金属材料性能
- 格式:doc
- 大小:38.00 KB
- 文档页数:5
金属材料的性能
1)金属材料的性能
各种金属材料的性能一般包括两大类:一类叫使用性能,反映金属材料在使用过程中表现出来的特性,包括机械性能,物理性能和其他性能,它决定了金属材料的应用范围,安全可靠性和零件使用寿命。
另一方面是工艺性能,反映金属材料在加工制造过程中所表现出来的特性,如冲压性能,焊接性能,铸造性能,切削加工性能,热处理性能等,它决定了零件加工制造的难易程度。
因此,只有了解金属材料的各种性能,才能在钣金制品加工和汽车车身维修正确合理的选择和使用金属材料,达到提高维修质量,降低加工成本的目的。
2)金属材料的机械性能
(1)强度。
强度是金属材料在外力作用下抵抗变形和破坏的能力,金属材料的强度越高,表示所能承受的外力越大。
(2)屈服强度也称屈服极限,是金属材料发生屈服现象时应力。
(3)抗拉强度是指材料在抗拉伸作用时,断裂前承受的最大应力。
金属材料的性能首先,金属材料的性能指其在特定条件下的物理、化学、力学、热学等方面的表现。
常见的金属材料有钢、铝、铜、镁、锌等。
下面就这些金属材料的性能作一简要介绍。
1. 钢钢是一种铁碳合金,具有高强度、耐热、耐腐蚀、机械加工性好等优点。
其主要特点是硬度高、弹性模量大、面心立方结构等。
但是,钢的铁含量高,易生锈,而且它的塑性和韧性较差,容易产生脆性断裂。
此外,由于不同钢材的化学成分、热处理状态和制造工艺不同,其性能会有所差异。
2. 铝铝是一种轻质、耐腐蚀的金属,密度低、导热性能好、可加工性强等。
铝的主要特点是具有高强度、低密度、良好的导热性和电导率等。
此外,铝的表面可以通过氧化、着色等特殊处理而获得不同的颜色和变化,达到美化和抗氧化的作用。
但是,铝的强度和刚度相对较差。
3. 铜铜是一种传统金属材料,具有高导电性、高热导性、良好的导磁性、良好的加工性等。
它的主要特点有良好的导电性、导热性和塑性等,具有优异的可加工性和冲压性。
但是,铜的密度较大、强度较低,容易氧化和变形。
4. 镁镁是一种轻金属,密度轻、强度高、刚度高,具有良好的加工性和耐腐蚀性等优点。
其主要特点是密度低,强度高,具有良好的刚性和韧性,能耐受高温,而且具有良好的可塑性和可加工性等。
但是,在常温下易受到腐蚀,所以需要进行特殊的表面处理。
5. 锌锌是一种富含金属,密度小、耐腐蚀、防氧化,满足了先进电子工业、新型材料和化学工业的需要。
其主要特点是耐腐蚀、良好的可加工性和防护性等。
但是,锌易受到热膨胀和浸蚀,环境因素、温度、湿度等因素都会影响锌的性能。
综上所述,除了同属于金属材料之外,不同的金属材料具有不同的物理、力学、化学等性能,在应用过程中必须仔细考虑各自的长处和短处,选用合适的材料。
同时我们也可以以不同的方式替代问题所在的金属材料,因为新的技术发展出了许多在不同环境中耐腐蚀、更加轻便、性能更好的材料。
常用金属材料及性能金属材料是指具有金属结构特征(金属键)并具有金属特性的材料,具有优良的导热、导电、强度高、可塑性好、耐腐蚀等特点。
金属材料在工业生产和日常生活中广泛应用,下面将介绍一些常用的金属材料及其性能。
1.钢铁钢铁是最常用的金属材料之一、其主要成分是铁和一定的碳(碳含量小于2%)。
钢的特点是强度高、韧性好、可塑性好、耐磨、耐蚀,适用于制造各种建筑结构、机械零件、工具以及车辆等。
2.铝铝是一种轻质金属,具有优良的导热、导电性能。
铝材料还具有耐腐蚀、可塑性好、焊接性强等特点。
由于其重量轻、易于加工,因此广泛应用于汽车、飞机、电子产品、建筑等领域。
3.铜铜是一种具有良好导电性能的金属材料。
铜具有优良的导热、电导性能,同时还具有耐腐蚀、可塑性好等特点。
铜材料广泛应用于电器、导线、制冷设备、建筑等领域。
4.锌锌是一种具有反腐蚀性能的金属材料。
锌具有良好的耐腐蚀性,可以用于制造防腐蚀材料、镀锌钢板等。
此外,锌还可以用于制造合金,如黄铜(铜与锌的合金)、锌铝合金等。
5.镁镁是一种具有轻质、高强度的金属材料。
镁具有良好的机械性能和耐腐蚀性能,可用于制造飞机、汽车、运动器材等。
除了上述常用的金属材料,还有一些其他金属材料也具有重要的应用价值,如钛、银、金等。
钛具有重量轻、耐高温、抗腐蚀等特点,广泛应用于航空航天、医疗器械等领域。
银具有良好的导电性和导热性能,广泛应用于电子、光学器件等。
金具有高导电性、耐腐蚀性以及良好的韧性,用于珠宝、电子器件等。
总之,金属材料具有众多优点,适用于各种工业领域和日常生活中。
不同的金属材料有不同的特点和应用范围,根据具体需求选择合适的金属材料可以提高生产效率和产品质量。
金属材料金属材料的性能与应用金属材料的性能与应用金属材料是最常用的结构材料之一,其优异的性能使其在各个领域得到广泛应用。
本文将从金属材料的特性、性能和应用方面进行探讨。
一、金属材料的特性金属材料具有以下几个基本特性:1. 密度高:金属材料的原子排列较为紧密,因此其密度相对较高。
这使得金属材料在构造强度要求较高的场合得到应用,在航空航天、汽车制造等领域发挥着重要作用。
2. 导电性好:金属材料具有良好的导电性能,电子在金属中的传输速度快。
因此,金属材料广泛应用于电子元器件、电力输送以及通信等领域。
3. 导热性优异:金属材料具有优异的导热性能,能够快速传导热量。
这使得金属材料在制造散热器、热交换器等热传导要求高的设备中得到广泛应用。
4. 强度高:金属材料的强度较高,能够承受较大的载荷和应力。
这使得金属材料成为制造机械零件、桥梁等要求高强度的结构材料。
二、金属材料的性能金属材料的性能主要包括力学性能、物理性能和化学性能三个方面。
1. 力学性能:金属材料的力学性能包括强度、韧性、塑性等指标。
强度是指材料抵抗外力破坏的能力,韧性是指材料在受力作用下能够吸收较大的能量而不破断的性质,塑性是指材料受力后能够发生可逆形变的能力。
2. 物理性能:金属材料的物理性能包括热膨胀系数、热导率和电阻率等。
热膨胀系数是指材料在温度变化时长度或体积的变化程度,热导率是指材料导热的能力,电阻率是指材料电阻导电的能力。
3. 化学性能:金属材料的化学性能包括耐腐蚀性能和氧化性能等。
耐腐蚀性能是指金属材料在与介质接触时的抗腐蚀能力,氧化性能是指金属材料在氧气环境下的抗氧化能力。
三、金属材料的应用由于金属材料特性的优异,其应用范围广泛。
1. 结构材料:金属材料在建筑、桥梁、汽车、飞机等领域中作为结构材料使用,用于承担载荷和保证结构强度。
2. 电子领域:金属材料在电子器件、电缆、导线等领域中得到广泛应用,由于其导电性能优异,能够传输电流和信号。
金属材料的性能有哪些金属材料是一类常见的材料,其性能多种多样,具有许多优秀的特点,下面将从强度、塑性、硬度、导电性和导热性等方面进行介绍。
首先,金属材料的强度是其最重要的性能之一。
金属材料通常具有较高的强度,可以承受较大的外部载荷而不会发生破坏。
这使得金属材料成为制造结构件和机械零件的理想选择。
例如,钢材具有较高的抗拉强度和屈服强度,因此被广泛应用于建筑结构和汽车制造等领域。
其次,金属材料的塑性也是其重要性能之一。
金属材料具有良好的塑性,可以在外力作用下发生塑性变形而不断裂。
这使得金属材料可以通过锻造、拉伸、压缩等加工工艺成型各种复杂的零部件。
例如,铝材具有良好的塑性,可以通过挤压工艺制成各种型材和零件,广泛应用于航空航天和汽车制造领域。
此外,金属材料的硬度也是其重要性能之一。
金属材料通常具有一定的硬度,可以抵抗外部物体对其表面的划伤和磨损。
这使得金属材料可以用于制造刀具、轴承、齿轮等需要较高硬度的零件。
例如,不锈钢具有较高的硬度和耐磨性,因此被广泛应用于厨具和机械零件制造。
另外,金属材料具有良好的导电性和导热性。
金属材料中的自由电子可以在外加电场或温度梯度下自由移动,因此金属材料具有良好的导电性和导热性。
这使得金属材料可以广泛应用于电气设备和热传导设备中。
例如,铜材具有良好的导电性和导热性,因此被广泛应用于电线、电缆和散热器等领域。
综上所述,金属材料具有良好的强度、塑性、硬度、导电性和导热性等优秀性能,因此在工程领域中得到了广泛的应用。
随着材料科学的不断发展,金属材料的性能将会得到进一步提升,为各行各业的发展提供更加可靠的支持。
24种常用金属材料的性能和用途1、45——优质碳素结构钢,是最常用中碳调质钢主要特征: 最常用中碳调质钢,综合力学性能良好,淬透性低,水淬时易生裂纹。
小型件宜采用调质处理,大型件宜采用正火处理。
应用举例: 主要用于制造强度高的运动件,如透平机叶轮、压缩机活塞。
轴、齿轮、齿条、蜗杆等。
焊接件注意焊前预热,焊后消除应力退火。
2、Q235A(A3钢)——最常用的碳素结构钢主要特征: 具有高的塑性、韧性和焊接性能、冷冲压性能,以及一定的强度、好的冷弯性能。
应用举例: 广泛用于一般要求的零件和焊接结构。
如受力不大的拉杆、连杆、销、轴、螺钉、螺母、套圈、支架、机座、建筑结构、桥梁等。
3、40Cr——使用最广泛的钢种之一,属合金结构钢主要特征: 经调质处理后,具有良好的综合力学性能、低温冲击韧度及低的缺口敏感性,淬透性良好,油冷时可得到较高的疲劳强度,水冷时复杂形状的零件易产生裂纹,冷弯塑性中等,回火或调质后切削加工性好,但焊接性不好,易产生裂纹,焊前应预热到100~150℃,一般在调质状态下使用,还可以进行碳氮共渗和高频表面淬火处理。
应用举例:调质处理后用于制造中速、中载的零件,如机床齿轮、轴、蜗杆、花键轴、顶针套等,调质并高频表面淬火后用于制造表面高硬度、耐磨的零件,如齿轮、轴、主轴、曲轴、心轴、套筒、销子、连杆、螺钉螺母、进气阀等,经淬火及中温回火后用于制造重载、中速冲击的零件,如油泵转子、滑块、齿轮、主轴、套环等,经淬火及低温回火后用于制造重载、低冲击、耐磨的零件,如蜗杆、主轴、轴、套环等,碳氮共渗处即后制造尺寸较大、低温冲击韧度较高的传动零件,如轴、齿轮等。
4、HT150——灰铸铁应用举例:齿轮箱体,机床床身,箱体,液压缸,泵体,阀体,飞轮,气缸盖,带轮,轴承盖等。
5、35——各种标准件、紧固件的常用材料主要特征: 强度适当,塑性较好,冷塑性高,焊接性尚可。
冷态下可局部镦粗和拉丝。
淬透性低,正火或调质后使用应用举例: 适于制造小截面零件,可承受较大载荷的零件:如曲轴、杠杆、连杆、钩环等,各种标准件、紧固件。
金属材料性能
金属材料是一类以金属元素为主要成分的材料,具有许多独特的性能。
以下将介绍几种常见的金属材料性能:
1. 导电性能:金属材料是良好的导电材料,因为金属具有自由电子。
这使得金属在电流的通导能力上表现出色,被广泛应用于电力输送、电子设备和电子电路中。
2. 导热性能:金属材料具有很高的导热性能,可以快速传导热量。
这使得金属材料常用于导热器、散热器和制冷设备等需要快速传热的应用。
3. 强度和硬度:金属材料通常具有较高的强度和硬度,可以经受较大的外力作用而不容易变形或破裂。
这使得金属材料适用于承受重负荷和高强度工作环境的结构材料,如建筑桥梁、汽车零部件等。
4. 塑性:金属材料具有较好的塑性,即在外力作用下具有可塑性,能够发生一定的塑性变形。
这使得金属材料易于加工成各种形状,如拉伸、压缩和弯曲等,广泛应用于制造业中。
5. 耐腐蚀性能:许多金属材料具有良好的耐腐蚀性能,可以抵御一些腐蚀介质的侵蚀,因此适用于制造耐腐蚀设备和结构,如化工设备、海洋工程等。
6. 密度:金属材料的密度通常较大,但相比于其他一些材料,如陶瓷和聚合物材料,金属材料的密度相对较低。
这使得金属
材料适用于需要同时满足强度和轻量化要求的应用,如航空航天和汽车制造等。
7. 熔点:金属材料的熔点通常较高,使其能够在高温下保持其结构和性能的稳定性。
这使得金属材料可以应用于高温环境和高温工艺中,如航空发动机部件、高温炉子等。
总的来说,金属材料具有导电性、导热性、强度和硬度、塑性、耐腐蚀性、密度和熔点等特点,使其在工程领域中有着广泛的应用。
常用金属材料的特性
1.强度高:金属材料通常具有较高的强度,能够经受外部荷载和变形
而不发生破坏。
这使得金属材料被广泛应用于工程结构中,如建筑、桥梁、飞机和汽车等。
2.韧性好:金属材料具有良好的韧性,能够在应力作用下发生塑性变
形而不发生破裂。
这种特性使得金属材料具有较高的吸能能力,能够吸收
冲击和振动,保护其他结构或设备免受损坏。
3.导电性好:金属材料是优良的导电体,电子在金属中能够自由移动。
这使得金属材料广泛应用于电子设备、电力输送和通信等领域。
4.导热性好:金属材料对热能的传导具有良好的特性,可以快速将热
能传递出去。
这使得金属材料可用作散热器和热交换器等设备,以提高能
量效率和保护其他组件。
5.可塑性好:金属材料能够经受外力作用发生塑性变形,可以通过压力、拉伸和弯曲等加工方法进行成型。
这使得金属材料成为制造工业常用
的选材。
6.耐腐蚀性好:许多金属材料具有良好的抗腐蚀性能,能够抵抗大气、水、酸、碱等化学介质和腐蚀性气体的侵蚀。
这使得金属材料在各种恶劣
环境下都有广泛的应用,如海洋、化工和食品加工等行业。
7.成本低:相对于其他材料,金属材料价格相对较低,且易于获取和
加工。
这使得金属材料成为经济实惠的选材,并得到广泛应用。
总而言之,常用金属材料具有高强度、良好的韧性、导电性、导热性和可塑性等优良特性,且耐腐蚀性好、成本低廉。
这些特性使得金属材料在各个领域都有广泛的应用,是现代工业发展不可或缺的重要材料。
金属材料的性能决定着材料的适用范围及应用的合理性。
金属材料的性能主要分为四个方面,即:机械性能、化学性能、物理性能、工艺性能。
一.机械性能(一)应力的概念物体内部单位截面积上承受的力称为应力。
由外力作用引起的应力称为工作应力,在无外力作用条件下平衡于物体内部的应力称为内应力(例如组织应力、热应力、加工过程结束后留存下来的残余应力…等等)。
(二)机械性能金属在一定温度条件下承受外力(载荷)作用时,抵抗变形和断裂的能力称为金属材料的机械性能(也称为力学性能)。
金属材料承受的载荷有多种形式,它可以是静态载荷,也可以是动态载荷,包括单独或同时承受的拉伸应力、压应力、弯曲应力、剪切应力、扭转应力,以及摩擦、振动、冲击等等,因此衡量金属材料机械性能的指标主要有以下几项:1.强度这是表征材料在外力作用下抵抗变形和破坏的最大能力,可分为抗拉强度极限(σb)、抗弯强度极限(σbb)、抗压强度极限(σbc)等。
由于金属材料在外力作用下从变形到破坏有一定的规律可循,因而通常采用拉伸试验进行测定,即把金属材料制成一定规格的试样,在拉伸试验机上进行拉伸,直至试样断裂,测定的强度指标主要有:(1)强度极限:材料在外力作用下能抵抗断裂的最大应力,一般指拉力作用下的抗拉强度极限,以σb表示,如拉伸试验曲线图中最高点b对应的强度极限,常用单位为兆帕(MPa),换算关系有:1MPa=1N/m2=(9.8)-1Kgf/mm2或1Kgf/mm2=9.8MPa σb=Pb/Fo式中:Pb–至材料断裂时的最大应力(或者说是试样能承受的最大载荷);Fo–拉伸试样原来的横截面积。
(2)屈服强度极限:金属材料试样承受的外力超过材料的弹性极限时,虽然应力不再增加,但是试样仍发生明显的塑性变形,这种现象称为屈服,即材料承受外力到一定程度时,其变形不再与外力成正比而产生明显的塑性变形。
产生屈服时的应力称为屈服强度极限,用σs表示,相应于拉伸试验曲线图中的S点称为屈服点。
金属材料特性金属材料是一类拥有许多独特特性的材料,主要由金属元素组成,具有导电、导热、高延展性、高强度等特点。
以下是金属材料的主要特性:1. 导电性:金属材料是良好的导电体,电子在金属内部能够自由移动,形成电流。
这使得金属广泛应用于电线、电路板等导电部件的制造。
2. 导热性:金属材料具有良好的导热性能,能够迅速传导热量。
这使得金属成为散热器、发动机等需要快速散热的设备的重要材料。
3. 高延展性:金属材料可以经受较大的拉力而不破裂,能够被拉伸成细丝或薄膜。
这使得金属材料具有良好的延展性和可塑性,可以制造出各种形状的产品。
4. 高强度:金属材料具有较高的强度,能够承受较大的力,不易断裂。
这使得金属材料成为建筑、航空航天等领域常用的结构材料。
5. 良好的韧性:金属材料具有良好的韧性,能够在遭受撞击或挤压等外力时不易断裂。
这使得金属制品具有较高的耐久性和使用寿命。
6. 可融性:金属材料具有良好的可融性,可以在一定温度范围内熔化成液体。
这使得金属可以通过熔融工艺进行铸造、锻造等制造过程。
7. 耐腐蚀性:大多数金属具有一定的耐腐蚀性,能够抵抗氧化、腐蚀和酸碱等介质的侵蚀。
这使得金属在化工设备、海洋工程等恶劣环境中广泛应用。
8. 可回收性:金属材料具有良好的可回收性,可以通过熔炼和再加工等方法,重新制造新的金属制品。
这符合环保意识的提升,减少了资源的浪费。
9. 磁性:部分金属材料具有磁性,能够吸引铁磁物质。
这使得金属广泛用于磁性材料的制造和电磁设备的应用。
综上所述,金属材料具有导电导热、高延展性、高强度、韧性好、耐腐蚀、可融性、可回收等多种特性,使其在各个领域都有广泛的应用。
同时,这些特性也决定了金属材料的独特价值和重要性。
金属材料的性能金属材料的性能分为使用性能和工艺性能。
●使用性能是指金属材料为保证机械零件或工具正常工作应具备的性能,即在使用过程中所表现出的特性。
金属材料的使用性能包括力学性能、物理性能和化学性能等;●工艺性能是指金属材料在制造机械零件和工具的过程中,适应各种冷加工和热加工的性能。
工艺性能也是金属材料采用某种加工方法制成成品的难易程度,它包括铸造性能、锻造性能、焊接性能、热处理性能及切削加工性能等。
一、金属材料的力学性能●金属材料的力学性能是指金属材料在力作用下所显示的与弹性和非弹性反应相关或涉及应力──应变关系的性能,如强度、塑性、硬度、韧性、疲劳强度等。
●物体受外力作用后导致物体内部之间相互作用的力,称为内力。
●单位面积上的内力,称为应力σ(N/mm2)。
●应变є是指由外力所引起的物体原始尺寸或形状的相对变化(%)。
金属材料的力学性能主要有:强度、刚度、塑性、硬度、韧性和疲劳强度等。
(一)强度与塑性●金属材料在力的作用下,抵抗永久变形和断裂的能力称为强度。
●塑性是指金属材料在断裂前发生不可逆永久变形的能力。
金属材料的强度和塑性指标可以通过拉伸试验测得。
1.拉伸试验●拉伸试验是指用静拉伸力对试样进行轴向拉伸,测量拉伸力和相应的伸长,并测其力学性能的试验。
(1)拉伸试样。
拉伸试样通常采用圆柱形拉伸试样,分为短试样和长试样两种。
长试样L0=10d0;短试样L0=5d0。
a)拉断前 b)拉断后图1-5 圆形拉伸试样(2)试验方法。
2.力伸长曲线●在进行拉伸试验时,拉伸力F和试样伸长量△L之间的关系曲线,称为力伸长曲线。
试样从开始拉伸到断裂要经过弹性变形阶段、屈服阶段、变形强化阶段、缩颈与断裂四个阶段。
图1-7 退火低碳钢力伸长曲线3.强度指标金属材料的强度指标主要有:屈服点σs、规定残余伸长应力σ0.2、抗拉强度σb等。
(1)屈服点和规定残余延伸应力。
●屈服点是指试样在拉伸试验过程中力不增加(保持恒定)仍然能继续伸长(变形)时的应力。
金属材料的性能金属材料是工程材料中应用最广泛的一类材料,其性能直接影响着材料在工程中的应用效果。
金属材料的性能主要包括力学性能、物理性能、化学性能和加工性能等方面,下面将对这些性能进行详细介绍。
首先,力学性能是金属材料的重要性能之一。
力学性能包括强度、硬度、韧性、塑性和疲劳性能等指标。
强度是材料抵抗外部力量破坏的能力,硬度是材料抵抗局部变形和切削的能力,韧性是材料抵抗断裂的能力,塑性是材料在受力作用下发生形变的能力,疲劳性能是材料在受交变载荷作用下抵抗疲劳破坏的能力。
这些力学性能指标直接影响着金属材料在工程中的承载能力和使用寿命。
其次,物理性能是金属材料的另一个重要性能。
物理性能包括密度、导热性、导电性、热膨胀系数等指标。
密度是材料单位体积的质量,导热性是材料传导热量的能力,导电性是材料传导电流的能力,热膨胀系数是材料在温度变化时的膨胀程度。
这些物理性能指标影响着金属材料在工程中的热传导、电传导和尺寸稳定性等方面的应用效果。
此外,化学性能也是金属材料的重要性能之一。
化学性能包括耐蚀性、耐热性、耐磨性等指标。
耐蚀性是材料抵抗化学介质侵蚀的能力,耐热性是材料在高温环境下保持稳定性的能力,耐磨性是材料抵抗磨损的能力。
这些化学性能指标直接影响着金属材料在恶劣环境下的使用寿命和稳定性。
最后,加工性能也是金属材料的重要性能之一。
加工性能包括可焊性、可切削性、可锻性、可淬火性等指标。
可焊性是材料在焊接过程中的适应性,可切削性是材料在切削加工中的易加工性,可锻性是材料在锻造加工中的变形性,可淬火性是材料在热处理过程中的适应性。
这些加工性能指标直接影响着金属材料在工程加工过程中的加工性能和加工效率。
综上所述,金属材料的性能包括力学性能、物理性能、化学性能和加工性能等多个方面,这些性能指标直接影响着金属材料在工程中的应用效果。
因此,在工程设计和材料选择过程中,需要充分考虑金属材料的各项性能指标,以确保材料能够满足工程的要求,提高工程的质量和可靠性。
1.金属材料的性能金属材料的性能分为使用性能和工艺性能。
使用性能是指金属材料在使用过程中反映出来的特性,它决定金属材料的应用范围、安全可靠性和使用寿命。
使用性能又分为机械性能、物理性能和化学性能。
工艺性能是指金属材料在制造加工过程中反映出来的各种特性,是决定它是否易于加工或如何进行加工的重要因素。
在选用金属材料和制造机械零件时,主要考虑机械性能和工艺性能。
在某些特定条件下工作的零件,还要考虑物理性能和化学性能。
1.1金属材料的机械性能各种机械零件或者工具,在使用时都将承受不同的外力,如拉力、压力、弯曲、扭转、冲击或摩擦等等的作用。
为了保证零件能长期正常的使用,金属材料必须具备抵抗外力而不破坏或变形的性能,这种性能称为机械性能。
即金属材料在外力作用下所反映出来的力学性能。
金属材料的机械性能是零件设计计算、选择材料、工艺评定以及材料检验的主要依据。
不同的金属材料表现出来的机械性能是不一样的。
衡量金属材料机械性能的主要指标有强度、塑性、硬度、韧性和疲劳强度等。
1.1.1 强度金属材料在外力作用下抵抗变形和断裂的能力称为强度。
按外力作用的方式不同,可分为抗拉强度、抗压强度、抗弯强度和抗扭强度等。
一般所说的强度是指抗拉强度。
它是用金属拉伸试验方法测出来的。
1.1.2 刚性与弹性金属材料在外力作用下,抵抗弹性变形的能力称为刚性。
刚性的大小可用材料的弹性模量(E)表示。
弹性模量是金属材料在弹性变形范围内的规定非比例伸长应力(ζρ)与规定非比例伸长率(ερ)的比值。
所以材料的弹性模量(E)愈大,刚性愈大,材料愈不易发生弹性变形。
但必须注意的是:材料的刚性与零件的刚度是不同的,零件的刚度除与材料的弹性模量有关外,还与零件的断面形状和尺寸有关。
例如,同一种材料的两个零件,弹性模量E 虽然相同,但断面尺寸大的零件不易发生弹性变形,而断面尺寸小的零件则易发生弹性变形。
零件在使用过程中,一般处于弹性变形状态。
对于要求弹性变形小的零件,如泵类主轴、往复机的曲轴等,应选用刚性较大的金属材料。
金属材料性能指标大全1.强度:金属材料的强度是指其抵抗外力作用下变形或破坏的能力。
通常用屈服强度、抗拉强度、硬度等指标来衡量。
2.韧性:金属材料的韧性是指其抵抗断裂和破坏的能力。
韧性较好的金属材料在受力时能够发生塑性变形而不易断裂。
3.塑性:金属材料的塑性是指其在受力作用下能够发生可逆的塑性变形的能力。
塑性变形具有可塑性、持久性和无恢复性等特点。
4.硬度:金属材料的硬度是指其抵抗外力侵蚀或抵抗硬物压入的能力,通常通过维氏硬度、布氏硬度、洛氏硬度等指标来表示。
5.耐磨性:金属材料的耐磨性是指其在与其他物体接触时能够减少磨损的能力。
6.耐腐蚀性:金属材料的耐腐蚀性是指其在与腐蚀性介质接触时能够保持物理性能和化学性能不发生明显变化的能力。
7.导电性:金属材料的导电性指的是其传导电流的能力。
8.导热性:金属材料的导热性是指其传导热量的能力。
9.可加工性:金属材料的可加工性是指其在成型过程中能够满足要求的能力,如锻造、拉伸、轧制等。
10.焊接性:金属材料的焊接性是指其在焊接过程中能够实现良好的焊接接头。
11.可靠性:金属材料的可靠性是指其在长期使用过程中能够保持稳定的性能和寿命。
12.密度:金属材料的密度是指单位体积内所含质量的多少,是评估材料重量的重要指标。
13.熔点:金属材料的熔点是指其从固态转变为液态所需的温度,熔点高的金属在高温环境下具有较好的稳定性。
14.热膨胀系数:金属材料的热膨胀系数是指其单位温度变化时长度或体积的变化量。
15.磁性:金属材料的磁性可以分为磁导率、磁饱和、矫顽力等指标。
16.寿命:金属材料的寿命是指其在一定条件下能够保持正常工作的时间。
17.耐高温性:金属材料的耐高温性是指其在高温环境下能够保持稳定性能和结构完整性的能力。
18.疲劳性能:金属材料的疲劳性能是指其在交替或交变载荷下,经过多次应力循环后产生疲劳破坏的特性。
19.特殊功能:金属材料中的一些合金可能具有特殊功能,如耐磁、防辐射、防腐蚀等。