.0)(1.0(------z z z z z z 转换为直接型结构。
(2)将H (z )=3213210.31.123.7105.065.06.11-------+--+-zz z z z z 转换为级联型结构。
1温情提示各位同学:数字信号处理课程设计分基础实验、综合实验和提高实验三部分。
基础实验、综合实验是必做内容,提高实验也为必做内容,但是为六选一,根据你的兴趣选择一个实验完成即可。
由于课程设计内容涉及大量的编程,希望各位同学提前做好实验准备。
在进实验室之前对实验中涉及的原理进行复习,并且,编制好实验程序。
进入实验室后进行程序的调试。
4课程设计准备与检查在进实验室之前完成程序的编制,在实验室完成编制程序的调试。
在进行综合实验的过程中,检查基础实验结果;在做提高实验的过程中,检查综合实验结果;提高实验结果在课程设计最后四个学时中检查。
检查实验结果的过程中随机提问,回答问题计入考核成绩。
5实验报告格式一、实验目的和要求二、实验原理三、实验方法与内容(需求分析、算法设计思路、流程图等)四、实验原始纪录(源程序等)五、实验结果及分析(计算过程与结果、数据曲线、图表等)六、实验总结与思考6课程设计实验报告要求一、实验报告格式如前,ppt 第5页。
二、实验报告质量计10分。
实验报告中涉及的原理性的图表要自己动手画,不可以拷贝;涉及的公式要用公式编辑器编辑。
MATLAB 仿真结果以及编制的程序可以拷贝。
三、如果发现实验报告有明显拷贝现象,拷贝者与被拷贝者课程设计成绩均为零分。
四、实验报告电子版在课程设计结束一周内发送到指导教师的邮箱。
李莉:***************赵晓晖:*****************王本平:**************叶茵:****************梁辉:*******************7基础实验篇实验一离散时间系统及离散卷积实验二离散傅立叶变换与快速傅立叶变换实验三IIR 数字滤波器设计实验四FIR数字滤波器设计8实验一离散时间系统及离散卷积一、实验目的(1)熟悉MATLAB 软件的使用方法。
(2)熟悉系统函数的零极点分布、单位脉冲响应和系统频率响应等概念。
(3)利用MATLAB 绘制系统函数的零极点分布图、系统频率响应和单位脉冲响应。
数字信号处理实验报告数字信号处理实验报告一、实验目的本实验旨在通过数字信号处理的方法,对给定的信号进行滤波、频域分析和采样率转换等操作,深入理解数字信号处理的基本原理和技术。
二、实验原理数字信号处理(DSP)是一种利用计算机、数字电路或其他数字设备对信号进行各种处理的技术。
其主要内容包括采样、量化、滤波、变换分析、重建等。
其中,滤波器是数字信号处理中最重要的元件之一,它可以用来提取信号的特征,抑制噪声,增强信号的清晰度。
频域分析是指将时域信号转化为频域信号,从而更好地理解信号的频率特性。
采样率转换则是在不同采样率之间对信号进行转换,以满足不同应用的需求。
三、实验步骤1.信号采集:首先,我们使用实验室的信号采集设备对给定的信号进行采集。
采集的信号包括噪声信号、含有正弦波和方波的混合信号等。
2.数据量化:采集到的信号需要进行量化处理,即将连续的模拟信号转化为离散的数字信号。
这一步通常通过ADC(模数转换器)实现。
3.滤波处理:将量化后的数字信号输入到数字滤波器中。
我们使用不同的滤波器,如低通、高通、带通等,对信号进行滤波处理,以观察不同滤波器对信号的影响。
4.频域分析:将经过滤波处理的信号进行FFT(快速傅里叶变换)处理,将时域信号转化为频域信号,从而可以对其频率特性进行分析。
5.采样率转换:在进行上述处理后,我们还需要对信号进行采样率转换。
我们使用了不同的采样率对信号进行转换,并观察采样率对信号处理结果的影响。
四、实验结果及分析1.滤波处理:经过不同类型滤波器处理后,我们发现低通滤波器可以有效抑制噪声,高通滤波器可以突出高频信号的特征,带通滤波器则可以提取特定频率范围的信号。
这表明不同类型的滤波器在处理不同类型的信号时具有不同的效果。
2.频域分析:通过FFT处理,我们将时域信号转化为频域信号。
在频域分析中,我们可以更清楚地看到信号的频率特性。
例如,对于噪声信号,我们可以看到其频率分布较为均匀;对于含有正弦波和方波的混合信号,我们可以看到其包含了不同频率的分量。
数字信号处理实验报告(四)姓名:王修庆学号:11083105线性卷积与圆周卷积的计算一、实验目的(1) 通过编程、上机调试程序,进一步增强使用计算机解决问题的能力。
(2) 掌握线性卷积与圆周卷积的软件实现的方法,并验证两者之间的关系。
二、基本原理(1) 两个有限长序列的线性卷积序列1()x n 为L 点,2()x n 为P 点,则其线性卷积为31212()()()()()m x n x n x n x m x n m +∞=-∞=*=⋅-∑且线性卷积的长度为1L P +-。
(2) 圆周卷积设两个有限长序列1()x n 和2()x n ,均为N 点,其N 点的DFT 分别为1()X k 和2()X k ,如果312()()()X k X k X k =⋅,则13120()[()()]()N N m x n xm x n m R n -==-∑ 1120()(())N N m x m x n m -==-∑1()x n =○N 2()x n 01n N ≤≤-,○N 表示N 点圆周卷积 (3) 圆周卷积与线性卷积的关系圆周卷积是否等于线性卷积,完全取决于圆周卷积的长度。
当1N L P ≥+-时,圆周卷积等于线性卷积,即1()x n ○N 212()()()x n x n x n =* 当1N L P ≤+-时,圆周卷积为:1()x n ○N 23()()r x n x n rN +∞=-∞=+∑,01n N ≤≤-三、实验内容及要求已知两个有限长序列:()()2(1)3(2)4(3)5(4)x n n n n n n δδδδδ=+-+-+-+- ()()2(1)(2)2(3)h n n n n n δδδδ=+-+-+-(1) 实验前,预先笔算好这两个序列的线性卷积及下列几种情况的圆周卷积 1)()x n ⑤()h n 2)()x n ⑥()h n 3)()x n ⑨()h n 4)()x n ⑩()h n (2)编制一个计算两个序列线性卷积的通用程序,计算()()x n h n *。
杭州电子科技大学通信工程学院实验报告课程名称:数字信号处理实验实验名称:离散时间系统的时域特性分析指导教师:魏超学生姓名:张之雨学生学号:17081135学生班级:17086911学生专业:信息工程实验日期:2019.10.8一:实验目的二:实验原理三:预习与参考1.所使用的主要函数⑴x=zeros(I,N)作用:产生N个零元素矢量函数。
⑵y=impz(b,a,N)作用:计算系统的冲激响应序列的前N个取样点。
⑶y=filter(b,a,x)作用:系统对输入x进行滤波。
2.相关函数的应用实例四:实验内容以及步骤五:实验结果与数据处理、分析⑴n=0:300;num1=[0.5 0.27 0.77];den1=[1];num2=[0.45 0.5 0.45];den2=[1 -0.53 0.46];xn=cos((20*pi*n)/256)+cos((200*pi*n)/256); y1=filter(num1,den1,xn);y2=filter(num2,den2,xn);subplot(3,1,1)title(1);stem(n,y1)title('系统1输出波形');subplot(3,1,2)stem(n,y2)title('系统2输出波形');subplot(3,1,3)stem(n,xn)title('输入波形');⑵n=0:40;num1=[0.5 0.27 0.77];den1=[1];num2=[0.45 0.5 0.45];den2=[1 -0.53 0.46];hn=0*(n>0)+1*(n==1); //单位冲激函数y1=filter(num1,den1,hn);y2=filter(num2,den2,hn);subplot(2,1,1)stem(n,y1)title('系统1单位冲击响应波形'); subplot(2,1,2)stem(n,y2)title('系统2单位冲击响应波形');⑶clc;clear;n=0:40;D=10;a=3;b=-2;x1=cos(2*pi*0.1*n);x2=cos(2*pi*0.4*n);x=a*x1+b*x2;xd=[zeros(1,D) x];num=[0.45 0.5 0.45];den=[1 -0.53 0.46];ic=[0 0];y1=filter(num,den,x1);y2=filter(num,den,x2);y=filter(num,den,x,ic);yd=filter(num,den,xd,ic);yt=a*y1+b*y2;y3=y-yt; //相减证明是否相等N=length(y);d=y-yd(1+D:N+D); //相减证明是否相等subplot(6,1,1)stem(n,y)title('验证时不变性原输出波形')subplot(6,1,2)stem(yd)title('')stem(n,d)title('stem(n,yt)title('')stem(n,y)title('')stem(n,y3)title('⑴x(n) y 1(n)x(n) y 2(n)⑵δ(n) y 1(n)δ(n)y2(n)。
数字信号处理实验题目数字音频信号的分析与处理班级姓名学号日期 2015.12 一、实验目的1.复习巩固数字信号处理的基本理论; 2.利用所学知识研究并设计工程应用方案。
二、实验原理数字信号处理技术在音频信号处理中的应用日益增多,其灵活方便的优点得到体现。
分频器即为其中一种音频工程中常用的设备。
人耳能听到的声音频率范围为20Hz~20000Hz ,但由于技术所限,扬声器难以做到在此频率范围内都有很好的特性,因此一般采用两个以上的扬声器来组成一个系统,不同的扬声器播放不同频带的声音,将声音分成不同频带的设备就是分频器。
下图是一个二分频的示例。
图8.1 二分频示意图高通滤波器和低通滤波器可以是FIR 或IIR 类型,其中FIR 易做到线性相位,但阶数太高, 不仅需要耗费较多资源,且会带来较长的延时;IIR 阶数低,但易出现相位失真及稳定性问题。
对分频器的特性,考虑最多的还是两个滤波器合成的幅度特性,希望其是平坦的,如图8.2所示:图8.2 分频器幅度特性由于IIR 的延时短,因此目前工程中大量应用的还是Butterworth 、Bessel 、Linkwitz-Riley 三种IIR 滤波器。
其幅频特性如图8.3所示:分频器低频放大高频放大声音输High -passLow-pass图8.3 三种常用IIR分频器的幅度特性巴特沃斯、切比雪夫、椭圆等类型的数字滤波器系数可通过调用 MATLAB 函数很方便的计算得到,但 Bessel、Linkwitz-Riley 数字滤波器均无现成的 Matlab 函数。
为了使设计的 IIR 滤波器方便在 DSP 上实现,常将滤波器转换为二阶节级联的形式。
设计好分频器后,为验证分频后的信号是否正确,可用白噪声信号作为输入信号,然后对分频后的信号进行频谱分析。
三、仪器设备计算机、matlab软件四、实验内容1. 任意选取两段声音信号(一段为语言或音乐信号,另一段为白噪声信号),分别作以下分析和处理:(1)分析信号的采样率、量化比特数;(2)画出时域波形图;(3)画出幅频特性和相频特性。
信号、系统与信号处理实验Ⅱ
实验报告
*名:**
学号:********
班级:14083413
上课时间:周五-六七八
实验名称:用双线性变换法设计IIR数字滤波器
一、实验目的
熟悉模拟巴特沃兹滤波器设计和用双线性变换法设计IIR数字滤波器的方法
二、实验原理与要求
实验原理
利用双线性变换法设计IIR数字滤波器,首先要设计出满足指标要求的模拟滤波器的传递函数Ha(s),然后由Ha(s)通过双线性变换可得要设计的IIR数字滤波器的系统函数H(z),如果给定的指标为数字滤波器的指标,直接利用模拟滤波器的低通原理,通过式子
到式子
的频率变换关系,可一步完成数字滤波器的设计。
式中是低通模拟滤波器的截止频率
实验要求
(1)编写用双线性变换法设计的巴特沃兹低通IIR滤波器的程序,要求通带内频率低于,容许幅度误差在1dB之内,频率在到之间的阻带衰减大于10dB。
(2)用法设计的巴特沃兹低通IIR滤波器,要求使用buttord,butter和biliner函数,滤波器技术指标:取样频率为1Hz;通带内衰减小于1Db;
阻带临界频率0.3Hz,阻带内衰减大于25dB。
(3)以pi/64为取样间隔,在屏幕上打印出数字滤波器的频率区间[0 pi]上的幅频响应特性曲线。
(4)在屏幕上打印出H(z)的分子,分母多项式系数。
三、实验程序与结果
1. 用双线性变换法设计的巴特沃兹低通IIR滤波器的程序,要求通带内频率低于,容许幅度误差在1dB之内,频率在到之间的阻带衰减大于10dB。
clear;clc;close all;
Rp=1;
Rs=10;
Fs=1;
Ts=1/Fs
;
wp1=0.2*pi; ws1=0.3*pi;
wp2=2*Fs*tan(wp1/2); ws2=2*Fs*tan(ws1/2);
[N,Wn]=buttord(wp2,ws2,Rp,Rs,'s'); [Z,P,K]=buttap(N);
[Bap,Aap]=zp2tf(Z,P,K); [b,a]=lp2lp(Bap,Aap,Wn); [bz,az]=bilinear(b,a,Fs); [H,W]=freqz(bz,az); subplot(2,1,1) plot(W/pi,abs(H)); grid
xlabel('频率'); ylabel('幅度'); subplot(2,1,2)
plot(W/pi,20*log10(abs(H))); grid
xlabel('频率'); ylabel('幅度(dB)');
结果:
00.10.20.30.4
0.50.60.70.80.91
0.5
1
1.5
频率
幅度
00.10.20.30.4
0.50.60.70.80.91
-300
-200-1000
100频率
幅度(d B )
2. 用法设计的巴特沃兹低通IIR滤波器,要求使用buttord,butter和biliner函数,滤波器技术指标:取样频率为1Hz;通带内衰减小于1Db;阻带临界频率0.3Hz,阻带内衰减大于25dB。
以pi/64为取样间隔,在屏幕上打印出数字滤波器的频率区间[0 pi]上的幅频响应特性曲线。
在屏幕上打印出H(z)的分子,分母多项式系数。
clear;clc;close all;
wp=0.2*2*pi;
ws=0.3*2*pi;
Rp=1;
Rs=25;
Fs=1;
Ts=1/Fs;
wp1=wp*Ts;
ws1=ws*Ts;
wp1pi=wp1/pi;
ws1pi=ws1/pi;
wp2=2*Fs*tan(wp1/2);
ws2=2*Fs*tan(ws1/2);
[N,Wn]=buttord(wp2,ws2,Rp,Rs,'s');
[b,a]=butter(N,Wn,'s');
[bz,az]=bilinear(b,a,Fs)
[H,W]=freqz(bz,az);
subplot(2,1,1)
plot(W/pi,abs(H));
grid
xlabel('频率');
ylabel('幅度');
subplot(2,1,2)
plot(W/pi,20*log10(abs(H)));
grid
xlabel('频率');
ylabel('幅度(dB)');
Wi=0:1/64:1-1/64;
Hi=H(1:8:end);
figure
subplot(2,1,1)
stem(Wi,abs(Hi));
grid
xlabel('频率');
ylabel('幅度');
subplot(2,1,2)
stem(Wi,20*log10(abs(Hi)));
grid
xlabel('频率');
ylabel('幅度(dB)');
问题二结果:
00.10.20.30.4
0.50.60.70.80.91
0.5
11.5
频率
幅度
00.10.20.30.4
0.50.60.70.80.91
-300
-200-1000
100X: 0.4004Y: -0.6064
频率
幅度(d B )
X: 0.6016Y: -25.27
问题三结果:
0.10.20.30.4
0.50.60.70.80.91
00.51
1.5
频率
幅度
00.10.20.30.4
0.50.60.70.80.91
-300
-200-1000
100频率
幅度(d B )
问题四结果:
四、仿真结果分析
问题1中频率在0.2*pi内衰减为1dB,在0.2*pi外衰减10dB以上,其都符合设计要求。
问题2中0.2Hz是数字频率0.4*pi,0.3Hz是数字频率0.6*pi。
从图上看出频率在0.4*pi内衰减为0.6dB,在0.2*pi外衰减25dB以上其都符合设计要求。
问题4设计的滤波器分子分母都有7项,因为其符合设计要求的滤波器是6阶,所以阶数从0到6有7项。
脉冲响应不变法和双线性变换法设计IIR的优缺点:
脉冲响应不变法的优点:1,模拟频率到数字频率的转换时线性的;2,数字滤波器单位脉冲响应的数字表示近似原型的模拟滤波器单位脉冲响应,因此时域特性逼近好。
缺点:会产生频谱混叠现象,只适合带限滤波器
双线性变换法优点:克服多值映射得关系,可以消除频率的混叠。
缺点:时域到频域的变换是非线性的,在高频处有较大的失真。
五、实验问题解答与体会
一次数字信号处理实验,虽然题目看起来简单,但是编程的时候却会有陷阱,加上自己的粗心用了好久才完成。
以后做实验一定不能大意,一定要预习,特别是例程,例程能很好地表达函数用法,使逻辑更加清楚。
另外,在以后实验的时候一定要带上数字信号处理的教材,因为实验能很好地实践验证教材所教的东西,加深自己的理解,纠正自己的错误观念,结合教材去验证加深知识,而不是一味为完成实验而做实验。