当前位置:文档之家› 八年级数学【几何模型三角形轴对称】试卷专题练习(解析版)

八年级数学【几何模型三角形轴对称】试卷专题练习(解析版)

八年级数学【几何模型三角形轴对称】试卷专题练习(解析版)
八年级数学【几何模型三角形轴对称】试卷专题练习(解析版)

八年级数学【几何模型三角形轴对称】试卷专题练习(解析版)

一、八年级数学轴对称解答题压轴题(难)

1.如图,在平面直角坐标系中,已知点A(2,3),点B(﹣2,1).

(1)请运用所学数学知识构造图形求出AB的长;

(2)若Rt△ABC中,点C在坐标轴上,请在备用图1中画出图形,找出所有的点C后不用计算写出你能写出的点C的坐标;

(3)在x轴上是否存在点P,使PA=PB且PA+PB最小?若存在,就求出点P的坐标;若不存在,请简要说明理由(在备用图2中画出示意图).

【答案】(1)AB=52)C2(0,7),C4(0,-4),C5(-1,0)、C6(1,0);(3)不存在这样的点P.

【解析】

【分析】

(1)如图,连结AB,作B关于y轴的对称点D,利用勾股定理即可得出AB;

(2)分别以A,B,C为直角顶点作图,然后直接得出符合条件的点的坐标即可;

(3)作AB的垂直平分线l3,则l3上的点满足PA=PB,作B关于x轴的对称点B′,连结AB′,即x轴上使得PA+PB最小的点,观察作图即可得出答案.

【详解】

解:(1)如图,连结AB,作B关于y轴的对称点D,

由已知可得,BD=4,AD=2.∴在Rt△ABD中,AB=5

(2)如图,①以A为直角顶点,过A作l1⊥AB交x轴于C1,交y轴于C2.

②以B为直角顶点,过B作l2⊥AB交x轴于C3,交y轴于C4.

③以C为直角顶点,以AB为直径作圆交坐标轴于C5、C6、C7.(用三角板画找出也可)由图可知,C2(0,7),C4(0,-4),C5(-1,0)、C6(1,0).

(3)不存在这样的点P.

作AB的垂直平分线l3,则l3上的点满足PA=PB,

作B关于x轴的对称点B′,连结AB′,

由图可以看出两线交于第一象限.

∴不存在这样的点P.

【点睛】

本题考查了勾股定理,构造直角三角形,中垂线和轴对称--路径最短问题的综合作图分析,解题的关键是学会分类讨论,学会画好图形解决问题.

2.教材呈现:如图是华师版八年级上册数学教材第94页的部分内容.2.线段垂直平分线.我们已经知道线段是轴对称图形,线段的垂直平分线是线段的对称轴,如图,直线MN是线段AB的垂直平分线,P是MN上任一点,连结PA、PB,将线段AB沿直线MN对称,我们发现PA与PB完全重合,由此即有:线段垂直平分线的性质定理线段垂直平分线上的点到线段的距离相等.已知:如图,MN⊥AB,垂足为点C,AC=BC,点P是直线MN上的任意一点.求证:PA=PB.分析:图中有两个直角三角形APC和BPC,只要证明这两个三角形全等,便可证明PA=PB.

定理证明:请根据教材中的分析,结合图①,写出“线段垂直平分线的性质定理”完整的证明过程.

定理应用:

(1)如图②,在△ABC中,直线m、n分别是边BC、AC的垂直平分线,直线m、n的交点为O.过点O作OH⊥AB于点H.求证:AH=BH.

(2)如图③,在△ABC中,AB=BC,边AB的垂直平分线l交AC于点D,边BC的垂直平分线k交AC于点E.若∠ABC=120°,AC=15,则DE的长为.

【答案】(1)见解析;(2)5

【解析】

【分析】

定理证明:先证明△PAC≌△PBC,然后再运用三角形全等的性质进行解答即可;

(1)连结AO、BO、CO利用线段的垂直平分线的判定和性质即可解答;

(2)连接BD,BE,证明△BDE是等边三角形即可解答.

【详解】

解:定理证明:

∵MN⊥AB,

∴∠PCA=∠PCB=90°.

又∵AC=BC,PC=PC,

∴△PAC≌△PBC(SAS),

∴PA=PB.

定理应用:(1)如图2,连结OA、OB、OC.

∵直线m是边BC的垂直平分线,

∴OB=OC,

∵直线n是边AC的垂直平分线,

∴OA =OC , ∴OA =OB ∵OH ⊥AB , ∴AH =BH ;

(2)如图③中,连接BD ,BE .

∵BA =BC ,∠ABC =120°, ∴∠A =∠C =30°,

∵边AB 的垂直平分线交AC 于点D ,边BC 的垂直平分线交AC 于点E , ∴DA =DB ,EB =EC ,

∴∠A =∠DBA =30°,∠C =∠EBC =30°,

∴∠BDE =∠A +∠DBA =60°,∠BED =∠C +∠EBC =60°, ∴△BDE 是等边三角形, ∴AD =BD =DE =BE =EC , ∵AC =15=AD +DE +EC =3DE , ∴DE =5, 故答案为:5. 【点睛】

本题考查了线段的垂直平分线的性质、全等三角形的判定和性质、等边三角形的判定和性质等知识,掌握并灵活运用数学基本知识是解答本题的关键.

3.如图,在ABC △中,已知AD 是BC 边上的中线,E 是AD 上一点,且BE AC =,延长BE 交AC 于点F ,求证:AF EF =.

【答案】证明见解析 【解析】 【分析】

延长AD 到点G ,使得AD DG =,连接BG ,结合D 是BC 的中点,易证△ADC 和△GDB 全等,利用全等三角形性质以及等量代换,得到△AEF 中的两个角相等,再根据等角对等边证得AE=EF.

【详解】

如图,延长AD到点G,延长AD到点G,使得AD DG

=,连接BG.

∵AD是BC边上的中线,

∴DC DB

=.

在ADC和GDB

△中,

AD DG

ADC GDB

DC DB

=

?

?

∠=∠

?

?=

?

(对顶角相等),

∴ADC≌GDB

△(SAS).

∴CAD G

∠=∠,BG AC

=.

又BE AC

=,

∴BE BG

=.

∴BED G

∠=∠.

∵BED AEF

∠=∠

∴AEF CAD

∠=∠,即AEF FAE

∠=∠

∴AF EF

=.

【点睛】

本题考查的是全等三角形的判定与性质,根据题意构造全等三角形是解答本题的关键. 4.已知:在平面直角坐标系中,A为x轴负半轴上的点,B为y轴负半轴上的点. (1)如图1,以A点为顶点、AB为腰在第三象限作等腰Rt ABC

?,若2

OA=,4

OB=,试求C点的坐标;

(2)如图2,若点A的坐标为()

23,0

-,点B的坐标为()

0,m

-,点D的纵坐标为n,以B为顶点,BA为腰作等腰Rt ABD

?.试问:当B点沿y轴负半轴向下运动且其他条件都不变时,整式2253

m n

+-

化,请说明理由;

(3)如图3,E为x轴负半轴上的一点,且OB OE

=,OF EB

⊥于点F,以OB为边作等

边OBM ?,连接EM 交OF 于点N ,试探索:在线段EF 、EN 和MN 中,哪条线段等于EM 与ON 的差的一半?请你写出这个等量关系,并加以证明.

【答案】(1) C(-6,-2);(2)不发生变化,值为3-;(3)EN=1

2

(EM-ON),证明见详解. 【解析】 【分析】

(1)作CQ ⊥OA 于点Q,可以证明AQC BOA ?,由QC=AD,AQ=BO,再由条件就可以求出点C 的坐标;

(2)作DP ⊥OB 于点P ,可以证明AOB BPD ?,则有BP=OB-PO=m-(-n)=m+n 为定值,从而可以求出结论2253m n +-的值不变为3-. (3)作BH ⊥EB 于点B ,由条件可以得出

∠1=30°,∠2=∠3=∠EMO=15°,∠EOF=∠BMG=45°,EO=BM,可以证明ENO BGM ?,则GM=ON,就有EM-ON=EM-GM=EG ,最后由平行线分线段成比例定理就可得出EN=1

2

(EM-ON). 【详解】

(1)如图(1)作CQ ⊥OA 于Q,

∴∠AQC=90°

, ∵ABC △为等腰直角三角形, ∴AC=AB,∠CAB=90°, ∴∠QAC+∠OAB=90°,

∵∠QAC+∠ACQ=90°, ∴∠ACQ=∠BAO,

又∵AC=AB,∠AQC=∠AOB, ∴AQC BOA ?(AAS), ∴CQ=AO,AQ=BO, ∵OA=2,OB=4, ∴CQ=2,AQ=4, ∴OQ=6, ∴C(-6,-2).

(2)如图(2)作DP ⊥OB 于点P ,

∴∠BP D=90°,

∵ABD △是等腰直角三角形, ∴AB=BD,∠ABD=∠ABO+∠OBD=90°, ∵∠OBD+∠BDP=90°, ∴∠ABO=∠BDP ,

又∵AB=BD,∠AOB=∠BPD=90°, ∴AOB BPD ? ∴AO=BP ,

∵BP=OB -PO=m-(-n)=m+n, ∵A ()

23,0-, ∴OA=3 ∴m+n=23

∴当点B 沿y 轴负半轴向下运动时,AO=BP=m+n=23 ∴整式2253m n +-3- (3)()1

2

EN EM ON =

- 证明:如图(3)所示,在ME 上取一点G 使得MG=ON,连接BG 并延长,交x 轴于H.

∵OBM为等边三角形,

∴BO=BM=MO,∠OBM=∠OMB=∠BOM=60°,∴EO=MO,∠EBM=105°,∠1=30°,

∵OE=OB,

∴OE=OM=BM,

∴∠3=∠EMO=15°,

∴∠BEM=30°,∠BME=45°,

∵OF⊥EB,

∴∠EOF=∠BME,

∴ENO BGM

,

∴BG=EN,

∵ON=MG,

∴∠2=∠3,

∴∠2=15°,

∴∠EBG=90°,

∴BG=1

2 EG,

∴EN=1

2 EG,

∵EG=EM-GM,

∴EN=1

2

(EM-GM),

∴EN=1

2

(EM-ON).

【点睛】

本题考查了等腰直角三角形的性质,等边三角形的性质,等腰三角形的性质,三角形的外角与内角的关系,全等三角形的判定与性质,平行线分线段成比例定理的运用.

5.(1)已知△ABC中,∠A=90°,∠B=67.5°,请画一条直线,把这个三角形分割成两个等腰三角形.(请你选用下面给出的备用图,把所有不同的分割方法都画出来.只需画图,不必说明理由,但要在图中标出相等两角的度数)

(2)已知△ABC中,∠C是其最小的内角,过顶点B的一条直线把这个三角形分割成了两个等腰三角形,请探求∠ABC与∠C之间的关系.

【答案】(1)图形见解析(2) ∠ABC与∠C之间的关系是∠ABC=135°-3

4

∠C或∠ABC=3∠C

或∠ABC=180°-3∠C或∠ABC=90°,∠C是小于45°的任意锐角.

【解析】

试题分析:(1)已知角度,要分割成两个等腰三角形,可以运用直角三角形、等腰三角形性质结合三角形内角和定理,先计算出可能的角度,或者先从草图中确认可能的情况,及角度,然后画上.

(2)在(1)的基础上,由“特殊”到“一般”,需要把直角三角形分成两个等腰三角形的各种情形列方程,可得出角与角之间的关系.

试题解析:(1)如图①②(共有2种不同的分割法).

(2)设∠ABC=y,∠C=x,过点B的直线交边AC于点D.

在△DBC中,

①若∠C是顶角,如图,则∠CBD=∠CDB=90°-1

2

x,∠A=180°-x-y.

故∠ADB=180°-∠CDB=90°+1

2

x>90°,此时只能有∠A=∠ABD,

即180°-x-y=y-

1

90

2

x

??

-

???

∴3x+4y=540°,∴∠ABC=135°-3

4

∠C.

②若∠C是底角,

第一种情况:如图,当DB=DC时,∠DB C=x.在△ABD中,∠ADB=2x,∠ABD=y-x.

若AB=AD,则2x=y-x,此时有y=3x,

∴∠ABC=3∠C.

若AB=BD,则180°-x-y=2x,此时有3x+y=180°,∴∠ABC=180°-3∠C.

若AD=BD,则180°-x-y=y-x,此时有y=90°,即∠ABC=90°,∠C为小于45°的任意锐角.

第二种情况:如图,

当BD=BC时,∠BDC=x,∠ADB=180°-x>90°,此时只能有AD=

BD,∴∠A=∠ABD=1

2

∠BDC=1

2

∠C<∠C,这与题设∠C是最小角矛盾.

∴当∠C是底角时,BD=BC不成立.

综上所述,∠ABC与∠C之间的关系是∠ABC=135°-3

4

∠C或∠ABC=3∠C或∠ABC=

180°-3∠C或∠ABC=90°,∠C是小于45°的任意锐角.

点睛:本题考查了等腰三角形的性质;第(1)问是计算与作图相结合的探索.本问对学生运用作图工具的能力,以及运用直角三角形、等腰三角形性质等基础知识解决问题的能力都有较高的要求.第(2)问在第(1)问的基础上,由“特殊”到“一般”,“分类讨

论”把直角三角形分成两个等腰三角形的各种情形并结合“方程思想”探究角与角之间的关系.本题不仅趣味性强,创造性强,而且渗透了由“特殊”到“一般”、“分类讨论”、“方程思想”、“转化思想”等数学思想,是一道不可多得的好题.

6.(1)如图①,D是等边△ABC的边BA上一动点(点D与点B不重合),连接DC,以DC为边,在BC上方作等边△DCF,连接AF,你能发现AF与BD之间的数量关系吗?并证明你发现的结论;

(2)如图②,当动点D运动至等边△ABC边BA的延长线时,其他作法与(1)相同,猜想AF与BD在(1)中的结论是否仍然成立?若成立,请证明;

(3)Ⅰ.如图③,当动点D在等边△ABC边BA上运动时(点D与B不重合),连接DC,以DC为边在BC上方和下方分别作等边△DCF和等边△DCF′,连接AF,BF′,探究AF,BF′与AB有何数量关系?并证明你的探究的结论;

Ⅱ.如图④,当动点D在等边△ABC的边BA的延长线上运动时,其他作法与图③相同,Ⅰ中的结论是否成立?若不成立,是否有新的结论?并证明你得出的结论.

【答案】(1)AF=BD,理由见解析;(2)AF与BD在(1)中的结论成立,理由见解析;(3)Ⅰ. AF+BF′=AB,理由见解析,Ⅱ.Ⅰ中的结论不成立,新的结论是AF=AB+BF′,理由见解析.

【解析】

【分析】

(1)由等边三角形的性质得BC=AC,∠BCA=60°,DC=CF,∠DCF=60°,从而得

∠BCD=∠ACF,根据SAS证明△BCD≌△ACF,进而即可得到结论;

(2)根据SAS证明△BCD≌△ACF,进而即可得到结论;

(3)Ⅰ.易证△BCD≌△ACF(SAS),△BCF′≌△ACD(SAS),进而即可得到结论;Ⅱ.证明△BCF′≌△ACD,结合AF=BD,即可得到结论.

【详解】

(1)结论:AF=BD,理由如下:

如图1中,∵△ABC是等边三角形,

∴BC=AC,∠BCA=60°,

同理知,DC=CF,∠DCF=60°,

∴∠BCA-∠DCA=∠DCF-∠DCA,即:∠BCD=∠ACF,

在△BCD和△ACF中,

∵BC AC BCD ACF DC FC =∠=∠=??

???

, ∴△BCD ≌△ACF (SAS ), ∴BD =AF ;

(2)AF 与BD 在(1)中的结论成立,理由如下: 如图2中,∵△ABC 是等边三角形, ∴BC =AC ,∠BCA =60°, 同理知,DC =CF ,∠DCF =60°,

∴∠BCA +∠DCA =∠DCF +∠DCA ,即∠BCD =∠ACF , 在△BCD 和△ACF 中,

∵BC AC BCD ACF DC FC =∠=∠=??

???

, ∴△BCD ≌△ACF (SAS ), ∴BD =AF ;

(3)Ⅰ.AF +BF ′=AB ,理由如下:

由(1)知,△BCD ≌△ACF (SAS ),则BD =AF ; 同理:△BCF ′≌△ACD (SAS ),则BF ′=AD , ∴AF +BF ′=BD +AD =AB ;

Ⅱ.Ⅰ中的结论不成立,新的结论是AF =AB +BF ′,理由如下: 同理可得:BCF ACD ∠=∠′,F C DC =′, 在△BCF ′和△ACD 中,

BC AC BCF ACD F C DC =∠??=∠=?

??

′, ∴△BCF ′≌△ACD (SAS ), ∴BF ′=AD , 又由(2)知,AF =BD ,

∴AF =BD =AB +AD =AB +BF ′,即AF =AB +BF ′. 【点睛】

本题主要考查等边三角形的性质定理,三角形全等的判定和性质定理,熟练掌握三角形全等的判定和性质定理,是解题的关键.

7.已知如图1,在ABC ?中,AC BC =,90ACB ∠=,点D 是AB 的中点,点E 是

AB 边上一点,直线BF 垂直于直线CE 于点F ,交CD 于点G . (1)求证:AE CG =.

(2)如图2,直线AH 垂直于直线CE ,垂足为点H ,交CD 的延长线于点M ,求证:

BE CM

=.

【答案】(1)证明见解析;(2)证明见解析.

【解析】

【分析】

(1)首先根据点D是AB中点,∠ACB=90°,可得出∠ACD=∠BCD=45°,判断出

△AEC≌△CGB,即可得出AE=CG;

(2)根据垂直的定义得出∠CMA+∠MCH=90°,∠BEC+∠MCH=90°,再根据AC=BC,∠ACM=∠CBE=45°,得出△BCE≌△CAM,进而证明出BE=CM.

【详解】

(1)∵点D是AB中点,AC=BC,∠ACB=90°,∴CD⊥AB,∠ACD=∠BCD=45°,

∴∠CAD=∠CBD=45°,∴∠CAE=∠BCG.

又∵BF⊥CE,∴∠CBG+∠BCF=90°.

又∵∠ACE+∠BCF=90°,∴∠ACE=∠CBG.

在△AEC和△CGB中,∵

CAE BCG

AC BC

ACE CBG

∠=∠

?

?

=

?

?∠=∠

?

,∴△AEC≌△CGB(ASA),∴AE=CG;

(2)∵CH⊥HM,CD⊥ED,∴∠CMA+∠MCH=90°,∠BEC+∠MCH=90°,

∴∠CMA=∠BEC.

在△BCE和△CAM中,

BEC CMA

ACM CBE

BC AC

∠=∠

?

?

∠=∠

?

?=

?

,∴△BCE≌△CAM(AAS),∴BE=CM.

【点睛】

本题考查了全等三角形的判定与性质,等腰直角三角形的性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.

8.如图,在等边三角形ABC的外侧作直线AP,点C关于直线AP的对称点为点D,连接AD,BD,其中BD交直线AP于点E.

(1)依题意补全图形;

(2)若∠PAC =20°,求∠AEB 的度数;

(3)连结CE ,写出AE ,BE ,CE 之间的数量关系,并证明你的结论.

【答案】(1)补图见解析;(2)60°;(3)CE +AE =BE . 【解析】 【分析】

(1)根据题意补全图形即可;

(2)根据轴对称的性质可得AC =AD ,∠PAC =∠PAD=20°,根据等边三角形的性质可得AC =AB ,∠BAC =60°,即可得AB =AD ,在△ABD 中,根据等腰三角形的性质和三角形的内角和定理求得∠D 的度数,再由三角形外角的性质即可求得∠AEB 的度数; (3)CE +AE =BE ,如图,在BE 上取点M 使ME =AE ,连接AM ,设∠EAC =∠DAE =x ,类比(2)的方法求得∠AEB =60°,从而得到△AME 为等边三角形,根据等边三角形的性质和SAS 即可判定△AEC ≌△AMB ,根据全等三角形的性质可得CE =BM ,由此即可证得CE +AE =BE . 【详解】 (1)如图:

(2)在等边△ABC 中, AC =AB ,∠BAC =60°

由对称可知:AC =AD ,∠PAC =∠PAD , ∴AB =AD ∴∠ABD =∠D ∵∠PAC =20° ∴∠PAD =20°

∴∠BAD =∠BAC+∠PAC +∠PAD =100°

()

1

180402

D BAD ??∴∠=

-∠=. ∴∠AEB =∠D +∠PAD =60°

(3)CE+AE=BE.

在BE上取点M使ME=AE,连接AM,

在等边△ABC中,

AC=AB,∠BAC=60°

由对称可知:AC=AD,∠EAC=∠EAD,

设∠EAC=∠DAE=x.

∵AD=AC=AB,

∴()

1

180260

2

D BAC x x

??

∠=-∠-=-

∴∠AEB=60-x+x=60°.

∴△AME为等边三角形.

∴AM=AE,∠MAE=60°,

∴∠BAC=∠MAE=60°,

即可得∠BAM=∠CAE.

在△AMB和△AEC中,

AB AC

BAM CAE

AM AE

=

?

?

∠=∠

?

?=

?

∴△AMB≌△AEC.

∴CE=BM.

∴CE+AE=BE.

【点睛】

本题是三角形综合题,主要考查了轴对称的性质、三角形的内角和定理、等边三角形的性质及全等三角形的判定与性质等知识点,解决第三问时,通过做辅助线,把AE转化到BE 上,再证明CE=BM即可得结论.

9.八年级的小明同学通到这样一道数学题目:△ABC为边长为4的等边三角形,E是边AB 边上任意一动点,点D在CB的延长线上,且满足AE=BD.

(1)如图①,当点E 为AB 的中点时,DE = ;

(2)如图②,点E 在运动过程中,DE 与EC 满足什么数量关系?请说明理由; (3)如图③,F 是AC 的中点,连接EF .在AB 边上是否存在点E ,使得DE +EF 值最小?若存在,求出这个最小值;若不存在,请说明理由.(直角三角形中,30°所对的边是斜边的一半)

【答案】(1)23;(2)DE =CE ,理由见解析;(3)这个最小值为27; 【解析】 【分析】

(1)如图①,过点E 作EH ⊥BC 于H ,由等边三角形的性质可得BE =DB =AE =2,由直角三角形的性质可求BH =1,EH 3=,由勾股定理可求解;

(2)如图②,过E 作EF ∥BC 交AC 于F ,可证△AEF 是等边三角形,AE =EF =AF =BD ,由“SAS ”可证△DBE ≌△EFC ,可得DE =CE ;

(3)如图③,将△ABC 沿AB 翻折得到△ABC ',连接C 'F 交AB 于点E ',连接CE ',DE ',过点F 作FH ⊥AC '于点H ,由“SAS ”可证△ACE '≌△AC 'E ',可得C 'E '=CE ',可得当点C ',点E ',点F 三点共线时,DE +EF 的值最小,由勾股定理可求最小值. 【详解】

(1)如图①,过点E 作EH ⊥BC 于H ,

∵△ABC 为边长为4的等边三角形,点E 是AB 的中点, ∴AE =BE =2=DB ,∠ABC =60°,且EH ⊥BC , ∴∠BEH =30°,

∴BH =1,EH 3=3= ∴DH =DB +BH =2+1=3, ∴DE 2293DH EH =

+=+=23

故答案为:3 (2)DE =CE.理由如下: 如图②,过E 作EF ∥BC 交AC 于F .

∵△ABC 是等边三角形,

∴∠ABC =∠ACB =∠A =60°,AB =AC =BC. ∵EF ∥BC ,

∴∠AEF =∠ABC =60°,∠AFE =∠ACB =60°, ∴∠AEF =∠AFE =∠A =60°, ∴△AEF 是等边三角形, ∴AE =EF =AF , ∴AB ﹣AE =AC ﹣AF , ∴BE =CF.

∵∠ABC =∠ACB =∠AFE =60°,

∴∠DBE =∠EFC =120°,且AE =EF =DB ,BE =CF , ∴△DBE ≌△EFC (SAS), ∴DE =CE ,

(3)如图③,将△ABC 沿AB 翻折得到△ABC ',连接C 'F 交AB 于点E ',连接CE ',DE ',过点F 作FH ⊥AC '于点H.

∵将△ABC 沿AB 翻折得到△ABC ',

∴AC =AC '=BC =BC '=4,∠BAC =∠BAC '=60°,且AE '=AE ', ∴△ACE '≌△AC 'E '(SAS), ∴C 'E '=CE ',

由(2)可知:DE '=CE ', ∴C 'E '=CE '=DE '.

∵DE +EF =C 'E +EF =C 'E '+EF ,

∴当点C ',点E ',点F 三点共线时,DE +EF 的值最小. ∵F 是AC 的中点,

∴AF =CF =2,且HF ⊥AC ',∠FAH =180°﹣∠CAB ﹣∠C 'AB =60°, ∴AH =1,HF 3=3= ∴C 'H =4+1=5,

∴C'F22

=+=+=27,

C H HF

'253

∴DE+EF的最小值为27.

【点睛】

本题是三角形综合题,考查了等边三角形的判定和性质,直角三角形的性质,全等三角形的判定和性质,折叠的性质,添加恰当辅助线是解答本题的关键.

10.(1)操作:如图,在已知内角度数的三个三角形中,请用直尺从某一顶点画一条线段,把原三角形分割成两个等腰三角形,并在图中标注相应的角的度数

(2)拓展,△ABC中,AB=AC,∠A=45°,请把△ABC分割成三个等腰三角形,并在图中标注相应的角的度数.

(3)思考在如图所示的三角形中∠A=30°.点P和点Q分别是边AC和BC上的两个动点.分别连接BP和PQ把△ABC分割成三个三角形.△ABP,△BPQ,△PQC若分割成的这三个三角形都是等腰三角形,求∠C的度数所有可能值直接写出答案即可.

【答案】(1)见解析;(2)见解析;(3)∠C所有可能的值为10°、20°、25°,35°、40°、50°、80°、100°.

【解析】

【分析】

(1)在图1、图2、图3中,分别作AB、AB、BC的垂直平分线,根据垂直平分线的性质及外角的性质求出各角度数即可;(2)分别作AB、BC的垂直平分线,交于点O,连接

OA、OB、OC可得三角形OAB、OAC、OBC为等腰三角形,根据等腰三角形的性质及外角性质求出各角度数即可;(3)分PB=PA、AB=AP、BA=BP时,PB=PQ、BP=BQ、QB=QP,PQ=QC、PC=QC、PQ=PC等10种情况,根据等腰三角形的性质分别求出∠C的度数即可.【详解】

(1)在图1、图2、图3中,分别作AB、AB、BC的垂直平分线,

如图1,∵∠ABC=23°,∠BAC=90°,

∴∠C=90°-23°=67°,

∵MN垂直平分AB,

∴BD=AD,

∴△ABD是等腰三角形,

∴∠BAD=∠ABC=23°,

∴∠ADC=2∠ABC=46°,

∵∠BAC=90°,

∴∠DAC=∠BAC-∠BAD=67°,

∴∠DAC=∠C,

∴△DAC是等腰三角形,

同理:图2中,∠ADC=46°,∠DAC=88°,∠C=46°,△ABD和△ACD是等腰三角形,

图3中,∠BCD=23°,∠ADC=46°,∠ACD=46°,△BCD和△ACD是等腰三角形.

(2)作AB、BC的垂直平分线,交于点O,连接OA、OB、OC,

∵点O是三角形垂直平分线的交点,

∴OA=OB=OC,

∴△OAB、△OAC、△OBC是等腰三角形,

∵AB=AC,∠BAC=45°,

∴∠ABC=∠ACB=67.5°,

∴AD是BC的垂直平分线,

∴∠BAD=∠CAD=22.5°,

∴∠OBA=∠OAB=22.5°,∠OCA=∠OAC=22.5°,

∴∠OBC=∠OCB=45°.

(3)①如图,当PB=PA,PB=PQ,PQ=CQ时,∵∠A=30°,PB=PQ,

∴∠ABP=∠A=30°,

∴∠APB=120°,

∵PB=PQ,PQ=CQ,

∴∠PQB=∠PBQ,∠C=∠CPQ,

∴∠PBQ=2∠C,

∴∠APB=∠PBQ+∠C=3∠C=120°,

解得:∠C=40°.

②如图,当PB=PA,PB=BQ,PQ=CQ时,

∴∠PQB=2∠C,∠PQB=∠BPQ,

∴∠PBQ=180°-2∠PQB=180°-4∠C,

∴180°-4∠C+∠C=120°,

解得:∠C=20°,

③如图,当PA=PB,BQ=PQ,CQ=CP时,

∵∠PQC=2∠PBQ,∠PQC=1

2

(180°-∠C),

∴∠PBQ=1

4

(180°-∠C),

∴1

4

(180°-∠C)+∠C=120°,

解得:∠C=100°.

八年级上册数学 【几何模型三角形轴对称】试卷测试与练习(word解析版)

八年级上册数学【几何模型三角形轴对称】试卷测试与练习(word解析版) 一、八年级数学全等三角形解答题压轴题(难) 1.如图,△ABC 中,AB=AC=BC,∠BDC=120°且BD=DC,现以D为顶点作一个60°角,使角两边分别交AB,AC边所在直线于M,N两点,连接MN,探究线段BM、MN、NC之间的关系,并加以证明. (1)如图1,若∠MDN的两边分别交AB,AC边于M,N两点.猜想:BM+NC=MN.延长AC到点E,使CE=BM,连接DE,再证明两次三角形全等可证.请你按照该思路写出完整的证明过程; (2)如图2,若点M、N分别是AB、CA的延长线上的一点,其它条件不变,再探究线段BM,MN,NC之间的关系,请直接写出你的猜想(不用证明). 【答案】(1)过程见解析;(2)MN= NC﹣BM. 【解析】 【分析】 (1)延长AC至E,使得CE=BM并连接DE,根据△BDC为等腰三角形,△ABC为等边三角形,可以证得△MBD≌△ECD,可得MD=DE,∠BDM=∠CDE,再根据∠MDN =60°,∠BDC=120°,可证∠MDN =∠NDE=60°,得出△DMN≌△DEN,进而得到 MN=BM+NC. (2)在CA上截取CE=BM,利用(1)中的证明方法,先证△BMD≌△CED(SAS),再证△MDN≌△EDN(SAS),即可得出结论. 【详解】 解:(1)如图示,延长AC至E,使得CE=BM,并连接DE.

∵△BDC为等腰三角形,△ABC为等边三角形,∴BD=CD,∠DBC=∠DCB,∠MBC=∠ACB=60°,又BD=DC,且∠BDC=120°, ∴∠DBC=∠DCB=30° ∴∠ABC+∠DBC=∠ACB+∠DCB=60°+30°=90°,∴∠MBD=∠ECD=90°, 在△MBD与△ECD中, ∵BD CD MBD ECD BM CE , ∴△MBD≌△ECD(SAS), ∴MD=DE,∠BDM=∠CDE ∵∠MDN =60°,∠BDC=120°, ∴∠CDE+∠NDC =∠BDM+∠NDC=120°-60°=60°,即:∠MDN =∠NDE=60°, 在△DMN与△DEN中, ∵MD DE MDN EDN DN DN , ∴△DMN≌△DEN(SAS), ∴MN=NE=CE+NC=BM+NC. (2)如图②中,结论:MN=NC﹣BM.

人教版八年级数学上册 【几何模型三角形轴对称】试卷专题练习(解析版)

人教版八年级数学上册【几何模型三角形轴对称】试卷专题练习(解析版) 一、八年级数学轴对称解答题压轴题(难) 1.如图,在ABC △中,已知AD是BC边上的中线,E是AD上一点,且BE AC =,延长BE交AC于点F,求证:AF EF =. 【答案】证明见解析 【解析】 【分析】 延长 AD到点G,使得AD DG =,连接BG,结合D是BC的中点,易证△ADC和 △GDB全等,利用全等三角形性质以及等量代换,得到△AEF中的两个角相等,再根据等角对等边证得AE=EF. 【详解】 如图,延长AD到点G,延长AD到点G,使得AD DG =,连接BG. ∵AD是BC边上的中线, ∴DC DB =. 在ADC和GDB △中, AD DG ADC GDB DC DB = ? ? ∠=∠ ? ?= ? (对顶角相等), ∴ADC≌GDB △(SAS). ∴CAD G ∠=∠,BG AC =. 又BE AC =, ∴BE BG =.

∴BED G ∠=∠. ∵BED AEF ∠=∠ ∴AEF CAD ∠=∠,即AEF FAE ∠=∠ ∴AF EF =. 【点睛】 本题考查的是全等三角形的判定与性质,根据题意构造全等三角形是解答本题的关键. 2.(1)如图①,D 是等边△ABC 的边BA 上一动点(点D 与点B 不重合),连接DC ,以DC 为边,在BC 上方作等边△DCF ,连接AF ,你能发现AF 与BD 之间的数量关系吗?并证明你发现的结论; (2)如图②,当动点D 运动至等边△ABC 边BA 的延长线时,其他作法与(1)相同,猜想AF 与BD 在(1)中的结论是否仍然成立?若成立,请证明; (3)Ⅰ.如图③,当动点D 在等边△ABC 边BA 上运动时(点D 与B 不重合),连接DC ,以DC 为边在BC 上方和下方分别作等边△DCF 和等边△DCF ′,连接AF ,BF ′,探究AF ,BF ′与AB 有何数量关系?并证明你的探究的结论; Ⅱ.如图④,当动点D 在等边△ABC 的边BA 的延长线上运动时,其他作法与图③相同,Ⅰ中的结论是否成立?若不成立,是否有新的结论?并证明你得出的结论. 【答案】(1)AF =BD ,理由见解析;(2)AF 与BD 在(1)中的结论成立,理由见解析;(3)Ⅰ. AF +BF ′=AB ,理由见解析,Ⅱ.Ⅰ中的结论不成立,新的结论是AF =AB +BF ′,理由见解析. 【解析】 【分析】 (1)由等边三角形的性质得BC =AC ,∠BCA =60°,DC =CF ,∠DCF =60°,从而得∠BCD =∠ACF ,根据SAS 证明△BCD ≌△ACF ,进而即可得到结论; (2)根据SAS 证明△BCD ≌△ACF ,进而即可得到结论; (3)Ⅰ.易证△BCD ≌△ACF (SAS ),△BCF ′≌△ACD (SAS ),进而即可得到结论;Ⅱ.证明△BCF ′≌△ACD ,结合AF =BD ,即可得到结论. 【详解】 (1)结论:AF =BD ,理由如下: 如图1中,∵△ABC 是等边三角形, ∴BC =AC ,∠BCA =60°, 同理知,DC =CF ,∠DCF =60°, ∴∠BCA -∠DCA =∠DCF -∠DCA ,即:∠BCD =∠ACF ,

八年级数学【几何模型三角形轴对称】试卷专题练习(解析版)

八年级数学【几何模型三角形轴对称】试卷专题练习(解析版) 一、八年级数学轴对称解答题压轴题(难) 1.如图,在平面直角坐标系中,已知点A(2,3),点B(﹣2,1). (1)请运用所学数学知识构造图形求出AB的长; (2)若Rt△ABC中,点C在坐标轴上,请在备用图1中画出图形,找出所有的点C后不用计算写出你能写出的点C的坐标; (3)在x轴上是否存在点P,使PA=PB且PA+PB最小?若存在,就求出点P的坐标;若不存在,请简要说明理由(在备用图2中画出示意图). 【答案】(1)AB=52)C2(0,7),C4(0,-4),C5(-1,0)、C6(1,0);(3)不存在这样的点P. 【解析】 【分析】 (1)如图,连结AB,作B关于y轴的对称点D,利用勾股定理即可得出AB; (2)分别以A,B,C为直角顶点作图,然后直接得出符合条件的点的坐标即可; (3)作AB的垂直平分线l3,则l3上的点满足PA=PB,作B关于x轴的对称点B′,连结AB′,即x轴上使得PA+PB最小的点,观察作图即可得出答案. 【详解】 解:(1)如图,连结AB,作B关于y轴的对称点D, 由已知可得,BD=4,AD=2.∴在Rt△ABD中,AB=5 (2)如图,①以A为直角顶点,过A作l1⊥AB交x轴于C1,交y轴于C2. ②以B为直角顶点,过B作l2⊥AB交x轴于C3,交y轴于C4. ③以C为直角顶点,以AB为直径作圆交坐标轴于C5、C6、C7.(用三角板画找出也可)由图可知,C2(0,7),C4(0,-4),C5(-1,0)、C6(1,0).

(3)不存在这样的点P. 作AB的垂直平分线l3,则l3上的点满足PA=PB, 作B关于x轴的对称点B′,连结AB′, 由图可以看出两线交于第一象限. ∴不存在这样的点P. 【点睛】 本题考查了勾股定理,构造直角三角形,中垂线和轴对称--路径最短问题的综合作图分析,解题的关键是学会分类讨论,学会画好图形解决问题. 2.教材呈现:如图是华师版八年级上册数学教材第94页的部分内容.2.线段垂直平分线.我们已经知道线段是轴对称图形,线段的垂直平分线是线段的对称轴,如图,直线MN是线段AB的垂直平分线,P是MN上任一点,连结PA、PB,将线段AB沿直线MN对称,我们发现PA与PB完全重合,由此即有:线段垂直平分线的性质定理线段垂直平分线上的点到线段的距离相等.已知:如图,MN⊥AB,垂足为点C,AC=BC,点P是直线MN上的任意一点.求证:PA=PB.分析:图中有两个直角三角形APC和BPC,只要证明这两个三角形全等,便可证明PA=PB.

八年级上册数学 【几何模型三角形轴对称】试卷专题练习(word版

八年级上册数学【几何模型三角形轴对称】试卷专题练习(word版 一、八年级数学全等三角形解答题压轴题(难) 1.如图1,在△ACB和△AED中,AC=BC,AE=DE,∠ACB=∠AED=90°,点E在AB上,F是线段BD的中点,连接CE、FE. (1)请你探究线段CE与FE之间的数量关系(直接写出结果,不需说明理由); (2)将图1中的△AED绕点A顺时针旋转,使△AED的一边AE恰好与△ACB的边AC在同一条直线上(如图2),连接BD,取BD的中点F,问(1)中的结论是否仍然成立,并说明理由; (3)将图1中的△AED绕点A顺时针旋转任意的角度(如图3),连接BD,取BD的中点F,问(1)中的结论是否仍然成立,并说明理由. 【答案】(1)线段CE与FE之间的数量关系是CE2FE;(2)(1)中的结论仍然成立.理由见解析;(3)(1)中的结论仍然成立.理由见解析 【解析】 【分析】 (1)连接CF,直角△DEB中,EF是斜边BD上的中线,因此EF=DF=BF,∠FEB=∠FBE,同理可得出CF=DF=BF,∠FCB=∠FBC,因此CF=EF,由于∠DFE=∠FEB+∠FBE=2∠FBE,同理∠DFC=2∠FBC,因此∠EFC=∠EFD+∠DFC=2(∠EBF+∠CBF)=90°,因此△EFC是等腰直角三角形,2EF; (2)思路同(1)也要通过证明△EFC是等腰直角三角形来求解.连接CF,延长EF交CB 于点G,先证△EFC是等腰三角形,可通过证明CF是斜边上的中线来得出此结论,那么就要证明EF=FG,就需要证明△DEF和△FGB全等.这两个三角形中,已知的条件有一组对顶角,DF=FB,只要再得出一组对应角相等即可,我们发现DE∥BC,因此∠EDB=∠CBD,由此构成了两三角形全等的条件.EF=FG,那么也就能得出△CFE是个等腰三角形了,下面证明△CFE是个直角三角形.由上面的全等三角形可得出ED=BG=AD,又由AC=BC,因此 CE=CG,∠CEF=45°,在等腰△CFE中,∠CEF=45°,那么这个三角形就是个等腰直角三角形,因此就能得出(1)中的结论了; (3)思路同(2)通过证明△CFE来得出结论,通过全等三角形来证得CF=FE,取AD的中点M,连接EM,MF,取AB的中点N,连接FN、CN、CF.那么关键就是证明△MEF和△CFN全等,利用三角形的中位线和直角三角形斜边上的中线,我们不难得出 EM=PN=1 2 AD,EC=MF= 1 2 AB,我们只要再证得两对应边的夹角相等即可得出全等的结

八年级数学上册【几何模型三角形轴对称】试卷(Word版 含解析)

八年级数学上册【几何模型三角形轴对称】试卷(Word 版 含解析) 一、八年级数学 轴对称解答题压轴题(难) 1.已知:在平面直角坐标系中,A 为x 轴负半轴上的点,B 为y 轴负半轴上的点. (1)如图1,以A 点为顶点、AB 为腰在第三象限作等腰Rt ABC ?,若2OA =,4OB =,试求C 点的坐标; (2)如图2,若点A 的坐标为() 23,0-,点B 的坐标为()0,m -,点D 的纵坐标为n ,以 B 为顶点,BA 为腰作等腰Rt ABD ?.试问:当B 点沿y 轴负半轴向下运动且其他条件都不 变时,整式2253m n +-的值是否发生变化?若不发生变化,请求出其值;若发生变化,请说明理由; (3)如图3,E 为x 轴负半轴上的一点,且OB OE =,OF EB ⊥于点F ,以OB 为边作等边OBM ?,连接EM 交OF 于点N ,试探索:在线段EF 、EN 和MN 中,哪条线段等于EM 与ON 的差的一半?请你写出这个等量关系,并加以证明. 【答案】(1) C(-6,-2);(2)不发生变化,值为3-3)EN=1 2 (EM-ON),证明见详解. 【解析】 【分析】 (1)作CQ ⊥OA 于点Q,可以证明AQC BOA ?,由QC=AD,AQ=BO,再由条件就可以求出点C 的坐标; (2)作DP ⊥OB 于点P ,可以证明AOB BPD ?,则有BP=OB-PO=m-(-n)=m+n 为定值,从而可以求出结论2253m n +-3- (3)作BH ⊥EB 于点B ,由条件可以得出 ∠1=30°,∠2=∠3=∠EMO=15°,∠EOF=∠BMG=45°,EO=BM,可以证明ENO BGM ?,则GM=ON,就有EM-ON=EM-GM=EG ,最后由平行线分线段成比例定理就可得出EN=1 2 (EM-ON). 【详解】 (1)如图(1)作CQ ⊥OA 于Q,

人教版八年级上册数学 【几何模型三角形轴对称】试卷测试卷(解析版)

人教版八年级上册数学【几何模型三角形轴对称】试卷测试卷(解析版) 一、八年级数学轴对称解答题压轴题(难) 1.如图1,△ABC 中,AB=AC,∠BAC=90o,D、E 分别在 BC、AC 边上,连接 AD、BE 相 交于点 F,且∠CAD=1 2 ∠ABE. (1)求证:BF=AC; (2)如图2,连接 CF,若 EF=EC,求∠CFD 的度数; (3)如图3,在⑵的条件下,若 AE=3,求 BF 的长. 【答案】(1)答案见详解;(2)45°,(3)4. 【解析】 【分析】 (1)设∠CAD=x,则∠ABE=2x,∠BAF=90°-x,∠AFB=180°-2x-(90°-x)= 90°-x,进而得到∠BAF =∠AFB,即可得到结论; (2)由∠AEB=90°-2x,进而得到∠EFC=(90°-2x)÷2=45°-x,由BF=AB,可得: ∠EFD=∠BFA=90°-x,根据∠CFD=∠EFD-∠EFC,即可求解; (3)设EF=EC=x,则AC=AE+EC=3+x,可得BE=BF+EF=3+x+x=3+2x,根据勾股定理列出方程,即可求解. 【详解】 (1)设∠CAD=x, ∵∠CAD=1 2 ∠ABE,∠BAC=90o, ∴∠ABE=2x,∠BAF=90°-x, ∵∠ABE+∠BAF+∠AFB=180°, ∴∠AFB=180°-2x-(90°-x)= 90°-x, ∴∠BAF =∠AFB, ∴BF=AB; ∵AB=AC, ∴BF=AC; (2)由(1)可知:∠CAD=x,∠ABE=2x,∠BAC=90o,∴∠AEB=90°-2x, ∵EF=EC, ∴∠EFC=∠ECF, ∵∠EFC+∠ECF=∠AEB=90°-2x,

八年级数学上册 【几何模型三角形轴对称】试卷专题练习(word版

八年级数学上册【几何模型三角形轴对称】试卷专题练习(word版 一、八年级数学轴对称解答题压轴题(难) 1.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,点E是BC延长线上的一点,且BD=DE.点G是线段BC的中点,连结AG,交BD于点F,过点D作DH⊥BC,垂足为H. (1)求证:△DCE为等腰三角形; (2)若∠CDE=22.5°,DC=2,求GH的长; (3)探究线段CE,GH的数量关系并用等式表示,并说明理由. 【答案】(1)证明见解析;(22 ;(3)CE=2GH,理由见解析. 【解析】【分析】 (1)根据题意可得∠CBD=1 2 ∠ABC= 1 2 ∠ACB,,由BD=DE,可得∠DBC=∠E= 1 2∠ACB,根据三角形的外角性质可得∠CDE= 1 2 ∠ACB=∠E,可证△DCE为等腰三角 形; (2)根据题意可得CH=DH=1,△ABC是等腰直角三角形,由等腰三角形的性质可得BG=GC,2+1,即可求GH的值; (3)CE=2GH,根据等腰三角形的性可得BG=GC,BH=HE,可得GH=GC﹣HC=GC﹣ (HE﹣CE)=1 2 BC﹣ 1 2 BE+CE= 1 2 CE,即CE=2GH 【详解】 证明:(1)∵AB=AC,∴∠ABC=∠ACB, ∵BD平分∠ABC, ∴∠CBD=1 2 ∠ABC= 1 2 ∠ACB, ∵BD=DE, ∴∠DBC=∠E=1 2 ∠ACB, ∵∠ACB=∠E+∠CDE,

∴∠CDE=1 2 ∠ACB=∠E, ∴CD=CE, ∴△DCE是等腰三角形 (2) ∵∠CDE=22.5°,CD=CE2, ∴∠DCH=45°,且DH⊥BC, ∴∠HDC=∠DCH=45° ∴DH=CH, ∵DH2+CH2=DC2=2, ∴DH=CH=1, ∵∠ABC=∠DCH=45° ∴△ABC是等腰直角三角形, 又∵点G是BC中点 ∴AG⊥BC,AG=GC=BG, ∵BD=DE,DH⊥BC ∴BH=HE2+1 ∵BH=BG+GH=CG+GH=CH+GH+GH2+1∴1+2GH2+1 ∴GH= 2 2 (3)CE=2GH 理由如下:∵AB=CA,点G是BC的中点,∴BG=GC, ∵BD=DE,DH⊥BC, ∴BH=HE, ∵GH=GC﹣HC=GC﹣(HE﹣CE)=1 2 BC﹣ 1 2 BE+CE= 1 2 CE, ∴CE=2GH 【点睛】 本题是三角形综合题,考查了角平分线的性质,等腰三角形的性质,灵活运用相关的性质定理、综合运用知识是解题的关键.

八年级几何证明常见模型

八年级几何证明常见模型 (1)手拉手模型 【例题1】在直线ABC 的同一侧作两个等边三角形△ABD 和△BCE , 连接AE 与CD ,证明: (1) △ABE ≌△DBC (2) AE=DC (3) AE 与DC 的夹角为60。 (4) △AGB ≌△DFB (5) △EGB ≌△CFB (6) BH 平分∠AHC (7) GF ∥AC 【变式练习】1、如果两个等边三角形△ABD 和△BCE ,连接AE 与CD ,证明: (1) △ABE ≌△DBC (2) AE=DC (3) AE 与DC 的夹角为60。 (4) AE 与DC 的交点设为H,BH 平分∠AHC A

2:如果两个等边三角形△ABD和△BCE,连接AE与CD,证明: (1)△ABE≌△DBC (2)AE=DC (3)AE与DC的夹角为60。 (4)AE与DC的交点设为H,BH平分∠AHC 【例题2】如图,两个正方形ABCD和DEFG,连接AG与CE,二者相交于H 问:(1)△ADG≌△CDE是否成立? (2)AG是否与CE相等? (3)AG与CE之间的夹角为多少度? (4)HD是否平分∠AHE? F

【变式练习】1:如图两个等腰直角三角形ADC 与EDG ,连接AG,CE,二者相交于H. 问 (1)△ADG ≌△CDE 是否成立? (2)AG 是否与CE 相等? (3)AG 与CE 之间的夹角为多少度? (4)HD 是否平分∠AHE ? 2:两个等腰三角形ABD 与BCE ,其中AB=BD,CB=EB,∠ABD=∠CBE=a 连接AE 与CD. 问(1)△ABE ≌△DBC 是否成立? (2)AE 是否与CD 相等? (3)AE 与CD 之间的夹角为多少度? A

八年级数学【几何模型三角形轴对称】试卷达标检测卷(Word版 含解析)

八年级数学【几何模型三角形轴对称】试卷达标检测卷(Word版含解析) 一、八年级数学全等三角形解答题压轴题(难) 1.(1)问题背景: 如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分别是BC,CD上的点,且∠EAF=60°,探究图中线段BE,EF,FD之间的数量关系. 小王同学探究此问题的方法是延长FD到点G,使DG=BE,连结AG,先证明 △ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是; (2)探索延伸: 如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点, 且∠EAF=1 2 ∠BAD,上述结论是否仍然成立,并说明理由; (3)结论应用: 如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等.接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进,1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇与指挥中心O 之间夹角∠EOF=70°,试求此时两舰艇之间的距离. (4)能力提高: 如图4,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且 ∠MAN=45°.若BM=1,CN=3,试求出MN的长. 【答案】(1)EF=BE+FD;(2)EF=BE+FD仍然成立;(3)210;(4)MN10.【解析】 试题分析:(1)由△AEF≌△AGF,得EF=GF,又由BE=DG,得 EF=GF=DF+DG=DF+BE;(2)延长FD到点G,使DG=BE,连接AG,证明△ABE≌△ADG,再证△AEF≌△AGF,得EF=FG,即可得到答案;(3)连接EF,延长AE,BF相交于点C,根据探索延伸可得EF=AE+FB,即可计算出EF的长度;(4)在△ABC外侧作

人教版八年级上册数学 【几何模型三角形轴对称】试卷专题练习(word版

人教版八年级上册数学 【几何模型三角形轴对称】试卷专题练习(word 版 一、八年级数学全等三角形解答题压轴题(难) 1.取一副三角板按图()1拼接,固定三角板60,()30ADC D ACD ∠=∠=,将三角板45()ABC BAC BCA ∠=∠=绕点A 依顺时针方向旋转一个大小为a 的角00)45(a ≤≤得到ABM ,图()2所示.试问: ()1当a 为多少时,能使得图()2中//AB CD ?说出理由, ()2连接BD ,假设AM 与CD 交于,E BM 与CD 交于F ,当00)45(a ≤≤时,探索DBM CAM BDC ∠+∠+∠值的大小变化情况,并给出你的证明. 【答案】(1)15°;(2)DBM CAM BDC ∠+∠+∠的大小不变,是105,证明见解析. 【解析】 【分析】 (1)由//AB CD 得到30BAC C ∠=∠=,即可求出a ; (2)DBM CAM BDC ∠+∠+∠的大小不变,是105?,由FEM CAM C ∠=∠+∠,30C ∠=?, EFM BDC DBM ∠=∠+∠, 45M ∠=?,即可利用三角形内角和求出答案. 【详解】 ()1当a 为15时,//AB CD , 理由:由图()2,若//AB CD ,则30BAC C ∠=∠=, 453015a CAM BAM BAC ∴=∠=∠-∠=-?=?, 所以,当a 为15时,//AB CD . 注意:学生可能会出现两种解法:

第一种:把//AB CD 当做条件求出a 为15, 第二种:把a 为15当做条件证出//AB CD , 这两种解法都是正确的. ()2DBM CAM BDC ∠+∠+∠的大小不变,是105? 证明: ,30FEM CAM C C ∠=∠+∠∠=?, 30FEM CAM ∴∠=∠+?, EFM BDC DBM ∠=∠+∠, DBM CAM BDC EFM CAM ∴∠+∠+∠=∠+∠, 180,45EFM FEM M M ∠+∠+∠=∠=?, 3045180BDC DBM CAM ∴∠+∠+∠+?+?=?, 1803045105DBM CAM BDC ∴∠+∠+∠=?--=?, 所以,DBM CAM BDC ∠+∠+∠的大小不变,是105. 【点睛】 此题考查旋转的性质,平行线的性质,三角形的外角定理,三角形的内角和,(2)中将角度和表示为三角形的外角是解题的关键. 2.(1)已知△ABC 是等腰三角形,其底边是BC,点D 在线段AB 上,E 是直线BC 上一点,且∠DEC=∠DCE,若∠A 等于60°(如图①).求证:EB=AD ; (2)若将(1)中的“点D 在线段AB 上”改为“点D 在线段AB 的延长线上”,其他条件不变(如图②),(1)的结论是否成立,并说明理由. 【答案】(1)证明见解析(2)证明见解析 【解析】 试题分析:(1)作DF∥BC 交AC 于F ,由平行线的性质得出∠ADF=∠ABC,∠AFD=∠ACB,∠FDC=∠DCE,证明△ABC 是等边三角形,得出∠ABC=∠ACB=60°,证出△ADF 是等边三角形,∠DFC=120°,得出AD=DF ,由已知条件得出∠FDC=∠DEC,ED=CD ,由AAS 证明△DBE≌△CFD,得出EB=DF ,即可得出结论;

八年级数学上册【几何模型三角形轴对称】试卷测试卷(解析版)

八年级数学上册【几何模型三角形轴对称】试卷测试卷(解析版) 一、八年级数学轴对称解答题压轴题(难) 1.如图,△ABC中,∠ABC=∠ACB,点D在BC所在的直线上,点E在射线AC上,且 AD=AE,连接DE. ⑴如图①,若∠B=∠C=35°,∠BAD=80°,求∠CDE的度数; ⑵如图②,若∠ABC=∠ACB=75°,∠CDE=18°,求∠BAD的度数; ⑶当点D在直线BC上(不与点B、C重合)运动时,试探究∠BAD与∠CDE的数量关系,并说明理由. 【答案】(1)40°;(2)36°;(3)2∠CDE=∠BAD,理由见解析. 【解析】 【分析】 (1)根据等腰三角形的性质得到∠BAC=110°,根据等腰三角形的性质和三角形的外角的性质即可得到结论;(2)根据三角形的外角的性质得到∠E=75°-18°=57°,根据等腰三角形的性质和三角形的外角的性质即可得到结论;(3)设 ∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β,分3种情况:①如图1,当点D 在点B的左侧时,∠ADC=x°-α,②如图2,当点D在线段BC上时,∠ADC=y°+α,③如图3,当点D在点C右侧时,∠ADC=y°-α,根据这3种情况分别列方程组即,解方程组即可得到结论. 【详解】 解: (1)∵∠B=∠C=35°, ∴∠BAC=110°, ∵∠BAD=80°, ∴∠DAE=30°, ∵AD=AE, ∴∠ADE=∠AED=75°, ∴∠CDE=∠AED-∠C=75°?35°=40°; (2)∵∠ACB=75°,∠CDE=18°, ∴∠E=75°?18°=57°, ∴∠ADE=∠AED=57°, ∴∠ADC=39°, ∵∠ABC=∠ADB+∠DAB=75°, ∴∠BAD=36°.

八年级上册数学 【几何模型三角形轴对称】试卷测试卷附答案(1)

八年级上册数学【几何模型三角形轴对称】试卷测试卷附答案(1) 一、八年级数学轴对称解答题压轴题(难) 1.如图1,△ABC 中,AB=AC,∠BAC=90o,D、E 分别在 BC、AC 边上,连接 AD、BE 相 交于点 F,且∠CAD=1 2 ∠ABE. (1)求证:BF=AC; (2)如图2,连接 CF,若 EF=EC,求∠CFD 的度数; (3)如图3,在⑵的条件下,若 AE=3,求 BF 的长. 【答案】(1)答案见详解;(2)45°,(3)4. 【解析】 【分析】 (1)设∠CAD=x,则∠ABE=2x,∠BAF=90°-x,∠AFB=180°-2x-(90°-x)= 90°-x,进而得到∠BAF =∠AFB,即可得到结论; (2)由∠AEB=90°-2x,进而得到∠EFC=(90°-2x)÷2=45°-x,由BF=AB,可得: ∠EFD=∠BFA=90°-x,根据∠CFD=∠EFD-∠EFC,即可求解; (3)设EF=EC=x,则AC=AE+EC=3+x,可得BE=BF+EF=3+x+x=3+2x,根据勾股定理列出方程,即可求解. 【详解】 (1)设∠CAD=x, ∵∠CAD=1 2 ∠ABE,∠BAC=90o, ∴∠ABE=2x,∠BAF=90°-x, ∵∠ABE+∠BAF+∠AFB=180°, ∴∠AFB=180°-2x-(90°-x)= 90°-x, ∴∠BAF =∠AFB, ∴BF=AB; ∵AB=AC, ∴BF=AC; (2)由(1)可知:∠CAD=x,∠ABE=2x,∠BAC=90o,∴∠AEB=90°-2x, ∵EF=EC, ∴∠EFC=∠ECF, ∵∠EFC+∠ECF=∠AEB=90°-2x,

八年级上册数学 【几何模型三角形轴对称】试卷专题练习(word版

八年级上册数学 【几何模型三角形轴对称】试卷专题练习(word 版 一、八年级数学全等三角形解答题压轴题(难) 1.如图1,在平面直角坐标系中,点D (m ,m +8)在第二象限,点B (0,n )在y 轴正半轴上,作DA ⊥x 轴,垂足为A ,已知OA 比OB 的值大2,四边形AOBD 的面积为12. (1)求m 和n 的值. (2)如图2,C 为AO 的中点,DC 与AB 相交于点E ,AF ⊥BD ,垂足为F ,求证:AF =DE . (3)如图3,点G 在射线AD 上,且GA =GB ,H 为GB 延长线上一点,作∠HAN 交y 轴于点N ,且∠HAN =∠HBO ,求NB ﹣HB 的值. 【答案】(1)4 2 m n =-?? =?(2)详见解析;(3)NB ﹣FB =4(是定值),即当点H 在GB 的 延长线上运动时,NB ﹣HB 的值不会发生变化. 【解析】 【分析】 (1)由点D ,点B 的坐标和四边形AOBD 的面积为12,可列方程组,解方程组即可; (2)由(1)可知,AD =OA =4,OB =2,并可求出AB =BD =25,利用SAS 可证△DAC ≌△AOB ,并可得∠AEC =90°,利用三角形面积公式即可求证; (3)取OC =OB ,连接AC ,根据对称性可得∠ABC =∠ACB ,AB =AC ,证明△ABH ≌△CAN ,即可得到结论. 【详解】 解:(1)由题意()()218122 m n n m m --=?? ?++-=?? 解得4 2m n =-??=? ; (2)如图2中, 由(1)可知,A (﹣4,0),B (0,2),D (﹣4,4),

八年级几何证明常见模型

八年级几何证明常见模 型 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

八年级几何证明常见模型 姓名 (1)手拉手模型 【例题1】在直线ABC的同一侧作两个等边三角形△ABD 和△BCE,连接AE与CD,证明: (1)△ABE≌△DBC (2)AE=DC (3)AE与DC的夹角为60。 (4)△AGB≌△DFB (5)△EGB≌△CFB (6)BH平分∠AHC (7)GF∥AC 【变式练习】1、如果两个等边三角形△ABD和△BCE,连接AE与CD,证明: (1)△ABE≌△DBC (2)AE=DC (3)AE与DC的夹角为60。 (4)AE与DC的交点设为H,BH 平分∠AHC 2:如果两个等边三角形△ABD 和△BCE,连接AE与CD,证 明: (1)△ABE≌△DBC (2)AE=DC (3)AE与DC的夹角为60。 (4)AE与DC的交点设为H,BH平分∠AHC 【例题2】如图,两个正方形ABCD和DEFG,连接AG与 CE,二者相交于H 问:(1)△ADG≌△CDE是否成立 (2)AG是否与CE相等 (3)AG与CE之间的夹角为多少度 (4)HD是否平分∠AHE 【变式练习】1:如图两个等腰直角三角形ADC与EDG,连接 AG,CE,二者相交于H. 问(1)△ADG≌△CDE是否成立 (2)AG是否与CE相等 (3)AG与CE之 间的夹角为多少度 (4)HD是否平 分∠AHE 2:两个等腰三角形 ABD与BCE,其中 AB=BD,CB=EB,∠ABD=∠CBE=a 连接AE与CD. 问(1)△ABE≌△DBC是否成立 (2)AE是否与CD相等 (3)AE与CD之间的夹角为多少度 (4)HB是否平分 【变式练习】1,⊿ABC中,AG⊥BC于点G,以A为直角顶 点,分别以AB、AC为直角边,向⊿ABC作等腰Rt⊿ABE和等 腰Rt⊿ACF,过点E、F作射线GA的垂线,垂足分别为P、 Q。(1)试探究EP与FQ之间的数量关系,并证明你的结 论;(2)如图2,若连接EF交GA的延长线于H,由 (1)中的结论你能判断EH与FH的大小关系吗并说明理 由。(3)在(2)的条件下,若BC=AG=24,请直接写出S ⊿AEF= (2)角平分线模型 【例题1】.如图1,OP是∠AOB的平分线,请你利用图形 画一对以OP为所在直线为对称轴的全等三角形,请你参考 这个全等三角形的方法,解答下列问题。 A

八年级数学【几何模型三角形轴对称】试卷(Word版 含解析)

八年级数学【几何模型三角形轴对称】试卷(Word版含解析) 一、八年级数学轴对称解答题压轴题(难) 1.如图,将两个全等的直角三角形△ABD、△ACE拼在一起(图1).△ABD不动, (1)若将△ACE绕点A逆时针旋转,连接DE,M是DE的中点,连接MB、MC(图2),证明:MB=MC. (2)若将图1中的CE向上平移,∠CAE不变,连接DE,M是DE的中点,连接MB、MC (图3),判断并直接写出MB、MC的数量关系. (3)在(2)中,若∠CAE的大小改变(图4),其他条件不变,则(2)中的MB、MC的数量关系还成立吗?说明理由. 【答案】(1)见解析;(2)MB=MC.理由见解析;(3)MB=MC还成立,见解析.【解析】 【分析】 (1)连接AM,根据全等三角形的对应边相等可得AD=AE,AB=AC,全等三角形对应角相等可得∠BAD=∠CAE,再根据等腰三角形三线合一的性质得到∠MAD=∠MAE,然后利用“边角边”证明△ABM和△ACM全等,根据全等三角形对应边相等即可得证; (2)延长DB、AE相交于E′,延长EC交AD于F,根据等腰三角形三线合一的性质得到BD=BE′,然后求出MB∥AE′,再根据两直线平行,内错角相等求出∠MBC=∠CAE,同理求出MC∥AD,根据两直线平行,同位角相等求出∠BCM=∠BAD,然后求出∠MBC=∠BCM,再根据等角对等边即可得证; (3)延长BM交CE于F,根据两直线平行,内错角相等可得∠MDB=∠MEF,∠MBD=∠MFE,然后利用“角角边”证明△MDB和△MEF全等,根据全等三角形对应边相等可得MB=MF,然后根据直角三角形斜边上的中线等于斜边的一半证明即可. 【详解】 (1)如图(2),连接AM,由已知得△ABD≌△ACE, ∴AD=AE,AB=AC,∠BAD=∠CAE. ∵MD=ME,

初中数学八大几何模型归纳

初中数学几何模型总结归纳 1.中点模型 【模型1】倍长 1、倍长中线; 2、倍长类中线; 3、中点遇平行线延长相交 A B C D E A B C D E F E D C B A 【模型2】遇多个中点,构造中位线 1、直接连接中点; 2、连对角线取中点再相连 G A B C D E F A B C D E 【例1】在菱形ABCD 和正三角形BEF 中,∠ABC =60°,G 是DF 的中点,连接GC 、GE . (1)如图1,当点E 在BC 边上时,若AB =10,BF =4,求GE 的长; (2)如图2,当点F 在AB 的延长线上时,线段GE 、GC 有怎样的数量和位置关系,写出你的猜想,并给予证明; (3)如图3,当点F 在CB 的延长线上时,(2)问中的关系还成立吗?写出你的猜想,并给予证明. 图3 图2图1 A C D E F G D E F G C D E G A B B F C B A 【解答】 (1)延长EG 交CD 于点H 易证明△CHG ≌△CEG ,则GE = H B E G C F A D

(2)延长CG 交AB 于点I , 易证明△BCE ≌△FIE ,则△CEI 是等边三角形,GE =3GC 错误!未找到引用源。,且GE ⊥GC F (3) E J 【例2】如图,在菱形ABCD 中,点E 、F 分别是BC 、CD 上一点,连接DE 、EF ,且AE =AF ,∠DAE =∠BAF . (1)求证:CE =CF ; (2)若∠ABC =120°,点G 是线段AF 的中点,连接DG 、EG ,求证:DG ⊥EG . G F E D C B A E H G F E D C B A 【解答】 (1)证明△ABE ≌△ADF 即可; (2)延长DG 与AB 相交于点H ,连接HE ,证明△HBE ≌△EFD 即可 【例3】如图,在凹四边形ABCD 中,AB =CD ,E 、F 分别为BC 、AD 的中点,BA 交EF 延长线于G 点,CD 交EF 于H 点,求证:∠BGE =∠CHE . 【解答】取BD 中点可证,如图所示: J A B C D E F G H

八年级几何证明常见模型

八年级几何证明常见模型 姓名 (1)手拉手模型 【例题1】在直线ABC的同一侧作两个等边三角形△ABD和△BCE,连接AE与CD,证明: (1)△ABE≌△DBC (2)AE=DC (3)AE与DC的夹角为60。 (4)△AGB≌△DFB (5)△EGB≌△CFB (6)BH平分∠AHC (7)GF∥AC 【变式练习】1、如果两个等边三角形△ABD和△BCE,连接AE与CD,证明: (1)△ABE≌△DBC (2)AE=DC (3)AE与DC的夹角为60。 (4)AE与DC的交点设为H,BH平 分∠AHC 2:如果两个等边三角形△ABD和△ BCE,连接AE与CD,证明: (1)△ABE≌△DBC (2)AE=DC (3)AE与DC的夹角为60。 (4)AE与DC的交点设为H,BH平分∠AHC 【例题2】如图,两个正方形ABCD和DEFG,连接AG与CE,二者相交于 H 问:(1)△ADG≌△CDE是否成立? (2)AG是否与CE相等? (3)AG与CE之间的夹角为多少度? (4)HD是否平分∠AHE? 【变式练习】1:如图两个等腰直角三角形ADC与EDG,连接AG,CE,二者 相交于H. 问(1)△ADG≌△CDE是否成立? (2)AG是否与CE相等? (3)AG与CE之间的 夹角为多少度? (4)HD是否平分∠ AHE? 2:两个等腰三角形ABD 与BCE,其中AB=BD,CB=EB, ∠ABD=∠CBE=a 连接AE与CD. 问(1)△ABE≌△DBC是否成立? (2)AE是否与CD相 等? (3)AE与CD之间的 夹角为多少度? (4)HB是否平分∠AHC? 【例题3】如图1,AB=AE,AC=AD,∠BAE=∠CAD=90°. (1)证明:EC=BD; (2)证明:EC⊥BD; (3)如图2,连接ED,若N点为DE的中点,连接NA并延长与BC交 于点M,证明:AM⊥BC. (2)角平分线模型 【例题1】.如图1,OP是∠AOB的平分线,请你利用图形画 一对以OP为所在直线为对称轴的全等三角形,请你参考这个 全等三角形的方法,解答下列问题。 ①、如图2,在△ABC中,∠ACB是直角,∠B=600,AD、CE 是∠BAC、∠BCA的角平分线,相交于点F,请你判断并写出 EF与DF之间的数量的关系。 ②、如图3,在△ABC中,∠ACB不是直角,而(1)中的其 他条件不变,请问,(1)中的结论是否任然成立若成立,请 证明;若不成立,请说明理由。 【变式练习】1、已知,2 1∠ = ∠,4 3∠ = ∠. A A 图1 B 图3

人教版八年级上册数学 【几何模型三角形轴对称】试卷测试卷附答案

人教版八年级上册数学 【几何模型三角形轴对称】试卷测试卷附答案 一、八年级数学 轴对称解答题压轴题(难) 1.如图,在等腰直角ABC △中,AB AC =,90BAC ∠=?,点D 是ABC △ 内一点, 连接 AD ,AE AD ⊥ 且 AE AD =,连接 BD 、CE 交于点 F . (1)如图 1,求BFC ∠的度数; (2)如图 2,连接ED 交 BC 于点 G ,连接 AG ,若 AG 平分BAD ∠,求证: 2EAC EDF ∠=∠; (3)如图 3,在(2)的条件下,BF 交 AG 、AC 分别于点M 、N ,DH AM ⊥,连接 HN ,若ADN ?的面积与DHN 的面积差为 6,6DF =,求四边形 AMFE 的面积. 【答案】(1)∠BFC =90°;(2)见解析;(3)20AMFE S =四边形. 【解析】 【分析】 (1)根据SAS 证明ABD ACE ≌,所以ABD ACF ∠=∠,所以 90BFC BAC ∠=∠=?. (2)根据题意先求出180ABG ADG ∠+∠=?,在AB 上截取AK AD =,连接KG ,由AKG ADG ≌,180BKG AKG ∠+∠=?,可证得BKG KBG ∠=∠,GB GK DG ==,所以 DBG BDG EDF α∠=∠=∠=, 因为2CAE BAD α∠=∠=,所以2CAE EDF ∠=∠. (3)根据题意和(2)中结论先证明AD AN AE ==,过 A 作BF 、CE 垂线,垂足分别为R 、T , 连接AF ,证明ANR AET ≌,所以AR AT =,然后根据等腰三角形的性质可得出DM FN =,过点H 作HP FM ⊥,垂足为P ,所以HP PM DP ==,设DP x =,DR y =, 所以ADN DHN S S ??-= 11 22 DN AR DN HP ??-? ()6y x y =+=,226DF x y =+=,求出x ,y ,不难得到AEF ANF ADM S S S ???===4,然后可得20AMFE S =四边形. 【详解】 (1)因为ABC 是等腰直角三角形,所以AB AC =,90BAC DAE ∠=?=∠, 所以 BAD CAE ∠=∠,因为AD AE =,所以ABD ACE ≌,所以ABD ACF ∠=∠,所以 90BFC BAC ∠=∠=?.

初中数学几何模型大全(精心整理)

三线八角 同位角找F型内错角找Z型同旁内角找U型 拐角模型 1.锯齿形 ∠2=∠1+∠3 ∠1+∠2=∠3+∠4 2.鹰嘴型 鹰嘴+小=大 ∠2=∠1+∠3 ∠2=∠1+∠3 3.铅笔头型 ∠1+∠2+∠3=360° ∠1+∠2+∠3+∠4=540°180×(n-1)

等积变换模型 S△ACD=S△BCD 八字模型 ∠A+∠B=∠C+∠D AD+BC>AB+CD 飞镖模型 ∠D=∠B+∠C+∠A AB+AC>BD+CD 内内角平分线模型 ∠A ∠D=90°+1 2 内外角平分线模型 ∠D=1 ∠A 2

外外角平分线模型 ∠D=90°-1 ∠A 2 平行平分出等腰模型 HG=HM 等面积模型 D是BC的中点 S△ABD= S△ACD 倍长中线模型:D是BC的中点 S△FBD= S△ECD 角平分线构造全等模型 角平分线垂直两边角平分线垂直中间

角平分线构造轴对称 以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。两边进行边或者角的等量代换,垂直也可以做为轴进行对称全等。 三垂模型 拉手模型 大小等边三角形虚线相等且夹角为60° 大小等腰三角形顶角为a,虚线相等,且夹角为a 大小等腰直角三角形虚线相等且夹角为90°

大小正方形虚线相等,且夹角为90° 半角模型 正方形ABCD ∠EDF=45° 得:EF=AE+CF CD=AD,∠ADC=90°,∠EDF=45°,∠A+∠C=180° 得:EF=AE+CF ∠BAD AB=AD,∠B+∠D=180°,∠EAF=1 2 得:EF=BE+DF AB=AC,∠BAC=90°,∠DAE=45° 得:DE2=BD2+CE2 △CEF为直角三角形

相关主题
文本预览
相关文档 最新文档