第5章 推理与证明技术
- 格式:ppt
- 大小:971.00 KB
- 文档页数:103
推理与证明Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】第3讲推理与证明【知识要点】1.归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或由个别事实概括出一般结论的推理2.类比推理是从特殊到特殊的推理,是寻找事物之间的共同或相似性质。
类比的性质相似性越多,相似的性质与推测的性质之间的关系就越相关,从而类比得出的结论就越可靠。
3.类比推理的一般步骤:①找出两类事物之间的相似性或者一致性。
②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想)【典型例题】1、(2011江西)观察下列各式:72=49,73=343,74=2401,…,则72011的末两位数字为()A、01B、43C、07D、492、(2011江西)观察下列各式:55=3125,56=15625,57=78125,…,则52011的末四位数字为()A、3125B、5625C、0625D、81253、(2010临颍县)平面内平行于同一条直线的两条直线平行,由此类比思维,我们可以得到()A、空间中平行于同一平面的两个平面平行B、空间中平行于同一条直线的两条直线平行C、空间中平行于同一条平面的两条直线平行D、空间中平行于同一条直线的两个平面平行4、(2007广东)设S是至少含有两个元素的集合,在S上定义了一个二元运算“*”(即对任意的a,b∈S,对于有序元素对(a,b),在S中有唯一确定的元素与之对应)有a*(b*a)=b,则对任意的a,b∈S,下列等式中不恒成立的是()A、(a*b)*a=aB、[a*(b*a)]*(a*b)=aC、b*(b*b)=bD、(a*b)*[b*(a*b)]=b5、(2007广东)如图是某汽车维修公司的维修点环形分布图.公司在年初分配给A,B,C,D四个维修点某种配件各50件.在使用前发现需将A,B,C,D四个维修点的这批配件分别调整为40,45,54,61件,但调整只能在相邻维修点之间进行,那么要完成上述调整,最少的调动件次(n件配件从一个维修点调整到相邻维修点的调动件次为n)为()A、15B、16C、17D、186、(2006陕西)为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a,b,c,d对应密文a+2b,2b+c,2c+3d,4d,例如,明文1,2,3, 4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为()A、4,6,1,7B、7,6,1,4C、6,4,1,7D、1,6,4,77、(2006山东)定义集合运算:A⊙B={z︳z=xy(x+y),x∈A,y∈B},设集合A={0,1},B={2,3},则集合A⊙B的所有元素之和为()A、0B、6C、12D、188、(2006辽宁)设⊕是R上的一个运算,A是V的非空子集,若对任意a,b∈A,有a⊕b∈A,则称A对运算⊕封闭.下列数集对加法、减法、乘法和除法(除数不等于零)四则运算都封闭的是()A、自然数集B、整数集C、有理数集D、无理数集9、(2006广东)对于任意的两个实数对(a,b)和(c,d),规定:(a,b)=(c,d),当且仅当a=c,b=d;运算“”为:(a,b)(c,d)=(ac-bd,bc+ad);运算“⊕”为:(a,b)⊕(c,d)=(a+c,b+d),设p,q∈R,若(1,2)(p,q)=(5,0),则(1,2)⊕(p,q)=()A、(4,0)B、(2,0)C、(0,2)D、(0,-4)10、(2005湖南)设f0(x)=sinx,f1(x)=f′(x),f2(x)=f1′(x),…,fn+1(x)=fn′(x),n∈N,则f2005(x)=()A、sinxB、-sinxC、cosxD、-cosx11、(2004安徽)已知数列{an}满足a0=1,an=a+a1+…+an-1 ,n≥1、,则当n≥1时,an=()A、2nB、C、2n-1D、2n-112、若数列{an}满足a1=1,a2=2,an=(n≥3且n∈N*),则a17=()A、1B、2C、D、2-98713、如图所示的三角形数阵叫“莱布尼兹调和三角形”,有,则运用归纳推理得到第11行第2个数(从左往右数)为()A、 B、 C、 D、14、根据给出的数塔猜测1 234 567×9+8=()1×9+2=1112×9+3=111123×9+4=1 1111 234×9+5=11 11112 345×9+6=111 111.15、将n个连续自然数按规律排成右表,根据规律,从2008到2010,箭头方向依次是()A、 B、 C、 D、16、下列推理过程利用的推理方法分别是()(1)通过大量试验得出抛硬币出现正面的概率为;(2)函数f(x)=x2-|x|为偶函数;(3)科学家通过研究老鹰的眼睛发明了电子鹰眼.A、演绎推理,归纳推理,类比推理B、类比推理,演绎推理,类比推理C、归纳推理,合情推理,类比推理D、归纳推理,演绎推理,类比推理17、下列表述正确的是()①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理;⑤类比推理是由特殊到特殊的推理.A、①②③B、②③④C、②④⑤D、①③⑤18、在古希腊,毕达哥拉斯学派把1,3,6,10,15,21,28,…这些数叫做三角形数,因为这些数对应的点可以排成一个正三角形,则第n个三角形数为()A、nB、C、n2-1D、1、(2011陕西)观察下列等式1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49照此规律,第五个等式应为 5+6+7+8+9+10+11+12+13=81.2、(2011陕西)观察下列等式1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49…照此规律,第n个等式为 n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2 .。
推理证明与证明方法推理是指通过一系列逻辑性的推导和推论,从已有的前提得出结论的过程。
在数学、哲学、逻辑学和科学研究等领域中,推理是一种重要的思维方式和证明方法。
本文将探讨推理证明的基本概念、推理的类型以及常见的证明方法。
一、推理证明的基本概念推理证明是指基于已知事实和前提,通过逻辑推导和推论的方式,得出一个结论或者证明一个命题的过程。
其目的是通过合理和严密的推理,使得结论具有说服力,能够被他人接受。
推理证明的过程通常分为两个步骤:前提和推导。
前提是指已知的事实、定理或假设,推导是在前提的基础上通过逻辑关系进行推演,从而得到新的结论。
推演的过程中,可以使用各种推理方法和推理规则。
二、推理的类型根据推理的方式和形式,推理可以分为直接推理和间接推理两种类型。
1. 直接推理:直接推理是通过已知的前提和一系列逻辑推理规则,直接得出结论的推理方式。
例如,对于一个条件命题“A蕴含B”,如果已知“A为真”,那么可以直接推导出“B为真”。
2. 间接推理:间接推理是通过否定前提的逻辑关系,从而得到结论的推理方式。
例如,通过反证法可以证明一个命题的真伪。
假设目标命题为真,然后通过逻辑推理推导到一个矛盾的结论,从而推断目标命题为假。
三、常见的证明方法为了实现证明的目的,推理过程中常采用多种证明方法。
以下介绍几种常见的证明方法。
1. 直接证明法:直接证明法是通过直接推理的方式,从已知的前提出发,逐步推导证明目标命题的真伪。
例如,对于证明一个数是偶数的命题,可以通过直接证明“该数能被2整除”来得到结论。
2. 归谬法:归谬法是一种间接证明法,通过假设目标命题为假,然后逐步推导到一个矛盾的结论,从而证明目标命题为真。
这种方法常用于证明一个命题的唯一性或者不存在性。
3. 数学归纳法:数学归纳法是一种证明数学命题的常用方法。
它分为基础步和归纳步两个阶段。
首先证明基础步,即证明当n取某个特定值时,命题成立;然后证明归纳步,假设当n=m时命题成立,再证明当n=m+1时命题也成立。
回忆《推理与证明》一、本章知识结构图二、知识要点1.归纳推理〔1〕归纳推理:由某类事物的局部对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理.归纳推理是由局部到整体,由个别到一般地推理..〔2〕归纳推理的一般步骤:①通过观察个别情况发现某些相同性质;②.2.类比推理〔1〕类比推理:由两类对象具有某些类似特征和其中一类对象的某些特征,推出另一类对象也具有这些特征的推理称为类比推理,类比的结论不一定真,在一般情况下,如果类比的相似性越多,相似性之间越相关,那么类比得到的结论也就越可靠.〔2〕类比推理的一般步骤:①找出两类事物之间的相似性或一致性.②.3.演绎推理〔1〕从一般性的原理出发,推出某个特殊情况下的结论的推理叫做_______,它的一般模式为三段论.〔2〕“三段论〞是演绎推理的一般模式,包括:①大前提:__________;②小前提:__________;③结论:根据一般原理,对特殊情况做出的判断.4.综合法一般地,利用条件和某些数学定义、定理、公理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法.5.分析法一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归纳为判定一个明显成立的条件〔条件、定理、定义、公理等〕,这种证明的方法叫做分析法.6.反证法.三、考前须知1.归纳和类比都是____________.前者是由特殊到一般,局部到整体的推理,后者是由___________到特殊的推理,但二者都能由推测未知,都能用于猜测,推理的结论不一定为真,有待进一步证明.2.演绎推理与合情推理不同,是由______到特殊的推理,是数学证明的根本推理形式,也是公理化体系所采用的推理形式.另一方面,合情推理与演绎推理又是相辅相成的,前者是后者的前提,后者论证前者的可靠性.3.______和_______是数学证明的两类根本证明方法.直接证明的两类根本方法是_______和_______,_________是从条件推导出结论的证明方法;_________是由结论追溯到条件的证明方法,在解决数学问题时,常把它们结合起来使用.间接证法的一种根本方法是__________,它是从结论反面成立出发,推出矛盾的证明方法.。
学案:推理与证明一、基础知识讲解1.推理一般包括合情推理和演绎推理.2.合情推理:根据已有的事实和正确的结论(包括定义、公理、定理等)、实验和实践的结果,以及个人的经验和直觉等推测某些结果的推理过程.归纳、类比是合情推理常用的思维方法.3.归纳推理:根据一类事物的部分对象具有某种性质,推出这类事物的所有对象都具有这种性质的推理.4.归纳推理的一般步骤:⑴通过观察个别情况发现某些相同性质;⑵从已知的相同性质中推出一个明确表达的一般性命题(猜想).5.类比推理:根据两类不同事物之间具有某些类似性,推出其中一类事物具有另一类事物类似的性质的推理.6.类比推理的一般步骤:⑴找出两类事物之间的相似性或一致性;⑵从一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).7.演绎推理:根据一般性的真命题导出特殊性命题为真的推理.8.直接证明的两种基本方法:分析法和综合法;间接证明的一种基本方法──反证法.9.分析法:从原因推导到结果的思维方法.10.综合法:从结果追溯到产生这一结果的原因的思维方法.11.反证法:判定非q为假,推出q为真的方法.12.应用反证法证明命题的一般步骤:⑴分清命题的条件和结论;⑵做出与命题结论相矛盾的假定;⑶由假定出发,应用正确的推理方法,推出矛盾的结果;⑷间接证明命题为真.13.数学归纳法:设{p n}是一个与自然数相关的命题集合,如果⑴证明起始命题p1成立;⑵在假设p k成立的前提上,推出p k+1也成立,那么可以断定,{p n}对一切正整数成立.14.数学归纳法的步骤:(1)证明当(如或2等)时,结论正确;(2)假设时结论正确,证明时结论也正确.二、疑难知识导分析讲解1.归纳推理是根据一类事物的部分对象具有某种性质,推出这类事物的所有对象都具有这种性质的推理. 而类比推理是根据两类不同事物之间具有某些类似性,推出其中一类事物具有另一类事物类似的性质的推理.2.应用反证法证明命题的逻辑依据:做出与命题结论相矛盾的假定,由假定出发,应用正确的推理方法,推出矛盾的结果3. 数学归纳法是一种证明方法,归纳推理是一种推理方法.三、经典例题讲解a}是正数组成的数列,其前n项和为n s,并且对于所有的自然数n,n a与2的等差中项等于[例1] {ns与2的等比中项.na}的前3项;(1)写出数列{na}的通项公式(写出推证过程);(2)求数列{n[例2] 用数学归纳法证明对于任意自然数,[例3]是否存在自然数m,使得对任意自然数,都能被整除,若存在,求出的最大值,并证明你的结论;若不存在,说明理由.[例4] 设点1A 是曲线C :)0,0(1>>=y x xy 与直线x y =的交点,过1A 点作直线x y =的垂线交轴于1B ,过1B 点作直线x y =的平行线交曲线C 于2A ,再过2A 点作1B 2A 的垂线作交X 轴于2B ,如此继续下去可得到一系列的点,,…,,…如图,试求的横坐标的通项公式.[例5] 有n 个圆,其中每两个圆都相交于两点,并且每三个圆都不相交于同一点,求证:这n 个圆把平面分成f(n)=n 2-n +2个部分.[例6] 已知n ≥2,n ∈N ,求证:1221)1211()711)(511)(311(+>-++++n n四、巩固练习1.用数学归纳法证明等式“1+2+3+…+(n +3)=2)4)(3(++n n (n N )”,当n =1时,左边应为____________.2.已知数列{n a }的前n 项和n n a n s -=2,则{n a }的前四项依次为_______,猜想n a =__________.3.已知数列:,}{且满足的各项都是正数n a .),4(,21,110N n a a a a n n n ∈-==+证明N n a a n n ∈<<+,21.4.已知不等式n n n 其中],[log 21131212>+++ 为大于2的整数,][log 2n 表示不超过n 2log 的最大整数. 设数列}{n a 的各项为正,且满足 ,4,3,2,),0(111=+≤>=--n a n na a b b a n n n 证明,5,4,3,][l o g 222=+<n n b ba n .5. 自然状态下的鱼类是一种可再生资源,为持续利用这一资源,需从宏观上考察其再生能力及捕捞强度对鱼群总量的影响. 用x n 表示某鱼群在第n 年年初的总量,n ∈N *,且x 1>0.不考虑其它因素,设在第n 年内鱼群的繁殖量及捕捞量都与x n 成正比,死亡量与x n 2成正比, 这些比例系数依次为正常数a ,b ,c. (1)求x n+1与x n 的关系式;(2)猜测:当且仅当x 1,a ,b ,c 满足什么条件时,每年年初鱼群的总量保持不变?(3)设a =2,c =1,为保证对任意x 1∈(0,2),都有x n >0,n ∈N *,则捕捞强度b 的 最大允许值是多少?证明你的结论.。
推理与证明的基本方法推理和证明是逻辑学和数学中的两个重要概念。
它们在我们日常思考和解决问题的过程中发挥着至关重要的作用。
本文将介绍推理和证明的基本方法,包括归纳法、演绎法和逆证法等。
一、归纳法归纳法是一种从特殊到一般的推理方法。
它基于观察和实验的结果,通过总结和概括个别事实或情况的规律性,得出普遍规律性的结论。
归纳法常被应用于科学研究和实证研究中。
例如,根据对大量数据的观察,我们可以归纳出某种事物的一般特征或规律。
二、演绎法演绎法是一种从一般到特殊的推理方法。
它基于一系列前提条件和逻辑关系,通过严密的推理推导,得出特殊情况下的结论。
演绎法常被应用于数学和逻辑推理中。
例如,根据一定的数学定理和公理,我们可以通过演绎法推导出具体的数学问题的解决方法。
三、逆证法逆证法是证明方法中的一种。
它常用于证明数学命题的正确性。
逆证法的基本思想是通过假设命题为假,然后推导出与已知事实矛盾的结论,从而证明命题实际为真。
逆证法常用于解决一些较为复杂的数学问题,尤其是涉及到数学定理的证明中。
四、数学归纳法数学归纳法是一种证明自然数性质的方法。
它分为一阶数学归纳法和二阶数学归纳法,其中一阶数学归纳法最为常用。
一阶数学归纳法的证明过程包括两个步骤:首先证明当n为某个特定值时命题成立,然后假设当n=k时命题成立,再用此假设来证明当n=k+1时命题也成立。
通过这种逐个推理的方式,我们可以证明自然数性质适用于所有自然数。
总结:推理与证明是思考和解决问题的基本方法。
归纳法通过总结和概括观察结果,得出普遍规律性的结论;演绎法通过严密的推理推导,得出特殊情况下的结论;逆证法通过假设命题为假,推导出与已知事实矛盾的结论,从而证明命题实际为真;数学归纳法用于证明自然数性质的正确性。
在实际问题的解决中,我们可以根据具体情况选择适当的推理和证明方法,从而得出准确和可靠的结论。
人工智能中的自动化推理与证明技术人工智能(Artificial Intelligence,AI)是当今科技领域的热门话题,其不断发展和普及正在深刻地改变着人类社会的方方面面。
在人工智能的众多分支领域中,自动化推理与证明技术(Automated Reasoning and Proof Technology)作为其中的重要组成部分,其在推理和证明过程中的应用正在逐渐受到重视和应用。
自动化推理与证明技术是指利用计算机技术,通过对逻辑规则和知识库的深度分析和推理,自动化地生成推论和证明结果的过程。
这种技术不仅在人工智能领域中具有重要意义,同时也在数学、计算机科学、哲学等领域中有着广泛的应用和价值。
在人工智能领域,自动化推理与证明技术主要通过逻辑推理、规则推理、知识表示等方式,帮助计算机系统模拟人类的推理和决策过程,实现智能化的功能。
通过对大量已知的事实和规则进行深度学习和分析,计算机系统可以自动化地生成推论和结论,从而为人类在决策、问题解决、智能控制等方面提供强大的支持和帮助。
自动化推理与证明技术的应用范围非常广泛,涵盖了人类社会生活中的各个领域。
在工业生产中,自动化推理技术可以帮助企业优化生产流程,提高效率和质量;在医疗健康领域,这种技术可以辅助医生进行诊断和治疗决策,提高医疗水平和效率;在交通运输领域,自动化推理技术可以帮助交通管理部门实现智能交通管控,缓解交通拥堵问题。
除了在应用领域中的重要作用外,自动化推理与证明技术在学术研究领域也具有重要意义。
通过对逻辑规则和知识库的深度分析和推理,研究人员可以深入探讨数学、哲学等领域中的一些复杂问题,推动学科的发展和进步。
例如,在人工智能领域中,研究人员通过对博弈论、逻辑推理等问题的深入研究,推动了智能算法和智能系统的发展和应用。
自动化推理与证明技术的发展壮大离不开相关领域的学术研究和产业实践的支持。
在学术界,研究人员们通过对不同领域中的逻辑规则和知识库的深入挖掘和分析,推动了自动化推理技术的不断创新和进步。
逻辑推理与证明方法总结逻辑推理和证明方法是逻辑学领域中非常重要的概念和方法。
在这篇文章中,我们将讨论逻辑推理和证明方法的基本概念、常见的形式以及它们在解决问题和判断正确性方面的作用。
一、逻辑推理的基本概念逻辑推理是基于形式逻辑的方法,通过推断来得出结论。
它不依赖于实际情况,而只关注逻辑关系的合理性。
逻辑推理可以分为两种类型:演绎推理和归纳推理。
1. 演绎推理:演绎推理是从一般规则或前提中推导出特定结论的过程。
它基于“如果…那么…”的逻辑形式,又称为条件推理。
演绎推理可分为三种形式:假言推理、拒取推理和三段论。
2. 归纳推理:归纳推理是从特殊案例中推导出一般规律的过程。
它基于观察和经验,并通过类比和概率来得出结论。
归纳推理常用于科学实验、统计分析和常识判断等领域。
二、常见的证明方法证明方法是通过推理和逻辑推导来证明某个命题或结论的有效方法。
下面是几种常见的证明方法:1. 直接证明法:直接证明法通过逻辑推理和前提的已知条件,直接得出结论的正确性。
它通常使用“假设-推导-结论”的结构,逐步推导出最终的结论。
2. 反证法:反证法通过假设反面命题为真,然后通过推理推导出矛盾的结论,从而证明原命题为假。
反证法常用于证明数学定理和逻辑命题。
3. 归谬法:归谬法是通过证明某个命题的反面导致自相矛盾的结论,从而推翻该反命题,进而证明原命题的正确性。
4. 数学归纳法:数学归纳法是通过证明命题对某个基础情况成立,然后证明对于任意情况都成立的方法。
它将问题分解为基础情况和递推情况两部分,通过归纳法证明了所有情况都满足命题。
三、逻辑推理和证明方法的应用逻辑推理和证明方法广泛应用于数学、哲学、计算机科学等领域,具有重要的理论和实践意义。
1. 在数学中,逻辑推理和证明方法是数学证明的基础。
数学家通过逻辑推理和证明方法建立了数学定理和公理体系,为数学研究提供了强大的工具。
2. 在哲学中,逻辑推理和证明方法是研究思维、知识和真理的重要工具。