电磁场与电磁波
- 格式:docx
- 大小:13.88 KB
- 文档页数:1
电磁场和电磁波是物理学中的两个基本概念。
电磁波和电磁场有什么区别?
电磁场
一般来说,电磁场是指相互联系的交变电场和磁场。
电磁场是带电粒子运动产生的物理场。
在电磁场中,磁场的任何变化都会产生电场,电场的任何变化也会产生磁场。
这种交变电磁场不仅可以存在于电荷、电流或导体周围,而且可以在空间中传播。
电磁场可以看作是电场和磁场之间的联系。
电场由电荷产生,运动电荷产生磁场。
什么是电磁波
电磁场的传播构成电磁波。
又称电磁辐射,例如,我们常见的电磁波有无线电波、微波、红外线、可见光、紫外线、X射线和r射线。
这些是电磁波,但是这些电磁波有不同的波长。
其中,无线电波的波长最长,R射线的波长最短。
另外,人眼能接收到的电磁波的波长通常在380到780纳米之间,这就是我们通常所说的可见光。
一般来说,只要物体本身的温度大于绝对零度(即零下273.15摄氏度),除了暗
物质外,还会发射电磁波。
然而,没有一个物体的温度低于-273.15℃,所以可以说我们周围的物体会发射电磁波。
电磁波以光速传播。
谁最先发现电磁波的?历史上,电磁波首先由詹姆斯·麦克斯韦在1865年预言,然后在1887年至1888年由德国物理学家海因里希·赫兹证实。
展开:
《电磁场与电磁波第四版》是高等教育出版社于2006年1月出版的一本书。
作者是谢丽和饶克金。
本书可作为普通高校电子信息、通信工程、信息工程等专业电磁场和电磁波课程的教材,也可供工程技术人员参考。
RR E r B d )(=(James Clerk Maxwell 1831-1879)在自由空间ρ = 0, J c = 0∇⋅ D = 0∂B ∇× E = − ∂t∇⋅B = 0 ∂D ∇× H = ∂t微分形式∇⋅ D = ρ∂B ∇× E = − ∂t∇⋅B = 0∂ ∂ ∂ ˆ ˆ ˆ ∇=i + j +k ∂x ∂y ∂z 22∂D ∇× H = Jc + ∂t在自由空间结合ρ = 0, J c = 0∇⋅ D = 0∂B ∇× E = − ∂t∇⋅B = 0 ∂D ∇× H = ∂t和D=εE B= μH∂ E ∇ E = με 2 ∂t2 2可以得到:∂ H ∇ H = με 2 ∂t2 2 2 2 2 2∂ ∂ ∂ 其中 ∇ = 2 + 2 + 2 ∂x ∂y ∂z23电、磁分量都具有波 动特征——电磁波! 当电磁波沿x方向传播时结合D=εE B= μH∂ E ∇ E = με 2 ∂t2 2可以得到:∂ Ey ∂ Ey 2 = με 2 ∂t ∂x2 2∂ Hz ∂ Hz 2 = με 2 ∂x ∂t2 2和∂ H ∇ H = με 2 ∂t2 2其中∂ ∂ ∂ ∇ = 2+ 2+ 2 ∂x ∂y ∂z2 2 2 224电、磁分量都具有波 动特征——电磁波! 当电磁波沿x方向传播时即:若设电场方向沿y方向, 磁场必为z方向!yE yHzux∂ Ey ∂ Ey 2 = με 2 ∂t ∂x2 2z2∂ Hz ∂ Hz 2 = με 2 ∂x ∂t2 2比较波动方程电磁波 u = 波速为1∂ ξ 1 ∂ ξ 2 = 2 2 u ∂t ∂x225με*电磁波波速与光矢量* 真空中u=1μ0ε 01= 3 × 108 mcs——光速 c推测:光也是电磁波! 在介质中 u =με=n= εr c = μ rε r n n = μ rε r — 折射率在光波段μr=1 ,与物质作用的主要是 E矢量E ——通常被称为光矢量!注意:在BEC(Bose-Einstein Condensation)介质中,光的传 播速度可以慢到大约为17m/s。
电磁场和电磁波是物理学中的两个基本概念。
电磁场和电磁波有什么区别?
电磁场
一般来说,电磁场是指彼此相关的交变电场和磁场。
电磁场是由带电粒子运动产生的一种物理场。
在电磁场中,磁场的任何变化都会产生电场,而电场的任何变化都会产生磁场。
这种交变电磁场不仅可以存在于电荷,电流或导体周围,还可以在空间中传播。
电磁场可以看作是电场与磁场之间的联系。
电场是由电荷产生的,磁场是由移动电荷产生的。
什么是电磁波
电磁场的传播构成电磁波。
也称为电磁辐射,例如,我们常见的电磁波是无线电波,微波,红外线,可见光,紫外线,X射线,r射线。
这些是电磁波,但是它们具有不同的波长。
其中,无线电波的波长最长,而R射线的波长最短。
另外,人眼可以接收到的电磁波长度通常在380至780 nm之间,这就是我们通常所说的可见光。
一般来说,只要物体本身的温度大于绝对零(即负273.15℃),除暗物质外,它
还会发出电磁波。
但是,没有物体的温度低于-273.15℃,因此可以说我们周围的物体发出电磁波。
电磁波以光速传播。
谁首先发现电磁波?从历史上看,电磁波最初是由詹姆斯·麦克斯韦(James Maxwell)在1865年预测的,然后在1887年至1888年被德国物理学家海因里希·赫兹(Heinrich Hertz)确认。
扩大:
第四版《电磁场和电磁波》是谢福芳,饶克金等人于2006年1月由高等教育出版社出版的书。
本书可作为普通电子院校电子信息,通信工程,信息工程等专业的电磁场和电磁波课程的教材,也可供工程技术人员参考。
电磁场与电磁波了解电磁场与电磁波的关系电磁场和电磁波是物理学中重要的概念,它们在我们的日常生活中起着至关重要的作用。
在本文中,我们将深入探讨电磁场与电磁波之间的关系。
电磁场是指在空间中存在的电场和磁场的总和。
电场是由带电粒子产生的,它的强弱和方向由电荷的性质和位置决定。
磁场则是由运动带电粒子产生的,它的强弱和方向由电流和电流所形成的磁矢量决定。
电场和磁场通过麦克斯韦方程组相互作用,形成了电磁场。
电磁波是由电磁场传播而成的一种波动现象。
电磁波的传播速度是光速,它可以在真空中传播,也可以在各种介质中传播。
电磁波是由电场和磁场交替变化而形成的,它们垂直于彼此并且垂直于传播方向。
电磁波具有一定的频率和波长,频率越高,波长就越短。
电磁场和电磁波之间的关系可以通过麦克斯韦方程组来描述。
麦克斯韦方程组包括麦氏方程、安培环路定理和法拉第电磁感应定律。
这些方程描述了电磁场中电场和磁场的变化规律,它们揭示了电磁场与电磁波之间的密切关系。
在电磁波传播过程中,电磁场的能量以波动的形式传递。
当电磁波遇到物体时,一部分能量会被物体吸收,一部分能量会被物体散射或反射。
这就是我们日常生活中所见到的光的现象。
例如,太阳发出的光通过大气层传播到地球,然后被地面吸收或者反射,形成我们所见到的光线。
电磁波在通信领域有着广泛的应用。
无线电通信、电视和手机信号的传输都是通过电磁波实现的。
在医学领域,X射线和核磁共振等技术利用了电磁场和电磁波的特性,为医生提供了重要的诊断手段。
另外,雷达和卫星通信等领域的发展也离不开电磁场和电磁波的研究。
总之,电磁场和电磁波是相互关联的物理现象。
电磁场的变化产生了电磁波,而电磁波传播又需要电磁场的支持。
电磁场和电磁波的研究在科学研究和技术应用中具有重要意义,对于我们深入了解自然界和推动科技进步都起着不可忽视的作用。
通过对电磁场和电磁波的研究,我们能够更好地理解和利用电磁现象,促进社会的发展和进步。
希望本文能帮助读者更好地了解电磁场与电磁波之间的关系,并对其在生活和科技中的应用产生兴趣。
电磁场与电磁波知识点总结电磁场知识点总结篇一电磁场知识点总结电磁场与电磁波在高考物理中属于非主干知识点,多以选择题的形式出现,题目难度较低,属于必得分题目,重点考察考生对基本概念的理解和掌握情况。
下面为大家简单总结一下高中阶段需要大家掌握的电磁场与电磁波相关知识点。
电磁场知识点总结一、电磁场麦克斯韦的电磁场理论:变化的电场产生磁场,变化的磁场产生电场。
理解:* 均匀变化的电场产生恒定磁场,非均匀变化的电场产生变化的磁场,振荡电场产生同频率振荡磁场* 均匀变化的磁场产生恒定电场,非均匀变化的磁场产生变化的电场,振荡磁场产生同频率振荡电场* 电与磁是一个统一的整体,统称为电磁场(麦克斯韦最杰出的贡献在于将物理学中电与磁两个相对独立的部分,有机的统一为一个整体,并成功预言了电磁波的存在)二、电磁波1、概念:电磁场由近及远的传播就形成了电磁波。
(赫兹用实验证实了电磁波的存在,并测出电磁波的波速)2、性质:* 电磁波的传播不需要介质,在真空中也可以传播* 电磁波是横波* 电磁波在真空中的传播速度为光速* 电磁波的波长=波速*周期3、电磁振荡LC振荡电路:由电感线圈与电容组成,在振荡过程中,q、I、E、B 均随时间周期性变化振荡周期:T = 2πsqrt[LC]4、电磁波的发射* 条件:足够高的振荡频率;电磁场必须分散到尽可能大的'空间* 调制:把要传送的低频信号加到高频电磁波上,使高频电磁波随信号而改变。
调制分两类:调幅与调频# 调幅:使高频电磁波的振幅随低频信号的改变而改变# 调频:使高频电磁波的频率随低频信号的改变而改变(电磁波发射时为什么需要调制?通常情况下我们需要传输的信号为低频信号,如声音,但低频信号没有足够高的频率,不利于电磁波发射,所以才将低频信号耦合到高频信号中去,便于电磁波发射,所以高频信号又称为“载波”)5、电磁波的接收* 电谐振:当接收电路的固有频率跟收到的电磁波频率相同时,接受电路中振荡电流最强(类似机械振动中的“共振”)。
未知驱动探索,专注成就专业
电磁场与电磁波
电磁场是指电荷或电流产生的一种物理作用力场,包括静
电场和静磁场。
静电场是由电荷产生的力场,描述了电荷
之间的相互作用;静磁场是由运动电荷和电流产生的力场,描述了电流和磁性物质之间的相互作用。
电磁波是由电磁场在空间中传播形成的一种波动现象。
当
电荷或电流发生变化时,会激发电磁波的传播。
电磁波包
括电场和磁场的正交振动,具有电磁能量和动量,可以在
真空中传播。
电磁波的频率和波长决定了其特性。
根据频率不同,电磁
波可以分为不同的类型,包括射频波、微波、红外线、可
见光、紫外线、X射线和γ射线等。
不同类型的电磁波在
空间中的传播速度相同,都是光速的速度。
电磁场和电磁波是电磁学的重要概念,在物理学、电子学、通信技术等领域中都有广泛的应用。
1。