数值分析上机题课后作业全部-东南大学
- 格式:docx
- 大小:70.83 KB
- 文档页数:19
2015.1.9
上机作业题报告
USER
1.Chapter 1
1.1题目
设S N =∑1
j 2−1
N j=2
,其精确值为
)1
1123(21+--N N 。 (1)编制按从大到小的顺序1
1
1311212
22-+⋯⋯+-+-=N S N ,计算S N 的通用程序。 (2)编制按从小到大的顺序1
21
1)1(111222-+
⋯⋯+--+-=
N N S N ,计算S N 的通用程序。
(3)按两种顺序分别计算64210,10,10S S S ,并指出有效位数。(编制程序时用单精度) (4)通过本次上机题,你明白了什么?
1.2程序
1.3运行结果
1.4结果分析
按从大到小的顺序,有效位数分别为:6,4,3。 按从小到大的顺序,有效位数分别为:5,6,6。
可以看出,不同的算法造成的误差限是不同的,好的算法可以让结果更加精确。当采用从大到小的顺序累加的算法时,误差限随着N 的增大而增大,可见在累加的过程中,误差在放大,造成结果的误差较大。因此,采取从小到大的顺序累加得到的结果更加精确。
2.Chapter 2
2.1题目
(1)给定初值0x 及容许误差ε,编制牛顿法解方程f(x)=0的通用程序。
(2)给定方程03
)(3
=-=x x
x f ,易知其有三个根3,0,3321=
*=*-=*x x x
○1由牛顿方法的局部收敛性可知存在,0>δ当),(0δδ+-∈x 时,Newton 迭代序列收敛于根x2*。试确定尽可能大的δ。
○2试取若干初始值,观察当),1(),1,(),,(),,1(),1,(0+∞+-----∞∈δδδδx 时Newton 序列的收敛性以及收敛于哪一个根。
(3)通过本上机题,你明白了什么?
2.2程序
2.3运行结果
(1)寻找最大的δ值。
算法为:将初值x0在从0开始不断累加搜索精度eps,带入Newton迭代公式,直到求得的根不再收敛于0为止,此时的x0值即为最大的sigma值。运行Find.m,得到在不同的搜索精度下的最大sigma值。
可见,在(−∞,−1)区间内取初值,Newton序列收敛,且收敛于根−√3。
可见,在(−1,−δ)内取初值,Newton序列收敛,且收敛于根√3。
可见,在(−δ,δ)内取初值,Newton序列收敛,且收敛于根0。
可见,在(δ,1)内取初值,Newton序列收敛,且收敛于根−√3
可见,在(1,+∞)内取初值,Newton序列收敛,且收敛于根√3
3.Chapter 3
3.1题目
对于某电路的分析,归结为求解线性方程组RI=V,其中
31130
001000013359011000009311000000001079300009000305770500
0007473000000003041000
0005002720009000229R --⎛⎫ ⎪--- ⎪ ⎪-- ⎪--- ⎪ ⎪=--- ⎪
-- ⎪ ⎪- ⎪
-- ⎪ ⎪--⎝⎭
()15,27,23,0,20,12,7,7,10T
T V =----
(1)编制解n 阶线性方程组Ax =b 的列主元高斯消去法的通用程序;
(2)用所编程序线性方程组RI =V ,并打印出解向量,保留5位有效数字; (3)本题编程之中,你提高了哪些编程能力?
3.2程序
3.3运行结果
可看出,算得的该线性方程组的解向量为:
[-0.28923 0.34544 -0.71281 -0.22061 -0.4304 0.15431 -0.057823 0.20105 0.29023] 4.Chapter 4
4.1题目
(1)编制求第一型3次样条插值函数的通用程序;
(2)已知汽车门曲线型值点的数据如下:
端点条件为y010
S(i+0.5),i=0,1, (9)
4.2程序
4.3运行结果
5.Chapter 5
5.1题目
用Romberg求积法计算积分
∫
1
1+100x2
dx
1
−1的近似值,要求误差不超过0.5×10−7。
5.2程序
5.3运行结果
5.4结果分析
手动化简该定积分并最终求得的值为:0.294225534860747,误差限为:3.486×10−8,可见,程序完成了计算要求。
6.Chapter 6
6.1题目
常微分方程初值问题数值解
(1)编制RK4方法的通用程序;
(2)编制AB4方法的通用程序(由RK4提供初值);
(3)编制AB4-AM4预测校正方法通用程序(由RK4提供初值);
(4)编制带改进的AB4-AM4预测校正方法通用程序(由RK4提供初值);
(5)对于初值问题
{y ′=−x 2y 2y (0)=3
取步长h=0.1,应用(1)-(4)中的四种方法进行计算,并将计算结果和精确解y (x )=3/(1+x 3)作比较;
(6)通过本上机题,你能得到哪些结论?
6.2程序
6.3运行结果(1)RK4法
6.4结果分析
从每一种方法的计算误差可以看出,精度由高到低依次是:RK4法、改进的AB4-AM4法、AB4-AM4法、AB4法。