2018浙江省学考数学试题(含答案)
- 格式:pdf
- 大小:867.97 KB
- 文档页数:3
2018年4月浙江省学考数学试卷及答案满分100分,考试卷时间80分钟一、选择题(本大题共18小题,每小题3分,共54分。
每小题列出的四个选项中只有一个是符合题目要求的,不选、多选、错选均不得分。
) 1.已知集合{}{}01,23P x x Q x x =≤<=≤<记M PQ =,则A.{}M ⊆2,1,0B.{}M ⊆3,1,0C.{}M ⊆3,2,0D.{}M ⊆3,2,1 2. 函数xx x f 1)(+=的定义域是 A.{}0>x x B.{}0≥x x C.{}0≠x x D.R 3. 将不等式组⎩⎨⎧≥-+≥+-0101y x y x ,表示的平面区域记为Ω,则属于Ω的点是A.(3,1)-B.)3,1(-C.)3,1(D.)1,3( 4. 已知函数)3(log )3(log )(22x x x f -++=,则=)1(fA.1B.6log 2C.3D.9log 25. 双曲线1322=-y x 的渐近线方程为 A.x y 31±= B.x y 33±= C.x y 3±= D.x y 3±= 6. 如图,在正方体1111D C B A ABCD -中,直线C A 1与平面ABCD 所成角的余弦值是A.31B.33C.32D.367. 若锐角α满足53)2πsin(=+α,则=αsinA.52 B.53 C.43 D.548.在三棱锥ABC O -中,若D 为BC 的中点,则=ADA.1122OA OC OB +- B. 1122OA OB OC ++ C.1122OB OC OA +- D. 1122OB OC OA ++9. 设{}n a ,{}n b )N (*∈n 是公差均不为零的等差数列.下列数列中,不构成等差数列的是A.{}n n a b ⋅B.{}n n a b +C.{}1n n a b ++D.{}1n n a b +- ABC D 1A1D 1C 1B(第6题图)A. ⎭⎬⎫⎩⎨⎧<<-313x x B. ⎭⎬⎫⎩⎨⎧<<-331x x C. ⎭⎬⎫⎩⎨⎧>-<31,3x x x 或 D. ⎭⎬⎫⎩⎨⎧>-<3,31x x x 或11.用列表法将函数)(x f 表示为 ,则A.)2(+x f 为奇函数B. )2(+x f 为偶函数C.)2(-x f 为奇函数D. )2(-x f 为偶函数 12.如图,在直角坐标系xOy 中,坐标轴将边长为4的正方形ABCD 分割成四个小正方形.若大圆为正方形ABCD 的外接圆,四个小圆分别为四个小正方形的内切圆,则图中某个圆的方程是A.01222=++-+y x y x B.012222=+-++y x y x C.01222=-+-+y x y x D.012222=-+-+y x y x 13. 设a 为实数,则“21aa >”是“a a 12>”的 A.充分不必要条件 B. 必要不充分条件C.充分必要条件D. 既不充分也不必要条件14. 在直角坐标系xOy 中,已知点)1,0(-A ,)0,2(B ,过A 的直线交x 轴于点)0,(a C ,若直线AC 的倾斜角是直线AB 倾斜角的2倍,则=aA.14 B.34 C.1 D.4315. 甲、乙两个几何体的三视图分别如图①、图②所示,分别记它们的表面积为乙甲,S S ,体积为乙甲,V V ,则A.乙甲乙甲,V V S S >>B. 乙甲乙甲,V V S S <>C.乙甲乙甲,V V S S ><D. 乙甲乙甲,V V S S <<22y x ABCDxy oa a a a正视图a a 侧视图俯视图 15题图①)aa a aaa 侧视图15题图②)点B A ,分别为椭圆的右顶点和上顶点,O 为坐标原点.若△OAB 的积是△OPF 面积的52倍,则该椭圆的离心率是 A.52或53B.51或54C. 510或515D.55或55217.设a 为实数,若函数a x x x f +-=22)(有零点,则函数)]([x f f y =零点的个数是A.1或3B. 2或3C. 2或4D.3或4 18.如图,设矩形ABCD 所在平面与梯形ACEF 所在平面相交于AC ,若3,1==BC AB ,1===EC FE AF ,则下列二面角的平面角的大小为定值的是A. C AB F --B. D EF B --C. C BF A --D. D AF B --二、填空题(本大题共4小题,每空3分,共15分.) 19.已知函数()sin(2)13f x x π=++,则()f x 的最小正周期是 ▲ ,的最大值是 ▲ . 20. 若平面向量,a b 满足()21,6a b +=,2(4,9)a b +=-,则a b ⋅= ▲ .21. 在△ABC 中,已知2=AB ,3=AC ,则C cos 的取值范围是 ▲ .22.若不等式()2220x x a x a ----≥对任意x R ∈恒成立,则实数a 的最小值是 ▲ .三、解答题(本大题共3小题,共31分.)23. (本题满分10分) 在等差数列{}(N )n a n *∈中,已知21=a ,65=a .(Ⅰ)求{}n a 的公差d 及通项n a ;(Ⅱ)记)N (2*∈=n b n an ,求数列{}n b 的前n 项和.ABCDEF(第18题图)xyO ABPD(第24题图)24. (本题满分10分) 如图,已知抛物线12-=x y 与x 轴相交于点A ,B 两点,P 是该抛物线上位于第一象限内的点.(1) 记直线PB PA ,的斜率分别为21,k k ,求证12k k -为定值;(2)过点A 作PB AD ⊥,垂足为D .若D 关于x 轴的对称点恰好在直线PA 上,求△PAD 的面积.25. (本题满分11分)如图,在直角坐标系xoy 中,已知点(2,0),)3A B ,直线()02x t t =<<,将△OAB 分成两部分,记左侧部分的多边形为Ω,设Ω各边长的平方和为)(t f ,Ω各边长的倒数和为)(t g .(1) 分别求函数)(t f 和)(t g 的解析式;(2)是否存在区间(,)a b ,使得函数)(t f 和)(t g 在该区间上均单调递减?若存在,求a b -的最大值;若不存在,说明理由. ABxoyt x =(第25题图)2018年4月浙江学考数学原卷参考答案一、选择题(本大题共18小题,每小题3分,共54分.)二、填空题(本大题共4小题,每空3分,共15分.) 19. π,3 20. 2- 21.)1,35[ 22. 3 三、解答题(本大题共3小题,共31分.)23.解:(1)因为d a a 415+=,将21=a ,65=a 代入,解得数列{}n a 的公差1=d ; 通项1)1(1+=-+=n d n a a n . (2)将(1)中的通项n a 代入 122+==n a n nb .由此可知{}n b 是等比数列,其中首项41=b ,公比2=q .所以数列{}n b 的前n 项和421)1(21-=--=+n n n qq b S 24. 解:(1)由题意得点B A ,的坐标分别为)0,1(-A ,)0,1(B .设点P 的坐标为)1,(2-t t P ,且1>t ,则11121-=+-=t t t k ,11122+=--=t t t k , 所以212=-k k 为定值.(2)由直线AD PA ,的位置关系知:t k k AD -=-=11. 因为PB AD ⊥,所以, 1)1)(1(2-=+-=⋅t t k k AD , 解得 2±=t .因为P 是第一象限内的点,所以2=t .得点P 的坐标为)1,2(P . 联立直线PB 与AD 的方程 ⎩⎨⎧+-=-+=),1)(21(,)1)(21(x y x y 解得点D 的坐标为)22,22(-D . 所以△PAD 的面积22121+=-⋅⋅=D P y y AB S .25.解:(1)当10≤<t 时,多边形Ω是三角形(如图①),边长依次为t t t 2,3,;(第25题图②) 所以,⎩⎨⎧<<+-≤<=,21,20208,10,8)(22ttttttf⎪⎪⎩⎪⎪⎨⎧<<+-+-+≤<+=.21,21)1(21)2(311,10,1)3323()(tttttttg(Ⅱ)由(1)中)(tf的解析式可知,函数)(tf的单调递减区间是)45,1(,所以)45,1(),(⊆ba.另一方面,任取)45,1(,21∈tt,且21tt<,则)()(21tgtg-])2)(2(31)1)(1(211)[(21212112ttttt ttt-----+-=.由45121<<<tt知,1625121<<t t,81)1)(1(221<--<tt,1639)2)(2(321>--tt.从而<--<)1)(1(221tt)2)(2(321tt--,即0)2)(2(31)1)(1(212121>-----tttt所以0)()(21>-tgtg,得)(tg在区间)45,1(上也单调递减,证得)45,1(),(=ba.所以,存在区间)45,1(,使得函数)(tf和)(tg在该区间上均单调递减,且ab-的最大值为41.。
2018年6月省数学学考试题一 选择题(每小题3分,共54分)1. 已知集合{1,2}A =,{2,3}B =,则A B =( )A .{1} B.{2} C.{1,2} D.{1,2,3}2. 函数2log (1)y x =+的定义域是( )A.(1,)-+∞B.[1,)-+∞C.(0,)+∞D.[0,)+∞3. 设R α∈,则sin()2πα-=( )A.sin αB.sin α-C.cos αD.cos α-4. 将一个球的半径扩大到原来的2倍,则它的体积扩大到原来的( )A.2倍B.4倍C.6倍D.8倍5. 双曲线221169x y -=的焦点坐标是( )A.(5,0)-,(5,0)B.(0,5)-,(0,5)C.(0),D.(0,,6. 已知向量(,1)a x =,(2,3)b =-,若//a b ,则实数x 的值是( ) A.23-B.23C.32-D.32 7. 设实数x ,y 满足0230x y x y -≥⎧⎨+-≤⎩,则x y +的最大值为( ) A.1 B.2 C.3 D.48. 在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,已知45B =,30C =,1c =, 则b =( )A. B. 9. 已知直线l ,m 和平面α,m α⊂,则“l m ⊥”是“l α⊥”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件10. 要得到函数()sin(2)4f x x π=-的图象,只需将函数()sin 2g x x =的图象( ) A.向右平移8π个单位 B.向左平移8π个单位 C.向右平移4π个单位 D.向左平移4π个单位 11. 若关于x 的不等式2x m n -<的解集为(,)αβ,则βα-的值( )A.与m 有关,且与n 有关B.与m 有关,但与n 无关C.与m 无关,且与n 无关D.与m 无关,但与n 有关12. 在如图所示的几何体中,正方形DCEF 与梯形ABCD 所在的平面互相垂直,N ,6AB =,2AD DC ==,23BC =,则该几何体的正视图为( )A B C D13. 在第12题的几何体中,二面角E AB C --的正切值为( )A.33B.32C.1D.233 14. 如图,A ,B 分别为椭圆22:1(0)x y C a b a b+=>>的右顶点和上顶点,O 为坐标原点,E 为线段AB 的中点,H 为O 在AB上的射影,若OE 平分HOA ∠,则该椭圆的离心率为( )A. 13B.33C.23D.6315. 三棱柱各面所在平面将空间分为( )A.14部分B.18部分C.21部分D.24部分16. 函数2()()x n m f x e -=(其中e 为自然对数的底数)的图象如图所示,则( )A. 0m >,01n <<B.0m >,10n -<<C.0m <,01n <<D.0m <,10n -<<17. 数列{}n a 是公差不为0的等差数列,n S 为其前n 项和.若对任意的n N *∈,有3n S S ≥,则65a a 的值不可能为( ) A.43 B.32 C.53D.2 18. 已知x ,y 是正实数,则下列式子中能使x y >恒成立的是( )A.21x y y x +>+ B.112x y y x +>+ C.21x y y x ->- D.112x y y x->- 二 填空题(每空3分)19. 圆22(3)1x y -+=的圆心坐标是_______,半径长为_______.20. 如图,设边长为4的正方形为第1个正方形,将其各边相邻的中点相连, 得到第2个正方形,再将第2个正方形各边相邻的中点相连,得到第3个正方形,依此类推,则第6个正方形的面积为____ __.21. 已知lg lg lg()a b a b -=-,则实数a 的取值围是_______.22. 已知动点P 在直线:22l x y +=上,过点P 作互相垂直的直线PA ,PB 分别交x 轴、y 轴于A 、B 两点,M 为线段AB 的中点,O 为坐标原点,则OM OP ⋅的最小值为_______. 三 解答题23. (本题10分)已知函数13()sin cos 2f x x x =+,x R ∈. (Ⅰ)求()6f π的值;(Ⅱ)求函数()f x 的最大值,并求出取到最大值时x 的集合.24.(10分)如图,直线l 不与坐标轴垂直,且与抛物线2:C y x =有且只有一个公共点P . (Ⅰ)当点P 的坐标为(1,1)时,求直线l 的方程;(Ⅱ)设直线l 与y 轴的交点为R ,过点R 且与直线l 垂直的直线m 交抛物线C 于A ,B 两点.当2RA RB RP ⋅=时,求点P 的坐标.24. (11分)设函数2()3()f x ax x a =-+,其中a R ∈.(Ⅰ)当1a =时,求函数()f x 的值域;(Ⅱ)若对任意[,1]x a a ∈+,恒有()1f x ≥-,数a 的取值围.2018年6月省数学学考试卷答案一 选择题1.B2.A3.C4.D5.A6.A7.B8.C9.B 10.A 11.D 12.C13.D 14.D 15.C 16.C 17.A 18.B二 填空题 19.(3,0);1. 20, 12. 21. [4,)+∞. 22. 25. 三 解答题23解答:(Ⅰ)1313()sin cos 1626644f πππ=+=+=.(Ⅱ)因为()cossin sin cos sin()333f x x x x πππ=+=+,所以,函数()f x 的最大值为1,当232x k πππ+=+,即2()6x k k Z ππ=+∈时,()f x 取到最大值,所以,取到最大值时x 的集合为{|2,}6x x k k Z ππ=+∈.24.答案:(Ⅰ)210x y -+=;(Ⅱ)11(,)42±.解答:(Ⅰ)设直线l 的斜率为(0)k k ≠,则l 的方程为1(1)y k x -=-,联立方程组21(1)y k x y x-=-⎧⎨=⎩,消去x ,得210ky y k -+-=,由已知可得14(1)0k k ∆=--=,解得12k =,故,所求直线l 的方程为210x y -+=. (Ⅱ)设点P 的坐标为2(,)t t ,直线l 的斜率为(0)k k ≠,则l 的方程为2()y t k x t -=-,联立方程组22()y t k x t y x⎧-=-⎪⎨=⎪⎩,消去x ,得220ky y t kt -+-=,由已知可得214()0k t kt ∆=--=,得1(0)2k t t =≠,所以,点R 的纵坐标22t t kt -=,从而,点R 的纵坐标为(0,)2t ,由m l ⊥可知,直线m 的斜率为2t -,所以,直线m 的方程为22t y tx =-+.设11(,)A x y ,22(,)B x y ,将直线m 的方程代入2y x =,得22224(21)04t t x t x -++=,所以2242(21)4410t t t ∆=+-=+>,12116x x =,又1RA =,2RB =,24214RP t t =+,由2RA RB RP ⋅=,得242121(14)4t x x t t +=+,即24211(14)164t t t +=+,解得12t =±,所以,点P 的坐标为11(,)42±. 25.解答:(Ⅰ)当1a =时,2251,0()1,0x x x f x x x x ⎧---≤⎪=⎨-+->⎪⎩, (ⅰ)当0x ≤时,2521()()24f x x =-++,此时21()(,]4f x ∈-∞; (ⅱ)当0x >时,213()()24f x x =---,此时3()(,]4f x ∈-∞-, 由(ⅰ)(ⅱ),得()f x 的值域为21(,]4-∞. (Ⅱ)因为对任意[,1]x a a ∈+,恒有()1f x ≥-,所以()1(1)1f a f a ≥-⎧⎨+≥-⎩,即2223413(1)(21)1a a a a a ⎧-≥-⎪⎨+-+≥-⎪⎩,解得10a -≤≤. 下面证明,当[1,0]a ∈-,对任意[,1]x a a ∈+,恒有()1f x ≥-,(ⅰ)当0a x ≤≤时,22()f x x ax a =-+-,2()(0)1f a f a ==-≥-,故()min{(),(0)}1f x f a f ≥≥-成立;(ⅱ)当01x a ≤≤+时,22()5f x x ax a =---,(1)1f a +≥-,(0)1f ≥-,故()min{(1),(0)}1f x f a f ≥+≥-成立.由此,对任意[,1]x a a ∈+,恒有()1f x ≥-.. 所以,实数a的取值围为[1,0]。
浙江省2018年1月高等教育自学考试学前儿童数学教育试题课程代码:00388一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在题干的括号内。
每小题2分,共50分)1.儿童能逐步抽象出初步的数概念,并能对数和数之间的关系进行逻辑的思考,这种特征一般出现在( )A.2岁左右B.3岁左右C.4岁左右D.5岁左右2.儿童通过自己的活动主动建构数学概念,其中儿童的活动指儿童与( )之间的相互作用。
A.学习材料B.教师C.同伴D.环境3.整个幼儿时期,占主导地位的思维类型是( )A.直觉行动思维B.具体形象思维C.抽象逻辑思维D.发散性思维4.小班儿童面对两只小动物,一只小鸡、一只小狗时,他们会说“一只小鸡和一只小狗”,但很难直接概括为“两只动物”,随着年龄的增长,以后遇到这类问题时就很容易解决。
例如,“我们家有三口人:爸爸、妈妈和我”。
这说明儿童学习数学的心理特点为( ) A.从个别到一般 B.从不自觉到自觉C.从具体到抽象D.从同化到顺应5.幼儿园的教学是指( )A.上课B.教师的语言指导C.多种形式的活动D.儿童的自我练习6.目标制定大多从幼儿应获得哪些数学经验的角度提出,且表述比较具体,可操作性强,这类目标属于( )A.学前儿童数学教育总目标B.各年龄阶段目标C.数学教育活动目标D.我国全面发展的教育目的7.“学习10以内数的加减,认识加号、减号,初步理解加法、减法的含义,会解答简单的加减应用题,感知和体验加减互逆关系”,这一目标适合( )A.小小班B.小班C.中班D.大班8.教师作为行为的主体,用教师所做的事来表述教学活动目标,可选用以下词语( )A.“使幼儿……”、“启发幼儿……”B.“会……”、“体验……”C.“体验……”、“辨别……”D.“学习……”、“领会……”9.学前儿童数学教学活动一般都采用( )形式。
A.个别活动B.小组活动C.集体活动D.个别活动与小组活动结合10.教授初学的儿童,学习知识的顺序和方式依次是( )A.行为把握图象把握符号把握B.行为把握符号把握图象把握C.图象把握行为把握符号把握D.图象把握符号把握行为把握11.教师把实物教具或幼儿的学具展示给幼儿看,或者通过示范的动作,经过选择的范例来说明所要介绍的知识、技能和规则,这种教学方法是( )A.操作法B.讲解法C.游戏法D.演示法12.要求幼儿将黑色的、系带子的鞋放在一起。
2018年11月浙江省高中学业水平考试数学试题一、选择题1.已知集合{1,2,3,4}A =,{1,3,5}B =,则A B =( )A.{1,2,3,4,5}B.{1,3,5}C.{1,4}D.{1,3}【答案】D【解析】因为{1,2,3,4}A =,{1,3,5}B =,所以{1,3}AB =.2.函数()cos 2f x x =的最小正周期是( ) A.4π B.2π C.π D.2π 【答案】C【解析】()cos 2f x x =,因为2ω=,所以22T ππ==. 3.计算129()4=( ) A.8116 B.32 C.98 D.23【答案】B【解析】1293()42==. 4.直线210x y +-=经过点( )A.(1,0)B.(0,1)C.11(,)22D.1(1,)2【答案】A【解析】把四个选项的横纵坐标代入直线方程210x y +-=中,可知选项A 可使等式成立.5.函数2()log f x x 的定义域是( )A.(0,2]B.[0,2)C.[0,2]D.(0,2)【答案】A【解析】20020x x x -≥⎧⇒<≤⎨>⎩,故函数()f x 的定义域为(0,2].6.对于空间向量(1,2,3)a =,(,4,6)b λ=,若//a b ,则实数λ=( )A.2-B.1-C.1D.2【答案】D【解析】因为//a b ,所以12346λ==,即112λ=,所以2λ=. 7.渐近线方程为43y x =±的双曲线方程是( ) A.221169x y -= B.221916x y -= C.22134x y -= D.22143x y -= 【答案】B 【解析】依题可设双曲线方程为22221x y a b -=,因为渐进线方程为43y x =±,所以43b a =,即22169b a =,只有B 选项221916x y -=符合. 8.若实数x ,y 满足101010x x y x y -≤⎧⎪+-≥⎨⎪-+≥⎩,则y 的最大值是( )A.1B.2C.3D.4【答案】B【解析】由约束条件101010x x y x y -≤⎧⎪+-≥⎨⎪-+≥⎩,作出可行域如图,由图易知y 的最大值为2.9.某简单几何体的三视图(俯视图为等边三角形)如图所示(单位:cm ),则该几何体的体积(单位:3cm )为( )A.18B.【答案】C【解析】该几何体为正三棱柱,其底面积为24S ===3h =,所以体积V Sh ==10.关于x 的不等式13x x +-≥的解集是( )A.(,1]-∞-B.[2,)+∞C.(,1][2,)-∞-+∞D.[1,2]-【答案】C【解析】当1x ≥时,1132x x x x x +-=+-≥⇒≥;当11x -<<时,1113x x x x x +-=+-=≥⇒无解;当1x ≤时,1131x x x x x +-=--+≥⇒≤-;综上可得,2x ≥或1x ≤-.11.下列命题为假命题的是( )A.垂直于同一直线的两个平面平行B.垂直于同一平面的两条直线平行C.平行于同一直线的两条直线平行D.平行于同一平面的两条直线平行【答案】D【解析】平行于同一平面的两条直线除了平行外,还可以异面,可以相交.12.等差数列{}()n a n N *∈的公差为d ,前n 项和为n S ,若10a >,0d <,39S S =,则当n S 取得最大值时,n =( )A.4B.5C.6D.7【答案】C【解析】∵10a >,0d <,∴n a 是递减数列.又∵3993987654763()0S S S S a a a a a a a a =⇒-=+++++=+=,∴760a a +=,67a a >,∴60a >,70a <,∴max 6()n S S =.13.对于实数a 、b ,则“0a b <<”是“1ba <”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】充分性:由0a b <<,得01ba <<,故充分性成立; 必要性:由1ba <,得0ab a >⎧⎨<⎩或0a b a <⎧⎨>⎩,故必要性不成立.所以“0a b <<”是“1ba <”的充分不必要条件.14.已知函数()y f x =的定义域是R ,值域为[1,2]-,则值域也为[1,2]-的函数是()A.2()1y f x =+B.(21)y f x =+C.()y f x =-D.()y f x =【答案】B【解析】分析四个选项可知只有(21)y f x =+是由()y f x =的图象纵坐标不变,横坐标缩小为原来的12之后再将图像向左平移12个单位得到,故(21)y f x =+和()y f x =的值域是相同的. 15.函数2()()a f x x a R x=+∈的图象不可能是( ) A. B.C.D.【答案】A 【解析】当0a =时,函数22()(0)a f x x x x x=+=≠,函数图象可以是B. 当1a =时,函数221()a f x x x x x=+=+,函数可以类似于D. 当1a =-时,221()a f x x x x x =+=-,0x >时,210x x-=只有一个实数根1x =,图象可以是C.所以函数图象不可能是A. 16.若实数a ,b 满足0ab >,则2214a b ab ++的最小值为( ) A.8 B.6 C.4 D.2【答案】C【解析】因为0ab >,所以2211444a b ab ab ab ++≥+≥=,当且仅当214a b ab ab =⎧⎪⎨=⎪⎩,即1a =,12b =时取等号,所以最小值为4. 17.如图,在同一平面内,A ,B 是两个不同的定点,圆A 和圆B 的半径为r ,射线AB 交圆于点P ,过P 作圆A 的切线l ,当1()2r r AB ≥变化时,l 与圆B 的公共的轨迹是( )A.圆B.椭圆C.双曲线的一支D.抛物线【答案】D【解析】设直线l 与圆B 的交点为M ,过点M 作与过点A 平行于l 的直线的垂线,垂足为N ,易知MN PA MB r ===,即点M 到定直线AN 的距离等于其到定点B 的距离,所以点M 的轨迹是抛物线.18.如图,四边形ABCD 是矩形,沿AC 将ADC ∆翻折成AD C '∆,设二面角D AB C '--的平面角为θ,直线AD '与直线BC 所成角为1θ,直线AD '与平面ABC 所成的角为2θ,当θ为锐角时,有( )A.21θθθ≤≤B.21θθθ≤≤C.12θθθ≤≤D.21θθθ≤≤【答案】B【解析】由二面角的最大性与最小角定理可知,答案在A ,B 选项中产生.下面比较1θ和θ的大小关系即可.过D '作平面ABC 垂线,垂足为O ,过O 作OE AB ⊥,垂足为E ,连结D E ',则 D EO θ'=∠可以认为是OE 与平面AD E '所成的线面角,1θ可以认为是OE 与平面AD E '内的AD '所成的线线角,所以1θθ≤,综上,21θθθ≤≤.二、填空题19.已知函数2,0()1,0x f x x x ≥⎧=⎨+<⎩,则(1)f -= ,(1)f = . 【答案】0,2【解析】因为10-<,故(1)110f -=-+=;又10>,故(1)2f =. 20.已知O 为坐标原点,B 与F 分别为椭圆22221(0)x y a b a b+=>>的上顶点与右焦点,若OB OF =,则该椭圆的离心率是 .【解析】因为B ,F 为椭圆22221(0)x y a b a b+=>>的上顶点和右焦点,故设OB b =,OF c =,又OB OF =,所以b c =,因为a a ==,所以椭圆的离心率2c b e a a ====. 21.已知数列{}()n a n N *∈满足:11a =,12n n n a a +⋅=,则2018a = .【答案】10092【解析】1122n n n a a +++=,12n n n a a +=,22n na a +=,数列21{}n a -和2{}n a 均为等比数列,且公比均为2,首项分别是121,2a a ==,所以数列{}n a 的通项为,故100920182a =.22.如图,O 是坐标原点,圆O 的半径为1,点(1,0)A -,(1,0)B ,点P ,Q 分别从点A ,B 同时出发,在圆O 上按逆时针方向运动,若点P 的速度大小是点Q 的两倍,则在点P 运动一周的过程中,AP AQ ⋅的最大值为 .【答案】2【解析】设(cos ,sin )([0,])Q θθθπ∈,由P 点的速度是点Q 的两倍,即(cos 2,sin 2)P θθ--,(cos 21,sin 2)(cos 1,sin )AP AQ θθθθ⋅=-+-⋅+(cos 21)(cos 1)(sin 2)sin θθθθ=-+++-cos2cos cos cos21sin 2sin θθθθθθ=-+-+-cos(2)cos cos21θθθθ=--+-+cos 21θ=-+22sin 2θ=≤.三、解答题23.在ABC ∆中,内角A ,B ,C 所对的边分别是a ,b ,c ,且222b a c ac =+-. (Ⅰ)求角B 的大小;(Ⅱ)若2a c ==,求ABC ∆的面积;(Ⅲ)求sin sin A C +的取值范围.【答案】(Ⅰ)60︒; ; (Ⅲ). 【解析】(Ⅰ)由222cos 2a c b B ac +-=,可知1cos 2B =,所以60B =︒. (Ⅱ)由(Ⅰ)得60B ∠=︒,又2a c ==,所以11sin 22sin 6022ABC S ac B ∆==⨯⨯⨯︒=(Ⅲ)由题意得3sin sin sin sin(120)sin 30)2A C A A A A A +=+︒-=+=+︒,因为0120A ︒<<︒,所以3030150A ︒<+︒<︒30)A <+︒≤值范围是2. 24.已知抛物线2:4C y x =的焦点是F ,准线是l .(Ⅰ)写出F 的坐标和l 的方程;(Ⅱ)已知点(9,6)P ,若过F 的直线交抛物线C 于不同的两点A ,B (均与P 不重合),直线PA ,PB 分别交l 于点M ,N .求证:MF NF ⊥.【答案】(Ⅰ)(1,0)F ,1x =-; (Ⅱ)略.【解析】(Ⅰ)因为抛物线24y x =是焦点在x 轴正半轴的标准方程,所以2p =,所以焦点为(1,0)F .准线方程为1x =-.(Ⅱ)设11(,)A x y ,22(,)B x y (16y ≠±且26y ≠±),AB 直线方程为1x my =+(m 是实数),代入24y x =,得2440y m y --=,于是124y y m +=,124y y ⋅=-.由(9,6)P ,得146PA k y =+,直线PA 的方程为146(9)6y x y -=-+,令1x =-,得1164(1,)6y M y --+,同理可得2264(1,)6y N y --+,所以12121296()41(6)(6)F N F M MF NF F M F N y y y y y y y y k k x x x x y y ---++⋅=⋅==---++,故MF NF ⊥. 25.已知函数()()a f x x a R x =+∈. (Ⅰ)当1a =时,写出()f x 的单调递增区间(不需写出推证过程);(Ⅱ)当0x >时,若直线4y =与函数()f x 的图象相交于A ,B 两点,记()AB g a =,求()g a 的最大值;(Ⅲ)若关于x 的方程()4f x ax =+在区间(1,2)上有两个不同的实数根,求实数a 的取值范围.【答案】(Ⅰ)[1,0)-,[1,)+∞; (Ⅱ)4;(Ⅲ)15()22--. 【解析】(Ⅰ)()f x 的单调递增区间为[1,0)-,[1,)+∞(Ⅱ)因为0x >,所以(ⅰ)当4a >时,()y f x =的图象与直线4y =没有交点;(ⅱ)当4a =或0a =时,()y f x =的图象与直线4y =只有一个交点;(ⅲ)当04a <<时,0()4g a <<;(ⅳ)当0a <时,由4a x x +=,得240x x a -+=,解得2A x =由4a x x+=-,得240x x a ++=,解得2B x =-所以()4A B g a x x =-=,故()g a 的最大值是4.(Ⅲ)要使关于方程4(12)()a x ax x x +=+<<*有两个不同的实数根1x ,2x ,则0a ≠,且1a ≠±.(ⅰ)当1a >时,由()*得2(1)40a x x a -+-=,所以1201a x x a =-<-,不符合题意; (ⅱ)当01a <<时,由()*得2(1)40a x x a -+-=,其对称轴221x a =>-,不符合题意; (ⅲ)当0a <,且1a ≠-时,由()*得2(1)40a x x a +++=,又因为1201a x x a =>+,所以1a <-.所以函数a y x x=+在(0,)+∞是增函数. 要使直线4y ax =+与函数a y x x =+图象在(1,2)内有两个交点,则(1)11f a a =+=--,只需14164(1)0a a a a -->+⎧⎨-+>⎩,解得1522a --<<-.综上所述,实数a 的取值的范围为15()22--.。
绝密★启用前2018年下半年浙江省普通高校招生选考科目考试技术姓名:准考证号:本试题卷分选择题和非选择题两部分。
共8页。
满分100分。
考试时间90分钟。
其中加试题部分为30分。
用【加试题】标出.考生注意:1.答题前.请务必将自己的姓名、准考证号用累色字迹的签字笔或钢笔分别填写在试题卷答题纸规定的位置上。
2.答题时。
请按照答题纸上“注意事项"的要求。
在答题纸相应的位置上规范作答.在本试题卷上的作答一律无效。
3.非选择题的答案必须使用黑色字迹的签字笔或钢笔写在答题纸上相应区域内.作图时可先使用2B铅笔。
确定后必使用黑色字迹的签字笔或钢笔描黑。
第一部分信息技术(共50分)一、选择题(本大题共12小题.每小题2分。
共24分.每小题列出的四个备选项中只有一个是符合题目要求的。
不选、多选、错选均不得分)1.下列有关信息技术的说法。
不正确的是A.信息技术是伴随着计算机技术和互联网技术的发展而诞生的B.信息技术是对信息进行采集、处理、传输、存储、表达和使用的技术C.信息技术包含微电子技术、通信技术、计算机技术和传感技术等D.物联网、人工智能、云计算等技术都是当前信息技术发展的热点2.电子邮件服务器之间传送邮件时采用的协议名称是A.URI B.SMTP C.Http D.POP33.使用Word软件编辑某文档.部分界面如图所示。
下列说法正确的是A.实现图中的图文环绕效果可以采用“嵌入型”环绕方式B.删除图中批注后。
批注对象和批注内容同时被删除C.当前光标位于标题行。
按“Delete”键一次。
“离"字被删除D.拒绝文档中的所有修订后。
文字“应该说”被保留4.使用 access软件打开数据库。
部分界面如图所示。
下列说法正确的是A.“表1”中第1条记录的“借阅ID”字段值一定为“1”B.“表1”中“是否赔偿”字段的有效输入值可以为“已赔偿”C.“表1"中不同记录的“图书编号”字段值可以相同D.“读者信息表”中不能包含“读者编号”字段5.某算法的部分流程图如图所示。
绝密★启用前2018年普通高等学校招生全国统一考试(浙江卷)数 学本试题卷分选择题和非选择题两部分。
全卷满分150分。
考试用时120分钟。
考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上。
2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。
参考公式:若事件A ,B 互斥,则()()()P A B P A P B +=+ 若事件A ,B 相互独立,则()()()P AB P A P B = 若事件A 在一次试验中发生的概率是p ,则n 次独立重复试验中事件A 恰好发生k 次的概率()C (1)(0,1,2,,)k k n k n n P k p p k n -=-=L台体的体积公式121()3V S S h =其中12,S S 分别表示台体的上、下底面积,h 表示台体的高柱体的体积公式V Sh =其中S 表示柱体的底面积,h 表示柱体的高锥体的体积公式13V Sh =其中S 表示锥体的底面积,h 表示锥体的高球的表面积公式24S R =π球的体积公式343V R =π其中R 表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集U ={1,2,3,4,5},A ={1,3},则=U A ð A .∅B .{1,3}C .{2,4,5}D .{1,2,3,4,5}2.双曲线221 3=x y -的焦点坐标是A .(−2,0),(2,0)B .(−2,0),(2,0)C .(0,−2),(0,2)D .(0,−2),(0,2)3.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是俯视图正视图2211A .2B .4C .6D .84.复数21i- (i 为虚数单位)的共轭复数是 A .1+iB .1−iC .−1+iD .−1−i5.函数y =||2x sin2x 的图象可能是A .B .C .D .6.已知平面α,直线m ,n 满足m ⊄α,n ⊂α,则“m ∥n ”是“m ∥α”的 A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7.设0<p <1,随机变量ξ的分布列是则当p 在(0,1)内增大时, A .D (ξ)减小B .D (ξ)增大C .D (ξ)先减小后增大D .D (ξ)先增大后减小8.已知四棱锥S −ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S −AB −C 的平面角为θ3,则 A .θ1≤θ2≤θ3B .θ3≤θ2≤θ1C .θ1≤θ3≤θ2D .θ2≤θ3≤θ19.已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为π3,向量b 满足b 2−4e ·b +3=0,则|a −b |的最小值是 A 1BC .2D .210.已知1234,,,a a a a 成等比数列,且1234123ln()a a a a a a a +++=++.若11a >,则 A .1324,a a a a <<B .1324,a a a a ><C .1324,a a a a <>D .1324,a a a a >>非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
2018年6月浙江高中学业水平考试数学1. 已知集合{1,2}A =,{2,3}B =,则A B =( )A.{1}B.{2}C.{1,2}D.{1,2,3}【答案】:B【解析】:由集合{1,2}A =,集合{2,3}B =,得{2}AB =. 2. 函数2log (1)y x =+的定义域是( )A.(1,)-+∞B.[1,)-+∞C.(0,)+∞D.[0,)+∞【答案】:A【解析】:∵2log (1)y x =+,∴10x +>,1x >-,∴函数2log (1)y x =+的定义域是(1,)-+∞.3. 设R α∈,则sin()2πα-=( )A.sin αB.sin α-C.cos αD.cos α-【答案】:C 【解析】:根据诱导公式可以得出sin()cos 2παα-=.4. 将一个球的半径扩大到原来的2倍,则它的体积扩大到原来的( )A.2倍B.4倍C.6倍D.8倍【答案】:D【解析】:设球原来的半径为r ,则扩大后的半径为2r ,球原来的体积为343r π,球后来的体积为334(2)3233r r ππ=,球后来的体积与球原来的体积之比为33323843r rππ=.5. 双曲线221169x y -=的焦点坐标是( ) A.(5,0)-,(5,0) B.(0,5)-,(0,5)C.(,D.(0,,【答案】:A【解析】:因为4a =,3b =,所以5c =,所以焦点坐标为(5,0)-,(5,0).6. 已知向量(,1)a x =,(2,3)b =-,若//a b ,则实数x 的值是( ) A.23- B.23 C.32- D.32【答案】:A 【解析】:(,1)a x =,(2,3)b =-,利用//a b 的坐标运算公式得到320x --=,所以解得23x =-. 7. 设实数x ,y 满足0230x y x y -≥⎧⎨+-≤⎩,则x y +的最大值为( )A.1B.2C.3D.4【答案】:B【解析】:作出可行域,如图:当z x y =+经过点(1,1)A 时,有ax 2m z x y =+=.8. 在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,已知45B =,30C =,1c =,则b =( )。
绝密★启用前2018年普通高等学校招生全国统一考试(浙江卷)数学本试题卷分选择题和非选择题两部分。
全卷共4页,选择题部分1至2页;非选择题部分3至4页。
满分150分。
考试用时120分钟。
考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上。
2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。
参考公式:若事件A,B互斥,则若事件A,B相互独立,则若事件A在一次试验中发生的概率是p,则n次独立重复试验中事件A恰好发生k次的概率台体的体积公式其中分别表示台体的上、下底面积,表示台体的高柱体的体积公式其中表示柱体的底面积,表示柱体的高锥体的体积公式其中表示锥体的底面积,表示锥体的高球的表面积公式球的体积公式其中表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知全集U={1,2,3,4,5},A={1,3},则A. B. {1,3} C. {2,4,5} D. {1,2,3,4,5}【答案】C【解析】分析:根据补集的定义可得结果.详解:因为全集,,所以根据补集的定义得,故选C.点睛:若集合的元素已知,则求集合的交集、并集、补集时,可根据交集、并集、补集的定义求解.2. 双曲线的焦点坐标是A. (−,0),(,0)B. (−2,0),(2,0)C. (0,−),(0,)D. (0,−2),(0,2)【答案】B【解析】分析:根据双曲线方程确定焦点位置,再根据求焦点坐标.详解:因为双曲线方程为,所以焦点坐标可设为,因为,所以焦点坐标为,选B.点睛:由双曲线方程可得焦点坐标为,顶点坐标为,渐近线方程为.3. 某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是A. 2B. 4C. 6D. 8【答案】C【解析】分析:先还原几何体为一直四棱柱,再根据柱体体积公式求结果.详解:根据三视图可得几何体为一个直四棱柱,高为2,底面为直角梯形,上下底分别为1,2,梯形的高为2,因此几何体的体积为选C.点睛:先由几何体的三视图还原几何体的形状,再在具体几何体中求体积或表面积等.4. 复数(i为虚数单位)的共轭复数是A. 1+iB. 1−iC. −1+iD. −1−i【答案】B【解析】分析:先分母实数化化简复数,再根据共轭复数的定义确定结果.详解:,∴共轭复数为,选B.点睛:本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如. 其次要熟悉复数的相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭复数为.5. 函数y=sin2x的图象可能是A. B.C. D.【答案】D【解析】分析:先研究函数的奇偶性,再研究函数在上的符号,即可判断选择.详解:令,因为,所以为奇函数,排除选项A,B;因为时,,所以排除选项C,选D.点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复.6. 已知平面α,直线m,n满足mα,nα,则“m∥n”是“m∥α”的A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A【解析】分析:根据线面平行的判定定理得充分性成立,而必要性显然不成立.详解:因为,所以根据线面平行的判定定理得.由不能得出与内任一直线平行,所以是的充分不必要条件,故选A.点睛:充分、必要条件的三种判断方法:(1)定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充分条件.(2)等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件.7. 设0<p<1,随机变量ξ的分布列是ξ0 1 2P则当p在(0,1)内增大时,A. D(ξ)减小B. D(ξ)增大C. D(ξ)先减小后增大D. D(ξ)先增大后减小【答案】D【解析】分析:先求数学期望,再求方差,最后根据方差函数确定单调性.详解:,,,∴先增后减,因此选D.点睛:8. 已知四棱锥S−ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点),设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S−AB−C的平面角为θ3,则A. θ1≤θ2≤θ3B. θ3≤θ2≤θ1C. θ1≤θ3≤θ2D. θ2≤θ3≤θ1【答案】D【解析】分析:分别作出线线角、线面角以及二面角,再构造直角三角形,根据边的大小关系确定角的大小关系.详解:设O为正方形ABCD的中心,M为AB中点,过E作BC的平行线EF,交CD于F,过O作ON垂直EF于N,连接SO,SN,OM,则SO垂直于底面ABCD,OM垂直于AB,因此从而因为,所以即,选D.点睛:线线角找平行,线面角找垂直,面面角找垂面.9. 已知a,b,e是平面向量,e是单位向量.若非零向量a与e的夹角为,向量b满足b2−4e·b+3=0,则|a−b|的最小值是A. −1B. +1C. 2D. 2−【答案】A【解析】分析:先确定向量所表示的点的轨迹,一个为直线,一个为圆,再根据直线与圆的位置关系求最小值.详解:设,则由得,由得因此的最小值为圆心到直线的距离减去半径1,为选A.点睛:以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数、曲线方程等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解方程、解不等式、求函数值域或直线与曲线的位置关系,是解决这类问题的一般方法.10. 已知成等比数列,且.若,则A. B. C. D.【答案】B【解析】分析:先证不等式,再确定公比的取值范围,进而作出判断.详解:令则,令得,所以当时,,当时,,因此,若公比,则,不合题意;若公比,则但,即,不合题意;因此,,选B.点睛:构造函数对不等式进行放缩,进而限制参数取值范围,是一个有效方法.如非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
浙江省数学学考试题及答案Modified by JACK on the afternoon of December 26, 20202018年6月浙江省数学学考试题一 选择题(每小题3分,共54分)1. 已知集合{1,2}A =,{2,3}B =,则A B =( )A .{1} B.{2} C.{1,2} D.{1,2,3}2. 函数2log (1)y x =+的定义域是( )A.(1,)-+∞B.[1,)-+∞C.(0,)+∞D.[0,)+∞3. 设R α∈,则sin()2πα-=( ) A.sin α B.sin α- C.cos α D.cos α-4. 将一个球的半径扩大到原来的2倍,则它的体积扩大到原来的( )A.2倍B.4倍C.6倍D.8倍5. 双曲线221169x y -=的焦点坐标是( )A.(5,0)-,(5,0)B.(0,5)-,(0,5)C.(0),D.(0,,6. 已知向量(,1)a x =,(2,3)b =-,若//a b ,则实数x 的值是( ) A.23- B.23 C.32- D.327. 设实数x ,y 满足0230x y x y -≥⎧⎨+-≤⎩,则x y +的最大值为( ) A.1 B.2 C.3 D.48. 在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,已知45B =,30C =,1c =, 则b =( )A. B. C. 9. 已知直线l ,m 和平面α,m α⊂,则“l m ⊥”是“l α⊥”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件10. 要得到函数()sin(2)4f x x π=-的图象,只需将函数()sin 2g x x =的图象( ) A.向右平移8π个单位 B.向左平移8π个单位 C.向右平移4π个单位 D.向左平移4π个单位 11. 若关于x 的不等式2x m n -<的解集为(,)αβ,则βα-的值( )A.与m 有关,且与n 有关B.与m 有关,但与n 无关C.与m 无关,且与n 无关D.与m 无关,但与n 有关12. 在如图所示的几何体中,正方形DCEF 与梯形 ABCD 所在的平面互相垂直,N ,6AB =,2AD DC ==,23BC =,则该几何体的正视图为( )A B C D13. 在第12题的几何体中,二面角E AB C --的正切值为( )A.3B.3C.1D.23 14. 如图,A ,B 分别为椭圆22:1(0)x y C a b a b+=>>的右顶点和上顶点,O 为坐标原点,E 为线段AB 的中点,H 为O 在AB 上的射影,若OE 平分HOA ∠,则该椭圆的离心率为( )A. 13B.3C.23D.615. 三棱柱各面所在平面将空间分为( )A.14部分B.18部分C.21部分D.24部分16. 函数2()()x n m f x e -=(其中e 为自然对数的底数)的图象如图所示,则( )A. 0m >,01n <<B.0m >,10n -<<C.0m <,01n <<D.0m <,10n -<<17. 数列{}n a 是公差不为0的等差数列,n S 为其前n 项和.若对任意的n N *∈,有3n S S ≥,则65a a 的值不可能为( ) A.43 B.32 C.53D.2 18. 已知x ,y 是正实数,则下列式子中能使x y >恒成立的是( )A.21x y y x +>+ B.112x y y x +>+ C.21x y y x ->- D.112x y y x ->- 二 填空题(每空3分)19. 圆22(3)1x y -+=的圆心坐标是_______,半径长为_______.20. 如图,设边长为4的正方形为第1个正方形,将其各边相邻的中点相连, 得到第2个正方形,再将第2个正方形各边相邻的中点相连,得到第3个正方形,依此类推,则第6个正方形的面积为____ __.21.已知lg lg lg()a b a b -=-,则实数a 的取值范围是_______. 22. 已知动点P 在直线:22l x y +=上,过点P 作互相垂直的直线PA ,PB 分别交x 轴、y 轴于A 、B 两点,M 为线段AB 的中点,O 为坐标原点,则OM OP ⋅的最小值为_______.三 解答题23. (本题10分)已知函数13()sin cos 2f x x x =+,x R ∈. (Ⅰ)求()6f π的值;(Ⅱ)求函数()f x 的最大值,并求出取到最大值时x 的集合.24.(10分)如图,直线l 不与坐标轴垂直,且与抛物线2:C y x =有且只有一个公共点P .(Ⅰ)当点P 的坐标为(1,1)时,求直线l 的方程; (Ⅱ)设直线l 与y 轴的交点为R ,过点R 且与直线l 垂直的直线m 交抛物线C 于A ,B 两点.当2RA RB RP ⋅=时,求点P 的坐标.24. (11分)设函数2()3()f x ax x a =-+,其中a R ∈.(Ⅰ)当1a =时,求函数()f x 的值域; (Ⅱ)若对任意[,1]x a a ∈+,恒有()1f x ≥-,求实数a 的取值范围.2018年6月浙江省数学学考试卷答案一 选择题二 填空题 19.(3,0);1. 20, 12. 21. [4,)+∞. 22. 25. 三 解答题 23解答:(Ⅰ)1313()sin cos 16262644f πππ=+=+=.(Ⅱ)因为()cossin sin cos sin()333f x x x x πππ=+=+,所以,函数()f x 的最大值为1,当232x k πππ+=+,即2()6x k k Z ππ=+∈时,()f x 取到最大值,所以,取到最大值时x 的集合为{|2,}6x x k k Z ππ=+∈.24.答案:(Ⅰ)210x y -+=;(Ⅱ)11(,)42±. 解答:(Ⅰ)设直线l 的斜率为(0)k k ≠,则l 的方程为1(1)y k x -=-,联立方程组21(1)y k x y x-=-⎧⎨=⎩,消去x ,得210ky y k -+-=,由已知可得14(1)0k k ∆=--=,解得12k =,故,所求直线l 的方程为210x y -+=. (Ⅱ)设点P 的坐标为2(,)t t ,直线l 的斜率为(0)k k ≠,则l 的方程为2()y t k x t -=-,联立方程组22()y t k x t y x ⎧-=-⎪⎨=⎪⎩,消去x ,得220ky y t kt -+-=,由已知可得214()0k t kt ∆=--=,得1(0)2k t t =≠,所以,点R 的纵坐标22t t kt -=,从而,点R 的纵坐标为(0,)2t ,由m l ⊥可知,直线m 的斜率为2t -,所以,直线m 的方程为22t y tx =-+.设11(,)A x y ,22(,)B x y ,将直线m 的方程代入2y x =,得22224(21)04t t x t x -++=,所以2242(21)4410t t t ∆=+-=+>,12116x x =,又1RA =,2RB =,24214RP t t =+,由2RA RB RP ⋅=,得242121(14)4t x x t t +=+,即24211(14)164t t t +=+,解得12t =±,所以,点P 的坐标为11(,)42±. 25.解答:(Ⅰ)当1a =时,2251,0()1,0x x x f x x x x ⎧---≤⎪=⎨-+->⎪⎩, (ⅰ)当0x ≤时,2521()()24f x x =-++,此时21()(,]4f x ∈-∞; (ⅱ)当0x >时,213()()24f x x =---,此时3()(,]4f x ∈-∞-, 由(ⅰ)(ⅱ),得()f x 的值域为21(,]4-∞.(Ⅱ)因为对任意[,1]x a a ∈+,恒有()1f x ≥-,所以()1(1)1f a f a ≥-⎧⎨+≥-⎩,即2223413(1)(21)1a a a a a ⎧-≥-⎪⎨+-+≥-⎪⎩,解得10a -≤≤. 下面证明,当[1,0]a ∈-,对任意[,1]x a a ∈+,恒有()1f x ≥-, (ⅰ)当0a x ≤≤时,22()f x x ax a =-+-,2()(0)1f a f a ==-≥-,故()min{(),(0)}1f x f a f ≥≥-成立;(ⅱ)当01x a ≤≤+时,22()5f x x ax a =---,(1)1f a +≥-,(0)1f ≥-,故()min{(1),(0)}1f x f a f ≥+≥-成立.由此,对任意[,1]x a a ∈+,恒有()1f x ≥-. 所以,实数a 的取值范围为[1,0]-.。
绝密★启用前2018年下半年浙江省普通高校招生选考科目考试数 学 试 题姓名: 准考证号:本试题卷分选择题和非选择题两部分,共8页,满分150分,考试时间120分钟。
其中加试题部分为30分,用【加试题】标出。
考生注意:1.答题前,请务必将自己的姓名、准考证号用累色字迹的签字笔或钢笔分别填写在试题卷答题纸规定的位置上。
2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。
3.非选择题的答案必须使用黑色字迹的签字笔或钢笔写在答题纸上相应区域内,作图时可先使用2B 铅笔,确定后必使用黑色字迹的签字笔或钢笔描黑。
一、选择题(本大题共18小題,每小题③分,共54分。
每小题列出的四个选项中只有一个是符 合题目要求的,不选、多选、错选均不得分。
)1.已知集合A={1,2,3,4},B={1,3,5},则A ∩BA .{1,2,3,4,5}B .{1,3,5}C .{1,4}D .{1,3}2.函数f (x )=cos2x 的最小正周期是A .4π B . C .π D .2π 3.计算=21)49( A .1681 B .23 C .89 D . 32 4.直线x+2y-1=0经过点A .(1,0)B .(0,1)C .⎪⎭⎫ ⎝⎛21,21D .⎪⎭⎫ ⎝⎛21,1 5.函数f (x )=x -2+1og 2x 的定义域是A .(0,2]B .[0,2)C .[0,2]D .(0,2)6.对于空间向量a =(1,2,3),b=(λ,4,6).若a ∥b,则实数λ=A .-2B .-1C .1D .27.渐近线方程为y=±34x 的双曲线方程是A .191622=-y xB .116922=-y xC .14322=-y xD .13422=-y x 8.若实数x,y 满足⎪⎩⎪⎨⎧≥+-≥-+≤-,0,01,01y x y x x 则y 的最大值是A .1B .2C .3D .49.某简单几何体的三视图(俯视图为等边三角形)如图所示(单位:cm),则该几何体的体积(单位:cm 3)为A .18B .63C .33D .2310.关于x 的不等式|x|+|x-1|≥3的解集是A .(∞,-1]B .[2,+∞)C .(-∞,-1]∪[2,+∞)D .[-1,2]11.下列命题中为假命题的是A .垂直于同一直线的两个平面平行B .垂直于同一平面的两条直线平行C .平行于同一直线的两条直线平行D .平行于同一平面的两条直线平行12.等差数列{a n }(n ∈N *)的公差为d ,前n 项和为S n ,若a 1>0,d <0,S 3=S 9,则当S n 取得最大值时,n =A .4B .5C .6D .713.对于实数a,b,则“a<b<0”是“ab <1”的 A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件14.已知函数y=f (x)的定义域是R ,值域为[-1,2].则值域也为[-1,2]的函数是A .2+ f (x)1B .y=f (2x+1)C .- f (x)D .y=|f (x)|。