电阻加热炉温度控制
- 格式:docx
- 大小:339.10 KB
- 文档页数:30
合肥工业大学《计算机控制技术》课程设计——电阻炉温度控制系统设计学院专业姓名学号_______ ________ _完成时间摘要:电阻炉的类型根据其热量产生的方式不同,可分为间接加热式和直接加热式两大类。
间接加热式电阻炉,就是在炉子内部有专用的电阻材料制作的加热元件,电流通过加热元件时产生热量,再通过热的传导、对流、辐射而使放置在炉中的炉料被加热。
直接加热式电阻炉,是将电源直接接在所需加热的材料上,让强大的电流直接流过所需加热的材料,使材料本身发热从而达到加热的效果。
工业电阻炉,大部分采用间接加热式,只有一小部分采用直接加热式。
由于电阻炉具有热效率高、热量损失小、加热方式简单、温度场分布均匀、环保等优点,应用十分广泛.关键词:炉温控制;高效率;加热一、总体方案设计本次课程设计主要就是使用计算机以及相应的部件组成电阻炉炉温的自动控制系统,从而使系统达到工艺要求的性能指标。
1、设计内容及要求电阻加热炉用于合金钢产品热力特性实验,电加热炉用电炉丝提供功率,使其在预定的时间内将炉内温度稳定到给定的温度值。
在本控制对象电阻加热炉功率为8KW,有220V交流电源供电,采用双向可控硅进行控制。
2、工艺要求及要求实现的基本功能本系统中所选用的加热炉为间接加热式电阻炉,控制要求为采用一台主机控制8个同样规格的电阻炉温度;电炉额定功率为20 kW;)恒温正常工作温度为1000℃,控温精度为±1%;电阻炉温度按预定的规律变化,超调量应尽可能小,且具有良好的稳定性;具有温度、曲线自动显示和打印功能,显示精度为±1℃;具有报警、参数设定、温度曲线修改设置等功能。
3、控制系统整体设计电阻炉温度计算机控制系统主要由主机、温度检测装置、A/D转换器、执行机构及辅助电路组成.系统中主机可以选用工业控制计算机、单片微型计算机或可编程序控制器中的一种作为控制器,再根据系统控制要求,选择一种合理的控制算法对电阻炉温度进行控制。
加热炉温度控制系统标题:加热炉温度控制系统摘要:加热炉温度控制系统是一种用于控制加热炉温度的设备。
它通过监测加热炉内的温度并相应地调节加热器的工作状态,以保持加热炉内的温度在设定范围内稳定。
本文将介绍加热炉温度控制系统的原理、组成部分以及工作流程,并探讨其在工业生产中的应用。
关键词:加热炉、温度控制、加热器、工业生产1. 引言加热炉是一种常见的热处理设备,广泛应用于冶金、机械加工和材料研究等领域。
在加热炉的使用过程中,保持加热炉内的温度稳定是非常重要的。
过低的温度会导致加热不充分,影响产品的质量;过高的温度则会造成能源的浪费,甚至导致设备损坏。
因此,开发一种稳定且可靠的加热炉温度控制系统对于提高生产效率和节约能源具有重要意义。
2. 温度控制系统的原理温度控制系统通常由温度传感器、控制器和执行器组成。
温度传感器用于实时监测加热炉内的温度变化,将温度信号传输给控制器。
控制器根据设定的温度范围和温度传感器反馈的实时温度,计算出相应的控制信号。
执行器根据控制信号调节加热器的工作状态,从而实现加热炉温度的稳定控制。
3. 温度控制系统的组成部分3.1 温度传感器温度传感器是温度控制系统中的重要组成部分。
常用的温度传感器有热电阻和热电偶两种。
热电阻传感器的工作原理是利用金属电阻随温度变化而发生的电阻变化,通过测量电阻的变化来确定温度。
热电偶传感器则是利用两种不同材料的接触产生的热电势随温差变化而变化,通过测量热电势的变化来确定温度。
3.2 控制器控制器是温度控制系统的核心部件,负责计算控制信号并将其传输给执行器。
控制器根据设定的温度范围和温度传感器反馈的实时温度,做出相应的控制决策。
常见的控制器包括PID控制器和模糊控制器。
PID控制器根据比例、积分和微分三个方面来调节控制信号;模糊控制器则利用模糊逻辑推断得出控制信号。
3.3 执行器执行器根据控制器传输的控制信号调节加热器的工作状态。
常见的执行器包括电动阀和可调电阻。
电阻炉炉温控制系统设计1课程设计规定1.1 课题内容应用计算机旳实时监控和温度测量技术,采用单片机、温度检测电路、温度控制电路等,采用比例环反馈、数字PID闭环调整两种方式实现电阻炉炉温旳实时监控。
1.2 规定和技术指标用单片机和对应旳构成部件构成电阻炉温旳自动控制系统,规定测温范围0~100℃,使其控制系统控制旳温度保温值旳变化范围为30~60℃。
规定:(1)完毕电阻炉温度控制系统设计,包括硬件电路设计和软件程序设计;(2)采用LED实时显示控温时旳实际炉温和设定炉温,如将炉温加热并控制在60℃;当炉温工作至设定温度时,蜂鸣器每2秒报警一次,绿色LED灯常亮。
当炉温超过设定温度5℃,过温保护电路动作,蜂鸣器常鸣,红色LED常亮。
(3)对其主电路和控制电路设计对应旳保护电路,使其安全可靠地工作。
(4)具有防干烧功能。
(5)具有定期功能,设定一段时间自动加温,如1分钟。
1.3 元器件清单另有剪刀、镊子等工具表1.1 元器件清单2电路设计2.1 总体设计方案基本方案:运用温度变送器和温度检测电路将电阻炉实际温度转换成对应旳数字信号,送入单片机,进行数据处理后,通过显示屏显示温度,并判断与否报警,同步将实际炉温与设定温度比较,根据对应旳算法(如PID)计算出控制量,通过控制对应旳加热电路实现对炉温旳控制。
本系统采用STC89C52作为系统旳主控芯片,负责加热炉旳温度检测与控制。
其重要任务是:1、读取DS18B20旳温度数据;2、控制继电器通断,保证温度到达设定值并保温;3、读取键盘设置旳温度值;4、在LED上显示设置旳温度、目前温度以和恒温时间;5、当温度抵达警戒值旳时候控制蜂鸣器报警。
图2.1 总体构造图由于加热炉仅能通过通断电路控制,不具有良好旳可控性,且加热所需旳速度和精度规定并不高,这里无需使用PID算法这样旳高速跟踪算法,只要使用二次线性化旳措施控制,就可以很好地实现炉子旳加热和恒温控制了。
电阻加热炉温度控制系统设计一、温度控制系统的要求:1.稳定性:系统应能快速响应温度变化,并能在设定温度范围内保持稳定的温度。
2.精度:控制系统应具备高精度,确保炉内温度与设定温度的偏差控制在允许范围内。
3.可靠性:系统应具备高可靠性,能长时间稳定运行,并能在发生异常情况时及时报警或自动停止加热。
4.人机界面:温度控制系统应提供方便直观的人机界面,操作简单易懂。
二、温度控制系统的设计:1.传感器选择:选择合适的温度传感器进行温度检测。
常用的温度传感器有热电偶和热电阻。
根据实际需求选择合适的传感器类型和量程。
2.温度控制器选择:根据控制需求,选择适用于电阻加热炉的温度控制器。
具备温度显示功能的控制器可以直观地显示炉内温度。
还可以选择具备PID控制功能的控制器,以提高温度控制精度。
3.控制循环设计:将温度控制系统设计成闭环控制系统,以实现炉内温度的精确控制。
控制循环包括采样、比较、控制和执行四个环节。
采样环节将实际温度值与设定温度值进行比较,然后控制环节根据比较结果输出控制信号,最后执行环节根据控制信号调节电阻加热炉的加热功率。
4.温度传感器布置:将温度传感器布置在炉内合适位置,确保能够准确测量到炉内温度。
传感器的安装位置应避免热点和冷点,以避免温度不均匀。
5.控制参数调整:根据实际情况进行PID参数的调整。
通过实验或仿真等方法,逐步调整PID参数,使得系统能够快速响应温度变化、准确跟踪设定温度,并保持稳定的温度输出。
6.报警和保护设计:设计温度控制系统时,应考虑到电阻加热炉的过热或温度异常等情况,并设置相应的报警和保护功能。
当温度超过安全范围时,系统应及时报警,并自动停止加热。
7.人机界面设计:为了方便操作和监控,可以在温度控制系统上设置触摸屏或显示屏。
通过人机界面,操作人员可以方便地设定温度、监测炉内温度,并能够实时查看温度曲线和报警信息。
总之,电阻加热炉温度控制系统的设计需要考虑到温度控制精度、稳定性、可靠性和人机界面等方面的要求。
摘要电阻炉作为工业炉窑中的一种常用的加热设备被广泛的应用于工业生产中。
对电阻炉温度控制精确与否将直接影像到产品的质量和生产效率。
电阻炉是一种具有纯滞后的大惯性系统,开关炉门,加热材料,环境温度以及电网电压等都影像控制过程,传统的电阻炉控制系统大多建立在一定的模型基础上,难以保证加热要求。
本文将PID控制算法引入到传统的电阻炉控制系统中,借此提高其控制效果。
设计一个控制精度高,运行稳定的电阻炉温度控制系统是很有必要的。
本设计是以电阻炉温度为被控对象,单片机为核心的一种控制系统。
其中以K型热电偶作为温度传感器。
AT89c51单片机为控制核心,PID运算规律作为控制算法。
文化中详细介绍了该控制系统的硬件电路设计。
软件电路设计及PID控制算法。
在对电阻炉温度控制系统的研究之后,本设计主要完成温度控制系统的总体方案设计,硬件原理图的绘制,信号调理电路的设计,固态继电器的应用及温度控制电路的设计同时也完成了系统程序设计,并通过软件完成了对温度的控制功能。
关键词:电阻炉温度控制PID算法单片机The Design of Temperature Control System of Resistance Furnace AbstractResistance furnace was widely used in industrial production,the effect of the temperature control of Resistance furnace has a direct impact on product quality and productivity. Therefore, the design of high-precision control and stable operation of the resistance furnace temperature control system has a high application value.In this design, the resistance furnace as a controlled object,singlechip as the design of a control unit. Which type of thermocouple temperature sensor as K,AT89c51 microcontroller as control core and PID control algorithm for operation rule, This paper introduces the control system of the hardware circuit, software design and the PID control algorithm.On the resistance furnace temperature control system, the design of the main pleted the overall scheme of the temperature control system design, hardware circuit principle diagram, the signal of the temperature contral circuit design of the system ,meanwhile finish the program design, through the software control to plete the function of temperature control.Key words:The resistance furnace Temperature control PID control Single-chip microp目录第一章绪论11.1课题研究的背景意义11.2课题国外研究现状及趋势21.3本文的主要容3第二章总体设计及其方案论证42.1设计工艺流及其要求42.2 不同方案比较42.3 研究容52.3.1 设计原理52.3.2 方框图52.3.3 系统组成62.3.4 控制算法6第三章硬件设计73.1 系统设计原理73.2 单片机的选择93.2.1 单片机AT89c51的介绍93.2.1.1 AT89C51单片机的功能特性103.2.1.2 AT89C51单片机的基本组成103.2.1.3 AT89C51单片机引脚及其功能113.2.1.4 单片机的复位电路133.2.1.5 单片机的时钟电路133.3 前向通道设计143.3.1 温度检测电路设计143.3.1.1 K型热电偶的介绍143.4 后向通道设计203.4.1 温度控制电路203.4.2 继电器的工作原理和特性213.4.3 继电器主要产品技术参数223.4.4 继电器测试223.4.5 继电器的电符号和触点形式233.4.6 继电器的选用233.5 外围接口电路设计243.5.1 显示电路设计243.5.2 键盘电路设计253.5.3 报警电路设计273.5.4 通信电路设计273.6 电源设计283.7 抗干扰设计293.7.1 抗干扰渠道293.7.2 抗干扰措施30第四章系统软件设计304.1设计思路304.2程序设计374.1.1 程序设计374.1.2 显示字程序设434.1.3 按键字程序474.1.4 PID算法子程序54总结58致59参考文献59第一章绪论电阻炉是工农业生产中常用的电加热设备,广泛应用于冶金、化工、电力工程、造纸、机械制造、建材和食品加工等诸多生产过程中,而大功率的电阻炉则应用在各种工业生产过程中。
加热炉的控制系统引言加热炉是工业生产中常用的设备,用于加热各种材料以达到所需温度。
为了确保加热过程的稳定性和安全性,高效的控制系统是必不可少的。
本文将介绍加热炉的控制系统的基本原理、组成部分,以及常见的控制策略和技术。
基本原理加热炉的控制系统的基本原理是通过不同的控制器对加热炉的加热过程进行调节,以达到所需的温度。
控制系统通过测量加热炉内部的温度,并与设定的目标温度进行比较,根据比较结果发出控制信号,控制加热器的加热功率。
组成部分加热炉的控制系统由以下几个核心组成部分组成:温度传感器温度传感器用于测量加热炉内部的温度。
常见的温度传感器有热电偶、热电阻和红外线传感器等。
传感器将测量到的温度值转换成电信号,供控制器使用。
控制器控制器是整个加热炉控制系统的核心部分,负责测量、比较和控制加热炉的温度。
控制器接收从温度传感器传来的温度信号,并与设定的目标温度进行比较,根据比较结果发出控制信号。
常见的控制器有PID控制器和PLC控制器。
加热器加热器负责提供加热炉所需的能量。
根据控制器发出的控制信号,加热器调整加热功率,以达到所需的温度。
常见的加热器有电阻加热器、电磁感应加热器和燃烧器等。
接口设备接口设备用于与人机界面进行交互,方便操作人员对加热炉的控制系统进行设置和监控。
常见的接口设备有触摸屏、键盘和显示屏等。
控制策略加热炉的控制系统根据控制策略的不同,可以分为开环控制和闭环控制。
开环控制开环控制是指控制系统只根据预先设定的参数进行控制,无法对实际温度进行反馈。
开环控制常用于加热炉加热过程稳定、温度变化较小的场景。
开环控制的优点是简单、成本低,但缺点是对外界扰动敏感,无法及时校正温度偏差。
闭环控制闭环控制是指控制系统通过温度传感器对实际温度进行反馈,并根据反馈信息调整控制器的输出信号,以使实际温度更接近目标温度。
闭环控制具有良好的稳定性和鲁棒性,在加热炉温度变化大、外界扰动较大的场景中表现出较好的性能。
控制技术加热炉的控制系统使用多种控制技术来确保加热过程的稳定和安全。
电加热炉温度控制系统设计电加热炉是一种广泛应用于工业生产中的设备,用于加热各种材料或工件。
电加热炉的温度控制是保证炉内温度稳定和精确的关键,对于生产质量和设备寿命有重要影响。
本文将介绍电加热炉温度控制系统的设计。
首先,电加热炉温度控制系统的设计需要考虑以下几个方面:1.温度传感器:选择合适的温度传感器用于测量炉内温度,如热电偶或热电阻。
传感器需要能够对温度进行准确测量,并具有较高的可靠性和耐高温性能。
2.控制算法:根据温度传感器的反馈信号,控制算法计算控制信号以调节炉内加热功率。
最常用的控制算法是PID控制算法,它根据温度偏差、偏差变化率和偏差累积进行控制信号计算,以实现温度的稳定控制。
3.控制器:选择合适的控制器用于执行控制算法并输出控制信号。
控制器需要具有快速的计算能力和稳定的控制性能。
常见的控制器类型包括单片机、PLC和工业控制计算机。
4.加热装置:选择合适的加热装置用于向电加热炉提供能量。
常见的加热装置包括电阻丝、电加热器和感应加热器。
加热装置需要能够根据控制信号调节加热功率,并具有可靠的性能。
5.温度控制系统的安全保护:设计温度控制系统需要考虑安全保护措施,以防止温度过高造成设备事故和人身伤害。
常见的安全保护措施包括过温保护、短路保护和漏电保护等。
在电加热炉温度控制系统的设计过程中,需要进行系统建模和参数调节。
系统建模是将电加热炉、加热装置和温度传感器等组成部分抽象为数学模型,以进行控制算法的设计和仿真验证。
参数调节是根据实际工艺要求对控制算法参数进行调整,以达到良好的控制性能。
最后,电加热炉温度控制系统的设计需要考虑实际应用情况和要求。
不同的工艺要求和生产环境可能需要不同的控制精度和性能需求,因此需要根据实际情况进行设计定制。
在总结上述内容后,设计电加热炉温度控制系统需要考虑温度传感器、控制算法、控制器、加热装置和安全保护等方面。
系统建模和参数调节是设计过程中的关键步骤。
根据实际应用情况和要求进行设计定制,以实现温度的稳定和精确控制。
一、摘要温度是工业对象中主要的被控参数之一。
特别是在冶金、化工、机械各类工业中,广泛使用各种加热炉、热处理炉、反应炉等。
由于炉子的种类不同,所采用的加热方法及燃料也不相同,如煤气、天然气等。
但就控制系统本身的动态特性而言,均属于一阶纯滞后环节,在控制算法上基本相同,可采用PID控制或其他纯滞后补偿算法。
为了保证生产过程正常安全地进行,提高产品的质量和数量,以及减轻工人的劳动强度,节约能源,对加热用的各种电炉要求在一定条件下保持恒温,不能随电源电压波动或炉内物体而变化,或者有的电炉的炉温根据工艺要求按照某个指定的升温或保温规律而变化,等等。
因此,在工农业生产或科学实验中常常对温度不仅要不断地测量,而且要进行控制。
二、总体方案设计设计任务用一台计算机及相应的部件组成电阻炉炉温的自动控制系统,并使系统达到工艺要求的性能指标。
1、设计内容及要求电阻加热炉用于合金钢产品热力特性实验,电加热炉用电炉丝提供功率,使其在预定的时间内将炉内温度稳定到给定的温度值。
在本控制对象电阻加热炉功率为8KW,有220V 交流电源供电,采用双向可控硅进行控制。
系统模型:2、工艺要求按照规定的曲线进行升温和降温,温度控制范围为50—350℃,升温和降温阶段的温度控制精度为+5℃,保温阶段温度控制精度为+2℃。
3、要求实现的系统基本功能微机自动调节:正常工况下,系统投入自动。
模拟手动操作:当系统发生异常,投入手动控制。
微机监控功能:显示当前被控量的设定值、实际值,控制量的输出值,参数报警时有灯光报警。
4、对象分析在本设计中,要求电阻炉炉内的温度,按照上图所示的规律变化,从室温开始到50℃为自由升温阶段,当温度一旦到达50℃,就进入系统调节,当温度到达350℃时进入保温段,要始终在系统控制下,一保证所需的炉内温度的精度。
加工结束,要进行降温控制。
保温段的时间为600—1800s。
过渡过程时间:即从开始控制到进入保温阶段的时间要小于600s。
电加热炉温度控制系统模型建立及控制算法一、电加热炉温度控制系统模型建立1.电加热元件电加热元件是实现加热过程的关键组件,通过电流通过电加热元件时会产生热量,从而提高电加热炉的温度。
通常采用的电加热元件有电阻丝或者电加热器。
2.温度传感器温度传感器用于实时检测电加热炉的温度,常见的温度传感器有热电偶、热敏电阻等。
传感器将温度信号转换为电信号并输出给控制器。
3.控制器控制器是温度控制系统的核心部分,通过对电加热元件的控制,实现对炉温的控制。
常见的控制器有PID控制器、模糊控制器、自适应控制器等。
控制器根据输入的温度信号和设定值进行比较并产生控制信号,然后将控制信号送至电加热元件。
4.反馈装置反馈装置用于实时反馈炉温信息给控制器,以便控制器能够根据反馈信息进行调整,从而实现温度的稳定控制。
典型的反馈装置有温度传感器、红外线测温仪等。
二、控制算法1.PID控制算法PID控制器是最常用的控制算法之一,其通过比例、积分和微分三个部分组合来实现对温度的控制。
PID控制器的控制信号计算公式如下:u(t) = Kp * e(t) + Ki * ∑e(t)dt + Kd * de(t)/dt其中,u(t)为控制信号,Kp、Ki、Kd分别为比例、积分和微分系数,e(t)为偏差,de(t)/dt为偏差的变化率。
2.模糊控制算法模糊控制算法通过模糊集合、模糊规则和模糊推理来实现对温度的控制。
基本的模糊控制算法包含模糊化、模糊规则的建立、模糊推理和解模糊化四个步骤。
3.自适应控制算法自适应控制算法通过对系统模型的实时辨识和参数的自动调整,实现对温度的自适应控制。
自适应控制算法常见的有模型参考自适应控制、最小均方自适应控制等。
三、总结电加热炉温度控制系统模型的建立包括电加热元件、温度传感器、控制器和反馈装置四个主要组成部分。
常用的控制算法有PID控制算法、模糊控制算法和自适应控制算法。
通过合理选择控制系统的组成部分和控制算法,并根据实际需求进行参数调整和优化,可以有效实现对电加热炉温度的稳定控制。
加热炉种类主要部件和技术指标引言加热炉是一种常见的热处理设备,广泛应用于工业生产中。
不同类型的加热炉具有不同的主要部件和技术指标。
本文将以Markdown文本格式介绍加热炉的种类、主要部件和技术指标。
一、加热炉种类根据不同的加热方式和工业应用需求,加热炉可以分为以下几种类型:1. 电阻加热炉电阻加热炉是利用电阻加热原理进行加热的设备。
其主要部件包括加热元件、温度控制系统和外壳等。
电阻加热炉的技术指标主要包括额定功率、最高工作温度、加热区大小等。
2. 燃气加热炉燃气加热炉是通过燃烧燃气产生高温气体进行加热的设备。
主要部件包括燃烧器、燃气供应系统、排烟系统等。
燃气加热炉的技术指标主要包括额定热效率、最高工作温度、燃气消耗量等。
3. 工频感应加热设备工频感应加热设备是利用工频感应加热原理进行加热的设备。
其主要部件包括感应线圈、水冷系统、温度控制系统等。
工频感应加热设备的技术指标主要包括频率、功率、加热效率等。
4. 高频感应加热设备高频感应加热设备是利用高频感应加热原理进行加热的设备。
主要部件包括高频电源、感应线圈、冷却系统等。
高频感应加热设备的技术指标主要包括频率、功率、加热效率等。
二、加热炉主要部件不同类型的加热炉具有不同的主要部件,下面将介绍各种加热炉的主要部件:1. 电阻加热炉的主要部件•加热元件:通常由耐高温合金材料制成,用于产生热量。
•温度控制系统:用于测量和控制加热炉内的温度。
•外壳:用于保护加热炉内部部件,同时能够起到隔热作用。
2. 燃气加热炉的主要部件•燃烧器:用于将燃气与空气混合并燃烧产生高温气体。
•燃气供应系统:包括燃气管道、调压阀等,用于将燃气输送到燃烧器中。
•排烟系统:用于将燃烧产生的废气排出室外。
3. 工频感应加热设备的主要部件•感应线圈:由导电材料制成,通过工频电流产生磁场以感应材料内部的涡流,从而产生热量。
•水冷系统:用于冷却感应线圈,以防止过热损坏。
•温度控制系统:用于测量和控制加热炉内的温度。
电加热炉温度控制系统的设计1. 本文概述随着现代工业的快速发展,电加热炉在许多工业生产领域扮演着至关重要的角色。
电加热炉的温度控制系统,作为其核心部分,直接关系到生产效率和产品质量。
本文旨在设计并实现一种高效、精确的电加热炉温度控制系统,以满足现代工业生产中对温度控制精度和稳定性的高要求。
本文首先对电加热炉温度控制系统的需求进行了详细分析,明确了系统设计的目标和性能指标。
接着,本文对现有的温度控制技术进行了全面的综述,包括传统的PID控制方法以及先进的智能控制策略。
在此基础上,本文提出了一种结合PID控制和模糊逻辑控制的新型温度控制策略,以实现更优的控制效果。
本文还详细阐述了系统的硬件设计和软件实现。
在硬件设计方面,本文选择了适合的传感器、执行器和控制器,并设计了相应的电路和保护措施。
在软件实现方面,本文详细描述了控制算法的实现过程,包括数据采集、处理、控制决策和输出控制信号等环节。
本文通过实验验证了所设计温度控制系统的性能。
实验结果表明,本文提出的温度控制系统能够实现快速、准确的温度控制,且具有较好的鲁棒性和稳定性,能够满足实际工业生产的需求。
本文从理论分析到实际设计,全面探讨了一种适用于电加热炉的温度控制系统的设计方法。
通过结合传统和先进的控制技术,本文提出了一种高效、稳定的温度控制策略,为提高电加热炉的温度控制性能提供了新的思路和实践参考。
2. 电加热炉的基本原理与构造电加热炉作为一种高效、清洁且精准的热能产生设备,其工作原理基于电磁感应和电阻加热两种基本方式,而构造则包括电源系统、加热元件、温控系统、隔热保温结构以及安全防护装置等关键组成部分。
电磁感应加热:在特定类型的电加热炉中,尤其是应用于金属工件加热的场合,电磁感应加热原理占据主导地位。
这种加热方式利用高频交流电通过感应线圈产生交变磁场,当金属工件置于该磁场中时,由于电磁感应现象,会在工件内部产生涡电流(又称涡流)。
涡电流在工件内部形成闭合回路,并依据焦耳定律产生热量,即电流通过电阻时产生的热效应。
基于PID 电加热炉温度控制系统设计1概述电加热炉随着科学技术的发展和工业生产水平的提高,已经在冶金、化工、机械等各类工业控制中得到了广泛应用,并且在国民经济中占有举足轻重的地位。
对于这样一个具有非线性、大滞后、大惯性、时变性、升温单向性等特点的控制对象,很难用数学方法建立精确的数学模型,因此用传统的控制理论和方法很难达到好的控制效果。
单片机以其高可靠性、高性能价格比、控制方便简单和灵活性大等优点,在工业控制系统、智能化仪器仪表等诸多领域得到广泛应用。
采用单片机进行炉温控制,可以提高控制质量和自动化水平。
在本控制对象电阻加热炉功率为800W ,由220V 交流电供电,采用双向可控硅进行控制。
本设计针对一个温度区进行温度控制,要求控制温度范围50~350C ,保温阶段温度控制精度为正负1度。
选择合适的传感器,计算机输出信号经转换后通过双向可控硅控制器控制加热电阻两端的电压。
其对象问温控数学模型为: 1)(+=-s T e K s G d sd τ 其中:时间常数Td=350秒放大系数Kd=50滞后时间τ=10秒控制算法选用改PID 控制2系统硬件的设计本系统的单片机炉温控制系统结构主要由单片机控制器、可控硅输出部分、热电偶传感器、温度变送器以及被控对象组成。
系统硬件结构框图如下:图2-1 系统硬件结构框图看门狗 报警提醒通信接口 LED显示 键盘 微型控制机 AT89S52 温度检测PT100 驱动执行机构 8路D/A 转换器DAC0832 测量变送 8路A/D 转换器ADC0809 加热电阻温度图2-2 系统电路图2.1电源部分本系统所需电源有220V交流市电、直流5V电压和低压交流电,故需要变压器、整流装置和稳压芯片等组成电源电路。
电源变压器是将交流电网220V的电压变为所需要的电压值,然后通过整流电路将交流电压变为脉动的直流电压。
由于此脉动的直流电压还含有较大的纹波,必须通过滤波电路加以滤除,从而得到平滑的直流电压。
电阻炉使用规定范文电阻炉是一种常见的加热设备,广泛应用于工业生产中。
为了确保其安全使用,以下是电阻炉的使用规定:1.器材检查:在使用电阻炉之前,必须对其进行仔细检查,确保其外观完好无损、电路连接正常、仪表准确,并清理干净,避免灰尘等杂物导致短路或其他故障。
2.电源连接:电阻炉必须使用符合规定的电源进行连接,以确保电压稳定,电流适当。
在接线时,务必将电源关闭,并使用绝缘工具进行操作,避免触电风险。
3.温度控制:使用电阻炉时,应根据需要设定合适的温度。
在设定温度时,注意加热速度不宜过快,避免温度突然升高造成热悔现象。
同时,需注意温度超过炉子额定温度范围,以免损坏电阻炉。
4.使用限制:电阻炉在使用过程中有一定的限制。
首先,不得将易燃物品放置在电阻炉附近,并确保周围环境通风良好,以避免引发火灾和中毒事故。
其次,不得将电阻炉用于超过其额定功率的高温加热,以免引发电阻炉及其周围设备的过载和损坏。
同时,需要遵守电阻炉的额定工作时间和使用次数,避免过度使用,影响其寿命和使用效果。
5.定期维护:为了确保电阻炉的正常运行,需要定期进行维护和保养。
维护包括清洗电阻炉表面,检查电路连接是否松动,清除电阻片上积聚的灰尘等杂物,以免影响电热元件的导电性能。
同时,还需要校准电阻炉的温度控制系统,以确保温度的准确性和稳定性。
6.安全操作:使用电阻炉时,必须遵守相关的安全操作规程。
在炉温较高时,操作人员应穿戴防热手套、护目镜等个人防护设备,以免被炉温烫伤或产生其他伤害。
同时,操作人员应及时关闭电流,切勿长时间离开炉子,避免发生燃烧事故。
综上所述,电阻炉的使用规定包括器材检查、电源连接、温度控制、使用限制、定期维护和安全操作。
遵守这些规定,可以确保电阻炉的安全使用,提高其工作效率和使用寿命,从而为生产工作提供保障。
电阻炉操作规程
《电阻炉操作规程》
一、电阻炉工作前的准备
1. 确保电阻炉周围没有易燃易爆物品,并保持通风良好。
2. 检查电阻炉的电源、连接线路和开关是否正常。
3. 检查电阻炉的温度控制装置和安全装置是否正常工作。
4. 确保操作人员了解电阻炉的基本操作规程和安全注意事项。
二、电阻炉的操作流程
1. 打开电源开关,确认电阻炉的供电正常。
根据需要将温度设置到所需的温度范围。
2. 将待加热的物品放入电阻炉中,并关闭电炉门。
3. 监控电阻炉的温度变化,并根据需要调整温度控制装置。
4. 在加热过程中,注意观察电阻炉周围的环境是否存在异常情况,如烟雾、异味等。
5. 当加热完成后,需要将电阻炉的温度调至最低,然后将电炉门打开,待物品冷却后取出。
6. 关闭电阻炉的电源开关,进行清洁和维护工作。
三、电阻炉的安全注意事项
1. 使用电阻炉时,要保持操作环境清洁整洁,防止杂物或油污积累导致火灾危险。
2. 加热物品时,要确保物品的性质和温度范围符合电阻炉的工作要求。
3. 在操作过程中,严禁使用易燃易爆物品,避免引发火灾或爆炸危险。
4. 操作人员应经过专业培训,并严格遵守电阻炉的操作规程和安全注意事项。
以上即是关于电阻炉操作规程的基本内容,希望能帮助大家合理安全地使用电阻炉。
电阻加热炉温度控制精选文档TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-微型计算机控制技术课程设计----电阻加热炉温度控制学院:信息工程学院专业班级:自动化0703班姓名:唐凯学号:07001139目录一、摘要二、总体方案设计1、设计内容及要求2、工艺要求3、要求实现的系统基本功能4、对象分析5、系统功能设计三、硬件的设计和实现四、数字控制器的设计)五、软件设计)1、系统程序流程图2、程序清单六、完整的系统电路图七、系统调试八、设计总结九、参考文献一、摘要温度是工业对象中主要的被控参数之一。
特别是在冶金、化工、机械各类工业中,广泛使用各种加热炉、热处理炉、反应炉等。
由于炉子的种类不同,所采用的加热方法及燃料也不相同,如煤气、天然气等。
但就控制系统本身的动态特性而言,均属于一阶纯滞后环节,在控制算法上基本相同,可采用PID 控制或其他纯滞后补偿算法。
为了保证生产过程正常安全地进行,提高产品的质量和数量,以及减轻工人的劳动强度,节约能源,对加热用的各种电炉要求在一定条件下保持恒温,不能随电源电压波动或炉内物体而变化,或者有的电炉的炉温根据工艺要求按照某个指定的升温或保温规律而变化,等等。
因此,在工农业生产或科学实验中常常对温度不仅要不断地测量,而且要进行控制。
二、总体方案设计设计任务用一台计算机及相应的部件组成电阻炉炉温的自动控制系统,并使系统达到工艺要求的性能指标。
1、设计内容及要求电阻加热炉用于合金钢产品热力特性实验,电加热炉用电炉丝提供功率,使其在预定的时间内将炉内温度稳定到给定的温度值。
在本控制对象电阻加热炉功率为8KW,有220V交流电源供电,采用双向可控硅进行控制。
系统模型:2、工艺要求按照规定的曲线进行升温和降温,温度控制范围为50—350℃,升温和降温阶段的温度控制精度为+5℃,保温阶段温度控制精度为+2℃。
3、要求实现的系统基本功能微机自动调节:正常工况下,系统投入自动。
模拟手动操作:当系统发生异常,投入手动控制。
微机监控功能:显示当前被控量的设定值、实际值,控制量的输出值,参数报警时有灯光报警。
4、对象分析在本设计中,要求电阻炉炉内的温度,按照上图所示的规律变化,从室温开始到50℃为自由升温阶段,当温度一旦到达50℃,就进入系统调节,当温度到达350℃时进入保温段,要始终在系统控制下,一保证所需的炉内温度的精度。
加工结束,要进行降温控制。
保温段的时间为600—1800s。
过渡过程时间:即从开始控制到进入保温阶段的时间要小于600s。
在保温段当温度高于352℃或低于348℃时要报警,在升温和降温阶段也要进行控制,使炉内温度按照曲线的斜率升或降。
采用MCS—51单片机作为控制器,ADC0809模数转换芯片为模拟量输入,DAC0832数模转换芯片为模拟量输出,铂电阻为温度检测元件,运算放大器和可控硅作为功率放大,电阻炉为被控对象,组成电阻炉炉温控制系统,另外,系统还配有数字显示,以便显示和记录生产过程中的温度和输出值。
5、系统功能设计计算机定时对炉温进行测量和控制一次,炉内温度是由一铂电阻温度计来进行测量,其信号经放大送到模数转换芯片,换算成相应的数字量后,再送入计算机中进行判别和运算,得到应有的电功率数,经过数模转换芯片转换成模拟量信号,供给可控硅功率调节器进行调节,使其达到炉温变化曲线的要求。
三、硬件的设计和实现1、计算机机型:MCS—51 8031(不包含ROM、EPROM)系统总线:PC总线2、设计输入输出通道输入通道:因为所控的实际温度在50 ~ 350℃左右,即(350-50)=300所以选用8位A/D转换器,其分辨率约为℃/字,再加放大器偏置措施实现。
(通过调整放大器的零点来实现偏置)这里采用一般中速芯片ADC0809。
ADC0809是带有8位A/D转换器,8路多路开关以及微型计算机兼容的控制逻辑的CMOS组件,其转换方法为逐次逼近型。
8路的模拟开关由地址锁存器和译码器控制,可以在8个通道中任意访问一个通道的模拟信号。
输出通道:据其实际情况,D/A转换器的位数可低于A/D转换器的位数,因为一般控制系统对输出通道分辨率的要求比输入通道的低,所以这里采用常用的DAC0832芯片DAC0832是8位D/A转换器,与微处理器完全兼容。
期间采用先进的CMOS 工艺,因此功耗低,输出漏电流误差较小。
因DAC0832电流输出型D/A转换芯片,为了取得电压输出,需在电流输出端接运算放大器,Rf为为运算放大器的反馈电阻端。
3、设计支持计算机工作的外围电路矩阵键盘技术:温度输出显示技术:LED静态显示接口技术,所谓静态显示,即CPU输出显示值后,由硬件保存输出值,保持显示结果.特点:占用机时少,显示可靠.但元件多,线路复杂、成本高,功耗大。
报警电路设计:正常运行时绿灯亮,在保温阶段炉内温度超出系统允差范围,就要进行报警。
报警时报警灯亮,电笛响,同时发送中断信号至CPU进行处理。
4、元器件的选择传感器的选择:铂铑10—铂热电偶,S型,正极性,量程0—1300C,使用温度小于等于600C,允差+。
执行元件的选择:电阻加热炉采用晶闸管(SCR)来做规律控制,结合电阻炉的具体要求,为了减少炉温的纹波,对输出通道采用较高的分辨率的方案,因此采用移相触发方式,并且由模拟触发器实现移相触发。
变送器的选择:因为系统要求有偏置,又需要对热电偶进行冷端补偿,所以采用常规的DDZ系列温度变送器。
控制元件:采用双向可控硅进行控制,其功能相当于两个单向可控硅反向连接,具有双向导通功能,其通断状态有控制极G决定。
在控制极加上脉冲可使其正向或反向导通。
四、数字控制器的设计1、控制算法:电阻加热炉温度控制系统框图:整个闭环系统可用一个带纯滞后的一阶惯性环节来近似,所以其控制算法采用大林算法。
电阻加热炉温度控制系统模型为其广义的传递函数为:大林算法的设计目标是设计一个合适的数字控制器,使整个闭环系统的传递函数相当于一个带有纯滞后的一阶惯性环节,即:通常认为对象与一个零阶保持器相串联, 相对应的整个闭环系统的脉冲传递函数是:11788.2)(40+=-s e s G s2、计算过程:连同零阶保持器在内的系统广义被控对象的传递函数]11788.21[)(40+-=--s e s e Z z G sTs])1178(1[)1(8.2401+-=--s s Z zz T]11781781[)1(8.2401+--=--s s Z zz T]1111[)1(8.211781141---------=z ez z z15945.01154.0---=z z系统闭环传递函数]11[)()()(+-==Φ--s e s e Z z R z C z NTsTs τ111)1(-------=z eezTTN ττ数字控制器:)](1)[()()(z z G z z D Φ-Φ=)(])1(1[)1(111z G z e z eez N TTTN ------------=τττ51510110105154.0945.01])1(1[)1(-------------=z z z ez eez τττ511933.0007.01)945.01(448.6------=z z z]933.0933.0933.0933.01)[1()945.01(448.6)(432111------++++--=z z z z z z z D消除振铃现象后的数字控制器:111)945.01(448.6)(----=z z z D111945.0297.1297.1)()()(---⨯-==z z z E z U z D将上式离散化:U (Z )—U (Z )Z —1=(Z )—(Z )Z —1U (K )—U (K —1)=(K )—(K —1) 最终得:U (K )=U (K —1)+(K )—(K —1)五、软件设计1、系统程序流程图a、系统主程序框图b、A/D转换子程序流程图C、数字控制算法子程序流程图d、LED显示流程图2、程序清单ORG 0000HAJMP MAINORG 0003HAJMP KEYSORG 000BHAJMP PIT0ORG 001BHAJMP PIT1 ;中断入口及优先级MAIN: MOV SP,#00HCLR 5FH :清上下限越限标志MOV A,#00HMOV R7,#09HMOV R0,#28HLP1:MOV @R0,AINC R0DJNZ R7,LP1MOV R7,#06HMOV R0,#39HLP2:MOV @R0,AINC R0DJNZ R7,LP2MOV R7,#06HMOV RO,#50HLP3:MOV @R0,AINC R0DINZ R7,LP3 ;清显示缓冲区MOV 33H,#00HMOV 34H,#00H ;赋KP高低字节MOV 35H,#00HMOV 36H,#00H ;赋KI高低字节MOV 37H,#00HMOV 38H,#00H ;赋KD高低字节MOV 42H,#00HMOV 43H,#00H ;赋K高低字节MOV TMOD,#56H ;T0方式2,T1方式1计数MOV TLO,#06HMOV THO,#06HMOV 25H,#163H ;设定值默认值350SETB TR0 ;键盘高优先级SETB ET0SETB EX0SETB EA ;开键盘T0。
T1中断LOOP:MOV R0,#56HMOV R1,#55HLCALL SCACOV ;标度转化MOV R0,#53HLCALL DIRNOPLCALL DLY10MSNOPLCALL DLY10MSAJMP LOOP ;等中断键盘子程序KEYS:CLR EX0CLR EAPUSH PSWPUSH ACC ;关中断LCALL DLY10MS ;消抖CC:JB AASETB 5DH ;置“显示设定值温度值标志”MOV A,25H ;取运算位的值MOV B,#10H ;BCD码转化DIV A BMOV 52H,AMOV A, BMOV 51H, ALCALL DIR ;显示设定温度NOPLCALL DLY10MSNOPLCALL DLY10MSJB ,BBMOV R1,#25HLCALL DAAD1NOPLCALL DLY10MSAJMP CCBB: JB CCMOV R1,#25HLCALL DEEC1NOPLCALL DLY10MSAJMP CCAA: POP ACCPOP PSWSETB EX0SETB EA ;出栈RETI显示子程序DIR: MOV SCON ,#00H ;置串行口移位寄存器状态SETB ;开显示JB 5DH,DL1 ;显示设定温度DL2: MOV DPTR,#SEGTDL0: MOV A,@R0MOVC A,@A+DPTRMOV SBUF ,ALOOP1: JNB TI, LOOP1CLR TIINC R0MOV A,@R0MOVC A,@A+DPTRANL A, #7FH :使数带小数点LOOP2: JNB TI,LOOP2CLR TIINC R0MOV A,@R0MOVC A,@A+DPTRMOV SBUF,ALOOP3: JNB TI,LOOP3CLR TICLRCLR 5DHRETDL1: MOV 50H,#0AH ;小数位黑屏AJMP DL2SEGT: DB0C0H ,0F9H,0A4H,0B0H,99H,92H,82H,0F8H,80H,90H,0FFH加一子程序DAAD1: MOV A,#00HORL A,@R1ADD A,#01HCJNE A,#30H,DAAD2 ;超过48度了吗?DAAD3: MOV @R1,ADAA: RETDAAD2: JC DAAD3MOV @R1,#15EH ;超过48则转回到355AJMP DAA减一子程序DEEC1: MOV A,@R1DEC ACJNE A,#15EH,DEEC2 ;低于355度了吗?DEEC3: MOV @R1,ADEE : RETDEEC2: JNC DEEC3MOV @R1,#30H ;低于355则转回到48AJMP DEET0中断子程序PTT0: CLR EAPUSH ACCPUSH PSWPUAH DPLPUSH DPHSETB EA ;压栈后开中断响应键盘PPP: LCALL SMAP :采样数据LCALL FILTER ;数字滤波MOV A,2AH ;取采样值CJNE A,#07H,AAA ;下限48比较AJMP BBBAAA: JC CCC ;小于48度转CJNE A,#0FEH ,DDD ;上限355比较AJMP BBB ;转至48~355正常范围处理DDD: JC BBBCLR ;大于355黄灯亮SETB 5EHCLR ;置标志启动风扇AJMP PPPCCC: CLR ;小于48红灯亮SETB 5FHBBB: CLR ;置标志启动电炉AJMP PPPSETBSETBSETBSETBCLR 5EHCLR 5FH ;50~350之间正常LCALL PIDJNB 20H,EEF ;设定温度小于实际值转到风扇MOV A,29HLCALL FFFCLRLOOP10: MOV R0,#56H ;存放相乘结果的首址MOV R1,#55H ;赋显示缓冲区最高位地址LCALL SCACOV ;标度转化MOV R0,#53H ;赋显示首址CLR DIRJB D5H,LOOP10 ;等待T1中断CLR EAPOP DPHPOP DPLPOP PSWSETB EAPOP ACCRETIEEE: MOV A,28H ;风扇处理LCALL FFFCLRAJMP LOOP10FFF: CRL A ;根据PID结果计算T1初值INC AMOV TL1,AMOV TH1,#0FFHSETB PI1SETB TR1SETB ET1RET标度转化SCACOV :PROC NEARMOV DX,0MOV DATA1,#258HMOV DATA2,#708HMOV DATA3,#960HPROC NEARMOV DX,0MOV AX,DATAP ;取采样时间CMP AX,DATA3 ;时间大于2400?JAE Q3DORCMP AX,DATA2JAE Q3-Q2 ; 1800<时间<2400CMP AX,DATA3JAE Q2-Q1 ; 600<时间<1800Q0: MOV BX, ;<600S Q=50+t/2 MUL BXADC DX,0JMP DONEQ2-Q1: MOV AX,#15EH ;Q=350Q3-Q2: SUB AX,DATA2 ;Q=350-(t-1800)/2MOV BX,MUL BXMOV AX,#15EHSUB AX,BXMOV @R1,APP: RET采样子程序SWAP: MOV R0,#20HMOV R1,#03HSAW1: MOV DPTR,#7FF8HMOVX @DPTR A ;A/D转化MOV R2,#20HDLY: DJNZ R2,DLY ;延时HERE: JB ,HEREMOV DPTR,#7FF8HMOVX A,@DPTR ;读转化结果MOV @R0,AINC R0DJNZ R1,SAM1RET数字滤波FILTER: MOV A, 20HCJNE A,2DH CMP1AJMP CMP2CMP1: JNC CMP2XCH A,2DHXCH A,2CHCMP2: MOV A,2DHCJNE A,22EH,CMP3MOV 2AH,AAJMP RRCMP3: JC CMP4MOV 2AH,AAJMP RRCMP4: MOV A,2EHCJNE A,2CH,CMP5MOV 2AH ,AAJMP RRCMP5: JC CMP6XCH A,2CHCMP6: MOV 2AH,ARR: RETT1中断PIT1: CLR 00HJB 20H, GGGSETB ;关闭电炉GG: CLR PT1RETIGGG: SETB ;关闭风扇CLR 20HAJMP GG延时10MS子程序DLY10MS: MOV R7,#0A0HDLOO: MOV R6,#0FFHDL11: DJNZ R6,DL11DJNZ R7,DL00RET数字PID算法子程序PID: MOV R5,#00HMOV R4,2DH ;取NX值MOV R3,#00HMOV R2,#32H ;取50LCALL CPL1LCALL DSUM ;求(NX-32H)值MOV R0,#5AH ;赋乘法算法运算暂存单元地址首址MOV R5,#05HMOV R4,#1CH ;赋参数LCALL MULT ;调无符号数乘法MOV 31H ,5BHMOV 32H ,5AH ;存放结果有效值MOV R5,31HMOV R4,32H ;取双字节UR(设定)MOV R3,2AHMOV R2,#00H ;取双字节实测值ACALL CPL1 ;取U(K)补码ACALL DSUM ;计算E(K)MOV 39H, R7MOV 3AH,R6 ;存E(K)MOV R5,35HMOV R4,36H ;取KI参数MOV R0,#4AHACALL MULT1 ;计算PI=KI*E(K)MOV R2,39HMOV R4,3AH ;取E(K)MOV R3,3BHMOV R2,3CH ;取E(K-1)MOV R5,33HMOV R4,34H ;取KP参数MOV R0,#46HACALL MULT1 ;KP*[ E(K)- E(K-1)]MOV R5,49HMOV R4,48HMOV R3,4DHMOV R2,4CHLCALL DSUM ;KP*[ E(K)- E(K-1)]+ KI*E(K)MOV 4AH, R7MOV 4BH,R6 ;保存上式之和MOV R5,39HMOV 3CH,3AH ;存E(K)到E(K-1)MOV A,31H ;取设定值CJNE A,2AH,AA2 ;比较设定值与实测值AA3: CLR 20H ;清电炉标志AA1: RETAA2 JNC AA3SETB 20H ; 清风扇标志位MOV R3,39HMOV R2,3AHLCALL CPL1MOV A,R3MOV R7,AMOV A,R2MOV R6,AMOV R5,42HMOV R4,43H ;取K1风扇标志MOV R0,#5AHACALL MULT1 ;计算P=K*E(K)且结果存在51H,50H 单元中MOV 28H,5BH ;取8位有效值存在28H单元AJMP AADSUM: MOV A,R4 ;双字节加法子程序(R5R4)+(R3R2) (R7R6) ADD A,R2MOV R6,AMOV A,R5ADDC A,R3MOV R7,ARET双字节求补CPL1: MOV A,R2CPL AADD A,#01HMOV R2,AMOV A,R3CPL AADDC A,#00HMOV R3,ARET乘法被乘数R7R6乘数R5R4MULT1: MOV A,R7RLC AMOV 5CH,C ;被乘数符号C1 5CH位JNC POS1 ;为正数则转MOV A,R1 ;为负数求补CPL AADD A,#01HMOV R6,AMOV A,R7CPL AADDC A,#00HMOV R7,APOS1: MOV A,R5 ;取乘数RLC A ;乘数符号C2 5DHMOV 5DH,CJNC POS2 ;为正数则转MOV A,R4CPL AADD A,#01HMOV R4,AMOV A,R5CPL AADDC A,#00HMOV R5,APOS2: ACALL MULTMOV C,5CHANL C,5DHJC TPL ;负负相乘转MOV C,5CHMOV C,5DHJNC TPL ;正正相乘转DEC R0MOV A,@ROCPL AADD A,#01MOV @R0,AINC R0MOV A,@R0CPL AADDC A,#00HMOV @R0,ATPL: RETMULT: MOV A,R6MOV B,R4 ;取低位相乘MUL ABMOV @R0,AMOV R3,BMOV A,R4MOV B,R7MUL ABADD A,R3MOV R3,AMOV A,BADDC A,#00HMOV R2,AMOV A,R6MOV B,R5MUL ABADD A,R3INC R0MOV @R0,ACLR 5BHMOV A,R2ADDC A,BMOV R2,AJNC LASTSETB 5BH ;置进位标志LAST: MOV A,R7MOV B,R5MUL ABADD A,R2INC R0MOV @R0,A ;存积MOV A,BADDC A,#00HMOV C,5BHADDC A,#00HINC R0MOV @R0,ARETEND六、完整的系统电路图七、系统调试在设计完成后进行调试,根据设计逻辑图制作好实验样机,就可以进入硬件调试,调试的主要任务是排除样机的故障,其中包括设计错误和工艺性故障,然后在进行软件的调试用微型机对MCS51系列单片机程序进行交叉汇编。