2015秋高中数学 2.2.2对数函数及其性质(第1课时)学案设计 新人教A版必修1
- 格式:doc
- 大小:233.00 KB
- 文档页数:4
2.2.2对数函数及其性质一、教学内容分析《普通高中课程标准数学教科书·必修(1)》(人民教育出版社)高中一年级第二单元2.2.2《对数函数的图象和性质》第一课时。
函数是高中数学的主体内容——变量数学的主要研究对象之一,是中学数学的重点知识,研究函数的一般理论和基本方法,用函数的思想方法解决实际问题,是函数教学的主要目标。
必修(Ⅰ)2.2.2对数函数及其性质,按课标要求教学时间为3个学时,本节课为第1课时,本节课教学是学生在学过正比例函数、一次函数、二次函数、反比例函数和指数函数的基础上进一步学习的一种新函数,对对数函数概念的理解,图象和性质的掌握和应用有利于学生对初等函数认识的系统性,有利于进一步加深对函数思想方法的理解。
为后面进一步探究对数函数的应用及指数函数、对数函数的综合应用起到承上启下的作用。
二、学情与教材分析对数函数是高中引进的第二个初等函数,是本章的重点内容。
学生在前面的函数性质、指数函数学习的基础上,用研究指数函数的方法,进一步研究和学习对数函数的概念、图象和性质以及初步应用,有利于学生进一步完善初等函数的认识的系统性,加深对函数的思想方法的理解,在教学过程中,虽然学生的认知水平有限,但只要让学生体验对数函数来源于实践,通过教师课件的演示,通过数形结合,让学生感受y=log a x(a>0且a≠1)中,a取不同的值时反映出不同的函数图象,让学生观察、小组讨论、发现、归纳出图象的共同特征、函数图象的规律,进而探究学习对数函数的性质。
最后将对数函数、指数函数的图象和性质进行比较,以便加深对对数函数的概念、图象和性质的理解,同时也为后面教学作准备。
三、设计思想在本节课的教学过程中,通过古遗址上死亡生物体内碳14含量与生物死亡年代关系的探索,引出对数函数的概念。
通过对底数a的分类讨论,探究总结出对数函数的图象与性质,使学生经历从特殊到一般的过程,体验知识的产生、形成过程,通过例题的分析与练习,进一步培养学生自主探索,合作交流的学习方式,通过学生经历直观感知,观察、发现、归纳类比,抽象概括等思维过程,落实培养学生积极探索学习习惯,提高学生的数学思维能力的新课程理念。
2.2.2对数函数及其性质教学设计(第一课时)一、学情分析:1、学生从初中到高一年级接触到了一些函数和研究函数的一些方法,但对于对数函数不易理解,其计算的形式具有一定的复杂性。
2、以对数作为基础的对数函数是高中函数学生最不易掌握的函数类型,对于信息技术的使用有一定的熟练程度(主要指作函数图象)。
3、学生可以选择描点作图的方法来研究对数函数的图像与性质,也可以选择使用教学软件来研究函数的图像与性质,还可以通过研究指数函数反函数的方法来研究对数函数的图像和性质等。
二、教材分析:教学内容为人教版本教材必修(一)第二章。
函数是高中十分重要的概念. 其中关于定义域、值域、单调性、奇偶性、对称性等函数的性质应有一个整体的认识,这在学习和解决函数问题的过程中显得十分重要,应在适当的时机对学生这种函数的整体观念加以培养,这节课的学习过程是一个可以把握的机会。
三、教学目标:1、会画对数函数的图像,理解对数函数的性质。
2、对于函数的性质与函数图像的形态之间的关系有一个初步的整体的理解,体会研究函数性质的过程中数形结合、分类讨论归纳的数学思想方法在研究问题过程中的体现。
3、培养学生对问题进行质疑的意识,培养学生在学习的过程中交流的习惯。
四、教学重点1、了解对数函数的定义;2、理解研究函数图像和性质的方法;3、能准确画对数函数的图像,理解对数函数的性质。
4、利用对数函数的性质初步解决一些有关求函数定义域、比较两个数的大小等。
五、教学难点:1、对数函数图像的准确作图;2、准确得到对数函数的性质,并利用对数函数的性质解决一些简单的问题。
六、教学过程七、教学小结:这节课的在整个函数学习过程中的位置适于结合整合作对函数图像及性质进行探究。
学生在初中以及高中前一段时间学过几种具体的函数,研究过函数的图像和性质。
但是,研究函数的方法不同,函数的性质也由片面逐渐全面,因此,在对数函数一节可以借研究对数函数的图像和性质对于研究函数的方法、函数的性质主要指函数的哪些方面特性做一个总体的回顾,交流。
2.2.2 对数函数及其性质(一)自主学习1.掌握对数函数的概念、图象和性质.2.能够根据指数函数的图象和性质得出对数函数的图象和性质,把握指数函数与对数函数关系的实质.1.对数函数的定义:一般地,我们把函数y =log a x (a >0,且a ≠1)叫做________________,其中x 是自变量,函数的定义域是(0,+∞).a >10<a <1(0,+∞)对数函数y =log a x (a >0且a ≠1)和指数函数________________________互为反函数.对点讲练对数函数的图象【例1】 下图是对数函数y =log a x 的图象,已知a 值取3,43,35,110,则图象C 1,C 2,C 3,C 4相应的a 值依次是( )A. 3、43、35、110B.3、43、110、35C.43、3、35、110D.43、3、110、35规律方法 (1)y =log a x (a >0,且a ≠1)图象无限地靠近于y 轴,但永远不会与y 轴相交. (2)设y 1=log a x ,y 2=log b x ,其中a >1,b >1(或0<a <1,0<b <1),则当x >1时,“底大图低”,即若a >b ,则y 1<y 2.当0<x <1时,“底大图高”,即若a >b ,则y 1>y 2.(3)在同一坐标系内,y =log a x (a >0,且a ≠1)的图象与y =log 1ax (a >0,且a ≠1)的图象关于x 轴(即y =0)对称.变式迁移1 借助图象求使函数y =log a (3x +4)的函数值恒为负值的x 的取值范围.对数函数的单调性的应用【例2】 比较下列各组中两个值的大小:(1)log 0.52.7,log 0.52.8; (2)log 34,log 65; (3)log a π,log a e (a >0且a ≠1).变式迁移2 若a =log 3π,b =log 76,c =log 20.8,则( )A .a >b >cB .b >a >cC .c >a >bD .b >c >a求函数的定义域【例3】 求下列函数的定义域:(1)y =3log 2x ; (2)y =log 0.5(4x -3); (3)y =log (x +1)(2-x ).规律方法 求与对数函数有关的函数定义域时,除遵循前面已学习过的求函数定义域的方法外,还要对这种函数自身有如下要求:一是要特别注意真数大于零;二是要注意对数的底数;三是按底数的取值应用单调性,有针对性的解不等式.变式迁移3 求下列函数的定义域.(1)y =1lg (x +1)-3; (2)y =log a (4x -3)(a >0,且a ≠1).1.对数函数单调性等重要性质要借助图象来理解与掌握.2.比较对数值的大小要用函数单调性及中间“桥梁”过渡.另外还要注意底数是否相同.3.掌握对数函数不但要清楚对数函数自身的图象和性质,还要结合指数函数的图象和性质来对比掌握.4.对数函数的单调性与指数函数的单调性大同小异.课时作业一、选择题1.已知函数f (x )=11-x的定义域为M ,g (x )=ln(1+x )的定义域为N ,则M ∩N 等于( )A .{x |x >-1}B .{x |x <1}C .{x |-1<x <1}D .∅ 2.若log a 2<log b 2<0,则( )A .0<a <b <1B .0<b <a <1C .a >b >1D .b >a >1 3.以下四个数中的最大者是( )A .(ln 2)2B .ln(ln 2)C .ln 2D .ln 24.函数y =a x 与y =-log a x (a >0且a ≠1)在同一坐标系中的图象形状只能是( )二、填空题5.函数f (x )=lg (4-x )x -3的定义域为______________.6.若指数函数f (x )=a x则不等式log a (x -1)<07.函数y =log a (x +2)+3的图象过定点__________. 三、解答题8.求下列函数的定义域:(1)y = 32x -1-127;(2)y =-lg (1-x );(3)y =11-log a (x +a )(a >0,a ≠1).9.已知f (x )=log a 1+x1-x(a >0,a ≠1),(1)求f (x )的定义域; (2)求使f (x )>0的x 的取值范围; (3)判断f (x )的奇偶性.2.2.2 对数函数及其性质(一) 答案自学导引 1.对数函数2.(1,0) (-∞,0) [0,+∞) (0,+∞) (-∞,0] x 轴3.y =a x (a >0且a ≠1) 对点讲练【例1】 A [过(0,1)作平行于x 轴的直线,与C 1,C 2,C 3,C 4的交点的坐标为(a 1,1),(a 2,1),(a 3,1),(a 4,1),其中a 1,a 2,a 3,a 4分别为各对数的底,显然a 1>a 2>a 3>a 4,所以C 1,C 2,C 3,C 4的底值依次由大到小.]变式迁移1 解 当a >1时,由题意有 0<3x +4<1,即-43<x <-1.当0<a <1时,由题意有3x +4>1,即x >-1.综上,当a >1时,-43<x <-1;当0<a <1时,x >-1.【例2】 解 (1)∵0<0.5<1,∴对数函数y =log 0.5x 在(0,+∞)上是减函数. 又∵2.7<2.8,∴log 0.52.7>log 0.52.8.(2)∵y =log 3x 在(0,+∞)上是增函数, ∴log 34>log 33=1.∵y =log 6x 在(0,+∞)上是增函数, ∴log 65<log 66=1. ∴log 34>log 65.(3)当a >1时,y =log a x 在(0,+∞)上是增函数. ∵π>e ,∴log a π>log a e.当0<a <1时,y =log a x 在(0,+∞)上是减函数. ∵π>e ,∴log a π<log a e.综上可知,当a >1时,log a π>log a e ; 当0<a <1时,log a π<log a e.变式迁移2 A [利用界值法可得a =log 3π>log 33=1,0<b =log 76<log 77=1,c =log 20.8<log 21=0,故a >b >c .]【例3】 解 (1)∵该函数是奇次根式,要使函数有意义,只要对数的真数是正数即可, ∴定义域是{x |x >0}.(2)要使函数y =log 0.5(4x -3)有意义, 必须log 0.5(4x -3)≥0=log 0.51,∴0<4x -3≤1.解得34<x ≤1.∴定义域是⎩⎨⎧⎭⎬⎫x |34<x ≤1.(3)由⎩⎪⎨⎪⎧x +1>0x +1≠12-x >0,得⎩⎪⎨⎪⎧x >-1x ≠0,x <2即0<x <2或-1<x <0,所求定义域为(-1,0)∪(0,2).变式迁移3 解 (1)由⎩⎪⎨⎪⎧lg (x +1)-3≠0x +1>0,得⎩⎪⎨⎪⎧x +1≠103x >-1, ∴x >-1且x ≠999,∴函数的定义域为{x |x >-1且x ≠999}. (2)log a (4x -3)≥0.(*)当a >1时,(*)可化为log a (4x -3)≥log a 1, ∴4x -3≥1,x ≥1.当0<a <1时,(*)可化为 log a (4x -3)≥log a 1,∴0<4x -3≤1,34<x ≤1.综上所述,当a >1时,函数定义域为[1,+∞),当0<a <1时,函数定义域为⎝⎛⎦⎤34,1. 课时作业1.C [由题意知M ={x |x <1}, N ={x |x >-1}.故M ∩N ={x |-1<x <1}.]2.B [由底数与对数函数的图象关系(如图)可知y =log a x ,y =log b x 图象的大致走向.再由对数函数的图象规律:从第一象限看,自左向右底数依次增大.∴选B.] 3.D [∵0<ln 2<1,∴ln(ln 2)<0,(ln 2)2<ln 2,而ln 2=12ln 2<ln 2.∴最大的数是ln 2.] 4.A5.{x |x <4,且x ≠3}解析 ⎩⎪⎨⎪⎧4-x >0x -3≠0解得x <4,且x ≠3,所以定义域为{x |x <4,且x ≠3}. 6.{x |1<x <2}解析 由题可知a =1.2,∴log 1.2(x -1)<0, ∴log 1.2(x -1)<log 1.21,解得x <2, 又∵x -1>0,即x >1,∴1<x <2. 故原不等式的解集为{x |1<x <2}. 7.(-1,3)8.解 (1)由32x -1-127≥0得,x ≥-1.∴所求定义域为[-1,+∞).(2)由-lg(1-x )≥0得,⎩⎪⎨⎪⎧1-x ≤11-x >0,即x ∈[0,1)∴所求定义域为[0,1).(3)1-log a (x +a )>0时,函数有意义, 即log a (x +a )<1① 当a >1时,-a <-1由①得,⎩⎪⎨⎪⎧x +a <ax +a >0解得-a <x <0.∴定义域为(-a,0). 当0<a <1时,-1<-a <0. 由①得,x +a >a .∴x >0. ∴定义域为(0,+∞).故所求定义域是:当0<a <1时,x ∈(0,+∞); 当a >1时,x ∈(-a,0).9.解 (1)由1+x1-x>0,得-1<x <1.故所求的定义域为(-1,1).(2)①当a >1时,由log a 1+x1-x>0=log a 1得1+x 1-x>1,∴0<x <1. ②当0<a <1时,由log a 1+x1-x>0=log a 1得0<1+x 1-x<1,∴-1<x <0.故当a >1时,所求范围为0<x <1; 当0<a <1时,所求范围为-1<x <0.(3)f (-x )=log a 1-x1+x=log a (1+x 1-x)-1=-f (x )∴f (x )为奇函数.。
2.2.2 对数函数及其性质(一)(一)教学目标1.知识技能(1)理解对数函数的概念.(2)掌握对数函数的性质.了解对数函数在生产实际中的简单应用.2.过程与方法(1)培养学生数学交流能力和与人合作精神.(2)用联系的观点分析问题.通过对对数函数的学习,渗透数形结合的数学思想.3.情感、态度与价值观(1)通过学习对数函数的概念、图象和性质,使学生体会知识之间的有机联系,激发学生的学习兴趣.(2)在教学过程中,通过对数函数有关性质的研究,培养观察、分析、归纳的思维能力以及数学交流能力,增强学习的积极性,同时培养学生倾听、接受别人意见的优良品质.(二)教学重点、难点1、重点:(1)对数函数的定义、图象和性质;(2)对数函数性质的初步应用.2、难点:底数a对图象的影响.(三)教学方法通过让学生观察、思考、交流、讨论、发现对数函数的图象的特点.(四)教学过程一般式吗?.概念.质,.的图象之间有什么关系?对数函数图象有以下特征对数函数有以下性质相同点:图象都在y轴的右侧,都过点(1,0).不同点:y=log3x的图象是上升=log x的图象是下降的.备选例题例1 求函数)416(log )1(x x y -=+的定义域. 【解析】由⎪⎩⎪⎨⎧≠+>+>-11010416x x x ,得⎪⎩⎪⎨⎧≠-><012x x x . ∴所求函数定义域为{x | –1<x <0或0<x <2}.【小结】求与对数函数有关的定义域问题,首先要考虑真数大于零,底数大于零且不等于1.例2 求函数y = log 2|x |的定义域,并画出它的图象. 【解析】函数的定义域为{x |x ≠0,x ∈R }. 函数解析式可化为y =⎪⎩⎪⎨⎧<->)0()(log )0(log 22x x xx ,其图象如图所示(其特征是关于y 轴对称).x。
课题:对数函数及其性质(2)一、三维目标:知识与技术 :1.能够正确描述出对数函数的图像,并能够利用图像来解决有关问题;2.能够利用对数函数的相性质解决有关问题。
过程与方法 :1.经过师生之间,学生与学生之间的合作沟通,使学生学会与他人共同学习;2.经过研究对数函数的图像,感觉数形联合思想,培育学生数学的剖析问题的意识。
感情态度与价值观 :1.经过对对数函数图像的学习,加深对人类认识事物的一般规律的理解和认识,使学生领会知识之间的有机联系,感觉数学的整体性,激发学生的学习兴趣;2.经过学生的互相沟通来加深理解对数函数图像的理解,加强学生数学沟通能力,培育学生聆听,接受他人建议的优秀质量。
二、学习重、难点:要点:正确描述出对数函数的图像。
难点:依照对数的函数性质进行对有关问题的办理。
三、学法指导:对照指数函数有关性质。
四、知识链接:B1、求以下函数的定义域:(1)y log 3 x ;(2)y 3 log2x;(3)y log (4 x 3) .五、学习过程:B 例 1、如下图曲线是对数函数y log a x 的图像,已y431C 1知 a 值取,则相应于C,C,C,C的 a3,,,12343510C2值挨次为0x1B 变式训练 1:已知3,b 3,c log30.3,d log3C3将 a, b, c, d 四数从小到大摆列C4B 问题 1、说明函数y log 3 ( x 2) 与函数 y log 3 x 的图像关系。
C 问题 2、将函数 y log a x 的图像沿 x 轴向右平移 2 个单位,再向下平移 1 个单位,所获得函数图像的分析式:C 例 2、(1) 若 (log a 2)21 , 求 a 的取值范围 ;3(2)解不等式 : 2log a (x 4) log a (x 2) .D 例 3、已知函数 f ( x ) = lg[ ( a 2- 1) x 2+( a + 1) x +1] ,若 f ( x ) 的定义域为 R ,务实数 a 的取值范围。
§2.2.2对数函数及其性质(第1课时)教学目标:知识与技能目标:(1)理解对数函数的概念;掌握对数函数的图像及其性质;(2)通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;过程与方法目标:(3)能够利用描点法画出具体的对数函数的图象,并通过由特殊到一般的研究方法,探索出一般的对数函数的的图像与性质,提高学生分析问题、解决问题的能力;(4)培养学生运用类比的方法探索研究数学问题的素养(具体过程:引导学生类比得到指数函数图像与性质的过程,探索研究对数函数的图像与性质,引导学生学会使用数形结合的思想方法解决问题)情感态度价值观:(5)通过了解对数的发明,让学生充分感受到数学来源于实际,更服务于实际,从而培养和激发学生积极主动学习科学的热情.教学重点:理解并掌握对数函数的图象和性质. 教学难点:对数函数的图象、性质.教学过程:一、创设问题情景,引入新课设计意图:以学生熟知的例子(撕纸问题)作为导入,建构对数函数模型. 使学生认识到数学来源于实践,并为实践服务.二、新课教学教学内容:对数函数的概念1.定义:函数0(log >=a x y a ,且)1≠a 叫做对数函数(logarithmic function )其中x 是自变量,函数的定义域是(0,+∞).注意:○1 对数函数的定义与指数函数类似,都是形式定义,注意辨别.如:x y 2log 2=,12log (1)y x =+ 都不是对数函数,而只能称其为对数型函数,但注意函数21log (0)2a yx a a =>≠且是对数函数.○2 对数函数对底数的限制:0(>a ,且)1≠a 以及自变量x 的取值范围. 2.知识方法准备研究方法:画出函数的图象,结合图象研究函数的性质.设计意图:类比指数函数的研究方法,研究学习对数函数图象及其性质 3、对数函数的图象和性质(1)由特殊到一般的思想方法导出对数函数log (1)y x a =>图像探究1:利用描点法在直角坐标系中画出x y 2log =的图像(学生自主探究,教师将学生的探究结果用投影仪展示出来,之后教师将学生作图的动态过程利用多媒体技术演示出来,并引导学生进行观察总结)设计意图:通过利用描点法画出具体的对数函数图像,初步引导学生探索对数函数图像的大致形状,为后续讨论一般的对数函数的图像铺设思维台阶.探究2:在探究1的基础上类比指数函数在底数大于1时的图像,画出大致的x y 3log =的图像,在这里描点法画图的过程由学生在课后自主完成.设计意图:在研究完成以2为底的对数函数之后,进而研究以3为底的对数函数图像(通过与指数函数进行对比直接给出3为底的对数函数的图像),为后续得到一般的1a >时的对数函数图像做好准备.探究3:由以2和3为底的对数函数图像推导出一般的以a (1a >)为底的对数函数图像设计意图:研究了1a >时不同底数的图像,从而进一步得到1a >时的对数函数图像的大致形状,体现了从特殊到一般的研究方法. (2)由特殊到一般的思想方法导出对数函数log (01)a y x a =<<图像设计意图:在得出log (1)a y x a =>的图像之后,学生能够熟练的完成log (01)a y x a =<<的图像的探究过程,从而实现了以学生为主体,教师为主导的教学原则.(3)结合log (1)a y x a =>和log (01)a y x a =<<的图像探究一般的对数函数的性质对数函数 图象和性质log (01)a y x a a =>≠且.节课的重点.四、归纳小结(1)对数函数的定义、图像及其性质(2)应用对数函数的性质解决问题设计意图:对本节课的重点内容进行梳理,促进学生对本节课内容的理解与掌握.本小节的目标要求是掌握对数函数的概念、图象和性质.在理解对数函数的定义的基础上,掌握对数函数的图象和性质及其简单应用是本小节的重点.五、作业布置1.探究作业:指数函数与对数函数的性质有哪些异同?2.作业:教材P74习题2.2(A组)第7、8、9题。
2.2.2 对数函数及其性质(一)学习目标 1.理解对数函数的概念.2.掌握对数函数的性质.3.了解对数函数在生产实际中的简单应用.知识点一对数函数的概念思考已知函数y=2x,那么反过来,x是否为关于y的函数?答案由于y=2x是单调函数,所以对于任意y∈(0,+∞)都有唯一确定的x与之对应,故x也是关于y的函数,其函数关系式是x=log2y,此处y∈(0,+∞).习惯上用x,y分别表示自变量、因变量.上式可改为y=log2x,x∈(0,+∞).梳理一般地,把函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).知识点二对数函数的图象与性质对数函数y=log a x(a>0,且a≠1)的图象和性质如下表:定义y=log a x (a>0,且a≠1)底数a>10<a<1图象定义域(0,+∞)值域R单调性在(0,+∞)上是增函数在(0,+∞)上是减函数共点性图象过定点(1,0),即x=1时,y=0函数值特点x∈(0,1)时,y∈(-∞,0);x∈[1,+∞)时,y∈[0,+∞)x∈(0,1)时,y∈(0,+∞);x∈[1,+∞)时,y∈(-∞,0] 对称性函数y=log a x与y=1logax的图象关于x轴对称1.由y =log a x ,得x =a y,所以x >0.( √ ) 2.y =2log 2x 是对数函数.( × )3.y =a x与y =log a x 的单调区间相同.( × )4.由log a 1=0,可得y =log a x 恒过定点(1,0).( √ )类型一 对数函数的定义域的应用 例1 求下列函数的定义域. (1)y =log a (3-x )+log a (3+x ); (2)y =log 2(16-4x). 考点 对数函数的定义域 题点 对数函数的定义域解 (1)由⎩⎪⎨⎪⎧3-x >0,3+x >0,得-3<x <3,∴函数的定义域是{x |-3<x <3}. (2)由16-4x>0,得4x <16=42, 由指数函数的单调性得x <2,∴函数y =log 2(16-4x)的定义域为{x |x <2}. 引申探究1.把本例(1)中的函数改为y =log a (x -3)+log a (x +3),求定义域.解 由⎩⎪⎨⎪⎧x -3>0,x +3>0,得x >3.∴函数y =log a (x -3)+log a (x +3)的定义域为{x |x >3}.2.求函数y =log a [(x +3)(x -3)]的定义域,相比引申探究1,定义域有何变化?解 (x +3)(x -3)>0,即⎩⎪⎨⎪⎧x +3>0,x -3>0或⎩⎪⎨⎪⎧x +3<0,x -3<0,解得x <-3或x >3.∴函数y =log a [(x +3)(x -3)]的定义域为{x |x <-3或x >3}.相比引申探究1,函数y =log a [(x +3)(x -3)]的定义域多了(-∞,-3)这个区间,原因是对于y =log a [(x +3)·(x -3)],要使对数有意义,只需(x +3)与(x -3)同号,而对于y =log a (x -3)+log a (x +3),要使对数有意义,必须(x -3)与(x +3)同时大于0.反思与感悟 求含对数式的函数定义域关键是真数大于0,底数大于0且不为1.如需对函数式变形,需注意真数底数的取值范围是否改变. 跟踪训练1 求下列函数的定义域.(1)y =x 2-4lg x +3;(2)y =log (x +1)(16-4x); 考点 对数函数的定义域 题点 对数函数的定义域解 (1)要使函数有意义,需⎩⎪⎨⎪⎧x 2-4≥0,x +3>0,x +3≠1,即⎩⎪⎨⎪⎧x ≤-2或x ≥2,x >-3,x ≠-2,即-3<x <-2或x ≥2,故所求函数的定义域为(-3,-2)∪[2,+∞). (2)要使函数有意义,需⎩⎪⎨⎪⎧16-4x>0,x +1>0,x +1≠1,即⎩⎪⎨⎪⎧x <2,x >-1,x ≠0,所以-1<x <2,且x ≠0,故所求函数的定义域为{x |-1<x <2,且x ≠0}. 类型二 对数函数单调性的应用 命题角度1 比较同底对数值的大小 例2 比较下列各组数中两个值的大小. (1)log 23.4,log 28.5; (2)log 0.31.8,log 0.32.7;(3)log a 5.1,log a 5.9(a >0,且a ≠1). 考点 对数值大小比较 题点 对数值大小比较解 (1)考察对数函数y =log 2x , 因为它的底数2>1,所以它在(0,+∞)上是增函数, 又3.4<8.5, 于是log 23.4<log 28.5.(2)考察对数函数y =log 0.3x ,因为它的底数0<0.3<1,所以它在(0,+∞)上是减函数,又1.8<2.7,于是log0.31.8>log0.32.7.(3)当a>1时,y=log a x在(0,+∞)上是增函数,又5.1<5.9,于是log a5.1<log a5.9;当0<a<1时,y=log a x在(0,+∞)上是减函数,又5.1<5.9,于是log a5.1>log a5.9.综上,当a>1时,log a5.1<log a5.9,当0<a<1时,log a5.1>log a5.9.反思与感悟比较两个同底数的对数大小,首先要根据对数底数来判断对数函数的增减性;然后比较真数大小,再利用对数函数的增减性判断两对数值的大小.对于底数以字母形式出现的,需要对底数a进行讨论.对于不同底的对数,可以估算范围,如log22<log23<log24,即1<log23<2,从而借助中间值比较大小.跟踪训练2 设a=log3π,b=log23,c=log32,则( )A.a>b>c B.a>c>bC.b>a>c D.b>c>a考点对数值大小比较题点对数值大小比较答案 A解析∵a=log3π>1,b=12log23,其中log22<log23<log24,则12<b<1,c=12log32<12,∴a>b>c.命题角度2 求y=log a f x型的函数值域例3 函数f(x)=log2(3x+1)的值域为________.考点对数函数的值域题点对数函数的值域答案(0,+∞)解析f(x)的定义域为R.∵3x>0,∴3x+1>1.∵y=log2x在(0,+∞)上单调递增,∴log 2(3x+1)>log 21=0. 即f (x )的值域为(0,+∞).反思与感悟 在函数三要素中,值域从属于定义域和对应关系.故求y =log a f (x )型函数的值域必先求定义域,进而确定f (x )的范围,再利用对数函数y =log a x 的单调性求出log a f (x )的取值范围.跟踪训练3 已知f (x )=log 2(1-x )+log 2(x +3),求f (x )的定义域、值城. 考点 对数函数的值域题点 真数为二次函数的对数型函数的值域解 要使函数式有意义,需⎩⎪⎨⎪⎧1-x >0,x +3>0,解得定义域为(-3,1).f (x )=log 2[(1-x )(x +3)]=log 2[-(x +1)2+4].∵x ∈(-3,1),∴-(x +1)2+4∈(0,4].∴log 2[-(x +1)2+4]∈(-∞,2]. 即f (x )的值域为(-∞,2]. 类型三 对数函数的图象例4 画出函数y =lg|x -1|的图象. 考点 对数函数的图象题点 含绝对值的对数函数的图象 解 (1)先画出函数y =lg x 的图象(如图).(2)再画出函数y =lg|x |的图象(如图).(3)最后画出函数y =lg|x -1|的图象(如图).反思与感悟现在画图象很少单纯依靠描点,大多是以基本初等函数为原料加工,所以一方面要掌握一些常见的平移、对称变换的结论,另一方面要关注定义域、值域、单调性、关键点.跟踪训练4 画出函数y=|lg(x-1)|的图象.考点对数函数的图象题点含绝对值的对数函数的图象解(1)先画出函数y=lg x的图象(如图).(2)再画出函数y=lg(x-1)的图象(如图).(3)再画出函数y=|lg(x-1)|的图象(如图).1.下列函数为对数函数的是( )A.y=log a x+1(a>0且a≠1)B.y=log a(2x)(a>0且a≠1)C.y=log(a-1)x(a>1且a≠2)D.y=2log a x(a>0且a≠1)考点对数函数的概念题点对数函数的概念答案 C2.函数y=log2(x-2)的定义域是( )A.(0,+∞) B.(1,+∞)C.(2,+∞) D.[4,+∞)考点对数函数的定义域题点 对数函数的定义域 答案 C3.函数y =2log 4(1-x )的图象大致是( )考点 对数函数的图象 题点 对数函数的图象 答案 C解析 函数y =2log 4(1-x )的定义域为(-∞,1),排除A ,B ;又函数y =2log 4(1-x )在定义域内单调递减,排除D.故选C.4.函数f (x )=log 0.2(2x+1)的值域为________. 考点 对数函数的值域 题点 对数函数的值域 答案 (-∞,0)5.若函数f (x )=2log a (2-x )+3(a >0,且a ≠1)过定点P ,则点P 的坐标是__________. 考点 对数函数的性质 题点 对数函数图象过定点问题 答案 (1,3)1.含有对数符号“log”的函数不一定是对数函数.判断一个函数是否为对数函数,不仅要含有对数符号“log”,还要符合对数函数的概念,即形如y =log a x (a >0,且a ≠1)的形式.如:y =2log 2x ,y =log 5x5都不是对数函数,可称其为对数型函数.2.研究y =log a f (x )的性质如定义域、值域、比较大小,均需依托对数函数的相应性质.一、选择题1.给出下列函数:①y=log 23x2;②y=log3(x-1);③y=log(x+1)x;④y=logπx.其中是对数函数的有( )A.1个B.2个C.3个D.4个考点对数函数的概念题点对数函数的概念答案 A解析①②不是对数函数,因为对数的真数不是只含有自变量x;③不是对数函数,因为对数的底数不是常数;④是对数函数.2.已知函数f(x)=11-x的定义域为M,g(x)=ln(1+x)的定义域为N,则M∩N等于( )A.{x|x>-1} B.{x|x<1}C.{x|-1<x<1} D.∅考点对数函数的定义域题点对数函数的定义域答案 C解析∵M={x|1-x>0}={x|x<1},N={x|1+x>0}={x|x>-1},∴M∩N={x|-1<x<1}.3.已知a>0,且a≠1,函数y=a x与y=log a(-x)的图象只能是下图中的( )考点对数函数的图象题点同一坐标系下的指数函数与对数函数的图象答案 B解析y=a x与y=log a(-x)的单调性相反,排除A,D.y=log a(-x)的定义域为(-∞,0),排除C,故选B.4.已知函数f(x)=log a(x+2),若图象过点(6,3),则f(2)的值为( )A .-2B .2C.12D .-12考点 对数函数的性质 题点 对数函数图象过定点问题 答案 B解析 代入(6,3),3=log a (6+2)=log a 8, 即a 3=8,∴a =2.∴f (x )=log 2(x +2),∴f (2)=log 2(2+2)=2.5.若函数f (x )=log a (x +b )的图象如图所示:其中a ,b 为常数,则函数g (x )=a x+b 的图象大致是( )考点 对数函数的图象题点 同一坐标系下的指数函数与对数函数的图象 答案 D解析 由f (x )的图象可知0<a <1,0<b <1, ∴g (x )的图象应为D.6.下列不等号连接错误的一组是( ) A .log 0.52.2>log 0.52.3 B .log 34>log 65 C .log 34>log 56 D .log πe>lnπ 考点 对数值大小比较 题点 对数值大小比较 答案 D解析 对A ,根据y =log 0.5x 为单调减函数易知正确. 对B ,由log 34>log 33=1=log 55>log 65可知正确.对C ,由log 34=1+log 343>1+log 365>1+log 565=log 56可知正确.对D ,由π>e>1,得lnπ>1>log πe 可知错误. 7.已知f (x )=2+log 3x ,x ∈⎣⎢⎡⎦⎥⎤181,9,则f (x )的最小值为( )A .-2B .-3C .-4D .0 考点 对数函数的值域 题点 对数函数的值域 答案 A解析 ∵181≤x ≤9,∴log 3181≤log 3x ≤log 39,即-4≤log 3x ≤2,∴-2≤2+log 3x ≤4. ∴当x =181时,f (x )min =-2.8.已知函数f (x )=log a |x +1|在(-1,0)上有f (x )>0,那么( ) A .f (x )在(-∞,0)上是增函数 B .f (x )在(-∞,0)上是减函数 C .f (x )在(-∞,-1)上是增函数 D .f (x )在(-∞,-1)上是减函数 考点 对数函数的图象题点 含绝对值的对数函数的图象 答案 C解析 当x ∈(-1,0)时,|x +1|∈(0,1), ∵log a |x +1|>0,∴0<a <1, 画出f (x )的图象如图:由图可知选C. 二、填空题9.已知函数f (x )的图象如图所示,则函数g (x )=log 2f (x )的定义域是____________.考点 对数函数的定义域题点 对数函数的定义域答案 {x |2<x ≤8}解析 由题意知,f (x )>0,由所给图象可知f (x )>0的解集为{x |2<x ≤8}.10.设a =log 2π,b =log 12π,c =π-2,则a ,b ,c 的大小关系是______________.考点 对数值大小比较题点 指数、对数值大小比较答案 a >c >b解析 因为π>2,所以a =log 2π>1,所以b =log 12π<0.因为π>1,所以0<π-2<1,即0<c <1.所以a >c >b .11.已知函数f (x )=|lg x |,若0<a <b ,且f (a )=f (b ),则a +4b 的取值范围是____________. 考点 对数函数的图象题点 含绝对值的对数函数的图象答案 (5,+∞)解析 因为f (a )=f (b ),且0<a <b ,所以0<a <1<b ,且-lg a =lg b ,即b =1a,所以a +4b =a +4a .令g (a )=a +4a ,易知g (a )在(0,1)上为减函数,所以g (a )>g (1)=1+41=5,即a +4b 的取值范围是(5,+∞).三、解答题12.已知f (x )=log 2(x +1),当点(x ,y )在函数y =f (x )的图象上时,点⎝ ⎛⎭⎪⎫x 3,y 2在函数y =g (x )的图象上.(1)写出y =g (x )的解析式;(2)求方程f (x )-g (x )=0的根.考点 对数函数的解析式题点 对数函数的解析式解 (1)设x 3=x ′,y 2=y ′, 则x =3x ′,y =2y ′.∵(x ,y )在y =f (x )的图象上,∴y =log 2(x +1),∴2y ′=log 2(3x ′+1),y ′=12log 2(3x ′+1), 即点(x ′,y ′)在y =12log 2(3x +1)的图象上. ∴g (x )=12log 2(3x +1). (2)f (x )-g (x )=0,即log 2(x +1)=12log 2(3x +1)=log 23x +1, ∴x +1=3x +1,∴⎩⎪⎨⎪⎧x +1>0,3x +1>0,x +12=3x +1, 解得x =0或x =1. 13.已知1≤x ≤4,求函数f (x )=log 2x 4×log 2x 2的最大值与最小值. 考点 对数函数的值域 题点 对数函数的值域 解 ∵f (x )=log 2x 4×log 2x 2=(log 2x -2)(log 2x -1)=⎝⎛⎭⎪⎫log 2x -322-14, 又∵1≤x ≤4,∴0≤log 2x ≤2,∴当log 2x =32,即x =232=22时,f (x )取最小值-14; 当log 2x =0,即x =1时,f (x )取最大值2.∴函数f (x )的最大值是2,最小值是-14. 四、探究与拓展14.已知log a (3a -1)恒为正,则a 的取值范围是________.考点 对数函数的图象题点 对数函数的图象答案 ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪ 13<a <23或a >1解析 由题意知log a (3a -1)>0=log a 1.当a >1时,y =log a x 是增函数,∴⎩⎪⎨⎪⎧3a -1>1,3a -1>0,解得a >23,∴a >1; 当0<a <1时,y =log a x 是减函数,∴⎩⎪⎨⎪⎧ 3a -1<1,3a -1>0,解得13<a <23. ∴13<a <23. 综上所述,a 的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪ 13<a <23或a >1. 15.已知函数f (x )=ln(ax 2+2x +1).(1)若f (x )的定义域为R ,求实数a 的取值范围;(2)若f (x )的值域为R ,求实数a 的取值范围.考点 对数函数的值域题点 求对数函数的定义域与值域解 (1)若f (x )的定义域为R ,则y =ax 2+2x +1的图象恒在x 轴的上方,所以⎩⎪⎨⎪⎧ a >0,Δ=4-4a <0,所以a >1.(2)若f (x )的值域为R ,则y =ax 2+2x +1的图象一定要与x 轴有交点,且能取得y 轴正半轴的任一值,所以a =0或⎩⎪⎨⎪⎧ a >0,Δ=4-4a ≥0,所以0≤a ≤1.。
§2.2.2 对数函数及其性质(1)学习目标1. 通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;2. 能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点;3. 通过比较、对照的方法,引导学生结合图象类比指数函数,探索研究对数函数的性质,培养数形结合的思想方法,学会研究函数性质的方法.学习过程一、课前准备(预习教材P 70~ P 72,找出疑惑之处)复习1:画出2x y =、1()2x y =的图象,并以这两个函数为例,说说指数函数的性质.复习2:生物机体内碳14的“半衰期”为5730年,湖南长沙马王堆汉墓女尸出土时,碳14的残余量约占原始含量的76.7%,试推算马王堆古墓的年代.(列式)二、新课导学 ※ 学习探究探究任务一:对数函数的概念问题:根据上题,用计算器可以完成下表:碳14的含量P 0.5 0.3 0. 1 0.010.001生物死亡年数t讨论:t 与P 的关系?(对每一个碳14的含量P 的取值,通过对应关系573012log t P =,生物死亡年数t 都有唯一的值与之对应,从而t 是P 的函数)新知:一般地,当a >0且a ≠1时,函数log a y x =叫做对数函数(logarithmic function),自变量是x ; 函数的定义域是(0,+∞).反思:对数函数定义与指数函数类似,都是形式定义,注意辨别,如:22log y x =,5log (5)y x = 都不是对数函数,而只能称其为对数型函数;对数函数对底数的限制(0a >,且1)a ≠.探究任务二:对数函数的图象和性质问题:你能类比前面讨论指数函数性质的思路,提出研究对数函数性质的内容和方法吗?研究方法:画出函数图象,结合图象研究函数性质.研究内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性.试试:同一坐标系中画出下列对数函数的图象.2log y x =;0.5log y x =.反思:(1)根据图象,你能归纳出对数函数的哪些性质?a >1 0<a <1 图 象性 质 (1)定义域: (2)值域:(3)过定点: (4)单调性:(2)图象具有怎样的分布规律?※ 典型例题例1求下列函数的定义域:(1)2log a y x =;(2)log (3)a y x =-;变式:求函数2log (3)y x =-的定义域.例2比较大小:(1)ln 3.4,ln8.5; (2)0.30.3log 2.8,log 2.7; (3)log 5.1,log 5.9a a .小结:利用单调性比大小;注意格式规范.※ 动手试试练1. 求下列函数的定义域.(1)0.2log (6)y x =--; (2)32log 1y x =-.练2. 比较下列各题中两个数值的大小.(1)22log 3log 3.5和; (2)0.30.2log 4log 0.7和;(3)0.70.7log 1.6log 1.8和; (4)23log 3log 2和.三、总结提升 ※ 学习小结1. 对数函数的概念、图象和性质;2. 求定义域;3. 利用单调性比大小.※ 知识拓展对数函数凹凸性:函数()log ,(0,1)a f x x a a =>≠,12,x x 是任意两个正实数.当1a >时,1212()()()22f x f x x xf ++≤;当01a <<时,1212()()()22f x f x x xf ++≥.学习评价※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量: 5分钟 满分:10分)计分:1. 当a >1时,在同一坐标系中,函数x y a -=与log a y x =的图象是( ).2. 函数22log (1)y x x =+≥的值域为( ). A. (2,)+∞ B. (,2)-∞ C. [)2,+∞ D. [)3,+∞3. 不等式的41log 2x >解集是( ). A. (2,)+∞ B. (0,2)B. 1(,)2+∞ D. 1(0,)24. 比大小:(1)log 67 log 7 6 ; (2)log 31.5 log 2 0.8. 5. 函数(-1)log (3-)x y x =的定义域是 .课后作业1. 已知下列不等式,比较正数m 、n 的大小: (1)3log m <3log n ; (2)0.3log m >0.3log n ; (3)log a m >log a n (a >1)2. 求下列函数的定义域:(1)2log (35)y x =-;(2)0.5log 43y x =-.。
2.2.2(2)对数函数及其性质(学生学案)(内容:图象与性质应用)1.二、师生互动,新课讲解:例1:在同一坐标系作出函数的图象如图所示,回答下列问题.(1)说明哪个函数对应于哪个图象,并解释为什么?(2)函数与且有什么关系?图象之间又有什么特殊的关系?(3)以的图象为基础,在同一坐标系中画出,,,,的图象.思考底数是如何影响函数的.(学生独立思考,师生共同总结)小结:当a>1时,函数单调递增,a越大,图象越靠近x 轴;当0<a<1时,函数单调递减,a 越小,图象越靠近x轴。
变式训练1:已知函数的图象,则底数之间的关系:.例2:根据对数函数的图象和性质填空.已知函数,则当时,;当时,;当时,;当时,.变式训练2:已知函数,则当时,;当时,;当时,;当时,;当时,.例3:比较大小:○1,且;○2,.变式训练3:函数在上的最大值比最小值大1,求的值;例4.求函数的定义域,单调区间及值域。
变式训练4:求函数的定义域及单调区间.布置作业:A组:1、求函数的定义域及单调区间.2、求函数的定义域及单调区间.3.求下列函数的定义域:(1)(2)4、求下列函数的值域(1);(2)(提示分别对0<a<1与a>1讨论)B组:1、(tb0116803)若m>n>1,0<x<1,则下列各式中正确的是()。
(A)m x<n x(B) x m>x n(C) log x m<log x n (D) log m x<log n x2、(tb0218417)若log n2>log m2>0时,则m与n的关系是()。
(A)m>n>1 (B) n>m>1 (C)1>m>n>0 (D) 1>n>m>0。
第一课时对数函数的图象及性质[读教材·填要点]1.对数函数的概念函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量.2.对数函数的图象与性质a>10<a<1 图像性质定义域(0,+_∞)值域R过定点过定点(1,0),即x=1时,y=0函数值的变化当0<x<1时,y<0当x>1时,y>0当0<x<1时,y>0当x>1时,y<03.反函数对数函数y=log a x(a>0,且a≠1)和指数函数y=a x(a>0,且a≠1)互为反函数.[小问题·大思维]1.对数函数中为什么定义域为(0,+∞)?提示:因为负数和0没有对数.2.函数y=log a(x+1)与y=2log a x都是对数函数吗?判断对数函数的标准是什么?提示:都不是,依据对数函数的定义判断,必须底数为常数a,且a>0且a≠1,真数是自变量x,系数必须是1.3.若函数f(x)=log13x,且a>b>1,则f(a),f(b)与0的大小关系是什么?提示:∵0<13<1,∴函数f(x)=log13x在(0,+∞)上为减函数.又∵a>b>1,∴log13a<log13b<log131=0.即f(a)<f(b)<0.[例1] 求下列函数的定义域:(1)f (x )=lg4-xx -3(2)y =log 0.14x -3.[自主解答] (1)由⎩⎪⎨⎪⎧4-x >0x -3≠0得x <4且x ≠3.∴所求定义域为(-∞,3)∪(3,4).(2)由⎩⎪⎨⎪⎧4x -3>0log 0.14x -3≥0得⎩⎪⎨⎪⎧4x -3>04x -3≤1,∴34<x ≤1.∴所求定义域为(34,1].——————————————————求与对数函数有关的函数定义域时,除遵循前面已学习过的求函数定义域的方法外,还要对这种函数自身有如下要求:一是要特别注意真数大于零;二是要注意底数;三是按底数的取值应用单调性.————————————————————————————————————————1.求下列函数定义域. (1)y =log (x -1)(3-x ); (2)y =log 2x +1-1. 解:(1)由⎩⎪⎨⎪⎧3-x >0x -1>0x -1≠1得1<x <3且x ≠2.∴定义域为{x |1<x <3且x ≠2}. (2)由⎩⎪⎨⎪⎧x +1>0log 2x +1-1≥0得⎩⎪⎨⎪⎧x +1>0x +1≥2得x ≥1.∴定义域为[1,+∞).对数函数的图象[例2] 如图是对数函数y =log a x 的图象,已知a 取值3,43,35,110,则图象C 1,C 2,C 3,C 4相应的a 值依次是( )A.3、43、35、110B.3、43、110、35C.43、3、35、110D.43、3、110、35[自主解答] 过(0,1)作平行于x 轴的直线,与C 1,C 2,C 3,C 4的交点的坐标为(a 1,1),(a 2,1),(a 3,1),(a 4,1),其中a 1,a 2,a 3,a 4分别为各对数的底,显然a 1>a 2>a 3>a 4,所以C 1,C 2,C 3,C 4的底数依次由大到小.[答案] A——————————————————1y=log a x a>0,且a≠1图象无限地靠近于y轴,但永远不会与y轴相交.2设y1=l og a x,y2=l og b x,其中a>1,b>1或0<a<1,0<b<1,则当x>1时,“底大图低”,即若a>b,则y1<y2.当0<x<1时,“底大图高”,即若a>b,则y1>y2.3在同一坐标系内,y=log a x a>0,且a≠1的图象与y=log\f(1,a)x a>0,且a≠1的图象关于x轴即y=0对称. ————————————————————————————————————————2.当a>1时,函数y=log a x和y=(1-a)x的图象只能是( )解析:∵a >1,∴函数y =log a x 为增函数,且图象过定点(1,0),故C 、D 均不正确.又∵1-a <0,∴函数y =(1-a )x 的图象应过坐标原点且经过第二、四象限.答案:B对数函数图象应用[例3] 已知f (x )=|lg x |,且1c>a >b >1,试比较f (a )、f (b )、f (c )的大小.[自主解答] 先作出函数y =lg x 的图象,再将图象位于x 轴下方的部分折到x 轴上方,于是得f (x )=|lg x |图象,(如图)由图象可知,f (x ) 在(0,1)上单调递减,在(1,+∞)上单调递增.由1c >a >b >1得:f (1c)>f (a )>f (b ),而f (1c )=|lg 1c|=|-lg c |=|lg c |=f (c ).∴f (c )>f (a )>f (b ).若依据例3条件求解“f(x)<1”满足的x的取值范围.解:由例3图可知f(x)<1即-1<lg x<1.∴x的取值范围为(110,10).——————————————————1作对数函数图象,注意图象无限靠近于y轴,过1,0点及其单调性.2y=|f x|图象可以由y=f x图象得到,具体过程:保留y=f x在x轴上方的图象,再将y=f x图象在x轴下方的部分折到x轴上方. ————————————————————————————————————————3.函数f (x )=|log 3x |在区间[a ,b ]上的值域为[0,1],则b -a 的最小值为________.解析:数形结合|log 3x |=0,则x =1,|log 3x |=1,则x =13或3.作图由图可知(b -a )min =1-13=23.答案:23函数y =log a x (a >0,且a ≠1)在[2,4]上的最大值与最小值的差是1,求a 的值. [错解] 因为函数y =log a x (a >0且a ≠1),在[2,4]最大值为log a 4,最小值为log a 2.所以log a 4-log a 2=1,即log a 42=1,a =2.[错因] 错解中误以为函数y =log a x (a >0,且a ≠1)在[2,4]上是增函数.[正解] (1)当a >1时,函数y =log a x 在[2,4]上是增函数,所以log a 4-log a 2=1,即log a 42=1, 所以a =2.(2)当0<a <1时,函数y =log a x 在[2,4]上是减函数,所以log a 2-log a 4=1,即log a 24=1,所以a =12.综上a =2或a =12.1.函数f (x )=3x21-2x+lg(2x +1)的定义域是( ) A .(-12,+∞)B .(-12,1)C .(-12,12)D .(-∞,-12)解析:由⎩⎪⎨⎪⎧1-2x >02x +1>0得-12<x <12.答案:C2.函数y =log a x 的图象如图所示,则实数a 的可能取值是( ) A .5 B.15 C.1eD.12解析:∵函数y =log a x 的图象一致上升,∴函数y =log a x 为单调增函数, ∴a >1. 答案:A3.设a =log 123,b =(13)0.3,c =213,则a ,b ,c 的大小关系是( )A .a <b <cB .c <b <aC .c <a <bD .b <a <c解析:∵a =log 123<log 121=0,0<b =(13)0.3<(13)0=1,c =213>20=1.∴a <b <c .答案:A4.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3x,x ≤0,则f (f (14))=________.解析:f (14)=log 214=-2.f (f (14))=f (-2)=3-2=19.答案:195.已知log 0.6(x +2)>log 0.6(1-x ),则实数x 的取值范围是________. 解析:∵函数y =log 0.6x 为减函数,∴结合定义域可得⎩⎪⎨⎪⎧x +2>01-x >0x +2<1-x得⎩⎪⎨⎪⎧x >-2x <1x <-12∴-2<x <-12.答案:(-2,-12)6.已知函数y =log a (x +b )的图象如图所示,求实数a 与b 的值.解:由图象可知,函数的图象过点(-3,0)和(0,2),∴⎩⎪⎨⎪⎧log a b -3=0log a b =2,解之得b =4,a =2.一、选择题1.已知函数f(x)=11-x的定义域为M,g(x)=ln(1+x)的定义域为N,则M∩N等于( )A.{x|x>-1} B.{x|x<1}C.{x|-1<x<1} D.∅解析:由题意得M={x|x<1},N={x|x>-1},则M∩N={x|-1<x<1}.答案:C2.函数f(x)=log2(3x+3-x)是( )A.奇函数B.偶函数C.既是奇函数又是偶函数D.不是奇函数又不是偶函数解析:∵3x+3-x>0恒成立.∴f(x)的定义域为R.又∵f(-x)=log2(3-x+3x)=f(x).∴f(x)为偶函数.答案:B3.如图是三个对数函数的图象,则a、b、c的大小关系是( )A .a >b >cB .c >b >aC .c >a >bD .a >c >b解析:由图可知a >1,而0<b <1,0<c <1,取y =1,则可知c >b .∴a >c >b . 答案:D4.已知函数f (x )=|lg x |.若a ≠b ,且f (a )=f (b ),则a +b 的取值范围是( ) A .(1,+∞) B .[1,+∞) C .(2,+∞)D .[2,+∞)解析:f (x )=|lg x |的图象如图所示, 由题可设0<a <1,b >1, ∴|lg a |=-lg a ,|lg b |=lg b , ∴-lg a =lg b .即1a =b ,∴a +b =a +1a(0<a <1).又∵函数y =x +1x(0<x <1)为减函数,∴a +1a>2.答案:C 二、填空题5.对数函数的图象过点(16,4),则此函数的解析式为________. 解析:设f (x )=log a x (a >0且a ≠1),则log a 16=4. ∴a 4=16,又∵a >0且a ≠1,∴a =2.即f (x )=log 2x . 答案:f (x )=log 2x6.已知函数y =3+log a (2x +3)(a >0且a ≠1)的图象必经过定点P ,则P 点坐标________.解析:∵当2x +3=1即x =-1时,log a (2x +3)=0,y =3,P (-1,3). 答案:(-1,3)7.方程x 2=log 12x 解的个数是________.解析:函数y =x 2和y =log 12x 在同一坐标系内的图象大致为:答案:18.若实数a 满足log a 2>1,则a 的取值范围为________. 解析:当a >1时,log a 2>1=log a a . ∴2>a .∴1<a <2;当0<a <1时,log a 2<0. 不满足题意. 答案:1<a <2 三、解答题9.(1)已知函数y =lg(x 2+2x +a )的定义域为R ,求实数a 的取值范围;(2)已知函数f (x )=lg[(a 2-1)x 2+(2a +1)x +1],若f (x )的定义域为R ,求实数a 的取值范围.解:(1)因为y =lg(x 2+2x +a )的定义域为R , 所以x 2+2x +a >0恒成立,所以Δ=4-4a <0, 所以 a >1.故a 的取值范围是(1,+∞).(2)依题意(a 2-1)x 2+(2a +1)x +1>0对一切x ∈R 恒成立.当a 2-1≠0时,⎩⎪⎨⎪⎧a 2-1>0,Δ=2a +12-4a 2-1<0.解得a <-54.当a 2-1=0时,显然(2a +1)x +1>0,对x ∈R 不恒成立. 所以a 的取值范围是(-∞,-54).10.已知函数f (x )=log a x +1x -1(a >0,且a ≠1). (1)求f (x )的定义域: (2)判断函数的奇偶性.解:(1)要使函数有意义,则有x +1x -1>0,即⎩⎪⎨⎪⎧x +1>0,x -1>0或⎩⎪⎨⎪⎧x +1<0,x -1<0,解得x >1或x <-1,此函数的定义域为(-∞,-1)∪(1, +∞),关于原点对称.(2)f (-x )=log a -x +1-x -1=log a x -1x +1=-log ax +1x -1=-f (x ).∴f (x )为奇函数.。
第二章基本初等函数(Ⅰ)
2.2 对数函数
2.2.2 对数函数及其性质(第一课时)
学习目标
①对数函数的概念,熟悉对数函数的图象与性质规律;
②掌握对数函数的性质,能初步运用性质解决问题.
合作学习
一、设计问题,创设情境
在研究指数函数时,曾经讨论过细胞分裂问题(1个细胞一次分裂为2个细胞),某种细胞分裂时,得到的细胞个数y是分裂次数x的函数,这个函数可以用指数函数y=2x表示.
现在,我们来研究相反的问题,要想得到1万个,10万个,…细胞,1个细胞要经过多少次分裂?
二、自主探索,尝试解决
经过分析,发现分裂次数x就是要得到的细胞个数y的函数.根据对数的定义,这个函数可以写成对数的形式.
如果用x表示自变量,y表示函数,这个函数是.
三、信息交流,揭示规律
1.对数函数的定义
问题1:请同学们类比“指数函数”的定义,给出“对数函数”的定义.
问题2:在函数的定义中,为什么要限定a>0,且a≠1?
问题3:为什么对数函数y=log a x(a>0,且a≠1)的定义域是(0,+∞)?
2.对数函数的图象与性质
问题4:画出函数y=log2x与y=lo x的图象(师生一起用几何画板画出图象).
问题5:y=log2x与y=lo x的图象有什么关系?并且说明这两个函数的相同性质和不同性质.
问题6:选取底数a(a>0,且a≠1)的若干不同的值,在同一平面直角坐标系内作出相应的对数函数的图象.观察图象,看看是否还有类似于问题5中的结论.
问题7:由问题5和问题6的结论,试猜测函数y=log a x与y=lo x(a>0,且a≠1)的图象之间有怎样的位置关系?并证明你的结论.
问题8:由问题5和问题6的结论,结合指数函数的性质,试猜测函数y=log a x(a>0,且a≠1)有怎样的性质.
先由学生讨论、交流,教师引导总结出函数的性质.(投影)
a>1 0<a<1
图
象
性质定义域:
值域:
过定点,即x=时,y=
x∈(0,1)时,y<0;
x∈(1,+∞)时,y>0
x∈(0,1)时,y>0;
x∈(1,+∞)时,y<0
在(0,+∞)上是函数在(0,+∞)上是函数
四、运用规律,解决问题
【例1】求下列函数的定义域
(1)y=log a x2;(2)y=log a(4-x);(3)y=log a(9-x2).
【例2】比较下列各组数中两个值的大小:
(1)log23.4,log28.5;(2)log0.31.8,log0.32.7;(3)log a5.1,log a5.9(a>0,且a≠1).
小结1:两个同底数的对数比较大小的一般步骤:
①
②
③
小结2:分类讨论的思想.
五、变式演练,深化提高
1.求下列函数的定义域:
(1)y=log3(1-x);(2)y=;
(3)y=log7;(4)y=.
2.函数y=log a(x+1)-2(a>0,且a≠1)的图象恒过定点.
3.已知函数y=log a(x+1)(a>0,a≠1)的定义域与值域都是[0,1],求a的值.
4.让学生每人各编一个关于对数函数的定义域的题和单调性的题.
六、反思小结,观点提炼
请同学们想一想,本节课我们学习了哪些知识?用到了什么思想方法?你还有其他什么收获吗?
1.
2.
3.
七、作业精选,巩固提高
1.课本P74习题
2.2A组第7,8,10题;
2.继续完成课堂上自编的尚未解决的求定义域和单调性的题目;
3.已知log m7<log n7<0,按大小顺序排列m,n,0,1;
4.已知0<a<1,b>1,ab>1.比较log a,log a b,log b的大小;
参考答案
一、设计问题,创设情境
10000=,100000=,…
二、自主探索,尝试解决
x=log2y y=log2x
三、信息交流,揭示规律
问题1:一般地,我们把函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).
问题2:根据对数式与指数式的关系,知y=log a x可化为a y=x,由指数的概念,要使a y=x有意义,必须规定a>0且a≠1.
问题3:因为y=log a x可化为x=a y,不管y取什么值,由指数函数的性质知,a y>0,所以x∈(0,+∞).
问题4:通过列表、描点、连线作y=log2x与y=lo x的图象:
问题5:y=log2x与y=lo x的图象关于x轴对称;
相同性质:两图象都位于y轴右方,都经过点(1,0),这说明两函数的定义域都是(0,+∞),且x=1时,y=0.
不同性质:y=log2x的图象是上升的曲线,y=lo x的图象是下降的曲线,这说明前者在(0,+∞)上是增函数,后者在(0,+∞)上是减函数.
问题6:分别取a=3,,4,,即在同一平面直角坐标系内作出对数函数
y=log3x,y=lo x,y=log4x,y=lo x的图象.
图象如右:
有类似于问题5中的结论.
问题7:函数y=log a x与y=lo x(a>0,且a≠1)的图象关于x轴对称.证明如下:
y=lo x=-log a x,又点(x,y)和点(x,-y)关于x轴对称,所以y=log a x与y=lo x的图象关于x 轴对称.
问题8:(0,+∞) R(1,0) 1 0 增减
四、运用规律,解决问题
【例1】(1){x|x≠0};(2){x|x<4};(3){x|-3<x<3}.
【例2】(1)log23.4<log28.5
(2)log0.31.8>log0.32.7
(3)a>1时,log a5.1<log a5.9;当0<a<1时,log a5.1>log a5.9.
小结1:①确定所要考查的对数函数;
②根据对数、底数判断对数函数的单调性;
③比较真数大小,然后利用对数函数的单调性判断两对数值的大小.
小结2:对数函数的单调性取决于对数的底数是大于1还是小于1.而已知条件并未指明,因此需要对底数a进行讨论,体现了分类讨论的思想,要求学生逐步掌握.
五、变式演练,深化提高
1.解:(1)由1-x>0,得x<1,故所求函数定义域为{x|x<1};
(2)由log2x≠0,得x≠1,又x>0,故所求函数定义域为{x|x>0,且x≠1};
(3)由得x<,故所求函数定义域为{x|x<};
(4)由则x≥1,故所求函数定义域为{x|x≥1}.
2.(0,-2)
3.2
4.略
六、反思小结,观点提炼
1.学习了对数函数的定义、图象与性质;
2.用到了类比的思想方法;同时,更近一步熟悉了研究函数的方法和步骤;
3.学习了用对数函数的图象与性质解对数典型题的基本方法.
七、作业精选,巩固提高
3.0<n<m<1
4.log a b<log b<log a。