生物接触氧化法处理技术
- 格式:docx
- 大小:444.27 KB
- 文档页数:9
生物接触氧化法技术规程生物接触氧化法技术是一种将有机废水转化为无害物质的废水处理方法。
该技术利用生物体内的微生物将有机物氧化分解,同时将废水中的有害物质转化为无害物质,达到净化废水的目的。
一、废水预处理在进行生物接触氧化法处理之前,需要对废水进行预处理。
预处理的目的是去除废水中的悬浮物和沉淀物,减少对后续处理的影响。
预处理方法有沉淀、过滤、筛选等,根据废水的性质选择合适的预处理方法。
二、生物接触氧化反应器生物接触氧化反应器是生物接触氧化法处理废水的核心设备。
反应器内部需要填充一定量的生物膜,用于生物附着和生长。
反应器的设计需要考虑流量、反应时间以及氧气供应等因素。
氧气是微生物呼吸代谢的必需品,反应器内需要设备适当的氧气供应设备。
三、微生物接触在反应器内,废水和生物膜进行接触反应。
生物膜中的微生物对有机物进行降解,同时也需要有足够的氧气供应。
反应器内的微生物需要有足够的营养物质和适宜的生长条件,才能保证生物接触氧化法的处理效果。
四、废水深度处理生物接触氧化法处理废水的效果是有限的,通常需要进行深度处理。
深度处理的方式有多种,如活性炭吸附、膜分离、氧化等。
根据废水的性质和要求,选择合适的深度处理方式。
五、废水排放经过生物接触氧化法处理和深度处理后,废水达到国家排放标准后可以进行排放。
排放前需要进行监测和检测,确保废水达到国家标准。
生物接触氧化法技术是一种高效、低成本的废水处理方法。
但是,在使用该技术时需要注意废水的性质、预处理方式、反应器设计以及深度处理方式等因素,才能达到良好的处理效果。
生物接触氧化法设计规程
一、概述
生物接触氧化法是一种厌氧氧化技术,它通过利用可溶性氧和一定的微生物群体完成水中有机物的脱氧和氧化过程。
利用氧化反应产生的氢氧化钠(NaOH)将有机物氧化为二氧化碳(CO2),可以有效地去除水中的有毒物质。
生物接触氧化已被广泛应用于污水处理中,取代传统的化学氧化技术。
二、原理
微生物的活性大大地影响厌氧氧化过程的速度和效率。
微生物群落的结构和特性与污水的性质(强度、成分等)以及操作条件(水温、溶解氧等)有关。
因此,控制和优化微生物群落是必不可少的,以保证生物接触氧化法的有效性和稳定性。
三、技术条件
1.污水温度:反应温度一般在20-40℃,合适的温度可以提高微生物的活性。
2.溶解氧浓度:溶解氧浓度越高,氧化动力学会变得越快,有利于氧化反应,但是过高的溶解氧浓度会导致微生物过度生长,影响污水处理效果。
3.pH值:氧化反应在中性环境下进行比较快,有利于反应。
接触氧化法
生物接触氧化法是种好氧生物膜污水处理方法,由填料、曝气装置、及池体组成。
在有氧条件下,污水与固着在填料表面的生物膜充分接触,通过生物降解去除污水中有机物等,多用于工业废水。
一、工作原理
生物接触氧化处理技术是在池内充填填料(组合填料),充氧的污水将填料全部浸没,并以一定的流速流经填料。
而填料上布满生物膜,污水与生物膜接触,在生物膜上微生物的新陈代谢功能的作用下,污水中污染物被去除,实现净化过程。
接触氧化池通过底部曝气,在填料上产生上向流,生物膜受到气流的冲击、搅动,加速脱落、更新,使生物膜经常保持较高的活性,而且能够避免堵塞现象的产生。
同时,上升气流不断地与填料撞击,使气泡反复切割,粒径减小,增加气泡与污水的接触面积,提高了氧的转移率。
二、进水要求
1、进水COD超过2000mg/l时,应在前端增加厌氧工艺,B/C过低时,可考前段增加水解酸化工艺段以改善其可生化性;
2、含油量不大于50mg/l,否则应设置隔油池,或气浮池等预处理工艺段;
3、SS要求不大于500mg/l,否则应增加预处理单元,如混凝沉淀,气浮等。
四、参数设置
1、根据水量设计,可以根据填料体积按容积负荷计算,也可以经验采用水力负荷,上图中为某PCB废水,其水力负荷:1m3/(m2•h),生活污水水力负荷可以达到:5m3/(m2•h);
2、填料层高一般为3m,根据布水/曝气方式不同,池体总在4.5-6.5m 之间;
3、DO值一般维持在2.5-3.5mg/l,一些工业废水甚至能达到
4.5mg/l;。
生物接触氧化法计算生物接触氧化法的原理是通过将废水与活性污泥接触,利用污泥中的微生物对有机废水进行降解氧化。
微生物主要是利用废水中的有机物作为其生长及代谢的源,通过代谢作用使有机物分解为二氧化碳、水及微生物本身等无害物质。
污水在接触池中停留一段时间,有机物被微生物降解后,废水中的BOD(五日生化需氧量)和COD(化学需氧量)等指标得到降低。
生物接触氧化法的基本工艺流程包括接触池、初沉池、二沉池和消毒池等单元。
污水经进水管道进入接触池,与活性污泥充分接触,微生物对有机物进行降解。
接触池后,废水流入初沉池,通过重力沉淀将污泥与悬浮物分离。
然后进入二沉池,进一步去除悬浮物和沉淀污泥。
最后通过消毒池对水进行消毒处理,以确保出水水质符合排放标准。
在进行生物接触氧化法计算时,需要根据废水的特性和处理要求,确定污水处理工艺的参数。
以下是一些典型参数的计算方法:1.污水流量:根据生产设备产水量或日用水量,结合污水排放实际情况进行估算。
2.污水水质参数:根据废水中各指标的浓度,可以通过现场取样分析、监测数据或相关文献资料获得。
3. 体积负荷:指单位时间内处理的废水体积与污泥体积的比值。
根据污水流量和污泥产生量计算,常用单位为kg/(m³·d)。
4.净化程度要求:根据排放标准或使用要求,确定需要达到的废水净化程度。
常用指标包括BOD、COD、悬浮物、氨氮等。
5.接触池停留时间:根据废水的性质和处理要求,一般在0.5-2小时之间。
根据实际情况和经验进行选择。
6.混沉池和二沉池的设计:根据流量和停留时间来确定混沉池和二沉池的尺寸和设计参数,以确保充分的沉淀效果。
通过以上计算,可以确定适合具体情况的生物接触氧化法处理工艺参数。
在实际工程设计和运行中,还需要考虑到其他因素,如系统的稳定性、污泥处理和回用等问题。
此外,生物接触氧化法在处理有机废水过程中还可以结合其他工艺单元,如曝气池、调节池、好氧池等,以进一步提高处理效果。
生物接触氧化法工艺流程
生物接触氧化法是一种废水生物处理方法,其工艺流程如下:
1. 将有机废水与含有大量微生物的接触池混合,使有机物与微生物充分接触。
接触的目的是为了将有机物转化成微生物可利用的底物。
在接触池中,有机废水中的有机物通过渗透、吸附、附着等方式与微生物接触,进一步提高有机物降解效率。
2. 在接触的同时,接触池中会向内注入含氧气体,例如空气。
这样可以为微生物提供氧气,促进微生物的生长和代谢活动。
微生物通过氧化代谢将有机物转变为水、二氧化碳和能量,同时也生成一定的微生物生物体。
3. 微生物的生物体和废水一起流入氧化池。
氧化池是生物接触氧化过程的核心环节。
废水中的有机物经过接触池的处理后进入氧化池,继续与微生物接触和氧化。
4. 氧化池内的微生物继续吸收有机物,产生细胞的生长和繁殖。
微生物利用底物进行能量代谢和细胞合成,使有机物逐渐降解。
同时,氧化池中的氧气通过气液传质作用,不断地向微生物提供氧气,促进废水的氧化反应。
5. 在氧化池中,微生物通过呼吸代谢将有机物完全氧化为水和二氧化碳,释放能量。
氧化过程中会产生大量的微生物生物体,并由废水带出氧化池。
6. 这时,可以通过沉淀池对废水中的生物体进行分离,使其不能再进一步降解有机物。
以上就是生物接触氧化法的工艺流程,希望对解决您的问题有所帮助。
生物接触氧化法生物接触氧化法biological contact oxidation process从生物膜法派生出来的一种废水生物处理法,即在生物接触氧化池内装填一定数量的填料,利用栖附在填料上的生物膜和充分供应的氧气,通过生物氧化作用,将废水中的有机物氧化分解,达到净化目的。
19世纪末,德国开始把生物接触氧化法用于废水处理,但限于当时的工业水平,没有适当的填料,未能广泛应用。
到20世纪70年代合成塑料工业迅速发展,轻质蜂窝状填料问世,日本、美国等开始研究和应用生物接触氧化法。
中国在70年代中期开始研究用此法处理城市污水和工业废水,并已在生产中应用。
生物接触氧化法是以附着在载体(俗称填料)上的生物膜为主,净化有机废水的一种高效水处理工艺。
具有活性污泥法特点的生物膜法,兼有活性污泥法和生物膜法的优点。
在可生化条件下,不论应用于工业废水还是养殖污水、生活污水的处理,都取得了良好的经济效益。
该工艺因具有高效节能、占地面积小、耐冲击负荷、运行管理方便等特点而被广泛应用于各行各业的污水处理系统。
生物处理是经过物化处理后的环节,也是整个循环流程中的重要环节,在这里氨/氮、亚硝酸、硝酸盐、硫化氰等有害物质都将得到去除,对以后流程中水质的进一步处理将起到关键作用。
如果能配合JBM新型组合式生物填料使用,可加速生物分解过程,具有运行管理简便、投资省、处理效果高、最大限度地减少占地等优点。
一、生物接触氧化法的反应机理生物接触氧化法是一种介于活性污泥法与生物滤池之间的生物膜法工艺,其特点是在池内设置填料,池底曝气对污水进行充氧,并使池体内污水处于流动状态,以保证污水与污水中的填料充分接触,避免生物接触氧化池中存在污水与填料接触不均的缺陷。
该法中微生物所需氧由鼓风曝气供给,生物膜生长至一定厚度后,填料壁的微生物会因缺氧而进行厌氧代谢,产生的气体及曝气形成的冲刷作用会造成生物膜的脱落,并促进新生物膜的生长,此时,脱落的生物膜将随出水流出池外。
生物接触氧化法生物接触氧化法是一种通过微生物在污水处理过程中降解有机物的高效处理技术。
该技术应用广泛,能够有效去除污水中的有机物和氮磷等营养物质,具有处理效率高、投资和运行成本低等优点。
本文将从生物接触氧化法的原理、应用场景和优缺点三个方面进行介绍。
一、生物接触氧化法的原理生物接触氧化法是一种微生物处理技术,利用微生物分解污水中的有机物质并将其降解为CO2、H2O等无毒物质,达到净化污水的目的。
该技术采用氧气为氧化剂,将氧气注入生物反应器中,通过通气等操作控制反应器内的溶解氧浓度,满足微生物的需要,促进微生物的生长、繁殖和代谢,降解水中的有机物。
生物接触氧化法的反应器通常采用流动式生物反应器,可分为下降式、提升式和串联式等类型。
在下降式反应器中,底部是填充物层,微生物通过该层时降解有机物,并吸收氧气;提升式反应器中,则是通过水泵将水循环通入生物膜反应器,通过遇到倾斜板时,水流产生涡流,在涡流中生长的生物膜降解污染物质。
串联式反应器常用于大型废水处理场合,由多个反应器串联组成,以满足对水质的高要求。
二、生物接触氧化法的应用场景1.城市污水处理场生物接触氧化法应用于城市污水处理场,处理污水中粪便、废水中工业有机废水、排水渗漏等。
在处理有机物的同时,还能去除水中氮、磷营养物,提高废水的排放标准。
2.化工废水处理在化工废水处理中,往往含有大量的有机物质和微量的重金属离子。
采用生物接触氧化法处理时,可将有机物降解为CO2、H2O等无毒物质,同时滞留的微生物还可以吸附并沉淀重金属离子,去除化工废水中的污染物。
3.农村污水处理在农村污水处理中,如果采用传统处理工艺,投入成本高,难以满足废水中的营养物质强烈氧化剂。
由于生物接触氧化法净化效果好,运行成本低等优点,在农村居民村、县镇中广泛应用。
三、生物接触氧化法的优缺点优点:1.反应器体积小,处理效率高采用生物接触氧化法进行废水处理时,其反应器体积相对较小,处理效率高。
生物接触氧化法生物接触氧化法的处理流程通常包括三个阶段:生物吸附、生物氧化和生物絮凝。
在生物吸附阶段,废水中的有机物被微生物吸附并固定在微生物表面;在生物氧化阶段,微生物利用氧气将有机物氧化分解为水和二氧化碳;在生物絮凝阶段,微生物通过自身代谢产生絮凝剂,将废水中的悬浮物和重金属离子沉降下来。
生物接触氧化法的优点有:处理效率高、占地面积小、操作简单、运行稳定、抗冲击能力强等。
其缺点是:对水质和温度的要求较高,需要定期维护和更换滤料。
生物接触氧化法在处理不同类型的废水时也有着广泛的应用。
例如,对于生活污水,生物接触氧化法可以将其中的有机物和氨氮等污染物有效去除;对于工业废水,生物接触氧化法可以通过调整工艺参数来处理其中的不同污染物。
生物接触氧化法是一种高效、环保、节能的废水处理技术,在未来的发展中,需要进一步研究和改进其工艺参数和运行条件,以更好地适应不同类型的废水处理需求。
生物接触氧化法及其研究进展生物接触氧化法是一种高效、环保的废水处理技术,通过菌类和微生物的催化作用,将有机污染物转化为无害物质。
本文将介绍生物接触氧化法的基本原理、应用领域以及近年来的研究进展。
一、生物接触氧化法的基本原理生物接触氧化法的基本原理是利用微生物的酶系统,将废水中的有机污染物氧化分解为二氧化碳和水。
该方法是一种活性污泥法,通过在曝气池中添加填料,增加微生物附着面积,提高氧传质效率,从而提高了处理效果。
生物接触氧化法具有较高的污染物去除率和较低的运行成本,同时能够适应各种环境条件。
在处理过程中,微生物通过吸附和降解有机物获得能量,维持生命活动,从而实现废水的净化。
二、生物接触氧化法的应用领域生物接触氧化法在多个领域得到广泛应用,如工业废水处理、城市污水处理、农业废水处理等。
在工业废水处理方面,生物接触氧化法能够高效去除难降解有机物,提高废水处理效率。
在城市污水处理方面,该方法能够实现污水的高效脱氮除磷,提高水质。
在农业废水处理方面,生物接触氧化法能够去除废水中大量的有机物质,减少水体污染。
生物接触氧化法生物接触氧化法是一种通过利用微生物在自然条件下的化学活性以去除有机污染物的方法。
该技术已经在各种废水处理系统中广泛应用,因其可持续、高效、低成本及环保而备受赞誉。
1.生物接触氧化法的基本原理生物接触氧化法基本原理是利用微生物利用废水中的有机物作为其代谢产物,从而将有机物转化为无机物,从而减少水体污染。
整个过程于自然界中发生,因此其过程是无毒、无害的。
生物接触氧化法还可以结合物理和化学方法来处理废水。
在此过程中,微生物在与废水接触后通过一系列的酶催化反应将废水中的有机物分解成简化化合物。
在处理后的水中,除有机物质外,还会有一些可溶性无机离子,如Cl、SO4等。
在处理过程中,微生物通过吸收和吞噬有机物来生长和繁殖,使水中的有机物浓度降低,直到趋于稳定。
2.生物接触氧化法的主要过程生物接触氧化法主要由四个步骤组成:污水预处理、反应池、沉淀/浮沫去除和最后的处理。
以下是其主要过程:(1)污水预处理:预处理是指将废水进行一些基本的物理和化学处理,以保证反应池内的物理和化学条件能够使微生物进行有效的生长和代谢活动。
预处理包括筛网、调节pH值、精确计算BOD/COD比等步骤。
(2)反应池:在反应池中,水与微生物的混合在发生。
有机废水进入反应池后,微生物会吸收并生长,同时消耗废水中的有机物质。
废物质的降解涉及到一系列的化学反应,包括自然界中的氧化反应、还原反应、水解反应、羟化等过程。
(3)沉淀/浮沫去除:水中的微生物和固体废物在發酵后会形成不易分解的膠体物質和浮沫。
從反應池中排放的水,会先进行一个沉淀阶段,目的是使水中的固体废物沉淀以便于排除,同时微生物会随之一起沉淀。
这个步骤还可以用于提取污水中的微生物,以再次处理其他废水。
(4)去除后的处理:处理完成后的水再次进行氧化处理,以保证废水的水质符合排放标准。
处理后的水可以回收用于工业用水或农业灌溉等其他用途,也可以排放到毒性测试、化学分析等实验室进行检测。
接触氧化法是一种兼有活性污泥法和生物膜法特点的新的废水生化处理法。
这种方法的主要设备是生物接触氧化滤池。
在不透气的曝气池中装有焦炭、砾石、塑料蜂窝等填料,填料被水浸没,用鼓风机在填料底部曝气充氧,这种方式称为鼓风曝气;空气能自下而上,夹带待处理的废水,自由通过滤料部分到达地面,空气逸走后,废水则在滤料间格自上向下返回池底。
活性污泥附在填料表面,不会随水流动,因生物膜直接受到上升气流的强烈搅动,不断更新,从而提高了净化效果。
生物接触氧化法具有处理时间短、体积小、净化效果好、出水水质好而稳定、污泥不需回流也不膨胀、耗电小等优点。
(1)生物接触氧化池的个数或分格数应不少于2个,并按同时工作设计。
(2)填料的体积按填料容积负荷和平均日污水量计算。
填料的容积负荷一般应通过试验确定。
当无试验资料时,对于生活污水或以生活污水为主的城市污水,容积负荷一般采用1000~1500g BOD5/(m³·d)。
(3)污水在氧化池内的有效接触时间一般为1.5~3.0h。
(4)填料层总高度一般为3m。
当采用蜂窝型填料时,一般应分层装填,每层高为1m,蜂窝孔径应不小于25mm。
(5)进水BOD5浓度应控制在150~300mg/L的范围内。
(6)接触氧化池中的溶解氧含量一般应维持在2.5~3.5mg/L之间,气水比为15~20:1。
(7)为保证布水布气均匀,每格氧化池面积一般应不大于25m²。
一、生物接触氧化法的基本原理1、生物接触氧化法的特点生物接触氧化法是生物膜法的一种形式。
它是在生物滤池法的基础上发展起来的,从生物膜固定和污水流动来说,相似于生物滤池法。
从污水充满曝气池和采用人工曝气看,它又相似于活性污泥法。
所以,生物接触氧化法兼有生物滤池法和活性污泥法的特点。
实践表明,生物接触氧化法具有BOD负荷高,处理时间短,占地面积小,不需污泥回流,不产生污泥膨胀,运转比较灵活,维护管理方便等一系列优点,因此,是一种有发展前途的处理方法。
生物接触氧化法流程
生物接触氧化法(Biological Aerated Filter,BAF)是一种用于水处理的生物处理技术。
它利用微生物将有机物质和污染物转化为无害的物质,从而净化水体。
下面我们来看一下生物接触氧化法的流程。
首先,污水经过初步处理后,被送入生物接触氧化池。
这些初步处理可以包括固液分离、调节pH值和去除大颗粒物质。
一旦污水进入生物接触氧化池,它会通过一系列的过滤媒体,这些过滤媒体通常是塑料或其他材料制成的填料,提供了大量的表面积,有利于微生物的附着和生长。
接下来,微生物在这些过滤媒体上形成生物膜,这些微生物将有机物和污染物作为能量来源,并将其转化为二氧化碳和水。
这个过程需要氧气的参与,因此通常通过通入空气或氧气来提供必要的氧气。
随着水在生物接触氧化池中流动,有机物质和污染物逐渐被微生物附着和分解,最终转化为无害的物质。
经过生物接触氧化池处理后的水质将得到显著提高,有机物和污染物的浓度大大降低。
最后,经过处理的水体通过后续的沉淀、过滤等工艺,最终得到清澈透明的水质,可以安全地排放或进一步利用。
总的来说,生物接触氧化法通过微生物的作用将有机物和污染物转化为无害物质,是一种高效、环保的水处理技术。
希望随着科技的不断发展,生物接触氧化法可以得到更广泛的应用,为改善水质和保护环境做出更大的贡献。
生物接触氧化工艺
生物接触氧化工艺(Bio-oxidation technology)是一种以微生物作为催化剂,将有机废物转化为可降解的物质的技术。
该技术主要应用于制药、食品加工、化工等行业中产生的有机废物处理。
生物接触氧化工艺的工作原理是将废物与微生物进行接触,微生物通过对有机废物的代谢作用,将废物中的有机物分解为二氧化碳和水,或者将其转化为可降解的物质。
这样就能达到减少有机废物的排放、降低环境污染的目的。
生物接触氧化工艺可分为传统的生物接触氧化工艺和厌氧生物接触氧化工艺。
前者适合于有机废物含量较低的情况下,后者适合于有机废物含量较高、而且含有高浓度有毒物质的情况下。
生物接触氧化工艺具有以下优点:
1.高效性:通过微生物的作用可以快速将有机废物分解,处理效率高。
2.环保:将有机废物转化为二氧化碳和水、可降解的物质,不会对环境造成危害。
3.节能:相比传统处理方法,生物接触氧化工艺不需要消耗大量的能源。
4.成本低:生物接触氧化工艺的建设成本相对较低,维护成本和运营成本也较低。
生物接触氧化工艺的应用范围很广,如食品加工行业的废水处理、化工行业的有机废物处理等。
但是在具体应用时需要针对不同的有机
废物,选择合适的微生物菌种,以及适合的处理条件,以达到最佳的
处理效果。
总之,生物接触氧化工艺可以有效地降低有机废物的排放,减少
环境污染,具有很高的应用价值。
在未来,生物接触氧化工艺将不断
完善和发展,成为废物处理领域的重要技术。
生物接触氧化法、薄层流法和砾间接触氧化法是水处理领域常见的三种处理工艺。
它们在处理废水、污水和工业废水中发挥着重要作用。
这三种方法各有特点,在不同情况下能够有效地去除污染物质。
下面将分别对这三种方法进行深入探讨。
一、生物接触氧化法生物接触氧化法是一种将废水或污水暴露于活性生物菌群的处理方法。
在这个过程中,微生物会利用污水中的有机物来进行新陈代谢,从而将其分解。
生物接触氧化法通过将污水暴露在生物膜上,促进了生物菌群与废水中的有机物质之间的接触,加速了有机物的降解。
这种方法能够高效地去除废水中的有机物和氨氮,达到净化水质的效果。
二、薄层流法薄层流法是一种将污水通过薄层流过滤床进行处理的方法。
在这个过程中,污水会被喷洒或泵送到特制的过滤床上,通过多孔介质层进行过滤和净化。
薄层流法能够有效地去除悬浮物、微生物和有机质,提高水质并减少污染物的排放。
它被广泛应用于污水处理、雨水收集和再利用等领域。
三、砾间接触氧化法砾间接触氧化法是一种利用砾石填料进行废水处理的方法。
在这个过程中,废水会通过填满了砾石的反应器,砾石表面的微生物将降解有机物,同时氧气也会通过水体和砾石之间的接触进行氧化。
砾间接触氧化法能够有效去除废水中的有机物质和氨氮,并且结构简单、运行成本低,因此被广泛应用于城市污水处理和工业废水处理。
总结来说,生物接触氧化法、薄层流法和砾间接触氧化法是三种常见的水处理方法。
它们各自在去除污水中的有机物、氨氮和悬浮物等方面发挥着重要作用,为改善水质和保护环境做出了贡献。
个人观点:对于不同类型的废水和污水,选择合适的处理工艺非常重要。
这三种方法在不同场合有各自的优势,都是有效的水处理技术。
随着环境保护意识的提高,对于水质的要求也越来越高,未来水处理领域还有待更多技术的创新和发展。
希望能够通过不断的研究和实践,找到更加高效和可持续的水处理方法,为保护水资源和改善环境做出更大的贡献。
以上是我对生物接触氧化法、薄层流法和砾间接触氧化法的一些看法和理解,希望能够对你有所帮助。
生物接触氧化法生物接触氧化法的反应器为接触氧化池,也称之淹没式生物滤池。
最早于20世纪70年代日本首创,近20年来,该技术在国内外都取得了长足广泛的进展与应用。
生物接触氧化法就是在反应器中填加惰性填料,已经充氧的污水浸没并流经全部惰性填料,污水中的有机物与在填料上的生物膜充分接触,在生物膜上的微生物新陈代谢作用下,有机污染物质被去除.生物接触氧化法处理技术除了上述的生物膜降解有机物机理外,还存在与曝气池相同的活性污泥降解机理,即向微生物提供所需氧气,并搅拌污水与污泥使之混合,因此,这种技术相当于在曝气池内填充供微生物生长繁殖的栖息地——惰性填料,因此,此方法又称接触曝气法。
生物接触氧化是一种介于活性污泥法与生物滤池两者结合的生物处理技术。
因此,此方法兼具备活性污泥法与生物膜法的特点。
一、 生物接触氧化法反应器的构造生物接触氧化池要紧由池体曝气装置、填料床及进出水系统构成,如图(12-26)池体的平面形状多使用圆形,方形或者矩形,其结构由钢筋混凝土浇注或者用钢板焊制。
池体的高度通常为 4.5~5.0m ,其中填料床高度为3.0~3.5m ,底部布气高度为0.6~0.7m ,顶部稳固水层为0.5~0.6m 。
填料是生物接触氧化池的重要构成部分,它直接影响污水的处理效果。
由于填料是产生生物膜的固体介质,因此,对填料的性能有如下要求。
1、要求比表面积大、空隙率高、水流阻力小、流速均匀;2、表面粗糙、增加生物膜的附着性,并要外观形状、尺寸均一;3、化学与生物稳固性较强,经久耐用,有一定的强度;4、要就近取材,降低造价,便于运输。
目前,生物接触氧化池中常用的填料有蜂窝状填料,波纹板状填料及软性与半软性填料等,如图(12-27)所示。
曝气系统由鼓风机、空气管路、阀门及空气扩散装置构成。
目前常用的曝气装置为穿孔管,孔眼直径为5mm ,孔眼中心距为10cm 左右。
布气管通常设在填料床下部,也可设在一侧。
要求曝气装置布气均匀,并考虑到填料发生堵塞时能适当加大气量及提高冲洗能力。
接触氧化法生物接触氧化法是生物膜法的主要方法之一,生物膜法是一大类生物处理法的统称,其主要利用附着生长于某些固体物表面的微生物(即生物膜)进行有机污水处理的方法。
生物膜是由高度密集的好氧菌、厌氧菌、兼性菌、真菌、原生动物以及藻类等组成的生态系统,其附着的固体介质称为滤料或载体。
生物膜自滤料向外可分为庆气层、好气层、附着水层、运动水层。
其原理是生物膜首先吸附附着水层有机物,由好气层的好气菌将其分解,再进入厌气层进行厌气分解,流动水层则将老化的生物膜冲掉以生长新的生物膜,如此往复以达到净化污水的目的。
老化的生物膜不断脱落下来,随水流入二次沉淀被沉淀去除。
生物接触氧化法的处理构筑物是浸没曝气式生物滤池,也称生物接触氧化池。
图所示其基本流程。
生物接触氧化池内设置生物填料,生物填料淹没在废水中,生物填料上长满生物膜,废水与生物膜接触过程中,水中的有机物被微生物吸附、氧化分解和转化为新的生物膜。
从生物填料上脱落的生物膜,随水流到二沉池后被去除,废水得到净化。
在接触氧化池中,微生物所需要的氧气来自水中,而废水则自鼓人的空气不断补充失去的溶解氧。
空气是通过设在池底的曝气器进入水流,当气泡上升时向废水供应氧气,有时并借以回流池水,参见图2。
图2布气式浸没曝气生物滤池生物接触氧化法的特点:由于生物填料的比表面积大,池内的充氧条件良好。
生物接触氧化池内单位容积的生物固体量高于活性污泥法曝气池及生物滤池,因此,生物接触氧化池具有较高的容积负荷。
生物接触氧化法不需要污泥回流,也就不存在污泥膨胀问题,运行管理简便。
由于生物固体量多,水流又属完全混合型,因此生物接触氧化池对水质水量的骤变有较强的适应能力。
生物接触氧化池有机容积负荷较高时,其F/M保持在较低水平,污泥产量较少。
生物接触氧化法的优点:BOD容积负荷高,污泥生物量大,相对而言处理效率较高,而且对进水冲击负荷(水力冲击负荷及有机浓度冲击负荷)的适应力强。
停留时间短,因此在处理水量相同的条件下,所需装置的设备较小,因而占地面积小。
什么是生物接触氧化法?有何特点?
生物接触氧化法也称淹没式好氧生物滤池,是一种介于活性污泥法与生物滤池之间的生物膜法工艺。
即在曝气池中填充填料(大都为蜂窝型硬性填料或纤维型软性填料),经曝气的废水流经填料层,填料表面长满了生物膜,废水和生物膜相接触,在生物膜的作用下,使废水得到了净化。
生物接触氧化法是由氧化池体、池内填料、布水装置和曝气系统等组成的。
一般都设初级沉淀池,用以去除废水中悬浮物,改善进水水质以减轻生物接触氧化池负荷;而在氧化池后则设有二次沉淀池,以去除水中携带的悬浮固体和保证出水水质。
生物接触氧化池的供氧方法,主要采用鼓风曝气充氧方法(如图6-5-17所示)和机械表面曝气充氧方法(如图6-5-18所示)。
生物接触氧化法有如下主要特点:
①由于生物接触氧化池内装有填料,填料的比表面积很大,而池内充氧条件又良好,因此,氧化池内单位容积的固体量要高于活性污泥法曝气池和生物滤池,所以,生物接触氧化池具有较高的容积负荷,使得处理废水量大为提高。
②由于生物接触氧化池相当一部分微生物以生物膜的形式固着
生长繁殖在填料的表面上(也有部分微生物以絮状体悬浮生长于水中),氧化池不需要设污泥回流系统,也不会有污泥膨胀问题,因此运行管理方便。
③由于生物接触氧化池内微生物固体量多,当有机负荷较高时,其有机负荷比(F/M)仍可以保持在一定水平,因此污泥产量可相当于或低于活性污泥法。
④生物接触氧化法不产生滤池蝇,也不散发臭气,便于操作维护。
⑤生物接触氧化法具有脱氮除磷的功能,可用于三级废水处理。
生物接触氧化法处理技术生物接触氧化技术是生物膜法的一种形式,是在生物滤池的基础上,从接触曝气法改良演化而来的,因此有人称为“浸没式滤池法”、“接触曝气法”等。
一、生物接触氧化法与其他方法比较,具有如下特点:优点1、BOD负荷高,MLSS量大,相对地说效率较高,并且对负荷的急剧变动适应性强。
2、处理时间短。
在处理水量相同的条件下,所需装置设备小,因而占地面积小。
3、维护管理方便,无污泥回流,没有活性污泥法中所容易产生的污泥膨胀。
4、易于培菌驯化,较长时期停运后,若再运转时生物膜恢复快。
5、剩余污泥量少。
缺点1、填料上的生物膜的量需视BOD负荷而异。
BOD负荷高,则生物膜数量多;反之亦然。
因此不能借助于运转条件的变化任意地调节生物量和装置的效能。
2、生物膜量随负荷增加而增加,负荷过高,则生物膜过厚,易于堵塞填料。
所以,必须要有负荷界限和必要的防堵塞冲洗措施。
3、大量产生后生动物(如轮虫类等)。
若生物膜瞬时大块地脱落,则易影响处理水水质。
4、组合状的接触填料会影响均匀地曝气与搅拌。
二、处理机理1、主要起作用的是生物膜好气性污水处理有两种方法,一种是活性污泥法,一种是生物膜法。
从生物处理的基点——微生物转化有机物的功能来看,这两种方法的区别在于微生物存在状态的不同。
在活性污泥法中,微生物以絮状结构悬浮在所需净化的污水中,经充分混合而成为混合液;在生物膜法中,微生物以生物膜的形态附着在固体填料表面上与所需净化的污水接触。
生物接触氧化法是在生物滤池的基础上发展起来的,从生物膜固定和污水流动来说,相似于生物滤池法。
从污水充满曝气池和采用人工曝气看,它又相似于活性污泥法。
所以生物接触氧化法的特点介于生物滤池法和活性污泥法。
在生物接触氧化法中,微生物主要以生物膜状态固着在填料上,同时又有部分絮体或破碎生物膜悬浮于处理水中。
氧化池中生物膜的重量一般在6.2-14克/升之间,而活性污泥法中活性污泥重量一般在2-3克/升之间。
从微生物活性来看,生物膜的活性大于悬浮状微生物。
生物接触氧化法生物膜的耗氧率比活性污泥法高。
因此,生物接触氧化法中,承担有机物转化功能的微生物主要集中在生物膜上。
附着在填料表面的生物膜对废水的净化作用:最初稀疏的细菌附着于填料表面,随着细菌的繁殖逐渐形成很薄的生物膜。
在溶解氧和食料(有机物)都充足的条件下,微生物的繁殖十分迅速,生物膜逐渐加厚。
生物膜的厚度通常为1.5——2.0毫米,其中从表面到1.5毫米深处为好气菌。
1.5毫米深处到内表面与填料壁相连接的部分为弱厌气菌。
废水中溶解氧和有机物扩散到生物膜为好气菌利用。
但是,当生物膜长到一定厚度时,溶解氧无法像生物膜内扩散,好气菌死亡、溶化,而内层的厌气菌得以繁殖。
经过一段时间后,厌气菌在数量上亦开始下降,加上新陈代谢气体的逸出,使内层生物膜出现许多空隙,附着力减弱,终于大块脱落。
在脱落的填料表面上,新的生物膜又重新生长发展。
实际上新陈代谢过程在氧化池生物膜发展的每一个阶段都是同时存在的,这样就保证了处理构筑物去除有机物的能力,使之稳定在一个水平上。
2、兼有活性污泥法的特点生物接触氧化法的固定生物膜与一般的生物膜不同,在氧化池中采用曝气方法,不仅提较充分的溶解氧,而且由于曝气搅动加速了生物膜的更新,从而更加提高生物膜的活力和氧化能力。
另外,曝气会形成水的紊流,使固着在填料上的生物膜可以连续地、均匀地与污水相接触,避免生物滤池中存在的接触不良的缺陷。
我厂氧化池按采用推流式设置,则兼有推流式活性污泥法的特点。
水在池子内不断地延着池的纵向逐步推流至出口,使生物膜上的微生物与污水中的有机物得到充分的混合和接触,从而使污水逐渐净化,即进口端COD值最大,以后逐渐减少,出口端为最小。
氧化池不同高度的生物相情况3、生物降解有机污染物的动力学在污水的生物处理中净化反应是相当复杂的,但把它作为一个微生物反应来考虑,用数学公式加以模式化的话,则一般地可以分为BOD基质高浓度和低浓度两种情况。
当BOD(有机物)基质高浓度时,与微生物数量相比,微生物的营养物质远远超过微生物生长所需。
也就是说微生物的生长不受营养物质的限制,而受自身生理机制的限制,与微生物活度呈一次反应式。
此时,微生物是对数增殖状态,处于生长率上升阶段。
当BOD(有机物)基质低浓度时,微生物的增殖已经不再受自身生理机制的限制,而是由于BOD基质浓度低,营养不足,处于生长率下降阶段。
所以,微生物的增殖速度(伴随着BOD降解速度)由有机物浓度所左右,并服从一次反应式。
所以,生物接触氧化法兼有活性污泥法的特点。
实际中,往往根据具体情况使微生物处于生长率上升阶段后期或内原呼吸阶段。
4、生物相及其演变规律接触氧化法生物膜上的生物相是丰富的,起作用的微生物包括许多门类,由细菌、真菌、原生动物、后生动物组成比较稳定的生态系。
生物相中数量最多的生物是细菌。
它们的形态有:①游离菌。
大多为体形较小的杆状菌,有时也可能是比较大型而自身又能运动的螺旋菌。
细菌的种属因处理的污水种类不同而异,一般生长繁殖的细菌有无色杆菌属、假单孢菌属、芽孢杆菌属、产碱杆菌属等。
它们多数在挂膜培菌初期出现,然后消失。
②菌胶团。
它是低等细菌建立的胶粘物,有良好的吸附能力,对被吸附的有机物加以分解利用,使有机物无机化。
菌胶团多半呈垂丝状,也有蘑菇状、分枝状。
③丝状菌。
这是由低等细菌密切结合的高等细菌。
丝状菌多数是真菌球衣细菌,是生物膜中起重要作用的微生物。
它们的菌丝体较长,常呈乱发状。
球衣菌丝体粗细一致,固着不运动,用结晶紫染色可见衣鞘和衣鞘内的圆柱形细胞,有时还可见有假分枝。
丝状菌的繁殖和废水的硝化有着密切联系。
在生物接触氧化法中,丝状菌是固着在填料表面它的繁殖不仅不会引起活性污泥法中的那种污泥膨胀,反而使出水水质变好。
生物膜中的真菌主要是镰刀霉菌、地霉菌和各类酵母菌等。
真菌对某些人工合成的有机物(如丙烯腈等)有一定的降解能力。
在正常运行和生物膜降解能力良好是,生物相中占优势的原生动物以固着性的纤毛虫为主,如钟虫、小口钟虫、等枝虫、盖纤虫、无柄钟虫等。
有时有游泳性纤毛虫,如草履虫、豆形虫、漫游虫等。
此外还有匍匐性的楯纤虫、游仆虫,以及钟虫游泳体等。
运转稳定时,生物膜上的生物相也是相对稳定的,细菌和原生动物之间存在着制约关系。
一方面原生动物纤毛虫吞噬细菌,抑制细菌群体的蔓延;另一方面细菌被破坏后,又不断地繁殖生长,这就需要以废水中的大量有机物作为食料,从而净化了废水。
所以,原生动物纤毛虫特别是钟虫、等枝虫、盖纤虫是生物接触氧化系统运转良好的又价值的指示性生物。
在运行时,若有机物负荷或营养状况有较大变化,则原生动物的固着性钟虫、等枝虫突然消失,丝状菌稀少,菌胶团结构松散,而游泳性草履虫、钟虫游泳体大量出现,出水水质变差;反之,若原来出水水质较差,一旦出现钟虫、等枝虫,丝状菌丛生,菌胶团结构紧密,而游泳性纤毛虫减少,则说明环境条件有了改善,出水水质变好。
与活性污泥法不同的是,在生物接触氧化法中生物膜上出现了数量较多的后生动物如轮虫、线虫、红斑瓢体虫。
这些是食死肉为主的动物,能软化生物膜,促使生物膜脱落,从而经常保持活性和良好的净化功能。
当轮虫类等后生动物数量多且活跃,个体肥大,则处理后出水水质好;反之,则处理效果差。
一旦发现生物呆滞,个体死亡,则预示着处理效果即将急剧下降。
三、运转和管理主要是从影响处理效果的几个主要因素进行管理①机负荷有机负荷是反应生物接触氧化法净化效能的重要指标。
由于各种废水的浓度、组成不同,因此从广义上说,有机负荷应当包括具有抑制作用并足以影响处理效果的一切物质。
能被微生物分解的污染物质数量用BOD表示,这一数值近似地等于各种物质所能生成能量的总和,所以有机负荷是指生物接触氧化处理中单位数量微生物所能处理的BOD数量(投加的、接受的)。
有机负荷有三种不同的表示方法:单位填料容积的污染物质负荷量(填料容积负荷);单位填料面积的污染物质负荷量(填料表面积负荷);接触氧化池单位容积的污染物负荷量(氧化池容积负荷)。
常用的是填料容积负荷。
即BOD容积负荷=单位时间内供给生物膜的有机物数量(BOD)I填料总体积②PH值生物接触氧化法作为一种生物处理方法来说,环境条件对生物膜的影响是重要的,有时甚至是决定性的。
其中PH值是重要的环境因素之一。
适合于微生物生长的PH值范围如下:虽然PH值的最广范围为4—10,但由于异常的PH值能够损害细胞表面的渗透功能和细胞内的酶反应,因此适宜的PH值范围应为6—8。
生物接触氧化法对PH值的适应性比较强。
当污水的PH值为8—10时,微生物任然有适应能力,对处理效果影响不大。
PH值为10—10.5时,则对处理效果有影响。
当受到PH值冲击时(如PH值>11),微生物是不能适应的,在这种情况下反应最敏感的是生物相。
钟虫呈呆滞状态或消失,菌胶团解体,松散模糊,游离菌、豆形虫、草履虫增多。
COD和BOD去除率下降。
但是,当受到高PH值冲击后,若能及时采取措施(如加酸中和)将污水PH值调整至10以下,则生物相的恢复比活性污泥法快。
一般只需5—5天氧化池的工况即可恢复。
同样,当污水PH值为5—6时,生物接触氧化池仍然有一定的适应能力。
PH值不仅影响细菌的生长繁殖,而且影响有毒物质的含量。
如重金属离子的溶解度因PH值的不同变化很大。
此外,氨在碱性条件下形成的NH3,毒性较NH4+为强。
氰在酸性条件下形成HCN,在碱性条件下形成氰酸盐,毒性作用减弱。
总的来说,无机质由PH值左右其离子化,从而影响其毒害作用。
③接触停留时间在生物接触氧化处理条件下,氧化分解速度或硝化速度对接触时间的依赖性很大。
微生物对有机物的转化过程与微生物机体的化学过程紧密地联系着,所以,无论是将复杂的有机物分解氧化为简单的无机物,或者是比较简单的分解氧化产物合成复杂的细胞物质,都需要一定的时间。
从降低废水有机物含量这一角度来说,有机物转移到生物膜所需的时间是重要的。
这个转移实质上是将微生物对废水中的有机物吸着吸附过程。
这个转移一般能够在废水同生物膜接触后数分钟内完成。
但是,生物处理对废水中有机物的净化作用,不仅是由于生物吸附与吸着作用,更重要的是吸附吸着后的氧化分解和细胞合成作用,使有机物无机化。
被吸附在生物膜上的有机物,经氧化分解与合成全部转化为稳定物质所需时间较长(数小时乃至数十天)。
因此,处理时间愈长,微生物对有机物的吸着、吸附、降解作用愈彻底,处理水BOD残留愈小,处理效果愈好;反之亦然。
④温度温度对生物处理有一定的影响。
温度高,微生物活力强,新陈代谢旺盛,氧化愈呼吸作用强,处理效果较好;反之,温度较低,微生物的生命活动受到抑制,处理效率受到影响。
在生物接触氧化法处理废水时,由于接触停留时间比活性污泥法短,因此,处理过程中污水受气温的影响不大,主要起作用的是水温。