用代入消元法解二元一次方程组 精品课教案
- 格式:doc
- 大小:78.50 KB
- 文档页数:6
代入消元法解二元一次方程组教案一、教学目标1.掌握代入消元法的基本思想和步骤;2.能够熟练地运用代入消元法解二元一次方程组;3.能够将数学知识应用到实际问题中。
二、教学内容1.代入消元法的基本思想和步骤;2.例题练习。
三、教学重难点1.代入消元法的基本思想和步骤;2.如何将数学知识应用到实际问题中。
四、教学方法1.讲授法;2.示范法;3.讨论法。
五、教学步骤Step1引入课题教师通过实例引入学生进入学习状态。
Step2代入消元法的基本思想和步骤1.代入消元法的基本思想:根据一个未知量的值,消去方程组中这个未知量的系数,然后将求得的值代入另一个方程中,从而求出另一个未知量的值。
2.代入消元法的步骤:(1)用其中一个方程式先求出一个未知量的值;(2)将求得的未知量的值代入另一个方程式中;(3)解此方程式;(4)求得另一个未知量的值。
Step3举例说明1.例题:求解方程组x+y=10x-y=6(1)用第一个方程求出x:x=10-y;(2)将x=10-y代入第二个方程:10-y-y=6,解得y=2;(3)将y=2代入x=10-y中,解得x=8;(4)所以x=8,y=2.2.例题:到某商店买饮料,木薯球1元一件,火腿肠2元一件,还要花费8元,买了8件饮料,求买了几件木薯球,几件火腿肠?设木薯球x件,火腿肠y件。
则某小商店饮料的总价为:1·x+2·y=8又买了8件饮料,则x+y=8然后,将x+y=8代入1·x+2·y=8,即可求得x和y.Step4练习和反思1、练习:选择集中范围内代入消元法解法例题,让学生反复练习。
2、反思:让学生谈谈代入消元法的适用范围及其不适用范围,以及在代入消元法中常见的问题和解决方法。
六、教学后记1、为了更好地提高学生的学习兴趣和参与度,在授课过程中,可以让学生自己设定实际问题,用代入消元法求解;2、教学过程中要让学生不断思考问题,启发他们多角度、多思路解题的能力;3、要让学生对代入消元法有一个更加深刻的理解,才能更好地应用到解决实际问题中。
用代入消元法解二元一次方程组武当山中学 尤艳教学目标:1.理解代入消元的数学方法,并能正确应用代入消元法解二元一次方程组;2.学会根据问题中的等量关系列方程组解决实际问题3.培养学生的合作交流的学习意识教学重点:灵活应用代入消元法解二元一次方程组;教学难点:将“二元”转化成“一元”的消元思想一.复习提问:1.什么是二元一次方程?含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次程。
2.什么是二元一次方程组?含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。
3.什么是二元一次方程组的解?二元一次方程组中各个方程的公共解,叫做二元一次方程组的解。
4.把下列方程改写成用x 的式子表示y 的形式:(1)2x-y=3解:(2 ) 3x+2y-1=0解:(3) 2(3y-3)=6x+4解:二:情境引入:两只骆驼的对话(多媒体展示)问:二元一次方程组怎么解?请同学们想一想,然后将自己的想法和周围同讨论一下,并回答下面问题:(1)你利用了什么方法解二元一次方程组?(2)你为什么要用这种方法解?(3)你能归纳出解二元一次方程组的步骤吗三:例题讲解例1.解方程组课堂练习:用代入消元法解下列方程组想一想:怎么可以知道你解的对不对?把求出的解代入原方程组,看是否保证每一个方程左右两边的值相等。
⎩⎨⎧=-=-14833x y x y (){32y 8231-==+x y x ⎩⎨⎧=+=2435y -2)2(y x x议一议:上面解二元一次方程组的思路和步 骤是什么?思路:“消元”—把“二元”变为一元。
解二元一次方程组的主要步骤(1)将其中一个方程中的某个未知数用含有另一个未 知数的代数式表示出来.(2)将表示出来的未知数代入另一个方程中化简,得到一元一次方程 ,(3)解一元一次方程,并代入任意一个 方程求得另一 个未知数。
(4)写出方程组的解四:课堂小结:这节课主要学习了用代入消元法解二元一次方程组,基本思路是“消元”。
(精品教案)消元法解二元一次方程组讲课稿(精选6篇)收集整理的消元法解二元一次方程组讲课稿(精选6篇),欢迎阅读与收藏。
1.教材的地位和作用二元一次方程组是初中数学的重点内容之一,是一元一次方程知识的连续和提高,又是学习其他数学知识的基础。
本节课是在学生学习了一元一次方程的基础上,接着学习另一种方程及方程组,它是学生系统学习二元一次方程组知识的前提和基础。
经过类比,让学生从中充分体味二元一次方程组,明白并掌握解二元一次方程组的基本概念,为往后函数等知识的学习打下基础。
2.教学目标知识目标:经过实例了解二元一次方程和它的解,二元一次方程组和它的解。
能力目标:会推断一组未知数的值是否为二元一次方程及方程组的解。
会在实际咨询题中列二元一次方程组。
情感目标:使学生经过交流、合作、讨论猎取成功体验,激发学生学习知识的兴趣,增强学生的自信心。
3.重点、难点重点:二元一次方程和二元一次方程的解,二元一次方程组和二元一次方程组的解的概念。
难点:在实际日子中二元一次方程组的应用。
现代教学理论以为,在教学过程中,学生是学习的主体,教师是学习的组织者、言道者,教学的一切活动必须以强调学生的主动性、积极性为动身点。
依照这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采纳启示式、讨论式以及说练结合的教学办法,以咨询题的提出、咨询题的解决为主线,始终在学生知识的“最近进展区”设置咨询题,倡导学生主动参与教学实践活动,以独立考虑和相互交流的形式,在教师的指导下发觉、分析和解决咨询题,在引导分析时,给学生留出脚够的考虑时刻和空间,让学生去联想、探究,从真正意义上完成对知识的自我建构。
另外,在教学过程中,我采纳多媒体辅助教学,以直观呈现教学素材,从而更好发激发学生的学习兴趣,增大教学容量,提高教学效率。
“咨询题”是数学教学的心脏,活动是数学教学中的灵魂。
因此我在学生思维最近进展区内设置并提出一系列咨询题,经过数学活动,引导学生:自主性学习,合作式学习,探索式学习等,激发学生的学习兴趣,提高学生的数学思维和参与度,力求学生在“双基”数学能力和理性精神方面得到一定进展。
第一篇:《代入法解二元一次方程组》教学设计消元——二元一次方程组的解法(代入消元法)学情分析: 因为学生已经学过一元一次方程的解法,求二元一次方程组的解关键是化二元方程为一元方程,故在求解过程中始终应抓住消元的思想方法。
讲解时以学生为主体,创设恰当的问题情境和铺设合适的台阶,尽可能激发学生通过自己的观察、比较、思考和归纳概括,发现和总结出消元化归的思想方法。
三维目标知识与技能1、会用代入法解二元一次方程组2、初步体会二元一次方程组的基本思想---“消元”过程与方法: 通过对方程组中的未知数特点的观察和分析,明确解二元一次方程组的主要思路是“消元”,从而促成未知向已知的转化,培养学生观察能力,体会化归思想。
情感态度与价值观:通过研究解决问题的方法,培养学生合作交流意识和探究精神。
教学重点:用加减消元法解二元一次方程组。
教学难点:理解加减消元思想和选择适当的消元方法解二元一次方程组。
教学过程(一)创设情境,激趣导入在8.1中我们已经看到,直接设两个未知数(设胜x场,负y场),x y22可以列方程组2x y40 表示本章引言中问题的数量关系。
如果只设一个未知数(设胜x场),这个问题也可以用一元一次方程________________________[1]来解。
分析:[1]2x+(22-x)=40。
观察上面的二元一次方程组和一元一次方程有什么关系?[2] [2]通过观察对照,可以发现,把方程组中第一个方程变形后代入第二个方程,二元一次方程组就转化为一元一次方程。
这正是下面要讨论的内容。
(二)新课教学可以发现,二元一次方程组中第1个方程x+y=22说明y=22-x,将第2个方程2x+y=40的y换为22-x,这个方程就化为一元一次方程2x+(22-x)=40。
解这个方程,得x=18。
把x=18代入y=22-x,得y=4。
从而得到这个方程组的解。
二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先解出一个未知数,然后再设法求另一未知数。
《代入法解二元一次方程组》讲课设计讲课目的1.使学生会用代入消元法解二元一次方程组;2.理解代入消元法的基本思想表现的“化未知为已知”,“变陌生为熟悉”的化归思想方法;3.在本节课的讲课过程中,逐渐浸透朴实的辩证唯心主义思想.讲课要点和难点要点:用代入法解二元一次方程组.难点:代入消元法的基本思想.讲堂讲课过程设计一、从学生原有的认知构造提出问题1.谁能造一个二元一次方程组?为何你造的方程组是二元一次方程组?2.谁能知道上述方程组 ( 指学生提出的方程组 ) 的解是什么?什么叫二元一次方程组的解?3.上节课我们提出了鸡兔同笼问题:( 投影 )一个农民有若干只鸡和兔子,它们共有50 个头和 140 只脚,问鸡和兔子各有多少?设农民有 x 只鸡, y 只兔,则获得二元一次方程组关于列出的这个二元一次方程组,我们如何求出它的解呢?( 学生思虑 )教师指引并提出问题:若设有x 只鸡,则兔子就有 (50-x) 只,依题意,得2x+4(50-x)= 140进而可解得, x=30,50-x=20 ,使问题得解.问题:从上边一元一次方程解法过程中,你能得出二元一次方程组串问题,进一步指引学生找出它的解法)(1)在一元一次方程解法中,列方程时所用的等量关系是什么?(2)该等量关系中,鸡数与兔子数的表达式分别含有几个未知数?(3)前述方程组中方程②所表示的等量关系与用一元一次方程表示的等量关系能否同样?(4)能否由方程组中的方程②求解该问题呢?(5)如何使方程②中含有的两个未知数变成只含有一个未知数呢?( 以上问题,要修业生独立思虑,想出消元的方法)联合学生的回答,教师作出解说.由方程①可得 y=50-x ③,即兔子数 y 用鸡数 x 的代数式 50-x 表示,因为方程②中的y 与方程①中的y 都表示兔子的只数,故可以把方程②中的y 用(50-x) 来代换,即把方程③代入方程②中,得2x+4(50-x)=140 ,解得x=30 .将x=30 代入方程③,得 y=20.即鸡有 30 只,兔有 20 只.本节课,我们来学习二元一次方程组的解法.二、解说新课例 1解方程组解析:若此方程组有解,则这两个方程中同一个未知数就应取同样的值.因此,方程②中的 y 即可用方程①中的表示 y 的代数式来取代.解:把①代入②,得3x+2(1-x)=5 ,3x+2-2x=5 ,所以x=3 .把x=3 代入①,得 y=-2 .( 此题应以教师解说为主,并板书,同时教师在最后应提示学生,与解一元一次方程同样,要判断运算的结果能否正确,需查验.其方法是将所求得的一对未知数的值分别代入原方程组里的每一个方程中,看看方程的左、右两边能否相等.查验可以口算,也可以在底稿纸上验算)教师解说完例 1 后,联合板书,就此题解法及步骤提出以下问题:1.方程①代入哪一个方程?其目的是什么?2.为何能代入?3.只求出一个未知数的值,方程组解完了吗?4.把已求出的未知数的值,代入哪个方程来求另一个未知数的值较简单?在学生回答完上述问题的基础上,教师指出:这类经过代入消去一个未知数,使二元方程转变成一元方程,进而方程组得以求解的方法叫做代入消元法,简称代入法.例 2解方程组解析:例 1 是用 y=1-x 直接代入②的.例 2 的两个方程都不具备这样的条件(即用含有一个未知数的代数式表示另一个未知数) ,所以不可以直接代入.为此,我们需要想方法创办条件,把一个方程变形为用含x 的代数式表示 y( 或含 y 的代数式表示 x) .那么采用哪个方程变形较简单呢?经过察看,发现方程②中x 的系数为 1,所以,可先将方程②变形,用含有y 的代数式表示 x,再代入方程①求解.解:由②,得x=8-3y ,③把③代入①,得 ( 问:能否代入②中? )2(8-3y)+5y=-21 ,-y=-37 ,所以y=37 .( 问:此题解完了吗?把y=37 代入哪个方程求x 较简单? )把 y=37 代入③,得x= 8-3 ×37,所以x=-103 .( 此题可由一名学生口述,教师板书达成)三、讲堂练习 ( 投影 )用代入法解以下方程组:四、师生共同小结在与学生共同回首了本节课所学内容的基础上,教师重视指出,因为方程组在有解的前提下,两个方程中同一个未知数所表示的是同一个数值,故可以用它的等量代换,即便“代入”成为可能.而代入的目的就是为了消元,使二元方程转变成一元方程,进而使问题最后获得解决.五、作业用代入法解以下方程组:5.x+3y=3x+2y=7.。
代入法解二元一次方程组教案(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、教学总结、教学计划、教学心得、教学反思、说课稿、好词好句、教案大全、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, this store provides various types of classic sample essays for everyone, such as work summaries, teaching summaries, teaching plans, teaching experiences, teaching reflections, lecture notes, good words and sentences, lesson plans, essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!代入法解二元一次方程组教案代入法解二元一次方程组教案(通用5篇)作为一位无私奉献的人民教师,很有必要精心设计一份教案,教案是教材及大纲与课堂教学的纽带和桥梁。
代入消元法解二元一次方程组教案用加减消元法解二元一次方程组教案教学目标:1.知识与技能:让学生熟练用代入法解简单的二元一次方程组,并初步体会解二元一次方程组的基本思想——“消元思想”。
2.过程与方法:通过用代入法解简单的二元一次方程组,提高学生的分析解决问题的能力。
3.情感态度与价值观:在解方程组的过程中让学生初步体会化未知为已知,化复杂为简单的化归思想,培养学生自主研究,合作交流的意识与探究精神。
重点:1、知道解二元一次方程组的基本思想——“消元思想”。
2、理解代入消元法解二元一次方程组的步骤。
3、会用代入消元法解简单的二元一次方程组。
难点:用代入法解二元一次方程组的方法。
教学方法:自主——合作——展示——应用教学用具:导学案,班班通。
研究目标:会熟练用代入法解简单的二元一次方程组,并初步体会解二元一次方程组的基本思想——“消元”。
活动1:自主进修:1、水县二郎乡火电厂第一期工程在去年完成,有甲、乙两台机组开始发电,管理人员对两台机组发电情况进行统计发现:当甲、乙两台机组同时发电1小时能发电300兆瓦;当甲台机组发电2小时、乙台机组发电3小时共发电720兆瓦。
求甲、乙两台机组每小时各发电多少兆瓦?解:设甲台机组每小时发电x兆瓦,乙台机组每小时发电y 兆瓦,根据题意出方程组得:x+y=3002x+3y=720由变形得:x=300-y把代入得:2(300-y)+3y=720解得:y= 120把y= 120代入x=300-120x=180所以这个方程组的解是x=180y=300得:答:甲台机组每小时发电180兆瓦,乙台机组每小时发电120兆瓦,这类方法叫代入消元法这是代入消元法解二元一次方程组的一般步骤:解二元一次方程组的根本思路是“消元思想”——把“二元”变为“一元”。
也是化复杂为简朴的化归思想,是将二元一次方程组化为一元一次方程来解决。
代入消元法解二元一次方程组教案详解。
一、基本原理解二元一次方程组的目的是求出未知数 x 和 y 的值,使得该方程组的两个方程均成立。
一般而言,我们将某个未知数(例如 x)表示成另一个未知数(例如 y)的函数形式,然后将其代入另一个方程中,从而使方程中只下一个未知数,于是就可以很方便地求解出该未知数,再用代入的方式求出另一个未知数的值,进而得到方程组的解。
例如:解方程组$\begin{cases}x + y = 5\\x - y = 1\end{cases}$我们将第一个方程改写为 $y = 5 - x$,再将其代入第二个方程中,得到 $x - (5 - x) = 1$,即 $x = 3$,代入 $y = 5 - x$ 得$y = 2$。
因此方程组的解为 $(x, y) = (3, 2)$。
这就是代入消元法的基本原理。
需要注意的是,该方法只适用于二元一次方程组,即方程中每个未知数的最高次数都为 1,并且方程个数恰好为 2。
二、应用范围代入消元法是解二元一次方程组的一种常见方法,适用于绝大部分的二元一次方程组。
但是,需要注意到以下几种特殊情形:1.方程组不是二元一次方程组如果方程中未知数的最高次数不为 1,或者方程个数大于 2,那么代入消元法就没法使用了。
此时需要采用其他方法求解。
2.方程组无解或有无数解有些二元一次方程组并没有解,或者有无数解。
此时也不能使用代入消元法,而需要采用更为复杂的方法求解。
不过,这种情形很少出现在初中数学中,大部分情况下都可以使用代入消元法求解。
三、解题步骤代入消元法的解题步骤并不复杂,以下以一个具体的例子进行讲解。
例:解方程组$\begin{cases}2x + 3y = 7\\x - 2y = -2\end{cases}$步骤 1:将第一个方程改写为 $x = \frac{7 - 3y}{2}$,或将第二个方程改写为 $x = 2y - 2$,选其中一个式子作为代入式。
代入消元法解二元一次方程组(1)[教学目标】:1. 会用代入消元法解二元一次方程组.2.了解 “消元”思想,初步体会数学研究中“化未知为已知”【教学重难点】:重点:会用代入消元法解简单的二元一次方程组难点:了解“消元”思想,初步体会数学研究中“化未知为已知”的化归思想.【教学过程】一、复习引入1.解一元一次方程的步骤:去分母,___,___,合并同类项,___2.二元一次方程组的两个方程的公共解,叫做_____ 的解.3.已知x-y=3,用含y 的代数式表示x,则x=_______,用含x 的代数式表示y,则y=_______,4.方程组⎩⎨⎧=+=-14233y x y x 的解是 ( ) A ⎩⎨⎧==13y x B ⎩⎨⎧==21y x C ⎩⎨⎧==14y x D ⎩⎨⎧==22y x (由4的解答引入课题-- 解二元一次方程组)二合作探究探究一:教材P26 :在问题2中,如果设应拆除上校舍x m 2,建造新校舍y m 2,那么根据题意可列出方程组⎩⎨⎧=⨯=-.4%,3020000x y x y 怎样求这个二元一次方程组的解呢? (由学生观察方程组里两方程的特点,找出解决方法)探究二: 例题1 解方程组x+y=7 ①3x+y=17 ②( 师生共同完成此例题的解答)(一)思考以下问题:1、解方程组的基本思路是什么?2、小组讨论解这个方程组的主要步骤有哪些?(各小组充分讨得出结论,再由小组长展示)(二)尝试练习(2)⎩⎨⎧=-=+②y x ①y x .7,11 探究三:(小组合作)1.小组讨论解方程组的主要步骤有哪些?2.练 一练 解方程组:三课堂小结 1.在解二元一次方程组时,由二元一次方程组中的一个方程,将一个未知数用含另一个未知数的式子表示了出来,再代入另一个方程,就转化成了一元一次方程,进而求得该方程的解,也就可以求出方程组的解了,这种方法叫做代入消元法,简称代入法。
在应用时要观察方程组中未知系数的特点,当有一个未知数的系数为1或-1时,可用代入消元法。
代入消元法解二元一次方程组教学设计一.教材分析1.地位与作用(1)地位:本节课的教学安排在学生掌握了二元一次方程组概念和一元一次方程有关知识之后,它既是学生继续学习三元一次方程组知识的重要基础,也是学生以后学习函数及平面解析几何等内容,物理、化学等学科不可缺少的工具。
(2)作用:用代入消元法解二元一次方程组是学生接触到的解方程组的第一种方法,是解二元一次方程组的方法之一,消元法体现了“化未知为已知”的重要思想,对于学生理解并掌握方程思想,等量思想、转化思想、代入法、消元法等重要的数学思想方法,从而初步培养学生的运算技能,应用意识,提高学习并解决简单的实际问题都具有重要意义。
2.教学目标(1)知识与技能:i.会用代入消元法解二元一次方程组;ii.能初步体会解二元一次方程组的基本思想——“消元”。
(2)过程与方法:i.培养学生基本的运算技巧和能力;ii.培养学生的观察、比较、分析、综合等能力,会应用学过的知识去解决新问题。
(3)情感与价值观:鼓励学生积极主动的参与整个“教”与“学”的过程,通过研究解决问题的方法,培养学生合作交流意识与探究精神。
3.教学重难点(1)教学重点:用代入消元法来解二元一次方程组,代入法的技巧和解方程组的一般步骤。
(2)教学难点:体会“消元”“化未知为已知”的化归思想二.教材学法1.教法分析:本着重探究、重过程、重交流的的教学宗旨,我主要采取“探究发现式”教学方法,我将本节课的教学,设计成以下环节:引入——对比实践——交流探究——归纳步骤——课堂练习——能力提升——课堂小结。
教师对学生在课堂中的表现予以帮助与评价,鼓励学生积极主动地参与教学过程。
在探索、交流中获取新知。
2.学法分析:对于学生最重要的是让他们学会学习,因此教学中主要采用了在教师引导学生动手实践,自主探索与合作交流的学习方法,在学习过程中充分调动学生的兴趣,为学生提供充分从事数学活动的时间和空间,让学生乐于思考、勤于动手,自主的交流与合作,在实践中掌握解二元一次方程组的方法,从而获得新知。
8.2 消元——解二元一次方程组
第1课时用代入消元法解二元一次方程组教学设计新人教版义务教育教科书《数学》七年级下册
8.3消元——解二元一次方程组
第1课时用代入消元法解二元一次方程组点评
本节内容是在学生学习了一元一次方程的解法的基础上进行的教学,为后续学习加减消元法作铺垫.本节课的重点是用代入法解二元一次方程组,难点是探究将“二元”转化为“一元”的消元过程.本节课采取启发式教学方法,有效的学法指导,达成了教学目标的实现,突出了重点、突破了难点.
一、本节课的亮点:
1.本节课运用了“1525”课改模式授课,贯穿新课改思想,充分发挥了课堂上学生的主体作用.
2.结合学生的年龄特征,将“游戏”元素运用到课堂教学中,弥补PPT演示动态上的不足,生动形象,激发了学生的学习兴趣.
3.关注全体学生,充分调动学生的学习积极性.本节课学生参与度高,参与面广,课堂气氛活跃.
4.采用合作探究,通过探索、交流、展示、反馈,实现课堂教学的最大化,学生在小组讨论,合作交流中学会与他人合作.
5.利用小黑板,使各小组均有机会展示自己的成果,获得成功的体验,使情感态度价值观的教学目标得以实现.
6.采用启发式教学,整个课堂师生互动,生生互动,讲练结合达到预期目标.
7.针对七年级学生心理发展规律,课堂适当的采取了鼓励机制,调动了学生的学习热情,增强了学生的求知欲.
8.合理地运用了多媒体教学相辅手段,增加了课堂的容量.
二、不足之处
1.课件制作不够完美,和游戏的衔接有点欠缺.
2.新课导入引导不够,过渡不太自然.。
二元一次方程组的数学教案最新9篇公式法解二元一次方程教案篇一一。
教学目标(一)教学知识点1、代入消元法解二元一次方程组。
2、解二元一次方程组时的消元思想,化未知为已知的化归思想。
(二)能力训练要求1、会用代入消元法解二元一次方程组。
2、了解解二元一次方程组的消元思想,初步体会数学研究中化未知为已知的化归思想。
(三)情感与价值观要求1、在学生了解二元一次方程组的消元思想,从而初步理解化未知为已知和化复杂问题为简单问题的化归思想中,享受学习数学的乐趣,提高学习数学的信心。
2、培养学生合作交流,自主探索的良好习惯。
二。
教学重点1、会用代入消元法解二元一次方程组。
2、了解解二元一次方程组的消元思想,初步体现数学研究中化未知为已知的化归思想。
三。
教学难点1、消元的思想。
2、化未知为已知的化归思想。
四。
教学方法启发自主探索相结合。
教师引导学生回忆一元一次方程解决实际问题的方法并从中启发学生如果能将二元一次方程组转化为一元一次方程。
二元一次方程便可获解,从而通过学生自主探索总结用代入消元法解二元一次方程组的步骤。
五。
教具准备投影片两张:第一张:例题(记作7.2A);第二张:问题串(记作7.2B)。
六。
教学过程Ⅰ。
提出疑问,引入新课[师生共忆]上节课我们讨论过一个希望工程义演的问题;没去观看义演的成人有x个,儿童有y个,我们得到了方程组成人和儿童到底去了多少人呢?[生]在上一节课的做一做中,我们通过检验是不是方程x+y=8和方程5x+3y=34,得知这个解既是x+y=8的解,也是5x+3y=34的解,根据二元一次方程组解的定义得出是方程组的解。
所以成人和儿童分别去了5个人和3个人。
[师]但是,这个解是试出来的。
我们知道二元一次方程的解有无数个。
难道我们每个方程组的解都去这样试?[生]太麻烦啦。
[生]不可能。
[师]这就需要我们学习二元一次方程组的解法。
Ⅰ。
讲授新课[师]在七年级第一学期我们学过一元一次方程,也曾碰到过希望工程义演问题,当时是如何解的呢?[生]解:设成人去了x个,儿童去了(8-x)个,根据题意,得:5x+3(8-x)=34解得x=5将x=5代入8-x=8-5=3答:成人去了5个,儿童去了3个。
教学设计:
用代入消元法解二元一次方程组
一、指导思想与理论依据:
本章主要内容生活中涉及求多个未知数的问题是普遍存在的,而方程组是解决这些问题的有力工具。
本章在学生对一元一次方程已有认识的基础上,对二元一次方程组进行讨论,并在二元一次方程组的基础上,学习讨论三元一次方程组及解法。
由此为今后进一步学习不等式组以及二次函数奠定基础。
本章主要内容包括:利用二元一次方程组分析与解决实际问题,二元一次方程组及其相关概念,消元思想和代入法、加减法解二元一次方程组以及三元一次方程组解法举例。
其中,以方程组为工具分析问题、解决含有多个未知数的问题既是本章的重点,又是难点。
“代入消元法解二元一次方程组”是人教版“义务教育课程标准实验教科书”七年级下册第八章《二元一次方程组》的重要内容。
本章的知识是反映客观世界数量关系的有效模型,所以掌握其基本的解法,不仅能使学生理解并掌握方程思想、等量思想、转化思想、代入法等重要数学思想方法,从而初步培养学生的运算技能、应用意识,甚至对于提高分析并解决简单的实际问题有重要的意义。
二、教学背景分析:
1、教学方法
在教学过程中,学生是学习的主体,教师是学习的组织者、言道者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。
根据这一教学理念,结合本节课的内容特点和学生的年龄特征,我采用启发式、自主探究式、讨论式以及讲练结合的教学方法。
2、学习方法
而课堂应该根据学生实际,创设情境,在教师的引导启发下通过共同探究活动,让学生感受知识形成过程,从而实现“三维”教学目标。
根据这一理念和本节课内容略多偏难的特点,结合教法和学生的实际,主要采用“观察---分析---归纳---应用”的探究式的学习方式。
这些方法将在我的教学过程之中得以体现。
3、学情分析
作为教师,在课堂上,我将参与到学生的各种学习活动之中,及时地了解学生的学习情况,当发现或者学生反映说在解答某个问题有困难的时候,我要根据
具体的课堂情况,将一个问题可以分解为几个小问题给学生搭台阶;而对于个别学生解答有困难,将及时进行指导。
三、教学内容:
本节课是人教版七年级《数学》(下)第八章第三节课的内容。
四、教学目标设计
1、知识目标
(1)了解解二元一次方程组的“消元”思想,体会学习数学中的“化未知为已知”,“化复杂为简单”的化归思想。
(2)了解代入法的概念,掌握代入法的基本步骤。
(3)会用代入法求二元一次方程组的解。
2、能力目标
培养学生动手操作、探索、观察、分析、划归获得数学思想的能力;培养学生转化独立获取知识的方法并解决问题的能力。
3、情感目标
(1)在学生了解二元一次方程组的“消元”思想,从初步理解化“未知”为“已知和化复杂问题为简单问题的划归思想中,享受学习数学的兴趣、提高学习数学的信心。
(2)培养学生合作交流、自主探索的良好习惯。
五、教学重、难点
教学重点:了解代入法的一般步骤,会用代入法解二元一次方程。
教学难点:对代入消元法解方程组过程的理解及方程组未知数系数都不为1(或-1)时,如何用一个未知数表示另一个未知数。
六、教学策略及教法设计
1、教学策略:
为学生提供空间,鼓励学生自主探究、合作交流、勇于创新、大胆表述,满足学生多样化的学习要求。
2、教法设计:
针对本节特点,在教学过程中采用自主、探究、合作交流的教学方法,由教师提出明确问题,学生积极参与讨论探究、合作交流,进行总结,使学生从中获取知识。
七、教学过程设计与分析
例.用代入法解方程组
解是:
八、板书设计:
九、教学评价
在七年级这个年龄段,学生的个性差异尤为凸显,我充分地考虑到这种差异,在教学中努力使每一位学生都尝试到成功的喜悦,所以我在活动中设计了小组讨论和集体讨论,在其他很多环节也有类似的活动,目的都在于发挥学生的相互评价和自我评价以及自我矫正的功能,让学生得到成功的体验。