数字电路_实验一_与门,或门,异或门的实现
- 格式:doc
- 大小:190.00 KB
- 文档页数:3
实验一集成逻辑门电路逻辑功能的测试一、实验目的1.熟悉数字逻辑实验箱的结构、基本功能和使用方法。
2.掌握常用非门、与非门、或非门、与或非门、异或门的逻辑功能及其测试方法。
二、实验器材1.数字逻辑实验箱DSB-3 1台2. 万用表 1只3.元器件: 74LS00(T065) 74LS04 74LS55 74LS86 各一块导线若干三、实验说明1.数字逻辑实验箱提供5 V + 0.2 V的直流电源供用户使用。
2.连接导线时,为了便于区别,最好用不同颜色导线区分电源和地线,一般用红色导线接电源,用黑色导线接地。
3.实验箱操作板部分K0~K7提供8位逻辑电平开关,由8个钮子开关组成,开关往上拨时,对应的输出插孔输出高电平“1”,开关往下拨时,输出低电平“0”。
4.实验箱操作板部分L0~L7提供8位逻辑电平LED显示器,可用于测试门电路逻辑电平的高低,LED亮表示“1”,灭表示“0”。
四、实验内容和步骤1.测试74LS04六非门的逻辑功能将74LS04正确接入面包板,注意识别1脚位置,按表1-1要求输入高、低电平信号,测出相应的输出逻辑电平。
表1-1 74LS04逻辑功能测试表2.测试74LS00四2输入端与非门逻辑功能将74LS00正确接入面包板,注意识别1脚位置,按表1-2要求输入高、低电平信号,测出相应的输出逻辑电平。
3.测试74LS55 二路四输入与或非门逻辑功能将74LS55正确接入面包板,注意识别1脚位置,按表1-3要求输入信号,测出相应的输出逻辑电平,填入表中。
(表中仅列出供抽验逻辑功能用的部分数据)4.测试74LS86四异或门逻辑功能将74LS86正确接入面包板,注意识别1脚位置,按表1-4要求输入信号,测出相应的输出逻辑电平。
五、实验报告要求1.整理实验结果,填入相应表格中,并写出逻辑表达式。
2.小结实验心得体会。
3.回答思考题若测试74LS55的全部数据,所列测试表应有多少种输入取值组合?实验二集成逻辑门电路的参数测试一、实验目的1.掌握TTL和CMOS与非门主要参数的意义及测试方法。
一、实验目的1. 理解数字逻辑的基本概念和基本原理。
2. 掌握数字逻辑电路的基本分析方法,如真值表、逻辑表达式等。
3. 熟悉常用数字逻辑门电路的功能和应用。
4. 提高数字电路实验技能,培养动手能力和团队协作精神。
二、实验原理数字逻辑电路是现代电子技术的基础,它主要研究如何用数字逻辑门电路实现各种逻辑功能。
数字逻辑电路的基本元件包括与门、或门、非门、异或门等,这些元件可以通过组合和连接实现复杂的逻辑功能。
1. 与门:当所有输入端都为高电平时,输出端才为高电平。
2. 或门:当至少有一个输入端为高电平时,输出端为高电平。
3. 非门:将输入端的高电平变为低电平,低电平变为高电平。
4. 异或门:当输入端两个高电平或两个低电平时,输出端为低电平,否则输出端为高电平。
三、实验内容1. 实验一:基本逻辑门电路的识别与测试(1)认识实验仪器:数字电路实验箱、逻辑笔、示波器等。
(2)识别与测试与门、或门、非门、异或门。
(3)观察并记录实验现象,分析实验结果。
2. 实验二:组合逻辑电路的设计与分析(1)设计一个简单的组合逻辑电路,如加法器、减法器等。
(2)根据真值表列出输入输出关系,画出逻辑电路图。
(3)利用逻辑门电路搭建电路,进行实验验证。
(4)观察并记录实验现象,分析实验结果。
3. 实验三:时序逻辑电路的设计与分析(1)设计一个简单的时序逻辑电路,如触发器、计数器等。
(2)根据电路功能,列出状态表和状态方程。
(3)利用触发器搭建电路,进行实验验证。
(4)观察并记录实验现象,分析实验结果。
四、实验步骤1. 实验一:(1)打开实验箱,检查各电路元件是否完好。
(2)根据电路图连接实验电路,包括与门、或门、非门、异或门等。
(3)使用逻辑笔和示波器测试各逻辑门电路的输出,观察并记录实验现象。
2. 实验二:(1)根据实验要求,设计组合逻辑电路。
(2)列出真值表,画出逻辑电路图。
(3)根据逻辑电路图连接实验电路,包括所需逻辑门电路等。
一、实验目的1. 理解数字电路的基本概念和基本原理。
2. 掌握数字电路中常用逻辑门电路的功能和特性。
3. 学会使用数字电路实验箱进行基本实验操作。
4. 培养动手实践能力和分析问题、解决问题的能力。
二、实验原理数字电路是由逻辑门电路组成的,用于处理数字信号的电路。
逻辑门电路是数字电路的基本单元,包括与门、或门、非门、异或门等。
本实验主要涉及以下逻辑门电路:1. 与门(AND Gate):只有当所有输入信号都为高电平时,输出信号才为高电平。
2. 或门(OR Gate):只要有一个输入信号为高电平,输出信号就为高电平。
3. 非门(NOT Gate):输入信号为高电平时,输出信号为低电平;输入信号为低电平时,输出信号为高电平。
4. 异或门(XOR Gate):只有当输入信号不同时,输出信号才为高电平。
三、实验仪器与设备1. 数字电路实验箱2. 电源3. 逻辑开关4. 测试灯5. 连接线四、实验步骤1. 与门实验:- 将与门输入端连接到逻辑开关。
- 通过逻辑开关控制输入信号,观察输出信号的变化。
- 记录实验数据,分析实验结果。
2. 或门实验:- 将或门输入端连接到逻辑开关。
- 通过逻辑开关控制输入信号,观察输出信号的变化。
- 记录实验数据,分析实验结果。
3. 非门实验:- 将非门输入端连接到逻辑开关。
- 通过逻辑开关控制输入信号,观察输出信号的变化。
- 记录实验数据,分析实验结果。
4. 异或门实验:- 将异或门输入端连接到逻辑开关。
- 通过逻辑开关控制输入信号,观察输出信号的变化。
- 记录实验数据,分析实验结果。
五、实验结果与分析1. 与门实验:- 输入信号均为高电平时,输出信号为高电平。
- 至少有一个输入信号为低电平时,输出信号为低电平。
2. 或门实验:- 至少有一个输入信号为高电平时,输出信号为高电平。
- 输入信号均为低电平时,输出信号为低电平。
3. 非门实验:- 输入信号为高电平时,输出信号为低电平。
与门或门非门与非门或非门异或门同或门等电路的基本原理与门(AND gate)是一种基本的逻辑门电路,可以实现逻辑与运算。
与门有两个输入端和一个输出端,当且仅当两个输入信号都为高电平时,输出信号才为高电平;否则输出信号为低电平。
与门的基本原理是利用晶体管的开关特性。
由于晶体管有一个基极、一个发射极和一个集电极,当基极与发射极之间的电压大于一些阈值时,晶体管会导通,此时集电极电压为低电平。
而当基极与发射极之间的电压小于阈值时,晶体管会截止,此时集电极电压为高电平。
与门电路有多种实现方式,其中最常见的是使用两个晶体管和一个电阻来构成。
当且仅当两个输入信号均为高电平时,输入端的电阻会导通,使得输出端的电压为低电平;否则输出端的电压为高电平。
或门(OR gate)是另一种基本的逻辑门电路,可以实现逻辑或运算。
或门也有两个输入端和一个输出端,当两个输入信号中至少有一个为高电平时,输出信号为高电平;否则输出信号为低电平。
或门的基本原理类似于与门,也是利用晶体管的开关特性实现的。
不同的是,或门使用的是并联的晶体管和电阻,当至少有一个输入信号为高电平时,其中一个晶体管会导通,使输出电压为低电平。
非门(NOT gate)是一种单输入的逻辑门电路,可以实现逻辑非运算。
非门的输入端为一个信号,输出端为该信号的逻辑反。
当输入信号为高电平时,输出信号为低电平;当输入信号为低电平时,输出信号为高电平。
非门的基本原理是通过晶体管的开关特性实现的。
当输入信号电压大于阈值时,晶体管会导通,输出电压为低电平;当输入信号电压小于阈值时,晶体管截止,输出电压为高电平。
与非门(NAND gate)是由与门和非门组合而成的电路,实现的是逻辑与非运算。
与非门有两个输入端和一个输出端,当且仅当两个输入信号都为高电平时,输出信号为低电平;否则输出信号为高电平。
与非门的基本原理是将与门和非门串联起来。
首先,与门的输出作为非门的输入,对与门的输出信号取反,得到与非门的输出信号。
基本逻辑门电路实验报告实验报告:基本逻辑门电路摘要:本实验旨在加深学生对于基本逻辑门电路的理解,并且实际操作电路完成基本的逻辑运算。
在实验中,我们探究了与门、或门、非门和异或门的工作原理,以及如何利用这些门实现一些简单的逻辑运算。
通过该实验,我们更深入的了解了基本逻辑门电路及其在计算机中的应用。
前言:数字逻辑电路是现代电子科技中的最基本、最基础的部分之一,是微电子工程所需要掌握的重要课程。
它是现代信息技术的核心,无论是计算机系统、通讯系统还是控制系统都离不开数字逻辑电路。
因此,对于数字逻辑电路的学习是我们深入学习计算机的必要前提。
材料及设备:1. 实验箱2. 电源3. 集成电路 7400(与门)、7402(或门)、7404(非门)、7486(异或门)4. 七段码数码管实验步骤:1. 确定各种门的输入输出端口2. 用实际物料组装好多个电路(与门、或门、非门、异或门)并完成接线3. 测试电路供电情况,并查看是否有异常现象4. 对于每一个电路,接入输入端口并测试输出的波形5. 利用实际电路完成几个简单的逻辑运算,并通过七段码数码管显示结果实验结果及分析:通过实验,我们了解到与门是实现逻辑与运算的一种基本电路,或门是实现逻辑或运算的一种基本电路,非门是实现逻辑非运算的一种基本电路,而异或门则可以实现异或功能。
同时,我们还探究了异或门的特殊性质,即异或门可以用于加法器电路的设计。
此外,我们发现,几种电路的运算皆相当简单,但其效果却十分明显。
结论:通过本实验,我们更加深入地了解了基本逻辑门电路及其在计算机中的应用,掌握了数字逻辑电路的基本操作方法。
以后,我们将继续加深对数字逻辑电路的理解与应用,并将其应用到更深入、更广泛的领域之中。
门电路逻辑功能与测试实验报告一、引言门电路是数字电子电路中常见的逻辑电路,用于实现布尔逻辑运算和控制功能。
门电路有与门、或门、非门、异或门等多种类型,通过它们的组合可以实现复杂的数字运算和逻辑控制。
本实验旨在通过实际操作和测试,深入了解门电路的逻辑功能和工作原理。
二、实验内容1.与门的测试:使用与门芯片(74LS08),接入两个输入A和B,并将结果输出连接到一个LED灯。
通过手动给输入引脚加高或低电平,观察LED灯的亮灭情况,并记录输入输出的真值表。
2.或门的测试:使用或门芯片(74LS32),接入两个输入A和B,并将结果输出连接到一个LED灯。
通过手动给输入引脚加高或低电平,观察LED灯的亮灭情况,并记录输入输出的真值表。
3.非门的测试:使用非门芯片(74LS04),接入一个输入A,并将结果输出连接到一个LED灯。
通过手动给输入引脚加高或低电平,观察LED灯的亮灭情况,并记录输入输出的真值表。
4.异或门的测试:使用异或门芯片(74LS86),接入两个输入A和B,并将结果输出连接到一个LED灯。
通过手动给输入引脚加高或低电平,观察LED灯的亮灭情况,并记录输入输出的真值表。
三、实验结果与分析1.与门测试结果分析:根据与门输入两个高电平时才输出高电平的特性,可以得到与门的真值表如下:A ,B , Outpu:---:,:---:,:------low , low , lolow , high, lohigh, low , lohigh, high, hig实验测试结果与理论一致,说明与门的逻辑功能正常。
2.或门测试结果分析:根据或门输入两个低电平时才输出低电平的特性,可以得到或门的真值表如下:A ,B , Outpu:---:,:---:,:------low , low , lolow , high, highigh, low , highigh, high, hig实验测试结果与理论一致,说明或门的逻辑功能正常。
门电路逻辑功能及测试实验原理
门电路是数字电路中最基本的逻辑电路之一,用于实现逻辑操作。
常见的门电路有与门、或门、非门、异或门等。
每种门电路都有其特定的逻辑功能,以下是各种门电路的功能及测试实验原理:
1. 与门(AND Gate):
逻辑功能:当所有输入均为高电平时,输出为高电平;否则输出为低电平。
测试实验原理:将多个输入连接到与门的输入端,将输出端连接到示波器或其他仪器上。
通过改变输入的电平,观察输出的变化,验证与门电路的功能是否正确。
2. 或门(OR Gate):
逻辑功能:当任意一个输入为高电平时,输出为高电平;所有输入均为低电平时,输出为低电平。
测试实验原理:将多个输入连接到或门的输入端,将输出端连接到示波器或其他仪器上。
通过改变输入的电平,观察输出的变化,验证或门电路的功能是否正确。
3. 非门(NOT Gate):
逻辑功能:输入与输出互为反相,即输入为高电平时,输出为低电平;输入为低电平时,输出为高电平。
测试实验原理:将输入连接到非门的输入端,将输出端连接到示波器或其他仪器上。
通过改变输入的电平,观察输出的变化,验证非门电路的功能是否正确。
4. 异或门(XOR Gate):
逻辑功能:当输入的个数为奇数个时,输出为高电平;当输入的个数为偶数个时,输出为低电平。
测试实验原理:将多个输入连接到异或门的输入端,将输出端连接到示波器或其他仪器上。
通过改变输入的电平,观察输出的变化,验证异或门电路的功能是否正确。
注意:以上是常见的门电路的逻辑功能及测试实验原理,具体的实验步骤和使用仪器可能会有所不同,实验时应参考具体的实验指导书或教学资料。
一、实验目的1. 理解和掌握基本逻辑门的工作原理和逻辑功能。
2. 学会使用逻辑门进行组合逻辑电路的设计和测试。
3. 培养动手实践能力和逻辑思维。
二、实验原理逻辑电路是数字电路的基础,由基本逻辑门组成。
基本逻辑门包括与门(AND)、或门(OR)、非门(NOT)、异或门(XOR)等。
这些逻辑门可以组合成复杂的逻辑电路,实现各种逻辑功能。
三、实验仪器与设备1. 逻辑门实验板2. 万用表3. 逻辑分析仪4. 计算器四、实验内容1. 基本逻辑门实验(1)观察与门、或门、非门、异或门的逻辑功能。
(2)验证逻辑门输入输出关系。
2. 组合逻辑电路实验(1)设计一个简单的组合逻辑电路,如全加器、半加器等。
(2)测试电路的功能,并分析结果。
3. 复杂逻辑电路实验(1)设计一个复杂的组合逻辑电路,如奇偶校验器、编码器、译码器等。
(2)测试电路的功能,并分析结果。
五、实验步骤1. 基本逻辑门实验(1)将实验板上的与门、或门、非门、异或门分别接入电路。
(2)根据实验原理,观察不同输入下输出信号的变化。
(3)记录输入输出关系,并验证逻辑门的功能。
2. 组合逻辑电路实验(1)根据设计要求,搭建电路。
(2)使用逻辑分析仪观察电路的输入输出信号。
(3)分析结果,验证电路的功能。
3. 复杂逻辑电路实验(1)根据设计要求,搭建电路。
(2)使用逻辑分析仪观察电路的输入输出信号。
(3)分析结果,验证电路的功能。
六、实验结果与分析1. 基本逻辑门实验(1)观察实验结果,验证与门、或门、非门、异或门的逻辑功能。
(2)根据实验结果,总结基本逻辑门的输入输出关系。
2. 组合逻辑电路实验(1)观察实验结果,验证电路的功能。
(2)分析电路的工作原理,总结设计方法。
3. 复杂逻辑电路实验(1)观察实验结果,验证电路的功能。
(2)分析电路的工作原理,总结设计方法。
七、实验总结1. 通过本次实验,掌握了基本逻辑门的工作原理和逻辑功能。
2. 学会了使用逻辑门进行组合逻辑电路的设计和测试。
实验一 与门,或门,异或门的实现一、 实验目的1. 加深了解TTL 逻辑门的参数意义。
2. 认识各种电路及掌握空闲端处理方法。
3. 学会用与非门实现与门,或门,异或门。
二、 实验设备电源,数字电路实验箱,函数信号发生器,数字双踪示波器, 74LS00,电线 若干三、 实验原理1.与非门的一个输入端悬空则得到非门的功能,如下图:(悬空)3. A -■:上:M:-卜.■:4 A ㊉B=AB+AB输入——& 瞬等价于输入一AB 3 ----- AB3 ------ £ + E—— 一输出接地2- '二 B 二 /一 X 二:2五、实验内容1.与门的实现1)引脚14接电源,引脚GN 處地。
引脚12接B ,弓|脚13接A 。
这样从引脚四、 实验电路电源 CP输入V ;c J B 4Y SB 3A 3Y14 [13 12 11 10 9 81A IB 1¥ 2A 2B 2Y G JD11中输出的即为AB的非。
2)引脚1接引脚11的输出,引脚2悬空,这样引脚3中输出的即为AB的非的非,即为AB3)将引脚3接到二极管灯上观察。
2.或门的实现1)引脚14接电源,引脚GNDS地。
引脚13接A,弓I脚12悬空,这样引脚11输出A的非。
引脚10接B,弓I脚9悬空,这样引脚8输出B的非。
2)引脚1接引脚11的输出,引脚2接引脚8的输出,这样引脚3的输出即为A+B3)将引脚3接到二极管灯上观察。
3.异或门的实现a)引脚14接电源,引脚GNDS地。
引脚13接A,弓I脚12悬空,这样引脚11输出A非,同理,得到B非。
b)根据实验一由A非和B得到AB,同理得到ABc)根据实验二,得到AB+AB六、实验结果根据二极管灯在不同输入组合下的真值表看,以上实验步骤正确,方法可行。
七、心得体会这是第一次数字电路实验,而且还是合作实验,感触颇深。
我对数字电路非常好奇,实验尽管不是太难,但由于平时对知识的掌握不够熟练,动手能力欠佳,实验过程中也颇有坎坷。
深圳大学实验报告
课程名称:数字电路实验
实验项目名称:门电路逻辑功能及测试
学院:
指导教师:
报告人:学号:班级:
实验时间:
实验报告提交时间:
教务部制.
数据处理分析:
以A、B为自变量,Y为应变量得以下的真值表:
A B Y Uy(直流电压值)
0.148 0 0 0
3.515 1 1 0
0.128 0 0 0
3.513 0 1 1
0.122 0 0 0
0.163
1
1
1
得当A和B之中有一个或一个以上个为高电平时,Y得高电平,满足异或的逻辑功能。
根据表1得,当为高电平时,Vz在3.4到3.6V之间;当为低电平时,Vz在0.1到0.2V之间。
数据及波形记录:
S端为0电平时输入端A和输出端Y的波形:
S端为1电平时输入端A和输出端Y的波形:
注:1、报告内的项目或内容设置,可根据实际情况加以调整和补充。
日内。
10、教师批改学生实验报告时间应在学生提交实验报告时间后 2.。
4 月 15、16、18、20 日一、实验名称实验一:《与非门、异或门逻辑电路测试》二、实验目的1. 熟悉门电路的逻辑功能、逻辑表达式、逻辑符号、等效逻辑图。
2. 掌握数字电路实验箱及示波器的使用方法。
3、学会检测基本门电路的方法。
实验原理三、实验原理实验前按数字电路实验箱使用说明书先检查电源是否正常,然后选择实验用的集成块芯片插入实验箱中对应的IC座,按自己设计的实验接线图接好连线。
注意集成块芯片不能插反。
线接好后经实验指导教师检查无误方可通电实验。
实验中改动接线须先断开电源,接好线后再通电实验。
1.与非门电路逻辑功能的测试(S2实验包芯片)(1)选用双四输入与非门74LS20一片,插入数字电路实验箱中对应的IC座,按图1.1接线、输入端1、2、4、5、分别接到K1~K4的逻辑开关输出插口,输出端接电平显示发光二极管D1~D4任意一个。
(2)将逻辑开关按表1.1的状态,分别测输出电压及逻辑状态。
图 1.1表1.1输入输出1(k1) 2(k2) 4(k3) 5(k4) Y 电压值(v)H H H HL H H HL L H HL L L HL L L L2. 异或门逻辑功能的测试(S5实验包芯片)(此图引脚需对照修正)4 月 15、16、18、20 日图 1.2(1)选二输入四异或门电路74LS86,按图1.2接线,输入端1、2、4、5接逻辑开关(K1~K4),输出端A、B、Y接电平显示发光二极管。
(2)将逻辑开关按表1.2的状态,将结果填入表中。
表1.2四、实验仪器1、仪器设备:双踪示波器、数字万用表、数字电路实验箱2. 器件:74LS00 二输入端四与非门2片74LS20 四输入端双与非门1片74LS86 二输入端四异或门1片。
数字电路实验报告本次实验是数字电路的实验,在本次实验中,我和我的同学们成功地完成了数字电路的实验,并且成功将LED灯显示。
1. 实验目的本次实验的目的是:通过实践操作,掌握数字电路的基础知识,能够有效地使用布尔代数和卡诺图方法进行电路设计和分析。
2. 实验基础数字电路是由数字电子元器件组成的电路。
数字电路能够处理数字信号,是所有数字计算机的基础核心部件。
数字电路的基础是数字集成电路的设计和应用。
数字电路的核心是门电路,门电路有多个种类,包括与门、或门、非门、异或门等。
门电路能够接受输入信号并输出信号,能够实现与、或、非、异或等逻辑运算。
在数字电路的实验中,我们需要掌握基本逻辑门的真值表和逻辑图,以及逻辑门的电路实现方法。
此外,我们还需要掌握一些进制转换的方法和数字电路的布线和测试方法。
3. 实验步骤本次实验中,我们的主要任务是设计和实现一个数字电路,该电路能够将数字输入转化成二进制显示输出,并且使用LED灯进行显示。
以下是我们的实验步骤。
步骤一:设计真值表首先,我们需要使用布尔代数和卡诺图方法,设计出一个真值表,该真值表能够将数字输入转换成二进制数输出。
步骤二:设计逻辑电路图在真值表的基础上,我们设计了一个逻辑电路图,该电路图包括与门、或门、非门、异或门等逻辑门电路,以及输入输出接口电路。
步骤三:建立硬件电路接下来,我们开始搭建硬件电路,将逻辑电路图中的元件进行布线连接。
步骤四:测试电路在布线完毕后,我们进行了电路的测试,确认电路能够工作,并且LED灯能够正常显示。
4. 实验结论通过本次实验,我学习到了数字电路的基础知识,能够使用布尔代数和卡诺图方法进行电路设计和分析。
我还学会了逻辑门的真值表和逻辑图的设计方法,以及数字电路的布线和测试方法。
最终,我和我的同学们成功地完成了数字电路的实验,将数字转换为二进制数并成功显示。
这次实验对我的学习和科研工作具有重要的启示和帮助。
数字电路与逻辑设计实验一一、实验目的熟悉QuartusII仿真软件的基本操作,并用VHDL语言设计一个异或门。
二、实验内容1、熟悉QuartusII软件的基本操作,了解各种设计输入方法(原理图设计、文本设计、波形设计)2、用VHDL语言设计一个异或门,最后仿真验证。
3、用VHDL语言设计一个3-8译码器,最后仿真验证。
4、用VHDL语言设计一个指令译码器,最后仿真验证。
第一部分:异或门①实验方法1、实验方法采用基于FPGA进行数字逻辑电路设计的方法。
采用的软件工具是Quartus II。
2、实验步骤1、新建,编写源代码。
(1).选择保存项和芯片类型:【File】-【new project wizard】-【next】(设置文件路(设置文件名XOR2.vhd—在【add】)-【properties】径+设置project name为XOR2)-【next】(type=AHDL)-【next】(family=FLEX10K;name=EPF10K10TI144-4)-【next】-【finish】 (2).新建:【file】-【new】(第二个AHDL File)-【OK】2、根据题意,画好原理图,写好源代码并保存文件。
原理图:3、编译与调试。
确定源代码文件为当前工程文件,点击【processing】-【start compilation】进行文件编译,编译成功。
4、波形仿真及验证。
新建一个vector waveform file。
按照程序所述插入a,b,c三个节点(a、b为输入节点,c为输出节点)。
(操作为:右击 -【insert】-【insert node or bus】-【node finder】(pins=all;【list】)-【>>】-【ok】-【ok】)。
任意设置a,b的输入波形…点击保存按钮保存。
然后【start simulation】,出name C的输出图。
5、时序仿真或功能仿真。
门电路实验报告引言门电路是数字电路的核心组成部分之一,是数字电路中的最基本电路之一。
门电路可分为与门、或门、非门、异或门、与非门、或非门等多种形式。
本次实验我们将学习并实践常用的门电路,掌握门电路的基本原理和设计方法。
实验一:与门实验与门又称“与逻辑门”,它是一种最基本的逻辑运算电路。
与门的功能是将两个输入信号进行“与”运算,当且仅当两个输入信号同时为“1”时,输出信号才为“1”。
本次实验我们将学习如何设计与门电路,并测试其功能。
设计方案:我们使用片联式与门,先将两个输入电位源进行电平缩短,再接到与门输入端口,接着将门的输出端接到LED灯上。
当两个输入电位源均为1时,与门输出为1,LED灯亮起,反之则熄灭。
实验流程:1.按照设计方案连接电路,调节电位源的电位值,使输入信号分别为1和0。
2.通过示波器测试门的输出电压值和电流值。
3.将两个输入的电位值改为都为1,测试门的输出电压值和电流值,并观察LED灯的亮灭状态。
实验结果:实验结果显示,当两个输入信号均为1时,门的输出电压为高电平(约为4.95V),电流为7.78mA,LED灯亮起,符合预期结果。
实验二:或门实验或门又称“或逻辑门”,它是一种最基本的逻辑运算电路。
或门的功能是将两个输入信号进行“或”运算,当两个输入信号中任意一个为“1”时,输出信号就是“1”。
本次实验我们将学习如何设计或门电路,并测试其功能。
设计方案:我们使用数字电路板上的或门芯片,将两个输入信号接到其中的两个输入端口,将输出端口接到LED灯上。
当两个输入信号中任意一个为“1”时,或门输出为1,LED灯亮起。
实验流程:1.按照设计方案连接电路,调节电位源的电位值,使输入信号分别为1和0。
2.通过示波器测试门的输出电压值和电流值。
3.将两个输入的电位值改为都为0,测试门的输出电压值和电流值,并观察LED灯的亮灭状态。
实验结果:实验结果显示,当两个输入信号中任意一个为1时,门的输出电压为高电平(约为4.80V),电流为9.34mA,LED灯亮起,符合预期结果。
数字电路与逻辑设计实验报告本次实验内容主要涉及数字电路与逻辑设计的相关知识,通过实际操作和实验验证,加深对数字电路和逻辑设计原理的理解和掌握。
本次实验包括了基本的数字逻辑门电路实验、组合逻辑电路实验和时序逻辑电路实验。
首先,我们进行了基本的数字逻辑门电路实验。
在实验中,我们使用了与门、或门、非门和异或门等基本逻辑门电路,通过搭建电路并输入不同的逻辑信号,观察输出的结果,验证了逻辑门的基本功能和特性。
在实验过程中,我们发现逻辑门的输出结果与输入信号之间的逻辑关系是十分严谨和可靠的,这也为后续的实验奠定了基础。
其次,我们进行了组合逻辑电路实验。
在这一部分实验中,我们学习了多位数加法器、译码器、编码器等组合逻辑电路的设计和应用。
通过实际搭建电路并输入不同的输入信号,我们观察到了组合逻辑电路的输出结果,并验证了其设计的正确性和可靠性。
在实验过程中,我们深刻体会到了组合逻辑电路的设计原理和应用场景,对数字电路的实际应用有了更深入的了解。
最后,我们进行了时序逻辑电路实验。
时序逻辑电路是在组合逻辑电路的基础上引入了时钟信号,具有一定的存储功能和时序控制功能。
在实验中,我们学习了触发器、计数器等时序逻辑电路的设计和应用,通过实际操作和观察,我们对时序逻辑电路的工作原理和特性有了更深入的认识。
通过本次实验,我们不仅加深了对数字电路和逻辑设计原理的理解,还提高了实际动手操作和实验验证的能力。
数字电路与逻辑设计是计算机科学与技术专业的重要基础课程,对于我们的专业学习和未来的工作都具有重要意义。
通过这次实验,我们不仅掌握了数字电路和逻辑设计的基本原理和方法,还培养了动手实验和解决实际问题的能力,对我们的专业学习和未来的发展都具有重要意义。
总之,本次实验内容丰富、实用,通过实际操作和实验验证,我们加深了对数字电路与逻辑设计的理解和掌握,为我们的专业学习和未来的工作打下了坚实的基础。
希望通过不断的实践和学习,我们能够更加深入地理解和应用数字电路与逻辑设计的知识,为我们的专业发展和未来的工作做好充分的准备。
门电路实验报告门电路是数字电路中的基础组成部分,它们被广泛用于数字计算和逻辑运算中。
门电路可以由多种元器件来实现,如晶体管、场效应晶体管、集成电路等等。
本报告将介绍门电路的基本概念、设计原则和实验过程。
一、门电路基本概念门电路是由逻辑门组成的数字电路,可以实现基本的逻辑功能,例如“与”、“或”、“非”、“异或”等。
逻辑门主要有以下几类:1. 与门,也称作“AND”门。
AND门有两个或多个输入、一个输出,只有当所有输入都为逻辑1时,输出才为1,否则,输出为逻辑0。
2. 或门,也称作“OR”门。
OR门有两个或多个输入、一个输出,只要其中一个或多个输入为逻辑1时,输出即为1。
3. 非门,也称作“NOT”门。
NOT门有一个输入、一个输出,输出是输入的反相。
当输入为逻辑1时,输出为逻辑0;反之,输出为逻辑1。
4. 异或门,也称作“XOR”门。
XOR门有两个输入、一个输出。
当两个输入的逻辑值不相输出为1,否则,输出为0。
门电路具有高度的可靠性和精度,广泛应用于计算机、通信、自动控制和数字电子等领域。
二、门电路设计原则门电路的设计原则包括以下几个方面:1. 电路正确性设计原则。
电路必须按照逻辑规则进行设计,保证电路输出与输入之间存在确定的逻辑关系。
2. 电路简化设计原则。
电路应使用尽量少的元器件,并采用逻辑公式化简的方法,以减少电路复杂度和成本。
3. 电路优化设计原则。
电路应能够满足高速和高精度的要求,同时具有低功耗和抗干扰等特性。
三、门电路实验过程1. 实验器材本实验需要的器材包括:示波器、数字电压表、元器件(晶体管、电阻、开关等)、面包板、电源等。
2. 实验过程(1) 准备元器件将所需元器件准备好,包括晶体管、电阻、开关等,根据设计要求选择相应的参数。
(2) 连接电路按照门电路的设计要求,将元器件和面包板连接起来。
门电路的连接方式较为简单,需要连接的元器件较少。
(3) 接通电源将实验用的电源接通,并进行电压检测,以确保电压稳定和符合要求。
逻辑门电路实验报告逻辑门电路实验报告引言逻辑门电路是数字电路中的基础组成部分,它们通过接收输入信号并产生输出信号来实现逻辑运算。
在本次实验中,我们将探索不同类型的逻辑门电路,并通过实验验证其功能和性能。
实验一:与门电路与门电路是最简单的逻辑门之一,其输出信号仅在所有输入信号均为1时为1,否则为0。
我们首先搭建了一个与门电路,并通过给定的输入信号进行测试。
实验结果表明,当输入信号为1和1时,输出信号为1;而当输入信号为1和0、0和1、0和0时,输出信号均为0。
这验证了与门电路的逻辑运算规则。
实验二:或门电路或门电路是另一种常见的逻辑门,其输出信号仅在至少有一个输入信号为1时为1,否则为0。
我们接着搭建了一个或门电路,并进行了相应的测试。
实验结果表明,当输入信号为1和1时,输出信号为1;而当输入信号为1和0、0和1、0和0时,输出信号均为0。
这再次验证了或门电路的逻辑运算规则。
实验三:非门电路非门电路是最简单的逻辑门之一,其输出信号与输入信号相反。
我们接下来搭建了一个非门电路,并进行了测试。
实验结果表明,当输入信号为1时,输出信号为0;而当输入信号为0时,输出信号为1。
这进一步验证了非门电路的逻辑运算规则。
实验四:异或门电路异或门电路是一种特殊的逻辑门,其输出信号仅在输入信号不同时为1,否则为0。
我们继续搭建了一个异或门电路,并进行了测试。
实验结果表明,当输入信号为1和0、0和1时,输出信号为1;而当输入信号为1和1、0和0时,输出信号均为0。
这验证了异或门电路的逻辑运算规则。
实验五:与非门电路与非门电路是结合了与门和非门的功能的电路,其输出信号与与门电路的输出信号相反。
我们最后搭建了一个与非门电路,并进行了测试。
实验结果表明,当输入信号为1和1时,输出信号为0;而当输入信号为1和0、0和1、0和0时,输出信号均为1。
这验证了与非门电路的逻辑运算规则。
结论通过本次实验,我们成功搭建并测试了不同类型的逻辑门电路,包括与门、或门、非门、异或门和与非门。
与门或门非门与非门或非门异或门同或门等电路的基本原理与门(AND gate):与门是最简单的逻辑门之一、与门只有当所有的输入信号都是高电平(1)时,输出才会是高电平。
否则,输出将会是低电平(0)。
与门的基本原理是电流只有在所有的输入都为高电平时,才会被传送到输出。
与门的逻辑符号通常是一个贝尔符号“∧”,其真值表如下:输入A输入B输出Y000010100111或门(OR gate):或门是另一个常用的逻辑门。
或门只要有任意一个输入信号为高电平,输出就会是高电平。
只有当所有的输入信号都是低电平时,输出才会是低电平。
或门的基本原理是电流只要有一个输入为高电平,就会被传送到输出。
或门的逻辑符号通常是一个“+”号,其真值表如下:输入A输入B输出Y000011101111非门(NOT gate):非门是最简单的逻辑门之一、非门的基本原理是将输入信号进行反相,即高电平变为低电平,低电平变为高电平。
非门的逻辑符号通常是一个横线加一个小圆圈,表示输入信号的反相。
非门的真值表如下:输入A输出Y0110与非门(NAND gate):与非门是由与门和非门组成的复合逻辑门。
当所有的输入信号都为高电平时,输出为低电平;否则输出为高电平。
与非门的逻辑符号通常是一个“∧”符号加一个小圆圈,表示与门的输出经过非门进行反相。
与非门的真值表如下:输入A输入B输出Y001011101110或非门(NOR gate):或非门是由或门和非门组成的复合逻辑门。
只有当所有的输入信号都是低电平时,输出才会是高电平;否则输出为低电平。
或非门的逻辑符号通常是一个“+”符号加一个小圆圈,表示或门的输出经过非门进行反相。
或非门的真值表如下:输入A输入B输出Y001010100110异或门(XOR gate):异或门是另一个常用的逻辑门。
只有当输入信号相同时,输出才为低电平;否则输出为高电平。
异或门的逻辑符号通常是一个“⊕”符号。
异或门的真值表如下:输入A输入B输出Y000011101110同或门(XNOR gate):同或门是由异或门和非门组成的复合逻辑门。
一、实验目的1. 理解并掌握基本逻辑门(与门、或门、非门、异或门)的工作原理和逻辑功能。
2. 熟悉TTL逻辑门电路的组成和特性。
3. 学会使用逻辑门搭建简单的组合逻辑电路。
4. 通过实验加深对数字电路理论知识的理解。
二、实验原理逻辑门是数字电路中最基本的组成单元,它们通过输入信号产生输出信号,实现逻辑运算。
本实验主要涉及以下逻辑门:1. 与门(AND Gate):当所有输入信号都为高电平时,输出信号才为高电平,否则输出为低电平。
2. 或门(OR Gate):当至少一个输入信号为高电平时,输出信号为高电平,否则输出为低电平。
3. 非门(NOT Gate):将输入信号取反,即输入为高电平时输出为低电平,输入为低电平时输出为高电平。
4. 异或门(XOR Gate):当两个输入信号不同时,输出为高电平,否则输出为低电平。
三、实验仪器与设备1. 数字电路实验箱2. TTL逻辑门芯片(如74LS00、74LS02、74LS04、74LS08等)3. 信号发生器4. 示波器5. 电压表6. 万用表7. 连接线四、实验内容1. 验证与门、或门、非门、异或门的逻辑功能。
2. 使用逻辑门搭建半加器电路。
3. 使用逻辑门搭建全加器电路。
4. 使用逻辑门搭建编码器电路。
5. 使用逻辑门搭建译码器电路。
五、实验步骤1. 验证与门、或门、非门、异或门的逻辑功能:(1)将输入信号接入与门、或门、非门、异或门的输入端;(2)使用示波器或电压表观察输出端信号;(3)根据输入信号组合和输出信号,验证逻辑门的功能。
2. 使用逻辑门搭建半加器电路:(1)将两个输入信号接入与门和或门的输入端;(2)将与门和或门的输出端接入异或门的输入端;(3)使用示波器或电压表观察输出端信号,验证半加器电路的功能。
3. 使用逻辑门搭建全加器电路:(1)将三个输入信号接入与门、或门、非门、异或门的输入端;(2)将两个与门和两个或门的输出端接入全加器的两个输入端;(3)使用示波器或电压表观察输出端信号,验证全加器电路的功能。
一、实验目的1. 理解并掌握基本逻辑门的工作原理和逻辑关系;2. 掌握组合逻辑电路的设计方法;3. 熟悉常用逻辑门电路的符号和特性;4. 培养实验操作能力和数据处理能力。
二、实验环境1. 实验设备:数字电路实验箱、万用表、逻辑分析仪、计算机等;2. 实验软件:Multisim、Proteus等电路仿真软件。
三、实验内容1. 与门、或门、非门实验(1)实验目的:验证与门、或门、非门的逻辑功能,熟悉其输入输出关系。
(2)实验步骤:① 按照电路图连接与门、或门、非门电路;② 使用开关控制输入端,观察输出端电平变化,记录实验数据;③ 分析实验结果,验证逻辑关系。
2. 与非门、或非门、异或门实验(1)实验目的:验证与非门、或非门、异或门的逻辑功能,熟悉其输入输出关系。
(2)实验步骤:① 按照电路图连接与非门、或非门、异或门电路;② 使用开关控制输入端,观察输出端电平变化,记录实验数据;③ 分析实验结果,验证逻辑关系。
3. 组合逻辑电路设计实验(1)实验目的:设计一个组合逻辑电路,实现特定功能。
(2)实验步骤:① 分析电路功能需求,确定逻辑表达式;② 根据逻辑表达式,设计电路原理图;③ 使用Multisim等仿真软件进行电路仿真,验证电路功能;④ 分析仿真结果,对电路进行优化。
四、实验结果与分析1. 与门、或门、非门实验结果:(1)与门:当输入端均为高电平时,输出端为高电平;当至少有一个输入端为低电平时,输出端为低电平。
(2)或门:当输入端均为低电平时,输出端为低电平;当至少有一个输入端为高电平时,输出端为高电平。
(3)非门:当输入端为高电平时,输出端为低电平;当输入端为低电平时,输出端为高电平。
2. 与非门、或非门、异或门实验结果:(1)与非门:当输入端均为高电平时,输出端为低电平;当至少有一个输入端为低电平时,输出端为高电平。
(2)或非门:当输入端均为低电平时,输出端为高电平;当至少有一个输入端为高电平时,输出端为低电平。
实验一与门,或门,异或门的实现
一、实验目的
1.加深了解TTL逻辑门的参数意义。
2.认识各种电路及掌握空闲端处理方法。
3.学会用与非门实现与门,或门,异或门。
二、实验设备
电源,数字电路实验箱,函数信号发生器,数字双踪示波器,74LS00,电线若干
三、实验原理
1.与非门的一个输入端悬空则得到非门的功能,如下图:
2.
3.
4.
四、实验电路
1.
2.
五、实验内容
1.与门的实现
1)引脚14接电源,引脚GND接地。
引脚12接B,引脚13接A。
这样从引
脚11中输出的即为AB 的非。
2) 引脚1接引脚11的输出,引脚2悬空,这样引脚3中输出的即为AB 的
非的非,即为AB 。
3) 将引脚3接到二极管灯上观察。
2. 或门的实现
1) 引脚14接电源,引脚GND 接地。
引脚13接A ,引脚12悬空,这样引脚
11输出A 的非。
引脚10接B ,引脚9悬空,这样引脚8输出B 的非。
2) 引脚1接引脚11的输出,引脚2接引脚8的输出,这样引脚3的输出即
为A+B 。
3) 将引脚3接到二极管灯上观察。
3. 异或门的实现
a) 引脚14接电源,引脚GND 接地。
引脚13接A ,引脚12悬空,这样
引脚11输出A 非,同理,得到B 非。
b) 根据实验一由A 非和B 得到A _B ,同理得到AB _。
c) 根据实验二,得到A _B+AB _
六、 实验结果
根据二极管灯在不同输入组合下的真值表看,以上实验步骤正确,方法可行。
七、 心得体会
这是第一次数字电路实验,而且还是合作实验,感触颇深。
我对数字电路非常好奇,实验尽管不是太难,但由于平时对知识的掌握不够熟练,动手能力欠佳,实验过程中也颇有坎坷。
不过最终也算认真地完成这次实验。