可靠性数学基础
- 格式:ppt
- 大小:2.00 MB
- 文档页数:68
《机电产品可靠性设计》教案第一章:概述1.1 教学目标让学生了解机电产品可靠性设计的基本概念。
让学生掌握机电产品可靠性设计的重要性和应用领域。
1.2 教学内容机电产品的定义和特点可靠性基本概念可靠性数学基础可靠性设计的重要性可靠性设计在工程中的应用领域1.3 教学方法讲授案例分析1.4 教学评估课堂讨论课后作业第二章:可靠性数学基础2.1 教学目标让学生掌握可靠性数学基础,包括失效概率、可靠度、寿命分布等概念。
2.2 教学内容失效概率的定义和计算方法可靠度的定义和计算方法寿命分布的定义和特点可靠性指标的计算和分析2.3 教学方法讲授示例讲解2.4 教学评估课堂练习课后作业第三章:机电产品可靠性模型3.1 教学目标让学生了解机电产品可靠性模型的建立方法和应用。
3.2 教学内容可靠性模型的分类和特点建立可靠性模型的方法机电产品可靠性模型的应用可靠性模型的评价和优化3.3 教学方法讲授案例分析3.4 教学评估课堂讨论第四章:机电产品可靠性设计方法4.1 教学目标让学生掌握机电产品可靠性设计的方法和步骤。
4.2 教学内容可靠性设计的基本原则和方法可靠性设计的关键步骤和技巧可靠性设计在机电产品中的应用实例可靠性设计的评价和优化4.3 教学方法讲授案例分析4.4 教学评估课堂练习课后作业第五章:案例分析与实践5.1 教学目标让学生通过案例分析和实践,提高机电产品可靠性设计的实际应用能力。
5.2 教学内容实践项目:学生分组进行机电产品可靠性设计实践,提高实际应用能力。
5.3 教学方法案例分析5.4 教学评估案例分析报告实践项目报告第六章:环境因素对可靠性的影响6.1 教学目标让学生了解环境因素对机电产品可靠性的影响。
掌握环境适应性设计的方法和原则。
6.2 教学内容环境因素分类及其对可靠性的影响环境适应性设计原则环境试验方法环境适应性改进设计6.3 教学方法讲授实例分析6.4 教学评估课堂讨论课后作业第七章:可靠性增长与维护7.1 教学目标让学生掌握可靠性增长的概念和途径。
可靠性理论基础复习资料目录第一章绪论第二章可靠性特征量第三章简单不可修系统可靠性分析第四章复杂不可修系统可靠性分析第五章故障树分析法第六章三态系统可靠性分析第七章可靠性预计与分配第八章寿命试验及其数据分析第九章马尔可夫型可修系统的可靠性第一章:可靠性特征量2.1可靠度2.2失效特征量2.3可靠性寿命特征2.4失效率曲线2.5常用概率分布2.1可靠度一、系统的分类:可修系统与不可修系统;可修系统是指系统的组成单元发生故障后,经过维修能够使系统恢复到正常工作状态。
不可修系统是指系统或其组成单元一旦发生失效,不在修复,系统处于报废状态。
二、可靠性定义产品在规定条件下,规定时间内,完成规定功能的能力。
1. 产品:可以是一个小零件,也可以指一个大系统。
2. 规定条件:主要是指使用条件和环境条件。
3. 规定时间:包括产品的运行时间、飞机起落架的起飞着陆次数、循环次数或旋转次数等。
产品可靠性是非确定性的,并且具有概率性质和随机性质。
广义可靠性与狭义可靠性指可修复产品在使用中或者不发生故障(通过预防性维修),或者发生故障也易于维修,因而经常处于可用状态的能力。
广义可靠性=狭义可靠性+可维修性广义可靠性典型事例:赛车可靠性的分类:固有可靠性和使用可靠性固有可靠性:通过设计、制造、管理等所形成的可靠性(通常体现在产品的固有寿命上)使用可靠性:产品在使用条件影响下,保证固有可靠性的发挥与实现的功能。
(通常体现在产品的实际使用寿命上)使用条件:包括运输、保管、维修、操作和环境条件等。
例1:判断下面说法的正确性:所谓产品的失效,即产品丧失规定的功能。
对于可修复系统,失效也称为故障。
(V)例2:可靠度R(t)具备以下那些性质? ( BCD) A. R(t)为时间的递增函数B. o w R(t) < 1C. R(0)=1D. R()=0若受试验的样品数是N o个,到t时刻未失效的有Ns(t)个;失效的有N f(t)个。
一、可靠性概论1、1 可靠性工程的发展及其重要性1、可靠性工程起源与第二次世界大战(日本,齐藤善三郎)。
20世纪60年代就是可靠性全面发展的阶段,20世纪70年代就是可靠性发展步入成熟的阶段,20世界80年代就是可靠性工程向更深更广的方向发展。
2、1950年12月,美国成立了“电子设备可靠性专门委员会”,1952年8月,组成“电子设备可靠性咨询组(AGREE),1957年6月发表《军用电子设备可靠性》,标志着可靠性已经成为一门独立的学科,就是可靠性发展的重要里程碑。
3、可靠性工作的重要性与紧迫性:①武器装备的可靠性就是发挥作战效能的关键,民用产品的可靠性就是用户满意的关键②成为参与国际竞争的关键因素③就是影响企业盈利的关键④就是影响企业创建品牌的关键⑤就是实现由制造大国向制造强国转变的必由之路。
4、可靠性关键产品就是指一旦发生故障会严重影响安全性、可用性、任务成功及寿命周期费用的产品、价格昂贵的产品。
1、2 可靠性定义及分类1、产品可靠性指产品在规定的条件下与规定的时间内,完成规定功能的能力。
概率度量成为可靠度。
2、寿命剖面就是指产品从制造到寿命终结或退出使用这段时间内所经历的全部事件与环境的时序描述,包含一个或几个任务剖面。
任务剖面就是指产品在完成规定任务这段时间内所经历的事件与环境的时序描述。
3、产品可靠性可分为固有与使用可靠性,固有可靠性水平肯定比使用可靠性水平高。
产品可靠性也可分为基本可靠性与任务可靠性。
基本可靠性就是产品在规定条件下与规定时间内无故障工作的能力,它反映产品对维修资源的要求。
任务可靠性就是产品在规定的任务剖面内完成规定功能的能力。
同一产品的基本可靠性水平肯定比任务可靠性水平要低。
1、3 故障及其分类1、故障模式就是指故障的表现形式,如短路、开路、断裂等。
故障机理就是指引起故障的物理、化学或生物的过程。
故障原因就是指引起故障的设计、制造、使用与维修等有关的原因。
2、非关联故障就是指已经证实未按规定的条件使用而引起的故障,或已经证实仅属某项将不采用的设计所引起的故障,关联故障才能作为评价产品可靠性的故障数。
可靠性工程师考试主要科目概览可靠性工程师考试涉及的考试科目通常涵盖了可靠性工程领域的多个方面,以确保考生具备全面的可靠性工程知识和技能。
根据中国质量协会(简称中质协)举办的CRE考试认证的相关资料,考试科目可以大致归纳为以下几个主要方面:一、可靠性基础理论●可靠性概论:包括可靠性工程的重要性、发展概况、基本概念、故障及失效的基本概念、产品可靠性度量参数、可靠性要求确定、产品故障率浴盆曲线等。
●可靠性数学基础:涉及概率论基础知识、可靠性常用的离散型分布(如二项分布、泊松分布)和连续型分布(如正态分布、指数分布、对数正态分布、威布尔分布)、可靠性参数的点估计和区间估计等。
二、可靠性设计与分析●可靠性建模:熟悉可靠性建模方法,包括各种可靠性模型的构建和应用。
●可靠性预计与分配:掌握常用可靠性预计和分配方法,确保产品在设计阶段就具备预期的可靠性水平。
●失效模式与影响分析:包括潜在失效模式影响及危害性分析(FMEA)、失效树分析(FTA)等,用于识别产品设计和制造过程中的潜在失效模式及其影响。
●可靠性设计准则:熟悉各种可靠性设计准则,如降额设计、热设计、耐环境设计等,以提高产品的可靠性。
三、可靠性试验与评价●可靠性试验基本概念:了解不同类型的可靠性试验,包括环境应力筛选试验(ESS)、可靠性增长试验(TAAF)、寿命试验和加速寿命试验(ALT)等。
●可靠性鉴定与验收试验:掌握可靠性鉴定试验和验收试验的方法和流程,确保产品满足规定的可靠性要求。
四、软件可靠性与人-机可靠性●软件可靠性:包括软件可靠性的基本概念、失效原因、设计方法及验证等。
●人-机可靠性:涉及人-机可靠性基本概念、人为差错概念及人-机可靠性设计基本方法等。
五、数据收集、处理与应用●数据类型与收集:熟悉数据类型、来源及收集方法。
●数据处理与评估:掌握数据的处理与评估技术,以支持可靠性分析和决策。
●数据管理及应用:了解数据管理的基本原则和应用场景。
一、可靠性概论1.1 可靠性工程的发展及其重要性1、可靠性工程起源与第二次世界大战(日本,齐藤善三郎)。
20世纪60年代是可靠性全面发展的阶段,20世纪70年代是可靠性发展步入成熟的阶段,20世界80年代是可靠性工程向更深更广的方向发展。
2、1950年12月,美国成立了“电子设备可靠性专门委员会”,1952年8月,组成“电子设备可靠性咨询组(AGREE),1957年6月发表《军用电子设备可靠性》,标志着可靠性已经成为一门独立的学科,是可靠性发展的重要里程碑。
3、可靠性工作的重要性和紧迫性:①武器装备的可靠性是发挥作战效能的关键,民用产品的可靠性是用户满意的关键②成为参与国际竞争的关键因素③是影响企业盈利的关键④是影响企业创建品牌的关键⑤是实现由制造大国向制造强国转变的必由之路。
4、可靠性关键产品是指一旦发生故障会严重影响安全性、可用性、任务成功及寿命周期费用的产品、价格昂贵的产品。
1.2 可靠性定义及分类1、产品可靠性指产品在规定的条件下和规定的时间内,完成规定功能的能力。
概率度量成为可靠度。
2、寿命剖面是指产品从制造到寿命终结或退出使用这段时间内所经历的全部事件和环境的时序描述,包含一个或几个任务剖面。
任务剖面是指产品在完成规定任务这段时间内所经历的事件和环境的时序描述。
3、产品可靠性可分为固有和使用可靠性,固有可靠性水平肯定比使用可靠性水平高。
产品可靠性也可分为基本可靠性和任务可靠性。
基本可靠性是产品在规定条件下和规定时间内无故障工作的能力,它反映产品对维修资源的要求。
任务可靠性是产品在规定的任务剖面内完成规定功能的能力。
同一产品的基本可靠性水平肯定比任务可靠性水平要低。
1.3 故障及其分类1、故障模式是指故障的表现形式,如短路、开路、断裂等。
故障机理是指引起故障的物理、化学或生物的过程。
故障原因是指引起故障的设计、制造、使用和维修等有关的原因。
2、非关联故障是指已经证实未按规定的条件使用而引起的故障,或已经证实仅属某项将不采用的设计所引起的故障,关联故障才能作为评价产品可靠性的故障数。
可靠性数学理论运用概率统计和运筹学的理论和方法对产品(单元或系统)的可靠性作定量研究。
它是可靠性理论的基础之一。
可靠性是指产品在一定条件下完成其预定功能的能力,丧失功能称为失效。
可靠性理论是以产品的寿命特征为研究对象的。
目录1简介2可靠性的数量指标3寿命数据统计分析4寿命分布及分布类5结构函数1简介运用概率统计和运筹学的理论和方法,对单元或系统的可靠性作定量研究。
它是可靠性理论的基础之一。
所谓可靠性,是指单元或由单元组成的系统在一定条件下完成其预定功能的能力。
单元是元件、器件、部件、设备等的泛称。
单元或系统的功能丧失,无论其能否修复,都称之为失效。
可靠性理论即以失效现象为其研究对象,因而涉及工程设计、失效机理的物理和化学分析、失效数据的收集和处理、可靠性的定量评定以及使用、维修和管理等范围。
可靠性问题的提出,是由于大工业生产及第二次世界大战中研制和使用复杂的军事装备的需要。
虽然单元的可靠性不断有很大的提高,但是由于大型系统的结构越来越复杂,要求其完成的功能也越来越广泛,因此定量评定和改善系统可靠性已成为一个重要课题。
通过数学模型定量研究系统的可靠性,并探讨它与系统性能、经济效益之间的关系,是可靠性数学理论的主要方法之一。
2可靠性的数量指标假定系统只有正常和失效两种状态。
系统在失效前的一段正常工作时间称为寿命。
由于失效是随机现象,因此,寿命可用非负随机变量X及其分布函数F(t)=P{X≤t}(见概率分布)来描述。
对失效后不加修复的单元,其可靠性用可靠度来刻画。
单元在时刻t的可靠度R(t)定义为:在一定的工作条件下在规定的时间【0,t】中完成其预定功能的概率。
因此,若单元的寿命为X,相应的寿命(或失效)分布函数为F(t),则R(t)=P{x>t}=1-F(t),其中t≥0。
根据上式的概率含义,可靠度R(t)又称为生存函数。
一个生存到时刻t的单元,称之为有年龄t。
在其后长度为x的区间中失效的条件概率为1若2存在,则r(t)称为时刻t的(条件)失效率。
第一章 可靠性基础知识●可靠性的概念。
●可靠性参数体系、常用可靠性参数及可靠性常用分布。
当你准备购买一件电子产品时,你关注的是它的哪些方面?其中最关注的是什么?我们除关注产品的功能和性能外,在谈论某品牌的产品“好”的时候,所隐含的意思就是该品牌产品的质量与可靠性高。
质量与可靠性是我们最为关注的产品质量特性。
随着新材料、新技术的发展与应用使得产品性能得到迅速提高,但随着产品性能的提高,其复杂程度也增加,故障频繁。
出厂检验合格的产品,在使用寿命期内保持其产品质量指标的数值而不致失效,这就是可靠性问题。
本章将在介绍可靠性的基本概念、可靠性术语、可靠性参数体系及常用可靠性参数、可靠性常用分布等知识的基础上,讲解造成产品故障的主要原因,以及可靠性的重要意义。
第一节 可靠性基本概念1.可靠性的概念可靠性的概念,可以说,自从人类开始使用工具起就已经存在。
然而可靠性理论作为一门独立的学科出现却是近几十年的事情。
可靠性归根结底研究的还是产品的可靠性,而通常所说的“可靠性”指的是“可信赖的”或“可信任的”。
一台仪器设备,当人们要求它工作时,它就能工作,则说它是可靠的;而当人们要求它工作时,它有时工作,有时不工作,则称它是不可靠的。
最早的可靠性定义由美国AGREE在1957年的报告中提出,1966年美国又较正规地给出了传统的或经典的可靠性定义:“产品在规定的条件下和规定的时间内完成规定功能的能力”。
它为世界各国的标准所引用,我国的可靠性定义也与此相同。
这里的产品是泛指的,它可以是一个复杂的系统,也可以是一个零件。
出厂检验合格的产品,在使用寿命期内保持其产品质量指标的数值而不致失效,这就是可靠性问题。
因此,可靠性也是产品的一个质量指标,而且是与时间有关的参量。
只有在引进了可靠性指标后,才能和其他质量指标一起,对产品质量做全面的评定。
所谓产品是指作为单独研究和分别试验对象的任何元件、设备或系统,可以是零件也可以是由它们装配而成的机器,或由许多机器组成的机组和成套设备,甚至还把人的作用也包括在内。
()22σ2μx 21)(--σπ=e xf 第一章 绪论1.3可靠性定义及特征量1、可靠性:产品在规定的条件下和规定的时间内,完成规定功能的能力。
对象:指某个不可拆卸的独立体(如弹簧、齿轮),也可指某一部件或机器(如发动机或减速器),还可指某个系统(如某条生产线、某个车间等),甚至包括人的判断与人的操作因素在内。
2、失效概率:产品在规定的条件下和规定的时间内未完成规定功能的概率,记为F (t)。
F(t)=1-R(t)3、失效率:失效率是工作到某时刻t 尚未失效的产品,在该时刻后单位时间内发生失效的概率。
一般记为λ,它也是时间t 的函数,故也记为λ(t),称为失效率函数,有时也称为故障率函数或风险函数。
假设有N 个产品,从t=0开始工作,到时刻t 时产品的失效数为n(t),而到时刻(t+Δt)时产品的失效数为n(t+ Δt),即在[t ,t+ Δt]时间内有Δn(t)=n(t+ Δt)-n(t)个产品失效,则在该区间内产品平均失效率为式中, 为开始时投入试验产品的总数;为到时刻产品的失效数;为到时刻产品的失效数;为时间间隔。
失效率反映了t 时刻产品失效的速率,也称为瞬时失效率。
失效率愈低,则可靠性愈高。
平均失效率:在某一定时间内失效率的平均值。
例如,在(t1,t2)时间内失效率平均值为: 练习1、若有1001小时,发现有1件失效,求此时失效率。
2、若实验到50小时时共有10件失效。
再观测1小时,也发现有1件失效,求此时失效率。
第二章可靠性数学基础4平均寿命MTTF :Mean Time to Failure ,无故障工作时间或首次故障平均时间,指开始工作到发生故障的平均时间。
MTBF :Mean Time between Failure ,故障间隔平均时间或平均无故障时间,指寿命期内累计工作时间与故障次数之比。
MTTF 和MTBF 都称为平均寿命 2.3.3 重要的连续性随机变量及其分布 3、正态分布(高斯分布) 概率密度函数:N )(t n t )(t t n ∆+t t ∆+t ∆dt t t t t t t ⎰-=2112)(1)(λλ),(~2σμN x ()累积分布函数:记为:或,是一种二参数分布。
可靠性工程师培训关键技能与知识的全面掌握一、教学内容本节课的主题是可靠性工程师培训关键技能与知识的全面掌握。
我们将使用《可靠性工程》教材,重点讲解第二章至第四章的内容。
这包括可靠性基本概念、可靠性数学基础、可靠性模型和可靠性分析方法。
二、教学目标1. 学生能够理解可靠性基本概念,掌握可靠性数学基础。
2. 学生能够建立可靠性模型,进行可靠性分析。
3. 学生能够运用所学知识解决实际问题,提高产品的可靠性。
三、教学难点与重点重点:可靠性基本概念、可靠性数学基础、可靠性模型和可靠性分析方法。
难点:可靠性数学基础中的概率论知识,可靠性模型的建立和分析方法的运用。
四、教具与学具准备教具:PPT、黑板、粉笔。
学具:教材、笔记本、计算器。
五、教学过程1. 引入:通过讲解一个实际产品的故障案例,引出可靠性工程师的重要性和本节课的主题。
2. 讲解可靠性基本概念:介绍可靠性的定义、度量指标和提高产品可靠性的方法。
3. 讲解可靠性数学基础:包括概率论的基本概念和常用概率分布,以及如何应用这些知识进行可靠性分析。
4. 讲解可靠性模型:介绍常用的可靠性模型,如指数模型、威布尔模型等,并讲解如何建立和应用这些模型。
5. 讲解可靠性分析方法:包括故障树分析、马尔可夫分析等,并讲解如何运用这些方法解决实际问题。
6. 练习:让学生通过例题和随堂练习,巩固所学知识,提高解决问题的能力。
六、板书设计板书内容主要包括可靠性基本概念、可靠性数学基础、可靠性模型和可靠性分析方法的结构图和关键步骤。
七、作业设计1. 作业题目:(1)根据给定的产品故障数据,计算可靠性指标。
(2)根据产品故障案例,建立可靠性模型,并分析其可靠性。
(3)运用故障树分析方法,分析一个复杂系统的可靠性。
2. 答案:(1)可靠性指标的计算结果。
(2)建立的可靠性模型和分析结果。
(3)故障树分析的结果。
八、课后反思及拓展延伸重点和难点解析一、教学内容本节课的主题是可靠性工程师培训关键技能与知识的全面掌握。