2008年吉林省长春市中考数学试题及答案
- 格式:doc
- 大小:606.50 KB
- 文档页数:7
2008年长春市初中毕业生学业考试语文试题本试卷包括两道大题,共28道小题。
共6页。
全卷满分120分。
考试时间为120分钟。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内。
2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试卷上答题无效。
一.阅读(60分)(一)名句积累与运用(15分)1.蒹葭苍苍,。
(《诗经·蒹葭》)2.安得广厦千万间,!(杜甫《茅屋为秋风所破歌》)3.,。
无为在歧路,儿女共沾巾。
(王勃《送杜少府之任蜀州》)4.,,古道西风瘦马。
(马致远《天净沙·秋思》)5.学习与思考是紧密结合的过程,“学而不思则罔,思而不学则殆”这句话强调了学习与思考的辩证关系;同时,学习又是相互联系,从旧知中不断获得新知的过程,这自然使我们联想到从《论语》选材的课文中学习过的:,。
6.苏轼说“求物之妙,如系风捕影,能使物了然于心者”。
《醉翁亭记》中欧阳修以神来之笔捕捉到了四时之景的诗情画意,其中描写春夏之景的两个句子:,。
7.范仲淹在《渔家傲秋思》这首词中用来表达征人归心切、思乡迫,破敌功未成,把酒难释怀之意的句子是:8.“士不可以不弘毅,任重而道远。
”古代先贤有这样风范的人不胜枚举,请写出初中课本内学习过的古诗词中能表现鉴定信念,战胜困难的勇气和决心的连续两句,并标明作者或出处。
句子:作者或出处:(二)文言文阅读(15分)(甲)阅读下文,回答问题。
(10分)出师表先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。
然侍卫之臣不懈于内,忠志之士忘身于外者,盖追先帝之殊遇,欲报之于陛下也。
诚宜开张圣听,以光先帝遗德,恢弘志士之气,不宜妄自菲薄,引喻失义,以塞忠谏之路也。
宫中府中,俱为一体,陟罚臧否,不宜异同。
若有作奸犯科及为忠善者,宜付有司论其刑赏,以昭陛下平明之理,不宜偏私,使内外异法也。
2024年吉林长春中考数学试题及答案本试卷包括三道大题,共6页.全卷满分为120分,考试时间为120分钟.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内.2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试卷上答题无效.一、选择题:本题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.根据有理数加法法则,计算()23+-过程正确的是( )A .()32++B .()32+-C .()32-+D .()32--2.南湖公园是长春市著名旅游景点之一,图①是公园中“四角亭”景观的照片,图②是其航拍照片,则图③是“四角亭”景观的( ).A .主视图B .俯视图C .左视图D .右视图3.在剪纸活动中,小花同学想用一张矩形纸片剪出一个正五边形,其中正五边形的一条边与矩形的边重合,如图所示,则α∠的大小为( )A .54oB .60C .70D .724.下列运算一定正确的是( )A .236a a a ⋅=B .236a a a ⋅=C .()222ab a b =D .()235a a =5.不等关系在生活中广泛存在.如图,a 、b 分别表示两位同学的身高,c 表示台阶的高度.图中两人的对话体现的数学原理是( )A .若a b >,则a c b c+>+B .若a b >,b c >,则a c >C .若a b >,0c >,则ac bc >D .若a b >,0c >,则a b c c>6.2024年5月29日16时12分,“长春净月一号”卫星搭乘谷神星一号火箭在黄海海域成功发射.当火箭上升到点A 时,位于海平面R 处的雷达测得点R 到点A 的距离为a 千米,仰角为θ,则此时火箭距海平面的高度AL 为( )A .sin a θ千米B .sin a θ千米C .cos a θ千米D .cos a θ千米7.如图,在ABC 中,O 是边AB 的中点.按下列要求作图:①以点B 为圆心、适当长为半径画弧,交线段BO 于点D ,交BC 于点E ;②以点O 为圆心、BD 长为半径画弧,交线段OA 于点F ;③以点F 为圆心、DE 长为半径画弧,交前一条弧于点G ,点G 与点C 在直线AB 同侧;④作直线OG ,交AC 于点M .下列结论不一定成立的是( )A .AOM B∠=∠B .180OMC C ∠+∠= C .AM CM =D .12OM AB =8.如图,在平面直角坐标系中,点O 是坐标原点,点()4,2A 在函数()0,0k y k x x=>>的图象上.将直线OA 沿y 轴向上平移,平移后的直线与y 轴交于点B ,与函数()0,0k y k x x =>>的图象交于点C .若BC =,则点B 的坐标是( )A .(B .()0,3C .()0,4D .(0,二、填空题:本题共6小题,每小题3分,共18分.9.单项式22a b -的次数是 .10= .11.若抛物线2y x x c =-+(c 是常数)与x 轴没有交点,则c 的取值范围是 .12.已知直线y kx b =+(k 、b 是常数)经过点()1,1,且y 随x 的增大而减小,则b 的值可以是 .(写出一个即可)13.一块含30︒角的直角三角板ABC 按如图所示的方式摆放,边AB 与直线l 重合,12cm AB =.现将该三角板绕点B 顺时针旋转,使点C 的对应点C '落在直线l 上,则点A 经过的路径长至少为 cm .(结果保留π)14.如图,AB 是半圆的直径,AC 是一条弦,D 是 AC 的中点,DE AB ⊥于点E ,交AC 于点F ,DB 交AC 于点G ,连结AD .给出下面四个结论:①ABD DAC ∠=∠;②AF FG =;③当2DG =,3GB =时,FG =④当 2BD AD =,6AB =时,DFG上述结论中,正确结论的序号有 .三、解答题:本题共10小题,共78分.15.先化简,再求值:32222x x x x ---,其中x =.16.2021年吉林省普通高中开始施行新高考选科模式,此模式有若干种学科组合,每位高中生可根据自己的实际情况选择一种.一对双胞胎姐妹考入同一所高中且选择了相同组合,该校要将所有选报这种组合的学生分成A 、B 、C 三个班,其中每位学生被分到这三个班的机会均等.用画树状图(或列表)的方法,求这对双胞胎姐妹被分到同一个班的概率.17.《九章算术》被历代数学家尊为“算经之首”.下面是其卷中记载的关于“盈不足”的一个问题:今有共买金,人出四百,盈三千四百;人出三百,盈一百.问人数、金价各几何?这段话的意思是:今有人合伙买金,每人出400钱,会剩余3400钱;每人出300钱,会剩余100钱.合伙人数、金价各是多少?请解决上述问题.18.如图,在四边形ABCD 中,90A B ∠=∠=︒,O 是边AB 的中点,AOD BOC ∠=∠.求证:四边形ABCD 是矩形.19.某校为调研学生对本校食堂的满意度,从初中部和高中部各随机抽取20名学生对食堂进行满意度评分(满分10分),将收集到的评分数据进行整理、描述和分析.下面给出了部分信息:a .高中部20名学生所评分数的频数分布直方图如下图:(数据分成4组:67x ≤<,78x ≤<,89x ≤<,910x ≤≤)b .高中部20名学生所评分数在89x ≤<这一组的是:8.0 8.1 8.2 8.2 8.4 8.5 8.6 8.7 8.8c .初中部、高中部各20名学生所评分数的平均数、中位数如下:平均数中位数初中部8.38.5高中部8.3m根据以上信息,回答下列问题:(1)表中m 的值为________;(2)根据调查前制定的满意度等级划分标准,评分不低于8.5分为“非常满意”.①在被调查的学生中,设初中部、高中部对食堂“非常满意”的人数分别为a 、b ,则a ________b ;(填“>”“<”或“=”)②高中部共有800名学生在食堂就餐,估计其中对食堂“非常满意”的学生人数.20.图①、图②、图③均是33⨯的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点.点A 、B 均在格点上,只用无刻度的直尺,分别在给定的网格中按下列要求作四边形ABCD ,使其是轴对称图形且点C 、D 均在格点上.(1)在图①中,四边形ABCD 面积为2;(2)在图②中,四边形ABCD 面积为3;(3)在图③中,四边形ABCD 面积为4.21.区间测速是指在某一路段前后设置两个监控点,根据车辆通过两个监控点的时间来计算车辆在该路段上的平均行驶速度.小春驾驶一辆小型汽车在高速公路上行驶,其间经过一段长度为20千米的区间测速路段,从该路段起点开始,他先匀速行驶112小时,再立即减速以另一速度匀速行驶(减速时间忽略不计),当他到达该路段终点时,测速装置测得该辆汽车在整个路段行驶的平均速度为100千米/时.汽车在区间测速路段行驶的路程y (千米)与在此路段行驶的时间x (时)之间的函数图象如图所示.(1)a 的值为________;(2)当112x a ≤≤时,求y 与x 之间的函数关系式;(3)通过计算说明在此区间测速路段内,该辆汽车减速前是否超速.(此路段要求小型汽车行驶速度不得超过120千米/时)22.【问题呈现】小明在数学兴趣小组活动时遇到一个几何问题:如图①,在等边ABC 中,3AB =,点M 、N 分别在边AC 、BC 上,且AM CN =,试探究线段MN 长度的最小值.【问题分析】小明通过构造平行四边形,将双动点问题转化为单动点问题,再通过定角发现这个动点的运动路径,进而解决上述几何问题.【问题解决】如图②,过点C 、M 分别作MN 、BC 的平行线,并交于点P ,作射线AP .在【问题呈现】的条件下,完成下列问题:(1)证明:AM MP =;(2)CAP ∠的大小为 度,线段MN 长度的最小值为________.【方法应用】某种简易房屋在整体运输前需用钢丝绳进行加固处理,如图③.小明收集了该房屋的相关数据,并画出了示意图,如图④,ABC 是等腰三角形,四边形BCDE 是矩形,2AB AC CD ===米,30ACB ∠=︒.MN 是一条两端点位置和长度均可调节的钢丝绳,点M 在AC 上,点N 在DE 上.在调整钢丝绳端点位置时,其长度也随之改变,但需始终保持AM DN =.钢丝绳MN 长度的最小值为多少米.23.如图,在ABC 中,5AB AC ==,6BC =.点D 是边BC 上的一点(点D 不与点B 、C 重合),作射线AD ,在射线AD 上取点P ,使AP BD =,以AP 为边作正方形APMN ,使点M 和点C 在直线AD 同侧.(1)当点D 是边BC 的中点时,求AD 的长;(2)当4BD =时,点D 到直线AC 的距离为________;(3)连结PN ,当PN AC ⊥时,求正方形APMN 的边长;(4)若点N 到直线AC 的距离是点M 到直线AC 距离的3倍,则CD 的长为________.(写出一个即可)24.在平面直角坐标系中,点O 是坐标原点,抛物线22y x x c =++(c 是常数)经过点()2,2--.点A 、B 是该抛物线上不重合的两点,横坐标分别为m 、m -,点C 的横坐标为5m -,点C 的纵坐标与点A 的纵坐标相同,连结AB 、AC .(1)求该抛物线对应的函数表达式;(2)求证:当m 取不为零的任意实数时,tan CAB ∠的值始终为2;(3)作AC 的垂直平分线交直线AB 于点D ,以AD 为边、AC 为对角线作菱形ADCE ,连结DE .①当DE 与此抛物线的对称轴重合时,求菱形ADCE 的面积;②当此抛物线在菱形ADCE 内部的点的纵坐标y 随x 的增大而增大时,直接写出m 的取值范围.1.D【分析】本题主要考查了有理数的加法,掌握“将两个数的绝对值相减,结果的符号与绝对值较大的数的符号相同”成为解题的关键.根据将两个数的绝对值相减,结果的符号与绝对值较大的数的符号相同即可解答.【详解】解:()()2332+---=.故选D .2.B【分析】本题主要考查了几何体的三视图,熟练掌握三视图的定义是解决本题的关键.根据三视图主视图、俯视图、左视图的定义即可解答.【详解】解:由题意可知图③是从“四角亭”上方看到的,即为俯视图.故选B .3.D【分析】本题考查了多边形内角与外角,正多边形的内角和,熟练掌握正多边形的内角和公式是解题的关键.根据正五边形的内角和公式和邻补角的性质即可得到结论.【详解】解:(52)180180725α-⨯︒∠=︒-=︒,故选:D .4.C【分析】本题考查了单项式乘单项式、同底数幂的乘法以及幂的乘方与积的乘方,掌握相关运算法则是解答本题的关键.根据单项式乘单项式的运算法则计算并判断A ;根据同底数幂的乘法法则计算并判断B ;根据积的乘方运算法则计算并判断C ;根据幂的乘方运算法则计算并判断D .【详解】解:A .2236a a a ⋅=,故本选项不符合题意;B .235a a a ⋅=,故本选项不符合题意;C .()222ab a b =,故本选项符合题意;D .()236a a =,故本选项不符合题意;故选:C .5.A【分析】本题主要考查不等式的性质,熟记不等式性质是解决问题的关键.根据不等式的性质即可解答.【详解】解:由作图可知:a b >,由右图可知:a c b c +>+,即A 选项符合题意.故选:A .6.A【分析】本题考查解直角三角形,熟记锐角三角函数的定义是解题关键,根据锐角的正弦函数的定义即可求解【详解】解:由题意得:sin AL AL AR a θ==∴sin AL a θ=千米故选:A7.D【分析】本题主要考查了作一个角等于已知角,平行线的性质和判定,平行线分线段成比例定理,解题的关键是熟练掌握相关的性质,先根据作图得出AOM B ∠=∠,根据平行线的判定得出OM BC ∥,根据平行线的性质得出180OMC C ∠+∠= ,根据平行线分线段成比例得出1AM AO CM OB==,即可得出AM CM =.【详解】解:A .根据作图可知:AOM B ∠=∠一定成立,故A 不符合题意;B .∵AOM B ∠=∠,∴OM BC ∥,∴180OMC C ∠+∠= 一定成立,故B 不符合题意;C .∵O 是边AB 的中点,∴AO BO =,∵OM BC ∥,∴1AM AO CM OB==,∴AM CM =一定成立,故C 不符合题意;D .12OM AB =不一定成立,故D 符合题意.8.B【分析】本题主要考查反比例函数、解直角三角形、平移的性质等知识点,掌握数形结合思想成为解题的关键.如图:过点A 作x 轴的垂线交x 轴于点E ,过点C 作y 轴的垂线交y 轴于点D ,先根据点A 坐标计算出sin OAE ∠、k 值,再根据平移、平行线的性质证明DBC OAE ∠=∠,进而根据sin sin CD DBC OAE BC∠==∠求出CD ,最后代入反比例函数解析式取得点C 的坐标,进而确定2CD =,4OD =,再运用勾股定理求得BD ,进而求得OB 即可解答.【详解】解:如图,过点A 作x 轴的垂线交x 轴于点E ,过点C 作y 轴的垂线交y 轴于点D ,则AE y ∥轴,∵()4,2A ,∴4OE =,OA =∴sin OE OAE OA ∠===∵()4,2A 在反比例函数的图象上,∴428k =⨯=.∴将直线OA 向上平移若干个单位长度后得到直线BC ,∴OA BC ∥,∴OAE BOA ∠=∠,∵AE y ∥轴,∴DBC BOA ∠=∠,∴DBC OAE ∠=∠,∴sin si n CD DBC OAE BC ∠===∠=2CD =,即点C 的横坐标为2,将2x =代入8y x=,得4y =,∴C 点的坐标为()2,4,∴2CD =,4OD =,∴1BD ==,∴413OB OD BD =-=-=,∴()0,3B 故选:B .9.3【分析】此题考查单项式有关概念,根据单项式次数的定义来求解,解题的关键是需灵活掌握单项式的系数和次数的定义,单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【详解】单项式22a b -的次数是:213+=,故答案为:3.10【分析】利用二次根式的性质化简,再相减.==【点睛】本题考查了二次根式的减法,解题的关键是掌握二次根式的化简及性质.11.14c >【分析】本题主要考查了抛物线2y ax bx c =++与x 轴的交点问题,掌握抛物线2y ax bx c =++与x 轴没有交点与20x x c -+=没有实数根是解题的关键.由抛物线与x 轴没有交点,运用根的判别式列出关于c 的一元一次不等式求解即可.【详解】解:∵抛物线2y x x c =-+与x 轴没有交点,∴20x x c -+=没有实数根,∴2141140c c ∆=-⨯⨯=-<,14c >.故答案为:14c >.12.2(答案不唯一)【分析】本题考查了一次函数图象上点的坐标特征以及一次函数的性质,牢记“0k >,y 随x 的增大而增大;0k <,y 随x 的增大而减小”是解题的关键.利用一次函数图象上点的坐标特征,可得出1k b =+,由y 随x 的增大而减小,利用一次函数的性质,可得出0k <,若代入1k =-,求出b 值即可.【详解】解:∵直线y kx b =+(k 、b 是常数)经过点()1,1,∴1k b =+.∵y 随x 的增大而减小,∴0k <,当1k =-时,11b =-+,解得:2b =,∴b 的值可以是2.故答案为:2(答案不唯一)13.203π【分析】本题主要考查了旋转的性质、弧长公式等知识点,掌握弧长公式成为解题的关键.由旋转的性质可得60ABC A BC '∠=∠=︒,即120ABA '∠=︒,再根据点A 经过的路径长至少为以B 为圆心,以AB 为半径的圆弧的长即可解答.【详解】解:∵将该三角板绕点B 顺时针旋转,使点C 的对应点C '落在直线l 上,∴60ABC A BC '∠=∠=︒,即120ABA '∠=︒,∴点A 经过的路径长至少为12010201803ππ︒⋅⋅=︒.故答案为:203π.14.①②③【分析】如图:连接DC ,由圆周角定理可判定①;先说明BDE AGD ∠=∠、ADE DAC ∠=∠可得DF FG =、AF FD =,即AF FG =可判定②;先证明 ∽ADG BDA 可得AD GD BD AD=,即AD GDDG BG AD=+,代入数据可得AD =,然后运用勾股定理可得AG =,再结合AF FG =即可判定③;如图:假设半圆的圆心为O ,连接,,OD CO CD ,易得60AOD DOC ∠=∠=︒,从而证明,AOD ODC 是等边三角形,即ADCO 是菱形,然后得到30DAC OAC ∠=∠=︒,再解直角三角形可得DG =ADG S = 【详解】解:如图:连接DC ,∵D 是 AC 的中点,∴ AD DC =,∴ABD DAC ∠=∠,即①正确;∵AB 是直径,∴90ADB ∠=︒,∴90DAC AGD ∠+∠=︒,∵DE AB⊥∴90BDE ABD Ð+Ð=°,∵ABD DAC ∠=∠,∴BDE AGD ∠=∠,∴DF FG =,∵90BDE ABD Ð+Ð=°,90BDE ADE ∠+∠=︒,∴ADE ABD ∠=∠,∵ABD DAC ∠=∠,∴ADE DAC ∠=∠,∴AF FD =,∴AF FG =,即②正确;在ADG △和BDA △,90ADG BDA DAG DBA ∠=∠=︒⎧⎨∠=∠⎩,∴ ∽ADG BDA ,∴AD GD BD AD =,即AD GD DG BG AD =+,∴223AD AD=+,即AD =∴AG ==∵AF FG =,∴12FG AG ==如图:假设半圆的圆心为O ,连接,,OD CO CD ,∵ 2BD AD =,6AB =,D 是AC 的中点,∴ 1,3AD DC AB ==∴60AOD DOC ∠=∠=︒,∵OA OD OC ==,∴,AOD ODC 是等边三角形,∴6OA AD CD OC OD =====,即ADCO 是菱形,∴1302DAC OAC DAO ∠=∠=∠=︒,∵90ADB ∠=︒,∴tan tan 30DG DAC AD ∠=︒=6DG =,解得:DG =∴11622ADG S AD DG =⋅=⨯⨯= ,∵AF FG=∴12DFG ADG S S == ,即④错误.故答案为:①②③.【点睛】本题主要考查了圆周角定理、解直角三角形、相似三角形的判定与性质、勾股定理、菱形的判定与性质、等腰三角形的判定与性质等知识点,灵活运用相关知识成为解题的关键.15.2x ,2【分析】本题考查了分式的化简求值问题,先算分式的减法运算,再代入求值即可.【详解】解:原式()23222222x x x x x x x --===--∵x =,∴原式2=16.13【分析】本题主要考查列表法与树状图法、概率公式等知识点,熟练掌握列表法与树状图法以及概率公式是解答本题的关键.先列表确定出所有等可能的结果数以及这对双胞胎姐妹被分到同一个班的结果数,然后再利用概率公式计算即可.【详解】解:列表如下:A B CA A ,A A ,B A ,CB B ,A B ,B B ,CC C ,A C ,B C ,C共有9种等可能的结果,其中这对双胞胎姐妹被分到同一个班的结果有3种,所以这对双胞胎姐妹被分到同一个班的概率为3193=.17.共33人合伙买金,金价为9800钱【分析】设共x 人合伙买金,金价为y 钱,根据“每人出400钱,会剩余3400钱;每人出300钱,会剩余100钱”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论.【详解】解:设共x 人合伙买金,金价为y 钱,依题意得:4003400300100x y x y -=⎧⎨-=⎩,解得:339800x y =⎧⎨=⎩.答:共33人合伙买金,金价为9800钱.【点睛】本题考查了二元-次方程组的应用以及数学常识,找准等量关系,正确列出二元一次方程组是解题的关键.18.证明见解析.【分析】本题考查全等三角形的判定与性质、平行四边形的判定及矩形的判定,熟练掌握判定定理是解题关键.利用SAS 可证明AOD BOC ≌△△,得出AD BC =,根据90A B ∠=∠=︒得出AD BC ∥,即可证明四边形ABCD 是平行四边形,进而根据有一个角是直角的平行四边形是矩形即可证明四边形ABCD 是矩形.【详解】证明:∵O 是边AB 的中点,∴OA OB =,在AOD △和BOC 中,90A B OA OB AOD BOC ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩,∴AOD BOC ≌△△,∴AD BC =,∵90A B ∠=∠=︒,∴AD BC ∥,∴四边形ABCD 是平行四边形,∵90A B ∠=∠=︒,∴四边形ABCD 是矩形.19.(1)8.3(2)①>;②估计其中对食堂“非常满意”的学生人数为360人【分析】(1)由题意知,高中部评分的中位数为第1011,位数的平均数,即8.28.42m +=,计算求解即可;(1)①利用中位数进行决策即可;②根据4580020+⨯,计算求解即可.【详解】(1)解:由题意知,高中部评分的中位数为第1011,位数的平均数,即8.28.48.32m +==,故答案为:8.3;(2)①解:由题意知,初中部评分的中位数为8.5,高中部评分的中位数为8.3,∴a b >,故答案为:>;②解:∵45 80036020+⨯=,∴估计其中对食堂“非常满意”的学生人数为360人.【点睛】本题考查了条形统计图,中位数,利用中位数进行决策,用样本估计总体.熟练掌握条形统计图,中位数,利用中位数进行决策,用样本估计总体是解题的关键.20.(1)见解析(2)见解析(3)见解析【分析】本题考查网格作图、设计图案、轴对称的性质、平移的性质等知识点,根据轴对称的性质、平移的性质作图是解题的关键.(1)根据轴对称的性质、平移的性质作出面积为2四边形ABCD即可.(2)根据轴对称的性质、平移的性质作出面积为3四边形ABCD即可.(3)根据轴对称的性质、平移的性质作出面积为4四边形ABCD即可.【详解】(1)解:如图①:四边形ABCD即为所求;(不唯一).(2)解:如图②:四边形ABCD即为所求;(不唯一).(3)解:如图③:四边形ABCD 即为所求;(不唯一).21.(1)15(2)11902125y x x ⎛⎫=+≤≤ ⎪⎝⎭(3)没有超速【分析】本题考查了一次函数的应用、一次函数的图像、求函数解析式等知识点,掌握待定系数法求函数关系式是解题的关键.(1)由题意可得:当以平均时速为100/千米时行驶时,a 小时路程为20千米,据此即可解答;(2)利用待定系数法求解即可;(3)求出先匀速行驶112小时的速度,据此即可解答.【详解】(1)解:由题意可得:10020a =,解得:15a =.故答案为:15.(2)解:设当11125x ≤≤时,y 与x 之间的函数关系式为()0y kx b k =+≠,则:11761205k b k b ⎧+=⎪⎪⎨⎪+=⎪⎩,解得:902k b =⎧⎨=⎩,∴11902125y x x ⎛⎫=+≤≤ ⎪⎝⎭.(3)解:当112x =时,19029.512y =⨯+=,∴先匀速行驶112小时的速度为:19.5114/12÷=(千米时),∵114120<,∴辆汽车减速前没有超速.22.问题解决:(1)见解析(2)30,32;方法应用:线段MN【分析】(1)过点C 、M 分别作MN 、BC 的平行线,并交于点P ,作射线AP ,根据平行四边形性质证明结论即可;(2)先证明30CAP MPA Ð=Ð=°,根据垂线段最短求出最小值;(3)过点D 、M 分别作MN 、ED 的平行线,并交于点H ,作射线AH ,连接AD ,求出15MAH Ð=°,进而得45DAH ∠=︒,利用垂线段最短求出即可.【详解】解:问题解决:(1)证明:过点C 、M 分别作MN 、BC 的平行线,并交于点P ,作射线AP ,∴四边形MNCP 是平行四边形,NC MP MN PC\==,AM NC= AM MP ∴=;(2)在等边ABC 中,60ACB ∠=︒,MP CN∥60PMC ACB \Ð=Ð=°AM MP= 30CAP MPA \Ð=Ð=°;当CP AP ⊥时,CP 最小,此时MN 最小,在Rt ACP 中,3,30AC CAP =Ð=°13322CP \=´=,∴线段MN 长度的最小值为32;方法应用:过点D 、M 分别作MN 、ED 的平行线,并交于点H ,作射线AH ,连接AD ,∴四边形MNDH 是平行四边形,,ND MH MN DH MH ED\==,∥AM ND= AM MH ∴=,四边形BCDE 是矩形,,90BC ED BCD \Ð=°∥BC MH\∥30ACB CMH \Ð=Ð=°AM MH= 15MAH \Ð=°3m,120AC CD ACD ACB BCD ==Ð=Ð+Ð=°30DAC ∴∠=︒45DAH ∴∠=︒∴当DH AH ⊥时,DH 最小,此时MN 最小,作CR AD ⊥于点R ,在Rt ACR 中,3,30AC CAR =Ð=°13322CR \=´=,AR \2AD AR \==在Rt ADH 中,45AD DAH =Ð=°DH AH \=,∴线段MN 米.【点睛】本题考查了平行四边形的判定与性质、等腰三角形的判定与性质、三角形外角的性质,垂线段最短及矩形性质,熟练掌握相关性质是解题关键.23.(1)4(2)85(3)177(4)256或259【分析】本题考查等腰三角形性质,勾股定理,锐角三角函数,熟练掌握面积法是解题的关键;(1)根据等腰三角形三线合一性质,利用勾股定理即可求解;(2)利用面积法三角形面积相等即可;(3)设AP x =,则BD x =,6CD x =-,过点D 作DH AC ⊥于Q,根据AQ CQ AC +=,建立方程;即可求解;(4)第一种情况,M ,N 在AC 异侧时,设MQ m =,3NQ m =,则4AN m =,证明CDE ANQ ∽,得到CE CD NQ AQ=,即可求解;第二种情况,当M ,N 在AC 同侧,设CD x =,则35CH x =,45DH x =,3425AH x =⨯,求得3345525x x +⨯=,解方程即可求解;【详解】(1)解:根据题意可知: 5AB AC ==,ABC ∴ 为等腰三角形,故点D 是边BC 的中点时,AD BC ⊥;在Rt ADC 中,4AD ====;(2)根据题意作DH AC ⊥,如图所示;当4BD =时,则2CD =,设点D 到直线AC 的距离为DH h =,1124522ACD S h =⨯⨯=⨯⨯ ,解得:85h =;(3)如图,当NP AC ⊥时,点M 落在AC 上,设AP x =,则BD x =,6CD x =-,过点D 作DH AC ⊥于Q 则()33655CQ CD x ==-,()44655DQ CD x ==-()44655AQ DQ CD x ===-,AQ CQ AC += ,()()3466555x x ∴-+-=解得:177x =故177=AP ,所以正方形APMN 的边长为177;(4)如图,M ,N 在AC 异侧时;设MQ m =,3NQ m =,则4AN m=ANQ ∴ 三边的比值为3:4:5,AQN C ∴∠=∠,CAD C ∴∠=∠,∴CDE ANQ∽CE CDNQ AQ=∴5525326CD =⨯=当M ,N 在AC 同侧设MQ m =,则3AN AP m ==,2PQ m =,APO ∴三边比为2:AQD ∴三边比为2:设CD x =,则35CH x =,45DH x =,3425AH x =⨯3345525x x ∴+⨯=解得:259CD x ==综上所述:CD 的长为256或25924.(1)222y x x =+-(2)见详解(3)①9ADCE S =菱形;②3m ≤-或10m -≤<或04m <≤【分析】(1)将()2,2--代入22y x x c =++,解方程即可;(2)过点B 作BH AC ⊥于点H ,由题意得()()22,22,,22A m m m B m m m +----,则4A B BH y y m =-=,2A B AH x x m =-=,因此tan 2BH CAB AH∠==;(3)①记,AC DE 交于点M , ()25,22C m m m -+-,而对称轴为直线=1x -,则512m m -+=-,解得:12m =,则32AM =,3AC =,由tan 232DM DM CAB AM ∠===,得3DM =,则6DE =,因此9ADCE S =菱形;②分类讨论,数形结合,记抛物线顶点为点F ,则()1,3F --,故菱形中只包含在对称轴右侧的抛物线,当0m >时,符合题意;当m 继续变大,直至当直线CD 经过点F 时,符合题意,过点F 作FQ AC ⊥于点Q ,由CAD FCQ ∠=∠,得到()()2223215m m m +---=---,解得:4m =或4m =+(舍),故04m <≤,当4m >侧的抛物线,不符合题意;当0m <时,符合题意:当m 继续变小,直至点A 与点F 重合,此时1m =-,故10m -≤<;当m 继续变小,直线AE 经过点F 时,也符合题意, 过点F 作FQ AC ⊥于点Q ,同上可得,()222321m m m +---=--,解得:3m =-或1m =-(舍),当m 继续变小时,仍符合题意,因此3m ≤-,故m 的取值范围为:3m ≤-或10m -≤<或04m <≤【详解】(1)解:将()2,2--代入22y x x c =++,得:442c -+=-,解得:2x =-,∴抛物线表达式为:222y x x =+-;(2)解:过点B 作BH AC ⊥于点H ,则90AHB ∠=︒,由题意得:()()22,22,,22A m m m B m m m +----,∴4A B BH y y m =-=,2A B AH x x m =-=,∴在Rt AHB △中,4tan 22m BH CAB AH m∠===;(3)解:①如图,记,AC DE 交于点M ,由题意得,()25,22C m m m -+-,由2122b a -=-=-,得:对称轴为直线:=1x - ∵四边形ADCE 是菱形,∴点A 、C 关于DE 对称,2,2AC AM DE DM ==,∵DE 与此抛物线的对称轴重合,∴512m m -+=-,解得:12m =,∴12A x =,∴()13122AM =--=∴3AC =,∵tan 232DM DM CAB AM∠===,∴3DM =,则6DE =,∴192ADCE S DE AC =⨯=菱形;②记抛物线顶点为点F ,把=1x -代入222y x x =+-,得:=3y -,∴()1,3F --,∵抛物线在菱形ADCE 内部的点的纵坐标y 随x 的增大而增大,∴菱形中只包含在对称轴右侧的抛物线,当0m >时,如图,符合题意,当m 继续变大,直至当直线CD 经过点F 时,符合题意,如图:过点F 作FQ AC ⊥于点Q ,∵四边形ADCE 是菱形,∴DA DC =,∴CAD FCQ ∠=∠,∴tan tan 2FQ FCQ CAD CQ∠=∠==,∴()()2223215m m m +---=---,解得:4m =4m =(舍),∴04m <≤,当4m >当0m <时,如图,符合题意:当m 继续变小,直至点A 与点F 重合,此时1m =-,符合题意,如图:∴10m -≤<;当m 继续变小,直至直线AE 经过点F 时,也符合题意,如图:过点F 作FQ AC ⊥于点Q ,同上可得,tan 2FQ FAQ AQ ∠==,∴()222321m m m+---=--,解得:3m =-或1m =-(舍),当m 继续变小时,仍符合题意,如图:∴3m ≤-,综上所述,m 的取值范围为:3m ≤-或10m -≤<或04m <≤【点睛】本题考查了抛物线与几何的综合,菱形的性质,待定系数法求函数解析式,求锐角的正切值,正确理解题意,利用数形结合的思想,找出临界状态是解决本题的关键.。
选择题在平面直角坐标系中,点A(3, -2)关于x轴对称的点的坐标是:A. (-3, 2)B. (-3, -2)C. (3, 2)(正确答案)D. (2, 3)已知等腰三角形的两边长分别为3和5,则这个等腰三角形的周长为:A. 8B. 11C. 13(正确答案)D. 11或13函数y = 2x + 1与y = 2x - 3的图象:A. 平行且关于x轴对称B. 平行且关于y轴对称C. 相交且交点在y轴上D. 平行且关于直线y = x对称(正确答案)若关于x的一元二次方程x2 - 4x + m = 0有两个相等的实数根,则m的值为:A. -4B. 4(正确答案)C. 2D. -2下列计算正确的是:A. 3a + 2b = 5abB. a2 · a3 = a6C. (a2)3 = a6(正确答案)D. a6 ÷ a3 = a1已知圆的半径为r,圆心到直线l的距离为d,若直线l与圆相切,则:A. d > rB. d < rC. d = r(正确答案)D. d与r的大小关系不确定在比例尺为1:1000的地图上,测得某矩形区域的图上面积为2cm2,则该矩形区域的实际面积为:A. 2m2B. 20m2C. 200m2(正确答案)D. 2000m2下列不等式组中,解集为x > 2的是:A. {x | x > 1, x > 3}B. {x | x > 1, x ≤ 2}C. {x | x ≥ 2, x < 3}D. {x | x > 1, x > 2}(正确答案)若a、b、c为三角形的三边长,且满足(a - 5)2 + |b - 12| + c2 - 26c + 169 = 0,则此三角形的形状为:A. 等腰三角形B. 等边三角形C. 直角三角形(正确答案)D. 等腰直角三角形。
2023年长春市初中学业水平考试数学本试卷包括三道大题,共24道小题,共6页.全卷满分20分.考试时间为120分钟.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必将自己的姓名,准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内.2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试卷上答题无效.一、选择题(本大题共8小题,每小题3分,共24分)1. 实数a 、b 、c 、d 伍数轴上对应点位置如图所示,这四个数中绝对值最小的是( )A. aB. bC. cD. d【答案】B【解析】【分析】根据绝对值的意义即可判断出绝对值最小的数.【详解】解:由图可知,3a >,01b <<,01c <<,23d <<,比较四个数的绝对值排除a 和d ,根据绝对值的意义观察图形可知,c 离原点的距离大于b 离原点的距离,<b c \,\这四个数中绝对值最小的是b .故选:B 【点睛】本题考查了绝对值意义,解题的关键在于熟练掌握绝对值的意义,绝对值是指一个数在数轴上所对应点到原点的距离,离原点越近说明绝对值越小.2. 长春龙嘉国际机场T3A 航站楼设计创意为“鹤舞长春”,如图所示,航站楼的造型如仙鹤飞翔,蕴含了对吉春大地未来发展的美好愿景.本期工程按照满足2030年旅客吞吐量38000000人次目标设计的,其中38000000这个数用科学记数法表示为().的A. 80.3810´ B. 63.810´ C. 83.810´ D. 73.810´【答案】D【解析】【分析】根据科学记数法公式转换即可,科学记数法公式为:10n a ´,1<10a £,n 为整数的位数减1.【详解】解:738000000 3.810=´,故选:D .【点睛】本题考查了科学记数法;解题的关键是熟练掌握科学记数法的定义.3. 下列运算正确的是( )A. 32a a a-= B. 23a a a ×= C. ()325a a = D. 623a a a ¸=【答案】B【解析】【分析】根据同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项,逐项分析判断即可求解.【详解】A. 3a 与2a 不能合并,故该选项不正确,不符合题意;B. 23a a a ×=,故该选项正确,符合题意;C. ()326a a =,故该选项不正确,不符合题意;D. 624a a a ¸=,故该选项不正确,不符合题意;故选:B .【点睛】本题考查了同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项,熟练掌握以上运算法则是解题的关键.4. 下图是一个多面体的表面展开图,每个面都标注了数字.若多面体的底面是面③,则多面体的上面是( )A. 面①B. 面②C. 面⑤D. 面⑥【答案】C【解析】【分析】根据底面与多面体的上面是相对面,则形状相等,间隔1个长方形,且没有公共顶点,即可求解.【详解】解:依题意,多面体的底面是面③,则多面体的上面是面⑤,故选:C .【点睛】本题考查了长方体的表面展开图,熟练掌握基本几何体的展开图是解题的关键.5. 如图,工人师傅设计了一种测零件内径AB 的卡钳,卡钳交叉点O 为AA ¢、BB ¢的中点,只要量出A B ¢¢的长度,就可以道该零件内径AB 的长度.依据的数学基本事实是( )A. 两边及其夹角分别相等的两个三角形全等B. 两角及其夹边分别相等的两个三角形全等C. 两余直线被一组平行线所截,所的对应线段成比例D. 两点之间线段最短【答案】A【解析】【分析】根据题意易证()SAS AOB A OB ¢¢V V ≌,根据证明方法即可求解.【详解】解:O 为AA ¢、BB ¢的中点,OA OA \¢=,OB OB ¢=,AOB A OB ¢¢Ð=ÐQ (对顶角相等),\在AOB V 与A OB ¢¢△中,OA OA AOB A OB OB OB =ìïÐ=Ðíï=¢¢î¢,()SAS AOB A OB ¢¢\△≌△,AB A B ¢¢\=,故选:A .【点睛】本题考查了全等三角形的证明,正确使用全等三角形的证明方法是解题的关键.6. 学校开放日即将来临,负责布置的林老师打算从学校图书馆的顶楼拉出一条彩旗绳AB 到地面,如图所示.已彩旗绳与地面形成25°角(即25BAC Ð=°)、彩旗绳固定在地面的位置与图书馆相距32米(即32AC =米),则彩旗绳AB 的长度为( )A. 32sin 25°米B. 32cos 25°米C. 32sin 25°米D. 32cos 25°米【答案】D【解析】【分析】根据余弦值的概念即邻边与斜边之比,即可求出答案.【详解】解:Q AC 表示的是地面,BC 表示是图书馆,AC BC \^,ABC \V 为直角三角形,32cos 25cos 25AC AB \==°°(米).故选:D .【点睛】本题考查的是解直角三角形的应用,涉及到余弦值,解题的关键在于熟练掌握余弦值的概念.7. 如图,用直尺和圆规作MAN Ð的角平分线,根据作图痕迹,下列结论不一定正确的是( )A. AD AE= B. AD DF = C. DF EF = D. AF D E^【答案】B 【解析】【分析】根据作图可得,AD AE DF EF ==,进而逐项分析判断即可求解.【详解】解:根据作图可得,AD AE DF EF ==,故A ,C 正确;∴,A F 在DE 的垂直平分线上,∴AF D E ^,故D 选项正确,而DF EF =不一定成立,故B 选项错误,故选:B .【点睛】本题考查了作角平分线,垂直平分线的判定,熟练掌握基本作图是解题的关键.8. 如图,在平面直角坐标系中,点A 、B 在函数(0,0)k y k x x=>>的图象上,分别以A 、B 为圆心,1为半径作圆,当A e 与x 轴相切、B e 与y 轴相切时,连结AB ,AB =k 的值为( )A. 3B.C. 4D. 6【答案】C【解析】【分析】过点,A B 分别作,y x 轴的垂线,垂足分别为,E D ,,AE BD 交于点C ,得出B 的横坐标为1,A 的纵坐标为1,设(),1A k ,()1,B k ,则1,1AC k BC k =-=-,根据AB =【详解】解:如图所示,过点A B ,分别作y x ,轴的垂线,垂足分别为ED ,,AE BD ,交于点C ,依题意,B 的横坐标为1,A 的纵坐标为1,设(),1A k ,()1,B k ∴()1,1C ,则1,1AC k BC k =-=-,又∵90ACB Ð=°,AB =,∴()()(22211k k -+-=∴13k -=(负值已舍去)解得:4k =,故选:C .【点睛】本题考查了切线的性质,反比例函数的性质,勾股定理,掌握以上知识是解题的关键.二、填空题(本大题共6小题,每小题3分,共8分)9. 分解因式:21a -=____.【答案】()()11a a +-.【解析】【分析】利用平方差公式分解因式即可得到答案【详解】解:()()2111a a a -=+-.故答案为:()()11a a +-【点睛】本题考查的是利用平方差公式分解因式,掌握利用平方差公式分解因式是解题的关键.10. 若关于x 的方程220x x m -+=有两个不相等的实数根,则m 的取值范围是_________.【答案】1m <【解析】【分析】根据根的判别式求出2(2)41440m m D =--´´=->,再求出不等式的解集即可.【详解】解:Q 关于x 的方程220x x m -+=有两个不相等的实数根,2(2)41440m m \D =--´´=->解得:1m <,故答案为:1m <.【点睛】本题考查了根的判别式和解一元一次不等式,解题的关键是能熟记根的判别式的内容是解此题的关键,注意:已知一元二次方程20ax bx c ++=(,,a b c 为常数,0)a ¹,①当240b ac D =->时,方程有两个不相等的实数根,②当240b ac D =-=时,方程有两个相等的实数根,③当24<0b ac D =-时,方程没有实数根.11. 2023长春马拉松于5月21日在南岭体育场鸣枪开跑,某同学参加了7.5公里健康跑项目,他从起点开始以平均每分钟x 公里的速度跑了10分钟,此时他离健康跑终点的路程为__________公里.(用含x 的代数式表示)【答案】()7.510x -【解析】【分析】根据题意列出代数式即可.【详解】根据题意可得,他离健康跑终点的路程为()7.510x -.故答案为:()7.510x -.【点睛】此题考查了列代数式,解题的关键是读懂题意.12. 如图,ABC V 和A B C ¢¢¢V 是以点O 为位似中心的位似图形,点A 在线段OA ¢上.若12OA AA ¢=::,则ABC V 和A B C ¢¢¢V 的周长之比为__________.【答案】1:3【解析】【分析】根据位似图形的性质即可求出答案.【详解】解:12OA AA ¢=Q ::,:1:3OA OA ¢\=,设ABC V 周长为1l ,设A B C ¢¢¢V 周长为2l ,ABC QV 和A B C ¢¢¢V 是以点O 为位似中心的位似图形,1213l OA l OA \==¢.12:1:3l l \=.ABC \V 和A B C ¢¢¢V 的周长之比为1:3.故答案为:1:3.【点睛】本题考查了位似图形的性质,解题的关键在于熟练掌握位似图形性质.13. 如图,将正五边形纸片ABCDE 折叠,使点B 与点E 重合,折痕为AM ,展开后,再将纸片折叠,使边AB 落在线段AM 上,点B 的对应点为点B ¢,折痕为AF ,则AFB ¢Ð的大小为__________度.【答案】45【解析】【分析】根据题意求得正五边形的每一个内角为()5218101508-´°=°,根据折叠的性质求得,,BAM FAB ¢ÐÐ在AFB ¢V 中,根据三角形内角和定理即可求解.【详解】解:∵正五边形的每一个内角为()5218101508-´°=°,将正五边形纸片ABCDE 折叠,使点B 与点E 重合,折痕为AM ,则111085422BAM BAE Ð=Ð=´°=°,∵将纸片折叠,使边AB 落在线段AM 上,点B 的对应点为点B ¢,折痕为AF ,∴11542722FAB BAM ¢Ð=Ð=´°=°,108AB F B ¢Ð=Ð=°,在AFB ¢V 中,1801801082745AFB B FAB ¢¢Ð=°-Ð-Ð=°-°-°=°,故答案为:45.【点睛】本题考查了折叠的性质,正多边形的内角和的应用,熟练掌握折叠的性质是解题的关键.14. 2023年5月8日,C919商业首航完成——中国民商业运营国产大飞机正式起步.12时31分航班抵达北京首都机场,穿过隆重的“水门礼”(寓意“接风洗尘”、是国际民航中高级别的礼仪).如图①,在一次“水门礼”的预演中,两辆消防车面向飞机喷射水柱,喷射的两条水柱近似看作形状相同的地物线的一部分.如图②,当两辆消防车喷水口A 、B 的水平距离为80米时,两条水柱在物线的顶点H 处相遇,此时相遇点H 距地面20米,喷水口A 、B 距地面均为4米.若两辆消防车同时后退10米,两条水柱的形状及喷水口A ¢、B ¢到地面的距离均保持不变,则此时两条水柱相遇点H ¢距地面__________米.【答案】19【解析】【分析】根据题意求出原来抛物线的解析式,从而求得平移后的抛物线解析式,再令0x =求平移后的抛物线与y 轴的交点即可.【详解】解:由题意可知:()40,4A -、()40,4B 、()0,20H ,设抛物线解析式为:220y ax =+,将()40,4A -代入解析式220y ax =+,解得:1100a =-,220100x y \=-+,消防车同时后退10米,即抛物线220100x y =-+向左(右)平移10米,平移后的抛物线解析式为:()21020100x y +=-+,令0x =,解得:19y =,故答案为:19.【点睛】本题考查了待定系数法求抛物线解析式、函数图像的平移及坐标轴的交点;解题的关键是求得移动前后抛物线的解析式.三、解答题(本大题共10小题,共78分)15. 先化简.再求值:2(1)(1)a a a ++-,其中a =【答案】31a +1【解析】【分析】根据完全平方公式以及单项式乘以单项式进行化简,然后将字母的值代入进行计算即可求解.【详解】解:2(1)(1)a a a ++-2221a a a a =+++-31a =+当a =311==【点睛】本题考查了整式乘法的化简求值,实数的混合运算,熟练掌握完全平方公式以及单项式乘以单项式的运算法则是解题的关键.16. 班级联欢会上有一个抽奖活动,每位同学均参加一次抽奖,活动规则下:将三个完全相同的不透明纸杯倒置放在桌面上,每个杯子内放入一个彩蛋,彩蛋颜色分别为红色、红色、绿色.参加活动的同学先从中随机选中一个杯子,记录杯内彩蛋颜色后再将杯子倒置于桌面,重新打乱杯子的摆放位置,再从中随机选中一个杯子,记录杯内彩蛋颜色.若两次选中的彩蛋颜色不同则获一等奖,颜色相同则获二等奖.用画树状图(或列表)的方法,求某同学获一等奖的概率.【答案】49【解析】【分析】依题意画出树状图,运用概率公式求解即可.【详解】解:画树状图如下:共有9种可能,获一等奖即两次颜色不相同的可能有4种,则某同学获一等奖的概率为:49,答:某同学获一等奖的概率为49.【点睛】本题考查了树状图求概率,正确画出树状图是解题的关键.17. 随着中国网民规模突破10亿、博物馆美育不断向线上拓展.敦煌研究院顺势推出数字敦煌文化大使“伽瑶”,受到广大敦煌文化爱好者的好评.某工厂计划制作3000个“伽瑶”玩偶摆件,为了尽快完成任务,实际平均每天完成的数量是原计划的1.5倍,结果提前5天完成任务.问原计划平均每天制作多少个摆件?【答案】原计划平均每天制作200个摆件.【解析】【分析】设原计划平均每天制作x 个,根据题意列出方程,解方程即可求解.【详解】解:设原计划平均每天制作x 个,根据题意得,3000300051.5x x=+解得:200x =经检验,200x =是原方程的解,且符合题意,答:原计划平均每天制作200个摆件.【点睛】本题考查了分式方程的应用,根据题意列出方程是解题的关键.18. 将两个完全相同的含有30°角的直角三角板在同一平面内按如图所示位置摆放.点A ,E ,B ,D 依次在同一直线上,连结AF 、CD .(1)求证:四边形AFDC 是平行四边形;(2)已知6cm BC =,当四边形AFDC 是菱形时.AD 的长为__________cm .【答案】(1)见解析;(2)18【解析】【分析】(1)由题意可知ACB DFE △≌△易得AC DF =,30CAB FDE Ð=Ð=°即AC DF ∥,依据一组对边平行且相等的四边形是平行四边形可证明;(2)如图,在Rt ACB △中,由30°角所对的直角边等于斜边的一半和直角三角形锐角互余易得212cm AB BC ==,60ABC Ð=°;由菱形得对角线平分对角得30CDA FDA Ð=Ð=°,再由三角形外角和易证BCD CDA Ð=Ð即可得6cm BC BD ==,最后由AD AB BD =+求解即可.【小问1详解】证明:由题意可知ACB DFE △≌△,AC DF =∴,30CAB FDE Ð=Ð=°,AC DF \∥,\四边形AFDC 地平行四边形;【小问2详解】如图,在Rt ACB △中,90ACB Ð=°,30CAB Ð=°,6cm BC =,212cm AB BC \==,60ABC Ð=°,四边形AFDC 是菱形,AD \平分CDF Ð,30CDA FDA \Ð=Ð=°,ABC CDA BCD Ð=Ð+ÐQ ,603030BCD ABC CDA \Ð=Ð-Ð=°-°=°,BCD CDA \Ð=Ð,6cm BC BD \==,18cm AD AB BD \=+=,故答案为:18.【点睛】本题考查了全等三角形的性质,平行四边形的判定,菱形的性质,30°角所对的直角边等于斜边的一半和直角三角形锐角互余,三角形外角及等角对等边;解题的关键是熟练掌握相关知识综合求解.19. 近年来,肥胖经成为影响人们身体健康的重要因素.目前,国际上常用身体质量指数(Body Mass Index ,缩写BMI )来衡量人体胖瘦程度以及是否健康,其计算公式是22kg BMI=m 体重(单位:)身高(位置:)例如:某人身高1.60m ,体重60kg ,则他的260BMI 23.41.60=».中国成人的BMI 数值标准为:BMI<18.5为偏瘦;18.5BMI 24£<为正常;24BMI 28£<为偏胖;BMI 28³为肥胖.某公司为了解员工的健康情况,随机抽取了一部分员工的体检数据,通过计算得到他们的BMI 值并绘制了如下两幅不完整的统计图.根据以上信息回答下列问题:(1)补全条形统计图;(2)请估计该公司200名员工中属于偏胖和肥胖的总人数;(3)基于上述统计结果,公司建议每个人制定健身计划.员工小张身高1.70m ,BMI 值为27,他想通过健身减重使自己的BMI 值达到正常,则他的体重至少需要减掉_________kg .(结果精确到1kg )【答案】(1)见解析(2)110人(3)9【解析】【分析】(1)根据属于正常的人数除以占比得出抽取的人数,结合条形统计图求得属于偏胖的人数,进而补全统计图即可求解;(2)用属于偏胖和肥胖的占比乘以200即可求解;(3)设小张体重需要减掉kg x ,根据BMI 计算公式,列出不等式,解不等式即可求解.小问1详解】抽取了735%20¸=人,属于偏胖的人数为:202738---=,补全统计图如图所示,【【小问2详解】8320011020+´=(人)【小问3详解】设小张体重需要减掉kg x ,依题意,227241.70x -<解得:8.67x >,答:他的体重至少需要减掉9kg ,故答案为:9.【点睛】本题考查了条形统计图与扇形统计图信息关联,样本估计总体,一元一次不等式的应用,根据统计图表获取信息是解题的关键.20. 图①、图②、图③均是55´的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点.点A 、B 均在格点上,只用无刻度的直尺,分别在给定的网格中按下列要求作ABC V ,点C 在格点上.(1)在图①中,ABC V 的面积为92;(2)在图②中,ABC V 的面积为5(3)在图③中,ABC V 是面积为52的钝角三角形.【答案】(1)见解析 (2)见解析(3)见解析【解析】【分析】(1)以3AB =为底,设AB 边上的高为h ,依题意得19·22ABC S AB h ==V ,解得3h =,即点C 在AB 上方且到AB 距离为3个单位的线段上的格点即可;(2)由网格可知,AB ==AB AB 边上的高为h ,依题意得1·52ABC S AB h ==V ,解得h =,将AB 绕A 或B 旋转90°,过线段的另一个端点作AB 的平行线,与网格格点的交点即为点C ;(3)作BD AB ==,过点D 作CD AB ∥,交于格点C ,连接A 、B 、C 即可.【小问1详解】解:如图所示,以3AB =为底,设AB 边上的高为h ,依题意得:19·22ABC S AB h ==V 解得:3h =即点C 在AB 上方且到AB 距离为3个单位的线段上的格点即可,答案不唯一;【小问2详解】由网格可知,AB ==以AB =为底,设AB 边上的高为h ,依题意得:1·52ABC S AB h ==V解得:h =将AB 绕A 或B 旋转90°,过线段的另一个端点作AB 的平行线,与网格格点的交点即为点C ,答案不唯一,【小问3详解】如图所示,作BD AB ==,过点D 作CD AB ∥,交于格点C ,由网格可知,BD AB ===,AD =,∴ABD △是直角三角形,且AB BD^∵CD AB∥∴15·22ABC S AB BD ==V .【点睛】本题考查了网格作图,勾股定理求线段长度,与三角形的高的有关计算;解题的关键是熟练利用网格作平行线或垂直.21. 甲、乙两个相约登山,他们同时从入口处出发,甲步行登山到山顶,乙先步行15分钟到缆车站,再乘坐缆车到达山顶.甲、乙距山脚的垂直高度y (米)与甲登山的时间x (分钟)之间的函数图象如图所示.(1)当1540x ££时,求乙距山脚的垂直高度y 与x 之间的函数关系式;(2)求乙乘坐缆车上升过程中,和甲处于同一高度时距山脚的垂直高度.【答案】(1)12180y x =-(2)180【解析】【分析】(1)待定系数法求解析式即可求解;(2)求得甲距山脚的垂直高度y 与x 之间的函数关系式为460y x =+()2560x ££,联立12180y x =-()1540x ££,即可求解.【小问1详解】解:设乙距山脚垂直高度y 与x 之间的函数关系式为y kx b =+,将()15,0,()40,300代入得,15040300k b k b +=ìí+=î,解得:12180k b =ìí=-î,∴12180y x =-()1540x ££;【小问2详解】设甲距山脚的垂直高度y 与x 之间的函数关系式为11y k x b =+()2560x ££将点()()25,16060,300,代入得,11112516060300k b k b +=ìí+=î解得:11460k b =ìí=î,∴460y x =+()2560x ££;联立12180460y x y x =-ìí=+î解得:30180x y =ìí=î∴乙乘坐缆车上升过程中,和甲处于同一高度时距山脚的垂直高度为180米【点睛】本题考查了一次函数的应用,熟练掌握待定系数法求解析式是解题的关键.22. 【感知】如图①,点A 、B 、P 均在O e 上,90AOB Ð=°,则锐角APB Ð的大小为__________度.的【探究】小明遇到这样一个问题:如图②,O e 是等边三角形ABC 的外接圆,点P 在 AC 上(点P 不与点A 、C 重合),连结PA 、PB 、PC .求证:PB PA PC =+.小明发现,延长PA 至点E ,使AE PC =,连结BE ,通过证明PBC EBA ≌△△,可推得PBE 是等边三角形,进而得证.下面是小明的部分证明过程:证明:延长PA 至点E ,使AE PC =,连结BE ,Q 四边形ABCP 是O e 的内接四边形,180BAP BCP \Ð+Ð=°.180BAP BAE Ð+Ð=°Q ,BCP BAE \Ð=Ð.ABC QV 是等边三角形.BA BC \=,(SAS)PBC EBA \V V ≌请你补全余下的证明过程.【应用】如图③,O e 是ABC V 的外接圆,90ABC AB BC Ð=°=,,点P 在O e 上,且点P 与点B 在AC 的两侧,连结PA 、PB 、PC .若PB =,则PB PC 的值为__________.【答案】感知:45【解析】【分析】感知:由圆周角定理即可求解;探究:延长PA 至点E ,使AE PC =,连结BE ,通过证明(SAS)PBC EBA V V ≌,可推得PBE 是等边三角形,进而得证;应用:延长PA 至点E ,使AE PC =,连结BE ,通过证明(SAS)PBC EBA V V ≌得,可推得PBE 是等腰直角三角形,结合PE PA PC =+与PE =可得3PC PA =,代入PB PC即可求解.【详解】感知:由圆周角定理可得1245APB AOB Ð=Ð=°,故答案为:45;探究:证明:延长PA 至点E ,使AE PC =,连结BE ,Q 四边形ABCP 是O e 的内接四边形,180BAP BCP \Ð+Ð=°.180BAP BAE Ð+Ð=°Q ,BCP BAE \Ð=Ð.ABC QV 是等边三角形.BA BC \=,(SAS)PBC EBA \V V ≌,∴PB EB =,PBC EBA Ð=Ð,60EBA ABP PBC ABP ABC \Ð+Ð=Ð+Ð=Ð=°,PBE \V 是等边三角形,PB PE \=,PB PE PA AE PA PC \==+=+,即PB PA PC =+;应用:延长PA 至点E ,使AE PC =,连结BE ,Q 四边形ABCP 是O e 的内接四边形,180BAP BCP \Ð+Ð=°.180BAP BAE Ð+Ð=°Q ,BCP BAE \Ð=Ð.AB CB =Q ,(SAS)PBC EBA \V V ≌,∴PB EB =,PBC EBA Ð=Ð,90EBA ABP PBC ABP ABC \Ð+Ð=Ð+Ð=Ð=°,PBE \V 是等腰直角三角形,222PB BE PE \+=,222PB PE \=,即PE =,PE PA AE PA PC =+=+Q ,PA PC \+=,PB =Q ,4PA PC PA \+==,3PC PA \=,PB PC \==.【点睛】本题考查了圆周角定理,圆内接四边形对角互补,邻补角,全等三角形的判定和性质,等边三角形、等腰直角三角形的判定和性质,勾股定理解直角三角形;解题的关键是做辅助线构造PBC EBA V V ≌,进行转换求解.23. 如图①.在矩形ABCD .35AB AD ==,,点E 在边BC 上,且2BE =.动点P 从点E 出发,沿折线EB BA AD --以每秒1个单位长度的速度运动,作90PEQ Ð=°,EQ 交边AD 或边DC 于点Q ,连续PQ .当点Q 与点C 重合时,点P 停止运动.设点P 的运动时间为t 秒.(0t >)(1)当点P 和点B 重合时,线段PQ 的长为__________;(2)当点Q 和点D 重合时,求tan PQE Ð;(3)当点P 在边AD 上运动时,PQE V 的形状始终是等腰直角三角形.如图②.请说明理由;(4)作点E 关于直线PQ 的对称点F ,连接PF 、QF ,当四边形EPFQ 和矩形ABCD 重叠部分图形为轴对称四边形时,直接写出t 的取值范围.【答案】(1(2)23(3)见解析(4)0t <£176t =或7t =【解析】【分析】(1)证明四边形ABEQ 是矩形,进而在Rt QBE △中,勾股定理即可求解.(2)证明PBE ECD V V ∽,得出2tan 3PE BE PQE DE CD Ð===;(3)过点P 作PH BC ^于点H ,证明PHE ECQ V V ≌得出PE QE =,即可得出结论(4)分三种情况讨论,①如图所示,当点P 在BE 上时,②当P 点在AB 上时,当,F A 重合时符合题意,此时如图,③当点P 在AD 上,当,F D 重合时,此时Q 与点C 重合,则PFQE 是正方形,即可求解.【小问1详解】解:如图所示,连接BQ ,∵四边形ABCD 是矩形∴90BAQ ABE Ð=Ð=°∵90PEQ Ð=°,∴四边形ABEQ 是矩形,当点P 和点B 重合时,∴3QE AB ==,2BE =在Rt QBE △中,BQ ===,.【小问2详解】如图所示,∵90PEQ Ð=°,90PBE ECD Ð=Ð=°,∴1290,2390Ð+Ð=°Ð+Ð=°,∴13Ð=Ð∴PBE ECD V V ∽,∴PE BE DE CD=,∵2BE =,3CD AB ==,∴2tan 3PE BE PQE DE CD Ð===;【小问3详解】如图所示,过点P 作PH BC ^于点H ,∵90PEQ Ð=°,90PHE ECQ Ð=Ð=°,∴1290,2390Ð+Ð=°Ð+Ð=°,则四边形ABHP 是矩形,∴PH AB =3=又∵523EC BC BE =-=-=∴PH EC =,∴PHE ECQV ≌∴PE QE=∴PQE V 是等腰直角三角形;【小问4详解】①如图所示,当点P 在BE 上时,∵3,2QE QF AQ BE ====,在Rt AQF △中,AF ===则3BF =∵PE t =,则2BP t =-,PF PE t ==,Rt PBF V 中,222PF PB FB =+,∴(()22232t t =+-解得:t =当t <F 在矩形内部,符合题意,∴0t <£符合题意,②当P 点在AB 上时,当,F A 重合时符合题意,此时如图,在则2PB t BE t =-=-,PE =()325AP AB PB t t =-=--=-,在Rt PBE △中,222PE PB BE =+()()222522t t -=-+,解得:176t =,③当点P 在AD 上,当,F D 重合时,此时Q 与点C 重合,则PFQE 是正方形,此时2327t =++=综上所述,0t <£或176t =或7t =.【点睛】本题考查了矩形的性质,正方形的性质与判定,勾股定理,求正切,轴对称的性质,分类讨论,分别画出图形,数形结合是解题的关键.24. 在平面直角坐标系中,点O 为坐标原点,抛物线22y x bx =-++(b 是常数)经过点(2,2).点A 的坐标为(,0)m ,点B 在该抛物线上,横坐标为1m -.其中0m <.(1)求该抛物线对应的函数表达式及顶点坐标;(2)当点B 在x 轴上时,求点A 的坐标;(3)该抛物线与x 轴的左交点为P ,当抛物线在点P 和点B 之间的部分(包括P 、B 两点)的最高点与最低点的纵坐标之差为2m -时,求m 的值.(4)当点B 在x 轴上方时,过点B 作BC y ^轴于点C ,连结AC 、BO .若四边形AOBC 的边和抛物线有两个交点(不包括四边形AOBC 的顶点),设这两个交点分别为点E 、点F ,线段BO 的中点为D .当以点C 、E 、O 、D (或以点C 、F 、O 、D )为顶点的四边形的面积是四边形AOBC 面积的一半时,直接写出所有满足条件的m 的值.【答案】(1)222y x x =-++;顶点坐标为()1,3(2)()A(3)1m =-或2m =-(4)2m =-+或2m =-或12m =-【解析】【分析】(1)将点(2,2)代入抛物线解析式,待定系数法即可求解;(2)当0y =时,2220x x -++=,求得抛物线与x 轴的交点坐标,根据抛物线上的点B 在x 轴上时,横坐标为1m -.其中0m <,得出m =,即可求解;(3)①如图所示,当111m <-<,即0m <<时,②当11m -³m £时,分别画出图形,根据最高点与最低点的纵坐标之差为2m -,建立方程,解方程即可求解;(4)根据B 在x 轴的上方,得出m <<E 是AC 的中点,②同理当F 为AO 的中点时,③12AOC CDF S S =V V ,根据题意分别得出方程,解方程即可求解.【小问1详解】解:将点(2,2)代入抛物线22y x bx =-++,得,2422b =-++解得:2b =∴抛物线解析式为222y x x =-++;∵222y x x =-++()213x =--+,∴顶点坐标为()1,3,【小问2详解】解:由222y x x =-++,当0y =时,2220x x -++=,解得:1211x x =-=+,∵抛物线上的点B 在x 轴上时,横坐标为1m -.其中0m <.∴1m 1->∴11m -=+解得:m =,∵点A 的坐标为(,0)m ,∴()A ;【小问3详解】①如图所示,当111m <-<+,即0m <<时,抛物线在点P 和点B 之间的部分(包括P 、B 两点)的最高点为顶点,最低点为点P ,∵顶点坐标为()1,3,()1P 则纵坐标之差为303-=依题意,32m=-解得:1m =-;②当11m -³+m £时,∵()()()21,1212B m m m ---+-+,即()21,3B m m --+,依题意,()2332m m --+=-,解得:2m =-或1m =(舍去),综上所述,1m =-或2m =-;【小问4详解】解:如图所示,∵B 在x 轴的上方,∴111m -<-<+∴m <<∵以点C 、E 、O 、D 为顶点的四边形的面积是四边形AOBC 面积的一半,线段BO 的中点为D ∴BCD CODS S =V V ∵AOBC AOC BOC S S S =+V V ,BOC BCD CODS S S =+V V V ①当E 是AC 的中点,如图所示则2AOBC CEOD S S =,∴23,22m m E æö-+ç÷èø代入222y x x =-++,即22322222m m m -+æö=-+´+ç÷èø,解得:2m =-(舍去)或2m =-+;②同理当F 为AO 的中点时,如图所示,ACF CFO S S =V V ,BCD COD S S =V V ,则点C 、F 、O 、D 为顶点的四边形的面积是四边形AOBC 面积的一半,∴12m =-,解得:2m =-,③如图所示,设BOC S S =V ,则12DBC S S =V ,∵以点C 、E 、O 、D 为顶点的四边形的面积是四边形AOBC 面积的一半,线段BO 的中点为D∴12CDF FDB AOC S S S S +=+V V V 即1122CDF CDF AOC S S S S S +=-+V V V ∴12AOC CDF S S =V V , ∴CF AO =,∴()2,3F m m --+,∵,B F 关于1x =对称,∴112m m -+-=,解得:12m =-,综上所述,2m =-或2m =-或12m =-.【点睛】本题考查了二次函数综合运用,二次函数的性质,面积问题,根据题意画出图形,分类讨论,熟练掌握二次函数的性质是解题的关键.。
2008年吉林省长春市初中学业水平测试数学试题一、选择题(每小题3分,共分39,每小题给出4个答案,其中只有一个正确,把所选答案的编号写在题目后面的括号内)1、如图,是北京奥运会自行车比赛项目标志,则图中两轮所在圆的位置关系是【 】A .内含B .相交C .相切D .外离 2、化简(-3)2的结果是【 】A.3B.-3C.±3 D .93、如果2是方程02=-c x 的一个根,那么c 的值是 【 】A .4B .-4C .2D .-24、下列成语所描述的事件是必然发生的是 【 】A. 水中捞月B. 拔苗助长C. 守株待免D. 瓮中捉鳖5、如图,AB 是⊙O 的直径,弦CD ⊥AB,垂足为E,如果AB=20,CD=16, 那么线段OE 的长为【 】 A 、10 B 、8 C 、6 D 、46、抛物线()223y x =++的顶点坐标是 【 】A.(-2,3)B.(2,3)C.(-2,-3)D.(2,-3) 7、观察下列银行标志,从图案看是中心对称图形的有( )个A 、1个B 、2个C 、3个D 、4个 8、二次函数362+-=x kx y 的图象与x 轴有交点,则k 的取值范围是【 】A .3<kB .03≠<k k 且C .3≤kD .03≠≤k k 且9、某校九年级(1)班50名学生中有20名团员,他们都积极报名参加学校开展的“文明劝导活动”。
根据要求,该班从团员中随机抽取1名参加,则该班团员京京被抽到的概率是 【 】 A .150B .12C .120D . 2510、在△ABC 中,已知∠C=90°,BC=3,AC=4,则它的内切圆半径是【 】A .23B .1C .2D . 3211、如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型.若圆的半径为r ,扇形的半径为R ,扇形的圆心角等于90°,则r 与R 之间的关系是【 】 A 、R =2r ; B 、3R r =; C 、R =3r ; D 、R =4r .12.已知反比例函数xk y =的图象如下右图所示,则二次函数222k x kx y +-=的图象大致为【 】13、如图,在△ABC 中,BC =4,以点A 为圆心,2为半径的⊙A 与BC 相切于点D ,交AB 于E ,交AC 于F 点P 是⊙A 上一点,且∠EPF =40°,则图中阴影部分的面积是【 】94π-.984π-C .948πD .988π- 二、填空题(每小题3分,共15分,请把答案填在横线上) 14、点(4,-3)关于原点对称的点的坐标是 _____________15、⊙O 的半径为3cm ,点M 是⊙O 外一点,OM =4 cm ,则以M 为圆心且与⊙O 相切的圆的半径是 cm. 16、将抛物线2(0)y ax bx c a =++≠向下平移3个单位,再向左平移4个单位得到抛物线2245y x x =--+,则原抛物线的顶点坐标是 。
一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 3的相反数是()A.﹣3 B.﹣13C.13D.3【答案】A【解析】试题分析: 3的相反数是﹣3故选A.考点:相反数.2.据统计,2016年长春市接待旅游人数约人次,这个数用科学记数法表示为()A.67×106B.×105C.×107D.×108【答案】C考点:科学记数法.3.下列图形中,可以是正方体表面展开图的是()A.B.C.D.【答案】D【解析】试题分析:下列图形中,可以是正方体表面展开图的是,故选D考点:几何体的展开图.4.不等式组10251xx-≤⎧⎨-<⎩的解集为()A.x<﹣2 B.x≤﹣1 C.x≤1 D.x<3【答案】C【解析】试题分析:10 251 xx-≤⎧⎨-<⎩①②解不等式①得:x≤1,解不等式②得:x<3,∴不等式组的解集为x≤1,故选C.考点:解一元一次不等式组.5.如图,在△ABC中,点D在AB上,点E在AC上,DE∥BC.若∠A=62°,∠AED=54°,则∠B的大小为()A.54° B.62° C.64° D.74°【答案】C考点:1.平行线的性质;2.三角形的内角和.6.如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A.3a+2b B.3a+4b C.6a+2b D.6a+4b【答案】A【解析】试题分析:依题意有3a﹣2b+2b×2=3a﹣2b+4b=3a+2b.故这块矩形较长的边长为3a+2b.故选A.考点:列代数式.7.如图,点A,B,C在⊙O上,∠ABC=29°,过点C作⊙O的切线交OA的延长线于点D,则∠D的大小为()A.29° B.32° C.42° D.58°【答案】B考点:1.切线的性质;2.等腰三角形的性质;3.三角形的外角的性质;4.三角形的内角和定理.8.如图,在平面直角坐标系中,平行四边形OABC的顶点A的坐标为(﹣4,0),顶点B在第二象限,∠BAO=60°,BC交y轴于点D,DB:DC=3:1.若函数y=kx(k>0,x>0)的图象经过点C,则k的值为()A.33B.32C.233D.3【答案】D【解析】试题分析:∵四边形ABCD是平行四边形,点A的坐标为(﹣4,0),∴BC=4,∵DB:DC=3:1,∴B(﹣3,OD),C(1,OD),∵∠BAO=60°,∴∠COD=30°,∴OD=3,∴C(1,3),∴k=3,故选D.考点:1.平行四边形的性质;2.反比例函数图象上点的坐标特征.二、填空题(每题3分,满分18分,将答案填在答题纸上)9.计算:2×3= .【答案】6【解析】试题分析:2×3=6;考点:二次根式的乘法.10.若关于x的一元二次方程x2+4x+a=0有两个相等的实数根,则a的值是.【答案】4考点:根的判别式.11.如图,直线a∥b∥c,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.若AB:BC=1:2,DE=3,则EF的长为.【答案】6【解析】试题分析:∵a∥b∥c,∴AB DEBC EF=,∴132EF=,∴EF=6.考点:平行线分线段成比例定理.12.如图,则△ABC中,∠BAC=100°,AB=AC=4,以点B为圆心,BA长为半径作圆弧,交BC于点D,则的长为.(结果保留π)【答案】8 9π考点:1.弧长公式;2.等腰三角形的性质;3.三角形内角和定理.13.如图①,这个图案是我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.此图案的示意图如图②,其中四边形ABCD和四边形EFGH都是正方形,△ABF、△BCG、△CDH、△DAE是四个全等的直角三角形.若EF=2,DE=8,则AB的长为.【答案】10【解析】试题分析:依题意知,BG=AF=DE=8,EF=FG=2∴BF=BG ﹣BF=6,∴直角△ABF 中,利用勾股定理得:AB=22AF BF =10.考点:勾股定理的证明.14.如图,在平面直角坐标系中,△ABC 的顶点A 在第一象限,点B ,C 的坐标为(2,1),(6,1),∠BAC=90°,AB=AC ,直线AB 交x 轴于点P .若△ABC 与△A'B'C'关于点P 成中心对称,则点A'的坐标为 .【答案】(-1,-2)考点:等腰直角三角形.三、解答题(本大题共10小题,共78分.解答应写出文字说明、证明过程或演算步骤.)15.先化简,再求值:3a(a2+2a+1)﹣2(a+1)2,其中a=2.【答案】3a3+4a2﹣a﹣2,36.【解析】试题分析:原式利用单项式乘以多项式,以及完全平方公式化简,去括号合并得到最简结果,把a的值代入计算即可求出值.试题解析:原式=3a3+6a2+3a﹣2a2﹣4a﹣2=3a3+4a2﹣a﹣2,当a=2时,原式=24+16﹣2﹣2═36.考点:整式的混合运算﹣化简求值.16.一个不透明的口袋中有一个小球,上面分别标有字母a,b,c,每个小球除字母不同外其余均相同,小园同学从口袋中随机摸出一个小球,记下字母后放回且搅匀,再从可口袋中随机摸出一个小球记下字母.用画树状图(或列表)的方法,求小园同学两次摸出的小球上的字母相同的概率.【答案】1 3考点:列表法与树状图法.17.如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,求大厅两层之间的距离BC 的长.(结果精确到米)(参考数据:sin31°=,cos31°=,tan31°=)【答案】大厅两层之间的距离BC的长约为米.考点:解直角三角形的应用﹣坡度坡角问题.18.某校为了丰富学生的课外体育活动,购买了排球和跳绳.已知排球的单价是跳绳的单价的3倍,购买跳绳共花费750元,购买排球共花费900元,购买跳绳的数量比购买排球的数量多30个,求跳绳的单价.【答案】跳绳的单价是15元.【解析】试题分析:首先设跳绳的单价为x元,则排球的单价为3x元,根据题意可得等量关系:750元购进的跳绳个数﹣900元购进的排球个数=30,依此列出方程,再解方程可得答案.试题解析:设跳绳的单价为x元,则排球的单价为3x元,依题意得:7509003x x=30,解方程,得x=15.经检验:x=15是原方程的根,且符合题意.答:跳绳的单价是15元.考点:分式方程的应用.19.如图,在菱形ABCD中,∠A=110°,点E是菱形ABCD内一点,连结CE绕点C顺时针旋转110°,得到线段CF,连结BE,DF,若∠E=86°,求∠F的度数.【答案】86°考点:1.菱形的性质;2.旋转的性质;3.三角形的性质和判定.20.某校八年级学生会为了解本年级600名学生的睡眠情况,将同学们某天的睡眠时长t(小时)分为A,B,C,D,E(A:9≤t≤24;B:8≤t<9;C:7≤t<8;D:6≤t<7;E:0≤t<6)五个选项,进行了一次问卷调查,随机抽取n名同学的调查问卷并进行了整理,绘制成如下条形统计图,根据统计图提供的信息解答下列问题:(1)求n的值;(2)根据统计结果,估计该年级600名学生中睡眠时长不足7小时的人数.【答案】(1)n=60;(2)估计该年级600名学生中睡眠时长不足7小时的人数为90人.【解析】考点:条形统计图的综合运用.21.甲、乙两车间同时开始加工一批服装.从幵始加工到加工完这批服装甲车间工作了9小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为y(件).甲车间加工的时间为x(时),y与x之间的函数图象如图所示.(1)甲车间每小时加工服装件数为件;这批服装的总件数为件.(2)求乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;(3)求甲、乙两车间共同加工完1000件服装时甲车间所用的时间.【答案】(1)80;1140;(2)乙车间加工服装数量y与x之间的函数关系式为y=60x﹣120(4≤x≤9);(3)甲、乙两车间共同加工完1000件服装时甲车间所用的时间为8小时.【解析】试题分析:(1)根据工作效率=工作总量÷工作时间,即可求出甲车间每小时加工服装件数,再根据这批服装的总件数=甲车间加工的件数+乙车间加工的件数,即可求出这批服装的总件数;(2)根据工作效率=工作总量÷工作时间,即可求出乙车间每小时加工服装件数,根据工作时间=工作总量÷工作效率结合工作结束时间,即可求出乙车间修好设备时间,再根据加工的服装总件数=120+工作效率×工作时间,即可求出乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;(3)根据加工的服装总件数=工作效率×工作时间,求出甲车间加工服装数量y与x之间的函数关系式,将甲、乙两关系式相加令其等于1000,求出x值,此题得解.试题解析:(1)甲车间每小时加工服装件数为720÷9=80(件),这批服装的总件数为720+420=1140(件).故答案为:80;1140.(2)乙车间每小时加工服装件数为120÷2=60(件),乙车间修好设备的时间为9﹣(420﹣120)÷60=4(时).∴乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式为y=120+60(x﹣4)=60x﹣120(4≤x≤9).(3)甲车间加工服装数量y与x之间的函数关系式为y=80x,当80x+60x﹣120=1000时,x=8.答:甲、乙两车间共同加工完1000件服装时甲车间所用的时间为8小时.考点:1.一次函数的应用;2.解一元一次方程.22.【再现】如图①,在△ABC中,点D,E分别是AB,AC的中点,可以得到:DE∥BC,且DE=12 BC.(不需要证明)【探究】如图②,在四边形ABCD中,点E,F,G,H分别是AB,BC,CD,DA的中点,判断四边形EFGH 的形状,并加以证明.【应用】在(1)【探究】的条件下,四边形ABCD中,满足什么条件时,四边形EFGH是菱形你添加的条件是:.(只添加一个条件)(2)如图③,在四边形ABCD中,点E,F,G,H分别是AB,BC,CD,DA的中点,对角线AC,BD相交于点O.若AO=OC,四边形ABCD面积为5,则阴影部分图形的面积和为.【答案】【探究】平行四边形.理由见解析;【应用】(1)添加AC=BD,理由见解析;(2)54.(2)先判断出S△BCD=4S△CFG,同理:S△ABD=4S△AEH,进而得出S四边形EFGH=52,再判断出OM=ON,进而得出S阴影=12S四边形EFGH即可.试题解析:【探究】平行四边形.理由:如图1,连接AC,∵E是AB的中点,F是BC的中点,∴EF∥AC,EF=12 AC,同理HG∥AC,HG=12 AC,综上可得:EF∥HG,EF=HG,故四边形EFGH是平行四边形.【应用】(1)添加AC=BD,理由:连接AC,BD,同(1)知,EF=12 AC,同【探究】的方法得,FG=12 BD,∵AC=BD,∴EF=FG,∵四边形EFGH是平行四边形,∴▱EFGH是菱形;故答案为AC=BD;考点:1.三角形的中位线定理;2.平行四边形的判定;3.菱形的判定;4.相似三角形的判定和性质.23.如图①,在Rt△ABC中,∠C=90°,AB=10,BC=6,点P从点A出发,沿折线AB﹣BC向终点C运动,在AB上以每秒5个单位长度的速度运动,在BC上以每秒3个单位长度的速度运动,点Q从点C出发,沿CA方向以每秒43个单位长度的速度运动,P,Q两点同时出发,当点P停止时,点Q也随之停止.设点P运动的时间为t秒.(1)求线段AQ的长;(用含t的代数式表示)(2)连结PQ,当PQ与△ABC的一边平行时,求t的值;(3)如图②,过点P作PE⊥AC于点E,以PE,EQ为邻边作矩形PEQF,点D为AC的中点,连结DF.设矩形PEQF与△ABC重叠部分图形的面积为S.①当点Q在线段CD上运动时,求S与t之间的函数关系式;②直接写出DF将矩形PEQF分成两部分的面积比为1:2时t的值.【答案】(1)AQ=8﹣43t(0≤t≤4);(2)t=32s或3s时, PQ与△ABC的一边平行;(3)①当0≤t≤32时,S=﹣16t2+24t.当32<t≤2时,S=﹣163t2+40t-48.当2<t≤3时,S=﹣203t2+30t﹣24.②当t=914s或3631s时,DF将矩形PEQF分成两部分的面积比为1:2.【解析】(3)①如图1中,a、当0≤t≤32时,重叠部分是四边形PEQF.S=PE•EQ=3t•(8﹣4t﹣43t)=﹣16t2+24t.b、如图2中,当32<t≤2时,重叠部分是四边形PNQE.S=S四边形PEQF﹣S△PFN=(16t2﹣24t)﹣12•45[5t﹣54(8﹣43t)]•35[5t﹣54(8﹣43t0]=﹣163t2+40t-48.C、如图3中,当2<t≤3时,重叠部分是五边形MNPBQ.S=S四边形PBQF S△FNM=43t•[6﹣3(t﹣2)]﹣12•[43t﹣4(t﹣2)]•34[43t﹣4(t﹣2)]=﹣203t2+30t﹣24.∴DE:DQ=NE:FQ=1:3,∴(3t﹣3):(3﹣43t)=1:3,解得t=36 31s,综上所述,当t=914s或3631s时,DF将矩形PEQF分成两部分的面积比为1:2.考点:1.矩形的性质;2.勾股定理;3.相似三角形的性质和判定;4.平行线分线段成比例定理.24.定义:对于给定的两个函数,任取自变量x的一个值,当x<0时,它们对应的函数值互为相反数;当x≥0时,它们对应的函数值相等,我们称这样的两个函数互为相关函数.例如:一次函数y=x﹣1,它们的相关函数为y=()()1010x xx x-+<⎧⎪⎨-≥⎪⎩.(1)已知点A(﹣5,8)在一次函数y=ax﹣3的相关函数的图象上,求a的值;(2)已知二次函数y=﹣x2+4x﹣12.①当点B(m,32)在这个函数的相关函数的图象上时,求m的值;②当﹣3≤x≤3时,求函数y=﹣x2+4x﹣12的相关函数的最大值和最小值;(3)在平面直角坐标系中,点M,N的坐标分别为(﹣12,1),(92,1}),连结MN.直接写出线段MN与二次函数y=﹣x2+4x+n的相关函数的图象有两个公共点时n的取值范围.【答案】(1)a=1;(2)①m=2﹣5或m=2+2或m=2﹣2.②当﹣3≤x≤3时,函数y=﹣x2+4x﹣12的相关函数的最大值为432,最小值为﹣12;(3)n的取值范围是﹣3<n≤﹣1或1<n≤54.(2)二次函数y=﹣x2+4x﹣12的相关函数为y=()()2214021402x x xx x x⎧-+<⎪⎪⎨⎪-+-≥⎪⎩①当m<0时,将B(m,32)代入y=x2﹣4x+12得m2﹣4m+12=32,解得:5或m=25当m≥0时,将B(m,32)代入y=﹣x2+4x﹣12得:﹣m2+4m﹣12=32,解得:2或m=22.综上所述:m=252或m=22.②当﹣3≤x<0时,y=x2﹣4x+12,抛物线的对称轴为x=2,此时y随x的增大而减小,∴此时y的最大值为432.当0≤x≤3时,函数y=﹣x2+4x﹣12,抛物线的对称轴为x=2,当x=0有最小值,最小值为﹣12,当x=2时,有最大值,最大值y=72.综上所述,当﹣3≤x≤3时,函数y=﹣x2+4x﹣12的相关函数的最大值为432,最小值为﹣12;(3)如图1所示:线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有1个公共点.所以当x=2时,y=1,即﹣4+8+n=1,解得n=﹣3.如图2所示:线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有3个公共点考点:二次函数的综合应用.。
2008年东北各省中考数学代数---解答题(08黑龙江哈尔滨)19.(本题 5分)先化简,再求代数式2x 1-x 2x 3-12+÷+)(的值,其中x =4sin45°-2cos60°(08黑龙江哈尔滨)21.(本题5分)小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S (单位:平方米)随矩形一边长x (单位:米)的变化而变化.(1)求S 与x 之间的函数关系式,并写出自变量x 的取值范围; (2)当x 是多少时,矩形场地面积S 最大?最大面积是多少?(参考公式:二次函数y =ax 2+bx +c =0,当x =2ab-时,a 4b ac 4y 2-=最大(小)值)(08黑龙江哈尔滨)24.(本题6分)哈市某中学为了解该校学生对四种国家一级保护动物的喜爱情况,围绕“在丹顶鹤、大熊猫、滇金丝猴、藏羚羊四种国家一级保护动物中,你最喜欢哪一种动物?(只写一种)”这一问题,在全校范围内随机抽取部分同学进行问卷调查.甲同学根据调查结果计算得知:最喜欢丹顶鹤的学生人数占被抽取人数的 16%;乙同学根据调查结果绘制成如下不完整的条形统计图.请你根据甲、乙两位同学提供的信息解答下列问题:(1)在这次调查中,一共抽取了多少名学生? (2)补全条形统计图的空缺部分;(3)如果全校有1200名学生,请你估计全校最喜欢滇金丝猴的学生有多少名?(08黑龙江哈尔滨)26.(本题8分)荣昌公司要将本公司100吨货物运往某地销售,经与春晨运输公司协商,计划租用甲、乙两种型号的汽车共6辆,用这6辆汽车一次将货物全部运走,其中每辆甲型汽车最多能装该种货物16吨,每辆乙型汽车最多能装该种货物18吨.已知租用1辆甲型汽车和2辆乙型汽车共需费用2500元;租用2辆甲型汽车和1辆乙型汽车共需费用2450元,且同一种型号汽车每辆租车费用相同. (1)求租用一辆甲型汽车、一辆乙型汽车的费用分别是多少元? (2)若荣昌公司计划此次租车费用不超过5000元.通过计算求出该公司有几种租车方案?请你设计出来,并求出最低的租车费用. (08黑龙江齐齐哈尔)21.(本小题满分5分)08黑龙江齐齐哈尔,鸡西,佳木斯试卷相同先化简:224226926a a a a a --÷++++,再任选一个你喜欢的数代入求值.21.解:224226926a a a a a --÷++++2(2)(2)2(3)2(3)2a a a a a +-+=++- ······················ (1分)242633a a a a ++=-+++ ·························· (2分) 23a =+ ································ (3分) n 取3-和2以外的任何数,计算正确都可给分. ·············· (5分)(08黑龙江齐齐哈尔)24.(本小题满分7分)A B C ,,三名大学生竞选系学生会主席,他们的笔试成绩和口试成绩(单位:分)分别用了两种方式进行了统计,如表一和图一: 表一(1)请将表一和图一中的空缺部分补充完整.(2)竞选的最后一个程序是由本系的300名学生进行投票,三位候选人的得票情况如图二(没有弃权票,每名学生只能推荐一个),请计算每人的得票数.(3)若每票计1分,系里将笔试、口试、得票三项测试得分按4:3:3的比例确定个人成绩,请计算三位候选人的最后成绩,并根据成绩判断谁能当选.24.解:(1)90;补充后的图如下(每项1分,计2分)(2)A:30035105⨯=% B :30040120⨯=% 图二 95 90 8580 7570 分数/分 图一竞选人A B C95 90 85 80 7570 分数/分竞选人 A B CC :3002575⨯=%(方法对1分,计算结果全部正确1分,计2分)(3)A :854903105392.5433⨯+⨯+⨯=++(分)B :954803120398433⨯+⨯+⨯=++(分) C :90485375384433⨯+⨯+⨯=++(分) B 当选(方法对1分,计算结果全部正确1分,判断正确1分,计3分)(08黑龙江齐齐哈尔)25.(本小题满分8分)武警战士乘一冲锋舟从A 地逆流而上,前往C 地营救受困群众,途经B 地时,由所携带的救生艇将B 地受困群众运回A 地,冲锋舟继续前进,到C 地接到群众后立刻返回A 地,途中曾与救生艇相遇.冲锋舟和救生艇距A 地的距离y (千米)和冲锋舟出发后所用时间x (分)之间的函数图象如图所示.假设营救群众的时间忽略不计,水流速度和冲锋舟在静水中的速度不变. (1)请直接写出冲锋舟从A 地到C 地所用的时间. (2)求水流的速度.(3)冲锋舟将C 地群众安全送到A 地后,又立即去接应救生艇.已知救生艇与A 地的距离y (千米)和冲锋舟出发后所用时间x (分)之间的函数关系式为11112y x =-+,假设群众上下船的时间不计,求冲锋舟在距离A 地多远处与救生艇第二次相遇?25.解:(1)24分钟 ·························· (1分) (2)设水流速度为a 千米/分,冲锋舟速度为b 千米/分,根据题意得24()20(4424)()20b a a b -=⎧⎨-+=⎩························· (3分) 解得1121112a b ⎧=⎪⎪⎨⎪=⎪⎩答:水流速度是112千米/分. ······················ (4分) (3)如图,因为冲锋舟和水流的速度不变,所以设线段a 所在直线的函数解析式为 x (分)56y x b =+ ······························ (5分) 把(440),代入,得1103b =-∴线段a 所在直线的函数解析式为511063y x =-·············· (6分) 由11112511063y x y x ⎧=-+⎪⎪⎨⎪=-⎪⎩求出20523⎛⎫ ⎪⎝⎭,这一点的坐标 ··············· (7分)∴冲锋舟在距离A 地203千米处与求生艇第二次相遇. (8分) (08黑龙江齐齐哈尔)27.(本小题满分10分)某工厂计划为震区生产A B ,两种型号的学生桌椅500套,以解决1250名学生的学习问题,一套A 型桌椅(一桌两椅)需木料30.5m ,一套B 型桌椅(一桌三椅)需木料30.7m ,工厂现有库存木料3302m . (1)有多少种生产方案?(2)现要把生产的全部桌椅运往震区,已知每套A 型桌椅的生产成本为100元,运费2元;每套B 型桌椅的生产成本为120元,运费4元,求总费用y (元)与生产A 型桌椅x (套)之间的关系式,并确定总费用最少的方案和最少的总费用.(总费用=生产成本+运费)(3)按(2)的方案计算,有没有剩余木料?如果有,请直接写出用剩余木料再生产以上两种型号的桌椅,最多还可以为多少名学生提供桌椅;如果没有,请说明理由.27.解:(1)设生产A 型桌椅x 套,则生产B 型桌椅(500)x -套,由题意得0.50.7(500)30223(500)1250x x x x +⨯-⎧⎨+⨯-⎩≤≥ ······················ (2分) 解得240250x ≤≤ ·························· (3分) 因为x 是整数,所以有11种生产方案. ·················· (4分) (2)(1002)(1204)(500)2262000y x x x =+++⨯-=-+ ········· (6分)220-< ,y 随x 的增大而减少.∴当250x =时,y 有最小值. ····················· (7分) ∴当生产A 型桌椅250套、B 型桌椅250套时,总费用最少.此时min 222506200056500y =-⨯+=(元) ··············· (8分)x (分)(3)有剩余木料,最多还可以解决8名同学的桌椅问题.·········(10分)(08黑龙江大庆)19.(本题5分)12-.(08黑龙江大庆)21.(本题6分)某文具厂加工一种文具2 500套,加工完1 000套后,由于采用了新设备,每天的工作效率变为原来的1.5倍,结果提前5天完成了加工任务.求该文具厂原来每天加工多少套这种文具.(08黑龙江大庆)22.(本题6分)某数学老师为了了解学生在数学学习中对常见错误的纠正情况,收集了学生在作业和考试中的常见错误,编制了10道选择题,每题3分,对她所任教的初三(1)班和(2)班进行了检测.下图表示的是从以上两个班级各随机抽取10名学生的得分情况.(1)利用上图提供的信息,补全下表.有多少名学生成绩为“优秀”.(3)观察上图中点的分布情况,你认为哪个班的学生纠错的整体情况更好一些?(08黑龙江大庆)23.(本题7分)甲、乙两个工程队完成某项工程,假设甲、乙两个工程队的工作效率是一定的,工程总量为单位1.甲队单独做了10天后,乙队加入合作完成剩下的全部工程,工程进度如图所示.(1)甲队单独完成这项工程,需天.(2)求乙队单独完成这项工程所需的天数.(3)求出图中x的值.(08黑龙江大庆)25.(本题6分)t (天)(第23题)(1)班(2)班(第22题)如图,反比例函数ky x=的图象与一次函数y mx b =+的图象相交于两点(13)A ,,(1)B n -,. (1)分别求出反比例函数与一次函数的函数关系式; (2)若直线AB 与y 轴交于点C ,求BOC △的面积.(08黑龙江大庆)27.(本题8分)如图,河上有一座抛物线桥洞,已知桥下的水面离桥拱顶部3m 时,水面宽AB 为6m ,当水位上升.....0.5m 时.: (1)求水面的宽度CD 为多少米?(2)有一艘游船,它的左右两边缘最宽处有一个长方体形状的遮阳棚,此船正对着桥洞在上述河流中航行.①若游船宽(指船的最大宽度)为2m ,从水面到棚顶的高度为1.8m ,问这艘游船能否从桥洞下通过? ②若从水面到棚顶的高度为74m 的游船刚好能从桥洞下通过, 则这艘游船的最大宽度是多少米?(08吉林长春)19、(5分)计算:22)8321464(÷+- 20、(5分)解方程:22)25(96x x x -=+-19、20、x1=2 x2=83(08吉林长春)23、(7分)已知,如图,直线l 经过)0,4(A 和)4,0(B 两点,它与抛物线2ax y =在第一象限内相交于点P ,又知AOP ∆的面积为4,求a 的值.23、由△AOPA 的面积可知P 是AB 的中点,从而可得△OAP 是等腰直角三角形,过P 作PC ⊥OA 于C 可得P (2,2),所以a=12(第27题)(08吉林长春)26、(10分)如图,足球场上守门员在O 处开出一高球,球从离地面1米的A 处飞出(A 在y 轴上),运动员乙在距O 点6米的B 处发现球在自己头的正上方达到最高点M ,距地面约4米高,球落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.(1(2)足球第一次落地点C 距守门员多少米?(取7=(3)运动员乙要抢到第二个落点D (取5=)26、解:(1)(3分)如图,设第一次落地时,抛物线的表达式为2(6)4y a x =-+. ····················· 1分由已知:当0x =时1y =. 即1136412a a =+∴=-,. ·························· 2分 ∴表达式为21(6)412y x =--+. ······················· 3分 (或21112y x x =-++)(2)(3分)令20(6)4012y x =--+=,. 212(6)4861360x x x ∴-===-<.≈,(舍去). ········ 2分 ∴足球第一次落地距守门员约13米.····················· 3分 (3)(4分)解法一:如图,第二次足球弹出后的距离为CD根据题意:CD EF =(即相当于将抛物线AEMFC 向下平移了2个单位)212(6)412x ∴=--+解得1266x x =-=+ ············· 2分 1210CD x x ∴=-=.························ 3分 1361017BD ∴=-+=(米). ······················· 4分解法二:令21(6)4012x --+=.解得16x =-,2613x =+.∴点C 坐标为(13,0). ·························· 1分 设抛物线CND 为21()212y x k =--+. ···················· 2分将C 点坐标代入得:21(13)2012k --+=.解得:11313k =-(舍去),2667518k =+++=.····················· 3分 21(18)212y x =--+ 令210(18)212y x ==--+,0.118x =-,21823x =+.23617BD ∴=-=(米).解法三:由解法二知,18k =,所以2(1813)10CD =-=, 所以(136)1017BD =-+=.答:他应再向前跑17米. ·························· 4分 (不答不扣分)(08吉林长春)27、(12分)已知两个关于x 的二次函数1y 与当x k =时,217y =;且二次函数2y 的图象的对称轴是直222112()2(0)612y y a x k k y y x x =-+>+=++,,线1x =-. (1)求k 的值;(2)求函数12y y ,的表达式;(3)在同一直角坐标系内,问函数1y 的图象与2y 的图象是否有交点?请说明理由. 27、[解] (1)由22112()2612y a x k y y x x =-++=++,得22222121()612()2610()y y y y x x a x k x x a x k =+-=++---=++--. 又因为当x k =时,217y =,即261017k k ++=, 解得11k =,或27k =-(舍去),故k 的值为1.(2)由1k =,得2222610(1)(1)(26)10y x x a x a x a x a =++--=-+++-,所以函数2y 的图象的对称轴为262(1)a x a +=--,于是,有2612(1)a a +-=--,解得1a =-,所以2212212411y x x y x x =-++=++,.(3)由21(1)2y x =--+,得函数1y 的图象为抛物线,其开口向下,顶点坐标为(12),;由22224112(1)9y x x x =++=++,得函数2y 的图象为抛物线,其开口向上,顶点坐标为(19)-,; 故在同一直角坐标系内,函数1y 的图象与2y 的图象没有交点.(08辽宁沈阳)17.计算:11(1)52-⎛⎫π-+-+- ⎪⎝⎭17.解:原式1(2)5=+--··················· 4分125=-+-··························· 5分6= ································· 6分(08辽宁沈阳)18.解分式方程:1233xx x=+--. 18.解:12(3)x x =-- ·························· 2分126x x =--7x = ·································· 5分检验:将7x =代入原方程,左边14==右边 ·················· 7分所以7x =是原方程的根 ··························· 8分 (将7x =代入最简公分母检验同样给分)(08辽宁沈阳)19.先化简,再求值:222()()2y x y x y x y ++---,其中13x =-,3y =.19.解:原式2222222xy y x xy y x y =++-+-- ··············· 4分xy =- ·································· 6分当13x =-,3y =时,原式1313⎛⎫=--⨯= ⎪⎝⎭···························· 8分(08辽宁沈阳)22.小刚和小明两位同学玩一种游戏.游戏规则为:两人各执“象、虎、鼠”三张牌,同时各出一张牌定胜负,其中象胜虎、虎胜鼠、鼠胜象,若两人所出牌相同,则为平局.例如,小刚出象牌,小明出虎牌,则小刚胜;又如,两人同时出象牌,则两人平局. (1)一次出牌小刚出“象”牌的概率是多少?(2)如果用A B C ,,分别表示小刚的象、虎、鼠三张牌,用1A ,1B ,1C 分别表示小明的象、虎、鼠三张牌,那么一次出牌小刚胜小明的概率是多少?用列表法或画树状图(树形图)法加以说明.22.解:(1)1()3P =一次出牌小刚出象牌“” ················ 4分 (2)树状图(树形图):························· 8分或列表··················· 8分由树状图(树形图)或列表可知,可能出现的结果有9种,而且每种结果出现的可能性相同,其中小刚胜小明的结果有3种. ···························· 9分1()3P ∴=一次出牌小刚胜小明. 10分 小刚 小明A 1B 1C 1A B C 第22题图 A 1B 1C 1 AA 1B 1C 1 B A 1B 1C 1C 开始 小刚小明(08辽宁沈阳)23.在学校组织的“喜迎奥运,知荣明耻,文明出行”的知识竞赛中,每班参加比赛的人数相同,成绩分为A B C D ,,,四个等级,其中相应等级的得分依次记为100分,90分,80分,70分,学校将某年级的一班和二班的成绩整理并绘制成如下的统计图:请你根据以上提供的信息解答下列问题:(1)此次竞赛中二班成绩在C 级以上(包括C 级)的人数为 ; (2(3)请从下列不同角度对这次竞赛成绩的结果进行分析:①从平均数和中位数的角度来比较一班和二班的成绩; ②从平均数和众数的角度来比较一班和二班的成绩;③从B 级以上(包括B 级)的人数的角度来比较一班和二班的成绩.23.解:(1)21 ······························ 2分 (2)一班众数为90,二班中位数为80 ···················· 6分(3)①从平均数的角度看两班成绩一样,从中位数的角度看一班比二班的成绩好,所以一班成绩好; ····································· 8分②从平均数的角度看两班成绩一样,从众数的角度看二班比一班的成绩好,所以二班成绩好; 10分 ③从B 级以上(包括B 级)的人数的角度看,一班人数是18人,二班人数是12人,所以一班成绩好. ···································· 12分(08辽宁沈阳)24.一辆经营长途运输的货车在高速公路的A 处加满油后,以每小时80千米的速度匀速行驶,前往与A 处相距636千米的B 地,下表记录的是货车一次加满油后油箱内余油量y (升)与行驶时间x (1)y 与x 之间的变化规律,说明选择这种函数的理由,并求出它的函数表达式;(不要求写出自变量的取值范围) (2)按照(1)中的变化规律,货车从A 处出发行驶4.2小时到达C 处,求此时油箱内余油多少升? (3)在(2)的前提下,C 处前方18千米的D 处有一加油站,根据实际经验此货车在行驶中油箱内至少保证有10升油,如果货车的速度和每小时的耗油量不变,那么在D 处至少加多少升油,才能使货车到达B 地.(货车在D 处加油过程中的时间和路程忽略不计)24.解:(1)设y 与x之间的关系为一次函数,其函数表达式为y kx b=+ ····· 1分第23题图 一班竞赛成绩统计图 二班竞赛成绩统计图将(0100),,(180),代入上式得,10080b k b =⎧⎨+=⎩ 解得20100k b =-⎧⎨=⎩ 20100y x ∴=-+ ····························· 4分验证:当2x =时,20210060y =-⨯+=,符合一次函数; 当 2.5x =时,20 2.510050y =-⨯+=,也符合一次函数.∴可用一次函数20100y x =-+表示其变化规律,而不用反比例函数、二次函数表示其变化规律. ················ 5分y ∴与x 之间的关系是一次函数,其函数表达式为20100y x =-+ ········ 6分(2)当 4.2x =时,由20100y x =-+可得16y =即货车行驶到C 处时油箱内余油16升. ···················· 8分 (3)方法不唯一,如:方法一:由(1)得,货车行驶中每小时耗油20升, ·············· 9分 设在D 处至少加油a 升,货车才能到达B 地.依题意得,63680 4.220101680a -⨯⨯+=+, ················ 11分解得,69a =(升) ··························· 12分方法二:由(1)得,货车行驶中每小时耗油20升, ·············· 9分 汽车行驶18千米的耗油量:1820 4.580⨯=(升) D B ,之间路程为:63680 4.218282-⨯-=(千米)汽车行驶282千米的耗油量:2822070.580⨯=(升) ·························· 11分 70.510(16 4.5)69+--=(升) ····················· 12分方法三:由(1)得,货车行驶中每小时耗油20升, ·············· 9分 设在D 处加油a 升,货车才能到达B 地.依题意得,63680 4.220101680a -⨯⨯++≤,解得,69a ≥ ······························ 11分 ∴在D 处至少加油69升,货车才能到达B 地. ··············· 12分(08辽宁省12市)17.先化简,再求值:23111aa a a a a -⎛⎫- ⎪-+⎝⎭,其中2a =.17.解法一:原式223(1)(1)11a a a a a a a +---=⨯- ················ 2分 24a =+ ································· 6分当2a =时,原式2248=⨯+= ······················· 8分解法二:原式3(1)(1)(1)(1)11a a a a a a a a a a+-+-=⨯-⨯-+ ············ 2分 24a =+ ································· 6分 当2a =时,原式2248=⨯+= ······················· 8分(08辽宁省12市)19.如图9,有四张背面相同的纸牌A B C D ,,,,其正面分别画有四个不同的图形,小明将这四张纸牌背面朝上洗匀后随机摸出一张,放回后洗匀再随机摸出一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌用A B C D ,,,表示); (2)求两次摸牌的牌面图形既是中心对称图形又是轴对称图形的概率.19.(1·············· 6分(2)从表中可以得到,两次摸牌所有可能出现的结果共有16种,其中既是中心对称图形又是轴对称图形的有9种. ································ 8分 故所求概率是916. ···························· 10分 19.(1)解法二:所以可能出现的结果:(A ,A ),(A ,B ),(A ,C ),(A ,D ),(B ,A ),(B ,B ),(B ,C ),(B ,D ),(C ,A ),(C ,B ),(C ,C ),(C ,D ),(D ,A ),(D ,B ),(D ,C ),(D ,D ). ······················· 6分 (2)以下同解法1.(08辽宁省12市)21.某中学开展以“我最喜欢的职业”为主题的调查活动.通过对学生的随机抽样调查A B C DA ABC DB A BC DC A B C DD 开始第一次牌面的字母第二次牌面的字母 图9得到一组数据,下面两图(如图11、图12)是根据这组数据绘制的两幅不完整的统计图.请你根据图中所提供的信息解答下列问题:(1)求在这次活动中一共调查了多少名学生?(2)在扇形统计图中,求“教师”所在扇形的圆心角的度数. (3)补全两幅统计图.21.(1)被调查的学生数为4020020=%(人) ·················· 2分 (2)“教师”所在扇形的圆心角的度数为70115201010036072200⎛⎫----⨯⨯=⎪⎝⎭%%%% ··············· 5分 (3)如图3,补全图 ···························· 8分如图4,补全图 ····························· 10分(08辽宁省12市)22.在“汶川地震”捐款活动中,某同学对甲、乙两班捐款情况进行了统计:甲班捐款人数比乙班捐款人数多3人,甲班共捐款2400元,乙班共捐款1800元,乙班平均每人捐款的钱数是甲班平均每人捐款钱数的45倍.求甲、乙两班各有多少人捐款? 22.解法一:设乙班有x 人捐款,则甲班有(3)x +人捐款. ··········· 1分 根据题意得:24004180035x x⨯=+ ····························· 5分 解这个方程得45x =. ··························· 8分 经检验45x =是所列方程的根. ······················· 9分 348x ∴+=(人)答:甲班有48人捐款,乙班有45人捐款. ················· 10分 解法二:设甲班有x 人捐款,则乙班有(3)x -人捐款. ············· 1分 根据题意得:其它 教师医生 公务员军人10% 20%15%图3图435%20%其它 教师 医生 公务员 军人10% 20%15% 图11 图1224004180053x x ⨯=- ····························· 5分 解这个方程得48x =. ··························· 8分 经检验48x =是所列方程的根. ······················· 9分 345x ∴-=(人)答:甲班有48人捐款,乙班有45人捐款. ················· 10分(08辽宁省12市)24.2008年6月1日起,我国实施“限塑令”,开始有偿使用环保购物袋.为了满足市场需求,某厂家生产A B ,两种款式的布质环保购物袋,每天共生产4500个,两种购物袋的成本和售价如下表,设每天生产A 种购物袋x 个,每天共获利y 元.(1)求出y 与x (2)如果该厂每天最多投入成本10000元,那么每天最多获利多少元? 24.解:(1)根据题意得:(2.32)(3.53)(4500)0.22250y x x x =-+--=-+ ······ 2分 (2)根据题意得:23(4500)10000x x +-≤ ················· 5分 解得3500x ≥元 ······························ 6分0.20k =-< ,y ∴随x 增大而减小 ····················· 8分∴当3500x =时0.2350022501550y =-⨯+= ······················· 9分答:该厂每天至多获利1550元. ······················ 10分(08辽宁大连)17.化简x x x x x x x 11121222--+-÷=- (08辽宁大连)18.某药品经过两次降价,每瓶零售价由100元降为81元.已知两次降价的百分率相同,求两次降价的百分率.(08辽宁大连)20.六一期间,某公园游戏场举行“迎奥运”活动.有一种游戏的规则是:在一个装有6个红球和若干个白球(每个球除颜色外其他都相同)的袋中,随机摸一个球,摸到一个红球就得到一个奥运福娃玩具.已知参加这种游戏活动为40 000人次,公园游戏场发放的福娃玩具为10 000个. ⑴求参加一次这种游戏活动得到福娃玩具的频率; ⑵请你估计袋中白球接近多少个?(08辽宁大连)21.如图10,直线m x y +=和抛物线c bx x y ++=2都经过点A (1,0),B (3,2).⑴求m 的值和抛物线的解析式;⑵求不等式m x c bx x +>++2的解集(直接写出答案).(08辽宁大连)23.某物流公司的快递车和货车每天往返于A、B两地,快递车比货车多往返一趟.图11表示快递车距离A地的路程y(单位:千米)与所用时间x(单位:时)的函数图象.已知货车比快递车早1小时出发,到达B地后用2小时装卸货物,然后按原路、原速返回,结果比快递车最后一次返回A地晚1小时.⑴请在图11中画出货车距离A地的路程y(千米)与所用时间x(时)的函数图象;⑵求两车在途中相遇的次数(直接写出答案);⑶求两车最后一次相遇时,距离A地的路程和货车从A地出发了几小时?(时)。
知识点7:二次函数和抛物线有关概念,描点法画出二次函数的图象,抛物线顶点和对称轴一、选择题1.(2008年浙江省衢州市)把抛物线向右平移2个单位得到的抛物线是( )A、 B、 C、 D、答案:D2.(08浙江温州)抛物线的对称轴是()A.直线B.直线C.直线D.直线答案:A3.(2008年沈阳市)二次函数的图象的顶点坐标是()A.B.C.D.答案:A4.(2008年陕西省)已知二次函数(其中),关于这个二次函数的图象有如下说法:①图象的开口一定向上;②图象的顶点一定在第四象限;③图象与轴的交点至少有一个在轴的右侧.以上说法正确的个数为()A.0 B.1 C.2 D.3答案:C5.(2008年吉林省长春市)抛物线的顶点坐标是【】A.(-2,3)B.(2,3)C.(-2,-3)D.(2,-3)答案:A6.(2008 湖北荆门)把抛物线y=x+bx+c的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式为y=x-3x+5,则( )(A) b=3,c=7.(B) b=6,c=3.(C) b=-9,c=-5.(D) b=-9,c=21.答案:A7.(2008 河北)如图,正方形的边长为10,四个全等的小正方形的对称中心分别在正方形的顶点上,且它们的各边与正方形各边平行或垂直.若小正方形的边长为,且,阴影部分的面积为,则能反映与之间函数关系的大致图象是()答案:D8.(2008江西)函数化成的形式是()A.B.C.D.答案:A9.(2008佳木斯市)对于抛物线,下列说法正确的是()A.开口向下,顶点坐标B.开口向上,顶点坐标C.开口向下,顶点坐标D.开口向上,顶点坐标答案:A10..(2008贵州贵阳)二次函数的最小值是()A.B.C.D.答案:B11..(2008资阳市)在平面直角坐标系中,如果抛物线y=2x2不动,而把x轴、y轴分别向上、向右平移2个单位,那么在新坐标系下抛物线的解析式是( )A.y=2(x-2)2 + 2 B.y=2(x + 2)2-2C.y=2(x-2)2-2 D.y=2(x + 2)2 + 2答案:B12.(2008泰州市)二次函数的图像可以由二次函数的图像平移而得到,下列平移正确的是A.先向左平移2个单位,再向上平移1个单位B.先向左平移2个单位,再向下平移1个单位C.先向右平移2个单位,再向上平移1个单位D.先向右平移2个单位,再向下平移1个单位答案:B13.(2008山西省)抛物线经过平移得到,平移方法是()A.向左平移1个单位,再向下平移3个单位B.向左平移1个单位,再向上平移3个单位C.向右平移1个单位,再向下平移3个单位D.向右平移1个单位,再向上平移3个单位答案:D14..将二次函数的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是()A.B.C.D.答案:A15.(2008湖北武汉)函数的自变量的取值范围().A.B.C.D..答案:C16.(2008湖北孝感)把抛物线向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为()A. B. C. D.答案:D17.(2008 台湾)如图坐标平面上有一透明片,透明片上有一拋物线及一点P,且拋物线为二次函数y=x2的图形,P的坐标(2,4)。
长春市2007年初中毕业生学业考试数 学 试 题本试题卷包括七道大题,共26小题,共6页.全卷满分120分.考试时间为120分钟.考试结束后,将本试题卷和答题卡一并交回. 注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内.2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试题卷上答题无效.一、选择题(每小题3分,共24分) 1.6-的相反数是( ) A .6-B .6C .16-D .162.方程组34231x y x y +=⎧⎨-=-⎩,的解是( )A .11.x y =-⎧⎨=-⎩,B .11.x y =⎧⎨=⎩,C .22.x y =-⎧⎨=⎩,D .21.x y =-⎧⎨=-⎩,3.某地区五月份连续6天的最高气温依次是:28,25,28,26,26,29(单位:℃),则这组数据的中位数是( ) A .26℃ B .26.5℃ C .27℃ D .28℃ 4.如图,小手盖住的点的坐标可能为( )A .(52),B .(63)-,C .(46)--,D .(34)-,5.如图,已知线段8cm AB =,P 与Q 的半径均为1cm .点P Q ,分别从A B ,出发,在线段AB 上按箭头所示方向运动.当P Q ,两点未相遇前,在下列选项中,P 与Q 不.可能..出现的位置关系是( ) A .外离 B .外切 C .相交 D .内含6.一根单线从钮扣的4个孔中穿过(每个孔只穿过一次),其正面情形如右图所示,下面4个图形中可能是其背面情形的是( )(第4题)yxO(第5题)A BQP (第6题)A .B .C .D .7.小华拿24元钱购买火腿肠和方便面,已知一盒方便面3元,一根火腿肠2元,他买了4盒方便面,x 根火腿肠,则关于x 的不等式表示正确的是( ) A .34224x ⨯+< B .34224x ⨯+≤ C .32424x +⨯≤ D .32424x +⨯≥8.如图,AOB △中,30B =∠.将AOB △绕点O 顺时针旋转52得到A OB ''△,边A B ''与边OB 交于点C (A '不在OB 上),则A CO '∠的度数为( ) A .22B .52C .60D .82二、填空题(每小题3分,共18分) 9.计算:182+= .10.将下面四张背面都是空白的卡片混在一起,在看不到正面图案的情况下,从中随机选取一张,这张卡片上的图案恰好为2007年长春亚冬会吉祥物“鹿鹿”的概率是 . 11.如图,下面的图案由三个叶片组成,绕点O 旋转120后可以和自身重合,若每个..叶片的面积为24cm ,AOB ∠为120,则图中阴影部分的面积之和为 2cm .12.如图,过正方形ABCD 的顶点B 作直线l ,过A C ,作l 的垂线,垂足分别为E F ,.若1AE =,3CF =,则AB 的长度为 .13.在二次函数2y x bx c =++中,函数y 与自变量x 的部分对应值如下表:x2- 1- 0 1 2 3 4 y721-2-m27则m 的值为 .14.如图,1∠的正切值等于 .(第8题)AA 'BCOB '(第10题) (第11题) A O B (第12题) AB CD EF l三、解答题(每小题5分,共20分)15.先化简,再求值:(2)(2)(1)x x x x +---,其中1x =-.16.如图,在ABC △中,AB AC =,D 是BC 的中点,连接AD .DE AB ⊥,DF AC ⊥,E F ,是垂足.图中共有多少对全等三角形?请直接用“≌”符号把它们分别表示出来(不要求证明).17.张明与李强共同清点一批图书,已知张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,求张明平均每分钟清点图书的数量.18.将5个完全相同的小球分装在甲、乙两个不透明的口袋中.甲袋中有3个球,分别标有数字2,3,4;乙袋中有2个球,分别标有数字2,4.从甲、乙两个口袋中各随机摸出一个球.(1)用列表法或画树状图法,求摸出的两个球上数字之和为5的概率.(3分) (2)摸出的两个球上数字之和为多少时的概率最大?(2分)四、解答题(每小题6分,共12分)19.如图,Rt ABC △中,90C =∠,4AC =,3BC =,以ABC △的一边为边画等腰三角形,使它的第三个顶点在ABC △的其他边上.请在图①,图②,图③中分别画出一个符合条件的等腰三角形,且三个图形中的等腰三角形各不相同,并在图中标明所画等腰三角(第14题)yO x1 1223 3 1A B C DE F形的腰长(不要求尺规作图).20.小刚有一块含有30角的直角三角板,他想测量其短直角边的长度,而手中另外只有一个量角器,于是他采用了如下的方法,并获得了相关数据:第一步,他先用三角板标有刻度的一边测出量角器的直径AB 的长度为9cm ;第二步,将三角板与量角器按如图所示的方式摆放,并量得BOC ∠为80(O 为AB 的中点).请你根据小刚测得的数据,求出三角板的短直角边AC 的长.(参考数据:sin800.98=,cos800.17=,tan80 5.67=;sin 400.64=,cos 400.77=,tan 400.84=,结果精确到0.1cm )五、解答题(每小题6分,共12分) 21.网瘾低龄化问题已引起社会各界的高度关注.有关部门在全国范围内对12~35岁的网瘾人群进行了抽样调查.下图是用来表示在调查的样本中不同年龄段的网瘾人数的,其中30~35岁的网瘾人数占样本总人数的20%.(1)被抽样调查的样本总人数为 人.(2分)图① A B C图②A BC图③ABCA CO B 网瘾人数(人) 750 700 650600 550 500 450 0600576 480 12~17 18~23 24~29 30~35 年龄(岁)(2)请把统计图中缺失的数据、图形补充完整.(2分)(3)据报道,目前我国12~35岁网瘾人数约为200万人,那么其中12~17岁的网瘾人数约有多少人?(2分)22.在北方冬季,对某校一间坐满学生、门窗关闭的教室中2CO 的总量进行检测,部分数据如下:教室连续使用时间x (分)5 10 15 20 2CO 总量3(m )y0.61.11.62.1经研究发现,该教室空气中2CO 总量3(m )y 是教室连续使用时间x (分)的一次函数. (1)求y 与x 的函数关系式(不要求写出自变量x 的取值范围).(2分)(2)根据有关资料推算,当该教室空气中2CO 总量达到36.7m 时,学生将会稍感不适,请通过计算说明,该教室连续使用多长时间学生将会开始稍感不适?(2分)(3)如果该教室在连续使用45分钟时开门通风,在学生全部离开教室的情况下,5分钟可将教室空气中2CO 的总量减少到30.1m ,求开门通风时教室空气中2CO 平均每分钟减少多少立方米?(2分)六、解答题(每小题7分,共14分)23.如图①,将一组对边平行的纸条沿EF 折叠,点A B ,分别落在A B '',处,线段FB '与AD 交于点M .(1)试判断MEF △的形状,并证明你的结论.(3分) (2)如图②,将纸条的另一部分CFMD 沿MN 折叠,点C D ,分别落在C D '',处,且使MD '经过点F ,试判断四边形MNFE 的形状,并证明你的结论.(3分) (3)当BFE =∠ 度时,四边形MNFE 是菱形.(1分)图① A B C D E F M A ' B ' 图② A B C D E F M A ' B ' C ' D ' N24.如图,在平面直角坐标系中,A 为y 轴正半轴上一点,过A 作x 轴的平行线,交函数2(0)y x x =-<的图象于B ,交函数6(0)y x x =>的图象于C ,过C 作y 轴的平行线交BD的延长线于D .(1)如果点A 的坐标为(02),,求线段AB 与线段CA 的长度之比.(3分)(2)如果点A 的坐标为(0)a ,,求线段AB 与线段CA 的长度之比.(3分) (3)在(2)的条件下,四边形AODC 的面积与 .(1分)七、解答题(每小题10分,共20分)25.如图①,在Rt ABC △中,90C =∠,边BC 的长为20cm ,边AC 的长为h cm ,在此三角形内有一个矩形CFED ,点D E F ,,分别在AC AB BC ,,上,设AD 的长为cm x ,矩形CFED 的面积为y (单位:2cm ).(1)当h 等于30时,求y 与x 的函数关系式(不要求写出自变量x 的取值范围).(3分) (2)在(1)的条件下,矩形CFED 的面积能否为2180cm ?请说明理由.(3分) (3)若y 与x 的函数图象如图②所示,求此时h 的值.(4分)(参考公式:二次函数2y ax bx c =++,当2b x a =-时,244ac b y a-=最大(小)值.)26.如图,在平面直角坐标系中,直线1(0)2y x b b =-+>分别交x 轴,y 轴于A B ,两点,A B C O D x y 6y x= 2y x =- 图①ABFC DE图②O 2(cm )y(cm)x10 150以OA OB ,为边作矩形OACB ,D 为BC 的中点.以(40)M ,,(80)N ,为斜边端点作等腰直角三角形PMN ,点P 在第一象限,设矩形OACB 与PMN △重叠部分的面积为S .(1)求点P 的坐标.(1分)(2)当b 值由小到大变化时,求S 与b 的函数关系式.(4分) (3)若在直线1(0)2y x b b =-+>上存在点Q ,使OQM ∠等于90,请直接写出....b 的取值范围.(2分)(4)在b 值的变化过程中,若PCD △为等腰三角形,请直接写出....所有符合条件的b 值.(3分)ABCDy O M PN x长春市2007年初中毕业生学业考试数学试题参考答案及评分标准一、选择题(每小题3分,共24分) 1.B 2.B 3.C 4.D 5.D 6.A7.B8.D二、填空题(每小题3分,共18分) 9.4210.1411.4 12.1013.1-14.13三、解答题(每小题5分,共20分)15.原式2244x x x x =--+=-. ····················································································· 3分 当1x =-时,原式145=--=-. ······················································································ 5分 16.共有3对. ······················································································································ 1分 ABD ACD △≌△;ADE ADF △≌△;BDE CDF △≌△. ··································· 5分 (写对1对得2分,写对2对得3分,写对3对得4分)17.设张明平均每分钟清点图书x 本,则李强平均每分钟清点(10)x +本, 依题意,得20030010x x =+. ··································································································· 3分 解得20x =.经检验20x =是原方程的解.答:张明平均每分钟清点图书20本. ·················································································· 5分 注:此题将方程列为30020020010x x -=⨯或其变式,同样得分. 18.(1)或2342 4 5 6 4678··········································································································· 2分 摸出的两个球上数字之和为5的概率为16. ········································································ 3分 (2)摸出的两个球上数字之和为6时概率最大. ······························································· 5分 四、解答题(每小题6分,共12分)19.提供以下方案供参考(每画对1个得2分)2 2 43 24 42 4 甲袋 乙袋 和 465768甲袋和 乙袋20.解法一:80BOC =∠,40BAC ∴=∠. ··················································································· 2分在Rt ABC △中,40BAC =∠,9AB =,9cos4090.77 6.9(cm)AC ∴=⨯=⨯≈.答:三角板的短直角边AC 的长约为6.9cm . ······································································ 6分 解法二:作OE AC ⊥于E .80BOC =∠,40BAC ∴=∠. ··················································································· 2分在Rt AOE △中,40BAC =∠, 4.5OA =,4.5cos 40AE ∴=⨯.29cos40 6.9(cm)AC AE ∴==⨯≈.答:三角板的短直角边AC 的长约为6.9cm . ······································································ 6分 五、解答题(每小题6分,共12分) 21.(1)2400. ······················································································································ 2分 (2)如图.··········································································································· 4分 (3)744200622400⨯=(万人), ∴12~17岁的网瘾人数约有62万人. ··················································································· 6分 22.(1)设(0)y kx b b =+≠,3 3442.52.5332.52.5258258网瘾人数(人)750 700 650600 550 500 450 0600 57648012~17 18~23 24~29 30~35 年龄(岁) 744由已知,得50.610 1.1.k b k b +=⎧⎨+=⎩,解得0.10.1.k b =⎧⎨=⎩,0.10.1y x ∴=+. ················································································································· 2分(2)在0.10.1y x =+中,当 6.7y =时,66x =(分).答:该教室连续使用66分钟学生将会开始稍感不适.························································ 4分 (3)当45x =时, 4.6y =,4.60.10.95-∴=(立方米). 答:开门通风时教室空气中2CO 的总量平均每分钟减少0.9立方米. ······························· 6分 六、解答题(每小题7分,共14分) 23.(1)MEF △为等腰三角形.证明:AD BC ∥,MEF EFB ∴=∠∠. MFE EFB =∠∠,MEF MFE ∴=∠∠. ME MF ∴=,即MEF △为等腰三角形. ········································································· 3分 (2)四边形MNFE 为平行四边形. 证法一:ME MF =,同理NF MF =, ME NF ∴=.又ME NF ∥,∴四边形MNFE 为平行四边形. ··························································· 6分 证法二:AD BC ∥,EMF MFN ∴=∠∠.又MEF MFE =∠∠,FMN FNM =∠∠, FMN MFE ∴=∠∠,MN EF ∴∥.∴四边形MNFE 为平行四边形.·························································································· 6分 注:其他正确证法同样得分. (3)60. 24.(1)(02)A ,,BC x ∥轴,(12)B ∴-,,(32)C ,.1AB ∴=,3CA =.∴线段AB 与线段CA 的长度之比为13. ············································································· 3分 (2)(0)A a ,,BC x ∥轴,2B a a ⎛⎫∴- ⎪⎝⎭,,6C a a ⎛⎫ ⎪⎝⎭,.2AB a ∴=,6CA a=. ∴线段AB 与线段CA 的长度之比为13. ············································································· 6分 (3)15. ································································································································ 7分 七、解答题(每小题10分,共20分) 25.(1)30AC =,AD x =,30CD x ∴=-. 四边形CFED 为矩形,DE BC ∴∥.DE AD BC AC ∴=,即2030DE x=. 23DE x ∴=.2(30)3y x x ∴=-.即22203y x x =-+. ············································································································ 3分(2)2224020431502443ac b a ⎛⎫⨯-⨯- ⎪-⎝⎭==⎛⎫⨯- ⎪⎝⎭, y ∴的最大值为150. 150180<,∴矩形CFED 的面积不能为2180cm . ················································································ 6分 (3)由图象可知,当10x =时,150y =. 当10x =时,10CD h =-,200DE h=, 200(10)150h h∴-=, 解得40h =.经检验40h =是方程的解. 40h ∴=. ···························································································································· 10分26.(1)作PK MN ⊥于K ,则122PK KM NM ===.6KO ∴=,(62)P ∴,. ······································································································· 1分(2)当02b <≤时,如图①,0S =. 当23b <≤时,如图②, 设AC 交PM 于H .24AM HA b ==-.21(24)2S b ∴=-. A B C D yO MPN x 图①图②ABCDyOM PN xH即22(2)S b =-. 或2288S b b =-+.当34b <<时,如图③, 设AC 交PN 于H . 82NA HA b ==-.22(4)4S b ∴=--+,或221628S b b =-+-.当4b ≥时,如图④,4S =. ··································································································································· 5分 (此问不画图不扣分)(3)051b <+≤. ···················································· 7分 (提示:以OM 为直径作圆,当直线1(0)2y x b b =-+>与此圆相切时,51b =+.)(4)b 的值为4,5,826±. ······························· 10分(提示:当PC PD =时,4b =.当PC CD =时,12b =(舍),25b =.当P D C D =时,826b =±.) (写对2个得1分,写对3个得2分,写对4个得3分)图③A BC Dy O MPN x H图④A BCD yO MPN x图⑤A B CD yOMPN xQ。
2008年吉林省中考数学试卷一、选择题(共6小题,每小题3分,满分18分)1.(3分)(2008•吉林)下列计算正确的是()A.2a2•a2=2a2B.(2a)2=2a2C.a6÷a2=a3D.(﹣a2)3=﹣a62.(3分)(2008•吉林)某班数学活动小组7位同学的家庭人口数分别为:3,2,3,3,4,3,3.设这组数据的平均数为a,中位数为b,众数为c,则下列各式正确的是()A.a=b<c B.a<b<c C.a<b=c D.a=b=c3.(3分)(2008•吉林)某超市一月份的营业额为36万元,三月份的营业额为49万元.设每月的平均增长率为x,则可列方程为()A.49(1+x)2=36 B.36(1﹣x)2=49 C.36(1+x)2=49 D.49(1﹣x)2=364.(3分)(2011•成都)如图所示的几何体的主视图是()A.B.C.D.5.(3分)(2009•兰州)如图所示,将一张正方形纸片对折两次,然后在上面打3个洞,则纸片展开后是()A.B.C.D.6.(3分)(2008•吉林)若a+b=3,则2a2+4ab+2b2﹣6的值是()A.12 B.6C.3D.0二、填空题(共10小题,每小题2分,满分20分)7.(2分)(2008•吉林)三个小球上的有理数之和等于_________.8.(2分)(2008•吉林)某地区人口约为1 370 000人,这个数据用科学记数法表示为_________.9.(2分)(2010•郴州)不等式3x+1<﹣2的解集是_________.10.(2分)(2008•吉林)方程的解x=_________.11.(2分)(2008•吉林)反比例函数y=在第二象限内的图象如图所示,则k=_________.12.(2分)(2008•吉林)如图,点D,B,C点在同一条直线上,∠A=60°,∠C=50°,∠D=25°,则∠1= _________度.13.(2分)(2008•吉林)如图,在△ABC中,D,E,F,分别时AB,BC,AC,的中点,若平移△ADF 平移,则图中能与它重合的三角形是_________.(写出一个即可)14.(2分)(2009•西宁)如图,如将飞镖投中一个被平均分成6份的靶子,则落在阴影部分的概率是_________.15.(2分)(2008•吉林)如图,点C,D点在以AB为直径的⊙O上,若∠BDC=28°,则∠ABC=_________度.16.(2分)(2008•吉林)如图,在▱ABCD中,BC=4m,E为AD的中点,F、G分别为BE、CD的中点,则FG=_________m.三、解答题(共12小题,满分82分)17.(5分)(2008•吉林)先化简,再求值,其中x=2,y=1.18.(5分)(2008•吉林)如图所示,小强和小红一起搭积木,小强所搭的小塔高度为23cm,小红所搭的小树高度为22cm,设每块A型积木的高为x cm,每块B型积木高y cm,请求出x和y的值.19.(5分)(2008•吉林)将图中的三张扑克背面朝上放到桌面上,从中随机摸出两张,并用这两张扑克上的数字组成一个两位数,请你用画树状图或列表的方法求:(1)组成的两位数是偶数的概率;(2)组成的两位数是6的倍数的概率.20.(5分)(2008•吉林)在5×5的正方形网络①中,用三张长为3,宽为1的矩形纸片拼接成阴影部分.(1)阴影部分的周长为多少;(2)请用三张纸再拼接两种,(全等的属于同一种)与阴影部分周长相等,但不全等的图形,分别画在网格②,③中.21.(6分)(2008•吉林)某同学根据图①所示的程序计算后,画出了图②中y与x之间的函数图象.(1)当0≤x≤3时,y与x之间的函数关系式为_________;(2)当x>3时,求出y与x之间的函数关系式.22.(6分)(2008•吉林)如图,AB是⊙O的直径,∠BAC=45°,AB=BC.(1)求证:BC是⊙O的切线;(2)设阴影部分的面积分别为,a,b,⊙O的面积为S,请直接写出S与a,b的关系式.(答案不唯一)23.(6分)(2008•吉林)在甲,乙两城市中个抽取300户家庭,进行家庭住房状况是否满意的问卷调查,根据甲城市的统计数据绘制成扇形统计图①,根据乙城市的统计数据绘制成条形统计图②.(1)补全扇形统计图和条形统计图;(2)甲城市中满意家庭数是_________;满意家庭数在图①占得圆心角是多少度?24.(8分)(2008•吉林)如图,在△ABC中,AB=AC,DE=EC,DH∥BC,EF∥AB,HE的延长线与BC的延长线相交于点M,点G在BC上,且∠1=∠2,不添加辅助线,解答下列问题:(1)找出一个等腰三角形;(不包括△ABC)(2)找出三对相似三角形;(不包括全等三角形)(3)找出两对全等三角形,并选出一对进行证明.25.(8分)(2008•吉林)如图所示,张伯伯利用假日在某钓鱼场钓鱼,风平浪静时,鱼漂露出水面部分AB=6cm,微风吹来,假设铅垂P不动,鱼漂移动了一段距离BC,且顶端恰好与水面齐平,(即PA=PC)水平l与OC的夹角α为8°(点A在OC上),求铅锤P处的水深h.(参考数据:sin8°≈,cos8°≈,tan8°≈)26.(8分)(2008•吉林)如图,某花园的护栏是用直径80cm的条形刚组制而成,且每增加一个半圆形条钢,半圆护栏长度增加acm,(a>0)设半圆形条钢的个数为x(x为正整数),护栏总长为ycm(1)当a=60时,y与x之间的函数关系式为_________;(2)若护栏总长度为3380cm,则当a=50时,所用半圆形条钢的个数为_________;(3)若护栏总长度不变,则当a=60时,用了n个半圆形条钢,当a=50时用了(n+k)个半圆形条钢,请求出n,k之间的关系式.27.(10分)(2008•吉林)如图,在平面直角坐标系中,矩形OABC的顶点A(0,3),C(﹣1,0),将矩形OABC绕原点O顺时针方向旋转90度,得矩形OA′B′C′矩形设直线BB’与x轴交于点M,与y轴交于点N,抛物线经过点C,M,N点.解答下列问题:(1)设直线BB′表示的函数解析式为y=mx+n,求m,n;(2)求抛物线表示的二次函数的解析式;(3)在抛物线上求出使S△PB′C′=S矩形OABC的所有点P的坐标.28.(10分)(2008•吉林)如图①,在长为6厘米,宽为3厘米的矩形PQMN中,有两张边长分别为二厘米和一厘米的正方形纸片ABCD和EFGH,且BC且在PQ上,PB=1厘米,PF=厘米,从初始时刻开始,纸片ABCD沿PQ以2厘米每秒的速度向右平移,同时纸片EFGH沿PN以1厘米每秒的速度向上平移,当C点与Q点重合时,两张图片同时停止移动,设平移时间为t秒时,(如图②),纸片ABCD扫过的面积为S1,纸片EFGH扫过的面积为S2,AP,PG,GA所围成的图形面积为S(这里规定线段面积为零,扫过的面积含纸片面积).解答下列问题:(1)当t=时,PG=_________,PA=_________时,PA_________PG+GA(填=或≠);(2)求S与t之间的关系式;(3)请探索是否存在t值(t>),使S1+S2=4S+5.若存在,求出t值;若不存在,说明理由.2008年吉林省中考数学试卷参考答案与试题解析一、选择题(共6小题,每小题3分,满分18分)1.(3分)(2008•吉林)下列计算正确的是()A.2a2•a2=2a2B.(2a)2=2a2C.a6÷a2=a3D.(﹣a2)3=﹣a6考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂相乘,底数不变指数相加;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.解答:解:A、应为2a2•a2=2a4,故本选项错误;B、应为(2a)2=4a2,故本选项错误;C、应为a6÷a2=a4,故本选项错误;D、(﹣a2)3=﹣a2×3=﹣a6,正确;故选D.点评:本题考查了同底数幂的乘法,积的乘方,同底数幂的除法,熟练掌握运算性质是解题的关键.2.(3分)(2008•吉林)某班数学活动小组7位同学的家庭人口数分别为:3,2,3,3,4,3,3.设这组数据的平均数为a,中位数为b,众数为c,则下列各式正确的是()A.a=b<c B.a<b<c C.a<b=c D.a=b=c考点:中位数;算术平均数;众数.专题:应用题.分析:先把数据按大小排列,然后根据平均数、中位数和众数的意义求出a,b,c,最后比较大小.解答:解:因为a=(3+2+3+3+4+3+3)÷7=3;b=3;c=3,所以a=b=c.故选D.点评:此题考查了平均数、中位数和众数的意义.平均数是指在一组数据中所有数据之和再除以数据的个数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,可能出错.一组数据中出现次数最多的数据叫做众数.3.(3分)(2008•吉林)某超市一月份的营业额为36万元,三月份的营业额为49万元.设每月的平均增长率为x,则可列方程为()A.49(1+x)2=36 B.36(1﹣x)2=49 C.36(1+x)2=49 D.49(1﹣x)2=36考点:由实际问题抽象出一元二次方程.专题:增长率问题.分析:本题为增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设每月的平均增长率为x,根据“三月份的营业额为49万元”,即可得出方程.解答:解:设每月的平均增长率为x,∴由题意可得:36(1+x)2=49.故选C.点评:平均增长率问题,一般形式为a(1+x)2=b,a 为起始时间的有关数量,b为终止时间的有关数量.4.(3分)(2011•成都)如图所示的几何体的主视图是()A.B.C.D.考点:简单几何体的三视图.分析:根据主视图是从正面看到的图形判定则可.解答:解:从正面看,是一个等腰梯形,故选C.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.5.(3分)(2009•兰州)如图所示,将一张正方形纸片对折两次,然后在上面打3个洞,则纸片展开后是()A.B.C.D.考点:翻折变换(折叠问题).专题:压轴题;操作型.分析:结合空间思维,分析折叠的过程及打孔的位置,易知展开的形状.解答:解:当正方形纸片两次沿对角线对折成为一直角三角形时,在平行于斜边的位置上打3个洞,则直角顶点处完好,即原正方形中间无损,且有12个洞.故选:D.点评:本题主要考查学生抽象思维能力,错误的主要原因是空间观念以及转化的能力不强,缺乏逻辑推理能力,需要在平时生活中多加培养.6.(3分)(2008•吉林)若a+b=3,则2a2+4ab+2b2﹣6的值是()A.12 B.6C.3D.0考点:完全平方公式.专题:压轴题.分析:对所求式子的前三项根据完全平方公式进行变形,然后把已知的数值整体代入求值即可.解答:解:∵2a2+4ab+2b2﹣6=2(a+b)2﹣6,∴原式=2×32﹣6=18﹣6=12.故选A.点评:本题的关键是根据完全平方公式的逆用,把式子转变成已知的式子的形式进行计算.二、填空题(共10小题,每小题2分,满分20分)7.(2分)(2008•吉林)三个小球上的有理数之和等于﹣2.考点:有理数的加法.分析:根据有理数的加法法则计算.解答:解:2+1+(﹣5)=﹣2.点评:熟练运用有理数的加法法则.8.(2分)(2008•吉林)某地区人口约为1 370 000人,这个数据用科学记数法表示为 1.37×106.考点:科学记数法—表示较大的数.专题:应用题.分析:把一个大于10的数写成科学记数法a×10n的形式时,将小数点放到左边第一个不为0的数位后作为a,把整数位数减1作为n,从而确定它的科学记数法形式.解答:解:根据题意1 370 000=1.37×106.点评:本题考查用科学记数法表示较大的数.科学记数法在实际生活中有着广泛的应用,给我们记数带来方便,考查科学记数法就是考查我们应用数学的能力.将一个绝对值较大的数写成科学记数法a×10n的形式时,其中1≤|a|<10,n为比整数位数少1的数.9.(2分)(2010•郴州)不等式3x+1<﹣2的解集是x<﹣1.考点:解一元一次不等式.分析:利用不等式的基本性质,将两边不等式同时减去1再除以3,不等号的方向不变.得到不等式的解集<﹣1.解答:解:解不等式3x+1<﹣2,得3x<﹣3,解得x <﹣1.点评:本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一数不等号的方向改变.10.(2分)(2008•吉林)方程的解x=1.考点:解分式方程.专题:计算题;压轴题.分析:本题比较容易,分式方程方程两边同乘以x(x+3)化为整式方程求解.解答:解:方程两边同乘以x(x+3),得x+3=4x,移项得3=4x﹣x,合并同类项得3x=3.方程两边同除以3得x=1.经检验x=1是原分式方程的解.点评:解分式方程的关键是两边同乘最简公分母,将分式方程转化为整式方程,易错点是忽视检验.11.(2分)(2008•吉林)反比例函数y=在第二象限内的图象如图所示,则k=﹣2.考点:待定系数法求反比例函数解析式.专题:计算题;待定系数法.分析:先设y=,再把已知点的坐标代入可求出k值,即得到反比例函数的解析式.解答:解:根据图象可知,点(﹣2,1)在函数图象上,所以将点(﹣2,1)代入解析式可得k=﹣2.故答案为:﹣2.点评:本题比较简单,考查的是用待定系数法求反比例函数的比例系数,是中学阶段的重点内容.12.(2分)(2008•吉林)如图,点D,B,C点在同一条直线上,∠A=60°,∠C=50°,∠D=25°,则∠1=45度.考点:三角形的外角性质;三角形内角和定理.分析:根据三角形的外角的性质及三角形的内角和定理可求得.解答:解:∵∠ABD是△ABC的外角,∴∠ABD=∠A+∠C=60°+50°=110°,∴∠1=180°﹣∠ABD﹣∠D=180°﹣110°﹣25°=45°.点评:本题考查三角形外角的性质及三角形的内角和定理,比较简单.13.(2分)(2008•吉林)如图,在△ABC中,D,E,F,分别时AB,BC,AC,的中点,若平移△ADF平移,则图中能与它重合的三角形是△DBE(或△FEC).(写出一个即可)考点:平移的性质.专题:操作型.分析:根据平移的性质,结合图形对图中三角形进行分析,得到正确结果.解答:解:△DBE形状和大小没有变化,属于平移得到;△DEF方向发生了变化,不属于平移得到;△FEC形状和大小没有变化,属于平移得到.∴图中能与它重合的三角形是△DBE(或△FEC).点评:本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.14.(2分)(2009•西宁)如图,如将飞镖投中一个被平均分成6份的靶子,则落在阴影部分的概率是.考点:几何概率.分析:先求出阴影部分面积占整个转盘面积的比例,再根据这个比例即可求解.解答:解:因为阴影部分占图形靶子的,所以飞镖落在阴影部分的概率是.点评:本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.15.(2分)(2008•吉林)如图,点C,D点在以AB为直径的⊙O上,若∠BDC=28°,则∠ABC=62度.考点:圆周角定理.专题:压轴题.分析:根据圆周角定理可证∠CAB=∠BCD=28°,∠ACB=90°,即可求∠ABC=180°﹣∠ACB﹣∠CAB=180°﹣90°﹣28°=62°.解答:解:∵点C、D点在以AB为直径的⊙O上,∠BDC=28°,∴∠CAB=∠BCD=28°,∠ACB=90°,∴∠ABC=180°﹣∠ACB﹣∠CAB=180°﹣90°﹣28°=62°.点评:本题重点考查了同弧所对的圆周角相等、直径所对的圆周角为直角及解直角三角形的知识,本题是一道较难的题目.16.(2分)(2008•吉林)如图,在▱ABCD中,BC=4m,E为AD的中点,F、G分别为BE、CD的中点,则FG=3m.考点:梯形中位线定理;平行四边形的性质.专题:压轴题.分析:首先根据平行四边形的性质,求得ED的长;再根据梯形的中位线定理求得FG的长.解答:解:∵在▱ABCD中,BC=4m,E为AD的中点,∴ED=×4=2m;又∵F、G分别为BE、CD的中点,∴FG=(BC+ED)=×(4+2)=3(m).点评:本题考查的是平行四边形的性质及梯形的中位线定理.三、解答题(共12小题,满分82分)17.(5分)(2008•吉林)先化简,再求值,其中x=2,y=1.考点:分式的化简求值.专题:计算题.分析:本题的关键是正确进行分式的通分、约分,并准确代值计算.解答:解:原式=•=,当x=2,y=1时,原式==6.点评:此题所考查的内容“分式的运算”是数与式的核心内容,全面考查了有理数、整式、分式运算等多个知识点,要合理寻求简单运算途径的能力及分式运算.18.(5分)(2008•吉林)如图所示,小强和小红一起搭积木,小强所搭的小塔高度为23cm,小红所搭的小树高度为22cm,设每块A型积木的高为x cm,每块B型积木高y cm,请求出x和y的值.考点:二元一次方程组的应用.专题:应用题.分析:小强搭的积木的高度=A的高度×2+B的高度×3,小红搭的积木的高度=A的高度×3+B的高度×2,依两个等量关系列出方程组,再求解.解答:解:根据题意,得.(3分)解得.(2分)点评:解题关键是看清图形的意思,找出等量关系列方程组求解.19.(5分)(2008•吉林)将图中的三张扑克背面朝上放到桌面上,从中随机摸出两张,并用这两张扑克上的数字组成一个两位数,请你用画树状图或列表的方法求:(1)组成的两位数是偶数的概率;(2)组成的两位数是6的倍数的概率.考点:列表法与树状图法.分析:依据题意先用画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.解答:解:∴两位数有:23,24,32,34,42,43.(1)两位数是偶数的概率为=.(2)两位数是6的倍数的概率为=.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20.(5分)(2008•吉林)在5×5的正方形网络①中,用三张长为3,宽为1的矩形纸片拼接成阴影部分.(1)阴影部分的周长为多少;(2)请用三张纸再拼接两种,(全等的属于同一种)与阴影部分周长相等,但不全等的图形,分别画在网格②,③中.考点:作图—应用与设计作图.专题:网格型.分析:(1)由图可知,阴影部分的周长=3×8﹣4=20;(2)始终使宽为1的部分有两次重合的机会即可.解答:解:(1)20(1分);(2)画对一种的(2分)共(4分).点评:此题主要考查学生在网格中的计算能力和创作能力.21.(6分)(2008•吉林)某同学根据图①所示的程序计算后,画出了图②中y与x之间的函数图象.(1)当0≤x≤3时,y与x之间的函数关系式为y=5x+3;(2)当x>3时,求出y与x之间的函数关系式.考点:函数的图象.专题:数形结合.分析:(1)易得0≤x≤3时函数解析式应为一次函数,所求的关系式为乘5后加3.(2)当x>3时,函数解析式为二次函数,所求的关系式为:自变量减7后平方,再加m,把图象上的(10,11)代入即可求得m.解答:解:(1)根据题意,可知该函数解析式应为一次函数,得出该解析式为y=5x+3;(2)根据题意,得y=(x﹣7)2+m把(10,11)代入,得9+m=11.∴m=2.∴y与x之间的函数关系式为y=(x﹣7)2+2点评:解决本题的关键是读懂图意,得到不同取值范围内的解析式.22.(6分)(2008•吉林)如图,AB是⊙O的直径,∠BAC=45°,AB=BC.(1)求证:BC是⊙O的切线;(2)设阴影部分的面积分别为,a,b,⊙O的面积为S,请直接写出S与a,b的关系式.(答案不唯一)考点:切线的判定;扇形面积的计算.专题:几何综合题.分析:(1)AB是⊙O的直径,那么求得∠ABC为90°即可;(2)设AC圆交于点D,连接BD,因为AD=BD,那么a可转移到弧BD与弦BD围成的面积,即△BCD的面积=a+b,易得△ADB的面积=△BCD的面积,那么半圆的面积=2a+a+b=3a+b,从而得到三者的关系.解答:(1)证明:∵AB=BC,∴∠CAB=∠ACB=45°.(1分)∵在△ABC中,∠ABC=180°﹣45°﹣45°=90°,∴AB⊥BC.(2分)又∵AB是⊙O的直径,∴BC是⊙O的切线.(1分)(2)解:设AC圆交于点D,连接BD,∵AD=BD,∴△BCD的面积=a+b,∵△ADB的面积=△BCD的面积,∴半圆的面积=2a+a+b=3a+b,∴S=6a+2b.(2分)点评:过圆心且与半径垂直的直线是圆的切线;求阴影部分面积,转移也是常用的方法.23.(6分)(2008•吉林)在甲,乙两城市中个抽取300户家庭,进行家庭住房状况是否满意的问卷调查,根据甲城市的统计数据绘制成扇形统计图①,根据乙城市的统计数据绘制成条形统计图②.(1)补全扇形统计图和条形统计图;(2)甲城市中满意家庭数是48;满意家庭数在图①占得圆心角是多少度?考点:条形统计图;扇形统计图.专题:图表型.分析:(1)由统计图求得甲城市中满意的家庭数占的百分比;乙城市中非常满意的家庭数;补全图形即可;(2)甲城市中满意家庭数是300×16%=48户,占得圆心角是360°×16%=57.6°.解答:解:(1)甲城市中满意的家庭数占的百分比为1﹣35%﹣31%﹣8%﹣10%=16%;乙城市中非常满意的家庭数为300﹣21﹣99﹣80﹣64=36户;补全图形,如图:(2)甲城市中满意家庭数是:300×16%=48户,占得圆心角是360°×16%=57.6°.点评:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.(8分)(2008•吉林)如图,在△ABC中,AB=AC,DE=EC,DH∥BC,EF∥AB,HE的延长线与BC的延长线相交于点M,点G在BC上,且∠1=∠2,不添加辅助线,解答下列问题:(1)找出一个等腰三角形;(不包括△ABC)(2)找出三对相似三角形;(不包括全等三角形)(3)找出两对全等三角形,并选出一对进行证明.考点:等腰三角形的判定;全等三角形的判定;相似三角形的判定.专题:几何图形问题;开放型.分析:根据等腰三角形判定即等边对等角或等角对等边、全等三角形判定及相似三角形判定解答即可.注意:要灵活运用已知条件.解答:解:(1)∵AB=AC,∴∠B=∠ACB,∵DH∥BC,∴∠AHD=∠B,∠ADH=∠ACB,∴∠AHD=∠ADH,∴△AHD是等腰三角形;∵DH∥BC,∴∠2=∠M又∠1=∠2,∴∠1=∠M,∴△EGM是等腰三角形;∵AB=AC,∴∠B=ACB,∵EF∥AB,∠B=∠EFC,∴∠ACB=∠EFC∴△EFC是等腰三角形;(2)△AHD∽△ABC,△EFC∽△ABC,△EFM∽△HBM,△AHD∽△EFC,△BMH∽△CGE(写出其中三对即可).(3分)∵HD∥BC,∴△AHD∽△ABC,∵EF∥AB,∴△EFC∽△ABC,△EFM∽△HBM;(3)△DHE≌△FGE,△DHE≌△CME,△FGE≌△CME,△EGC≌△EMF(写出其中两对即可)(2分)选择△DHE≌△CME.证明:∵DH∥CM,∴∠2=∠M,又∵∠DEH=∠CEM,DE=EC,∴△DHE≌△CME(2分)∵HD∥BC,EF∥AB,∴∠2=∠M,∠B=∠EFC又∠B=∠ACB,∠1=∠2,∴∠1=∠M,∠EFC=∠ECF,∴∠EFG=∠ECM,∴△EFG≌△ECM.说明:选任何一对全等三角形,只要证明正确均得分.点评:此题难度中等,考查等腰三角形判定、全等三角形判定及相似三角形判定的综合运用.25.(8分)(2008•吉林)如图所示,张伯伯利用假日在某钓鱼场钓鱼,风平浪静时,鱼漂露出水面部分AB=6cm,微风吹来,假设铅垂P不动,鱼漂移动了一段距离BC,且顶端恰好与水面齐平,(即PA=PC)水平l与OC的夹角α为8°(点A在OC上),求铅锤P处的水深h.(参考数据:sin8°≈,cos8°≈,tan8°≈)考点:解直角三角形的应用.专题:计算题;压轴题.分析:在Rt△ABC中,已知∠ACB=α=8°,AB=6,根据三角函数就可以求出BC的长;在直角△ABC中,根据已知条件,利用勾股定理就可以求出水深h.解答:解:∵l∥BC,∴∠ACB=α=8°,在Rt△ABC中,∵tanα=,∴BC===42(cm),根据题意,得h2+422=(h+6)2,∴h=144(cm).答:铅锤P处的水深约为144cm.点评:本题考查了学生运用三角函数知识解决实际问题的能力,又让学生感受到生活处处有数学,数学在生产生活中有着广泛的作用.26.(8分)(2008•吉林)如图,某花园的护栏是用直径80cm的条形刚组制而成,且每增加一个半圆形条钢,半圆护栏长度增加acm,(a>0)设半圆形条钢的个数为x(x为正整数),护栏总长为ycm(1)当a=60时,y与x之间的函数关系式为y=60x+20;(2)若护栏总长度为3380cm,则当a=50时,所用半圆形条钢的个数为67;(3)若护栏总长度不变,则当a=60时,用了n个半圆形条钢,当a=50时用了(n+k)个半圆形条钢,请求出n,k之间的关系式.考点:一次函数的应用.分析:(1)由图象可知y=80+(x﹣1)a,整理就可得到.(2)根据y=80+(x﹣1)a,当a=50,y=3380时,x=56.(3)可根据a的不同取值,得出n与k的关于护栏总长度的不同的表达式,然后根据护栏长度不变.得出n,k之间的关系式.解答:解:(1)y=80+60(x﹣1)=60x+20;(2)把a=50,y=3380.代入3380=80+50(x﹣1).解得:x=67(3)当a=60时,n个条钢做成护栏长度为60n+20当a=50时,(n+k)个条钢做成护栏长度为50(n+k)+30根据题意,得60n+20=50(n+k)+30∴n=5k+1.点评:借助函数图象表达题目中的信息,读懂图象是关键.要注意图片中给出的规律.27.(10分)(2008•吉林)如图,在平面直角坐标系中,矩形OABC的顶点A(0,3),C(﹣1,0),将矩形OABC绕原点O顺时针方向旋转90度,得矩形OA′B′C′矩形设直线BB’与x轴交于点M,与y轴交于点N,抛物线经过点C,M,N点.解答下列问题:(1)设直线BB′表示的函数解析式为y=mx+n,求m,n;(2)求抛物线表示的二次函数的解析式;(3)在抛物线上求出使S△PB′C′=S矩形OABC的所有点P的坐标.考点:二次函数综合题.专题:综合题;压轴题.分析:(1)已知A(0,3),C(﹣1,0),就可以得到OA=3,OC=1,就可以得到B、B′的坐标,根据待定系数法就可以求出直线BB′,的解析式;得到m、n的值.(2)已知直线BB′的解析式,可以求得与x轴,y轴的交点M、N的坐标,根据待定系数法就可以求出二次函数的解析式.(3)矩形OABC的面积容易求得,△PB'C'的底边B'C'的边长可以得到,B'C'边上的高线长就是P点的纵坐标﹣1的绝对值.设P的纵坐标是y,根据三角形的面积就可以得到一个关于y的方程,就可以解得y的值.进而就可以求出P的坐标.解答:解:(1)∵四边形OABC是矩形,∴B(﹣1,3)(1分)根据题意,得B′(3,1)把B(﹣1,3),B′(3,1)代入y=mx+n中,(1分)解得∴m=﹣,n=(2)由(1)得y=﹣x+,∴N(0,),M(5,0)(2分)设二次函数解析式为y=ax2+bx+c,把C(﹣1,0),N(0,),M(5,0)代入得:,解得(1分)∴二次函数的解析式为y=﹣x2+2x+(1分)(3)∵S矩形OABC=3×1=3∴S△PB‘C′=3又∵由(1)(2)知B'C'=BC=3,∴点P到B'C'的距离为2,则P点的纵坐标为3或﹣1当y=3时,3=﹣x2+2x+,即x2﹣4x+1=0解得x=2±∴P1(2+,3),P2(2﹣,3),(2分)当y=﹣1时,﹣1=﹣x2+2x+,即x2﹣4x﹣7=0解得x=2±∴P3(2+,﹣1),P4(2﹣,﹣1)(2分)∴P点坐标(2+,3),(2﹣,3),(2+,﹣1),(2﹣,﹣1).点评:本题主要考查了待定系数法求函数的解析式,注意数形结合是解决本题的关键.28.(10分)(2008•吉林)如图①,在长为6厘米,宽为3厘米的矩形PQMN中,有两张边长分别为二厘米和一厘米的正方形纸片ABCD和EFGH,且BC且在PQ上,PB=1厘米,PF=厘米,从初始时刻开始,纸片ABCD沿PQ以2厘米每秒的速度向右平移,同时纸片EFGH沿PN以1厘米每秒的速度向上平移,当C点与Q点重合时,两张图片同时停止移动,设平移时间为t秒时,(如图②),纸片ABCD扫过的面积为S1,纸片EFGH扫过的面积为S2,AP,PG,GA所围成的图形面积为S(这里规定线段面积为零,扫过的面积含纸片面积).解答下列问题:(1)当t=时,PG=,PA=2时,PA=PG+GA(填=或≠);(2)求S与t之间的关系式;(3)请探索是否存在t值(t>),使S1+S2=4S+5.若存在,求出t值;若不存在,说明理由.考点:矩形的性质;正方形的性质.专题:压轴题.分析:(1)PG==,PA==2,AG==,∴PA=PG+GA.(2)由(1)得当t=0.5时,G在AP上,那么可分G在△APB内和△APB外两种情况进行解答.(3)按等量关系列出等式,根据t的取值范围得到所求.解答:解:(1)当t=时,PG=,PA=2,此时PA=PG+GA;(各1分)(2)①当0≤t≤0.5时,连接GBS△APG=S△APB﹣S△PGB﹣S△AGB,=×2(2t+1)﹣(2t+1)(t+0.5)﹣×2×2t,=﹣t2﹣t+(2分)②当0.5<t≤1.5时,过A作AK⊥PN于K,连接KGS△APG=S△APK﹣S△PGK﹣S△AGK。
2008年长春市中考语文试题及答案本试卷包括两道大题,共28道小题。
共6页。
全卷满分120分。
考试时间为120分钟。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内。
2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试卷上答题无效。
一.阅读(60分)(一)名句积累与运用(15分)1.蒹葭苍苍,。
(《诗经·蒹葭》)2.安得广厦千万间,!(杜甫《茅屋为秋风所破歌》)3.,。
无为在歧路,儿女共沾巾。
(王勃《送杜少府之任蜀州》)4.,,古道西风瘦马。
(马致远《天净沙·秋思》)5.学习与思考是紧密结合的过程,“学而不思则罔,思而不学则殆”这句话强调了学习与思考的辩证关系;同时,学习又是相互联系,从旧知中不断获得新知的过程,这自然使我们联想到从《论语》选材的课文中学习过的:,。
6.苏轼说“求物之妙,如系风捕影,能使物了然于心者”。
《醉翁亭记》中欧阳修以神来之笔捕捉到了四时之景的诗情画意,其中描写春夏之景的两个句子:,。
7.范仲淹在《渔家傲秋思》这首词中用来表达征人归心切、思乡迫,破敌功未成,把酒难释怀之意的句子是:8.“士不可以不弘毅,任重而道远。
”古代先贤有这样风范的人不胜枚举,请写出初中课本内学习过的古诗词中能表现鉴定信念,战胜困难的勇气和决心的连续两句,并标明作者或出处。
句子:作者或出处:(二)文言文阅读(15分)(甲)阅读下文,回答问题。
(10分)出师表先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。
然侍卫之臣不懈于内,忠志之士忘身于外者,盖追先帝之殊遇,欲报之于陛下也。
诚宜开张圣听,以光先帝遗德,恢弘志士之气,不宜妄自菲薄,引喻失义,以塞忠谏之路也。
宫中府中,俱为一体,陟罚臧否,不宜异同。
若有作奸犯科及为忠善者,宜付有司论其刑赏,以昭陛下平明之理,不宜偏私,使内外异法也。
常州市二00六年初中毕业、升学统一考试数 学注意事项:1、全卷共8页,满分120分,考试时间120分钟。
2、答卷前将密封线内的项目填写清楚,并将座位号填写在试卷规定的位置上。
3、用蓝色或黑色钢笔、圆珠笔将答案直接填写在试卷上。
4、考生在答题过程中,可以使用CZ1206、HY82型函数计算器,若试题计算结果没有要求取近似值,则计算结果取精确值(保留根号和π)。
一、填空题(本大题每个空格1分,共18分,把答案填写在题中横线上) 1.3的相反数是 ,5-的绝对值是 ,9的平方根是 。
2.在函数1-=xy 中,自变量x 的取值范围是 ;若分式12--x x 的值为零,则=x 。
3.若α∠的补角是120°,则α∠= °,=αcos 。
4.某校高一新生参加军训,一学生进行五次实弹射击的成绩(单位:环)如下:8,6,10,7,9,则这五次射击的平均成绩是 环,中位数 环,方差是 环2。
5.已知扇形的圆心角为120°,半径为2cm ,则扇形的弧长是 cm ,扇形的面积是 2cm 。
6.已知反比例函数()0≠=k xky 的图像经过点(1,2-),则这个函数的表达式是 。
当0 x 时,y 的值随自变量x 值的增大而 (填“增大”或“减小”)7、如图,在△ABC 中,D 、E 分别是AB 和AC 的中点,F 是BC 延长线上的一点,DF 平分CE 于点G ,1=CF ,则 =BC ,△ADE 与△ABC 的周长之比为 ,△CFG 与△BFD 的面积之比为 。
8.如图,小亮从A 点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,……照这样走下去,他第一次回到出发地A 点时,一共走了 米。
二、选择题(下列各题都给出代号为A 、B 、C 、D 的四个答案,其中有且只有一个是正确的,把正确答案的代号填在题后【 】内,每小题2分,共18分) 9.下列计算正确的是 【 】 A .123=-x x B .2x x x =∙ C .2222x x x =+ D .()423a a -=-第7题B第8题10.如图,已知⊙O 的半径为5mm ,弦mm AB 8=,则圆心O 到AB 的距离是 【 】A .1 mmB .2 mmC .3 mmD .4 mm 11.小刘同学用10元钱买两种不同的贺卡共8张,单价分别是1元与2元,设1元的贺卡为x 张,2元的贺卡为y 张,那么x 、y 所适合的一个方程组是 【 】A .⎪⎩⎪⎨⎧=+=+8102y x y xB .⎪⎩⎪⎨⎧=+=+1028102y x y x C .⎩⎨⎧=+=+8210y x y x D .⎩⎨⎧=+=+1028y x y x 12.刘翔为了备战2008年奥运会,刻苦进行110米跨栏训练,为判断他的成绩是否稳定,教练对他10次训练的成绩进行统计分析,则教练需了解刘翔这10次成绩的【 】 A .众数 B .方差 C .平均数 D .频数 13、图1表示正六棱柱形状的高大建筑物,图2中的阴影部分表示该建筑物的俯视图,P 、Q 、M 、N 表示小明在地面上的活动区域,小明想同时看到该建筑物的三个侧面,他应在【 】A .P 区域B .Q 区域C .M 区域D .N 区域14、下列左图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,则该几何体的主视图为 【 】224113第14题ABCD15.锐角三角形的三个内角是∠A 、∠B 、∠C ,如果B A ∠+∠=∠α,C B ∠+∠=∠β,A C ∠+∠=∠γ,那么α∠、β∠、γ∠这三个角中 【 】A .没有锐角B .有1个锐角C .有2个锐角D .有3个锐角 16、如果0,0,0 b a b a +,那么下列关系式中正确的是 【 】 A .a b b a -- B .b b a a -- C .a b a b -- D .a b b a --17.已知:如图1,点G 是BC 的中点,点H 在AF 上,动点P 以每秒2cm 的速度沿图1的边线运动,运动路径为:H F E D C G →→→→→,相应的△ABP 的面积)(2cm y 关于运动时间)(s t 的函数图像如图2,若cm AB 6=,则下列四个结论中正确的个数有第10题第13题图2图1【 】图1F C①图1中的BC 长是8cm ②图2中的M 点表示第4秒时y 的值为242cm ③图1中的CD 长是4cm ④图2中的N 点表示第12秒时y 的值为182cm A .1个 B .2个 C .3个 D .4个三、解答题(本大题共2小题,共20分,解答应写出演算步骤) 18.(本小题满分10分)计算或化简:(1)03260tan 33⎪⎭⎫⎝⎛-+︒+ (2)2422---m m m19.(本小题满分10分)解方程或解不等式组: (1)x x 211=- (2)⎩⎨⎧-≥+≤-1)1(212x x x四、解答题(本大题共2小题,共12分,解答应写出证明过程) 20.(本小题满分5分)已知:如图,在四边形ABCD 中,AC 与BD 相交与点O ,AB ∥CD ,CO AO =, 求证:四边形ABCD 是平行四边形。
长春市中考原题之5-7分圆专题(2005-2012)2012.18. 如图,在同一平面内,有一组平行线1l 、2l 、3l O 在直线1l 上,⊙O 与直线3l 的交点为A 、B ,AB =12,求⊙O 的半径.2011.21.(2011吉林长春,21,6分)如图,平面直角坐标系中,⊙P 与x 轴交于A 、B 两点,点P 的坐标为(3,-1),3AB (1)求⊙P 的半径.(4分)(2)将⊙P 向下平移,求⊙P 与x 轴相切时平移的距离.(2分)2010.18.如图,将一个两边带有刻度的直尺放在半圆形纸片上,使其一边经过圆心O ,另一边所在直线与半圆交于点D 、E ,量出半径OC =5cm ,弦DE =8cm ,求直尺的宽.y xBA OP21题图2008.16.如图,AB 、CD 是⊙O 的两条弦,延长AB 、CD 交于点P ,连接AD 、BC 交于点E .∠P =30°,∠ABC =50°,求∠A 的度数.2006.23.如图,P 为正比例函数x y 23=图象上的一个动点,⊙P 的半径为3,设点P 的坐标为(x ,y ). (1)求⊙P 与直线2=x 相切时点P 的坐标.(4分)(2)请直接写出⊙P 与直线2=x 相交、相离时x 的取值范围.(3分)2005.16.如图,AB 为⊙O 的直径,P 为AB 的延长线上一点,PT 切⊙O 于T ,若PT=6,PB=3,求⊙O 的直径。
解:长春市数学中考原题之7-9分感知拓展应用专题(2008-2013)2013.22.(9分)探究:如图①,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD, AE⊥CD于点E.若AE=10,求四边形ABCD的面积.应用:如图②,在四边形ABCD中,∠ABC+∠ADC=180°,AB=AD,AE⊥BC于点E.若AE=19,BC=10,CD=6,则四边形ABCD的面积为.(第22题)2012.24.感知:如图①,点E在正方形ABCD的BC边上,BF⊥AE于点F,DG⊥AE于点G.可知△ADG≌△BAF.(不要求证明)拓展:如图②,点B、C在∠MAN的边AM、AN上,点E、F在∠MAN内部的射线AD上, ∠1 、∠2分别是△ABE、△CAF AB=AC,∠1 =∠2=∠BAC.求证:△ABE≌△CAF.应用:如图③,在等腰三角形ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E、F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为9,则△ABE与△CDF的面积之和为.2011.24.探究如图①,在ABCD 的形外分别作等腰直角△ABF 和等腰直角△ADE,FAB ∠=90EAD ∠=, 连结AC 、EF .在图中找一个与△FAE 全等的三角形,并加以证明.(5分) 应用以ABCD 的四条边为边,在其形外分别作正方形,如图②,连结EF 、GH 、IJ 、KL , 若ABCD 的面积为5,则图中阴影部分四个三角形的面积和为________.(2分)2008.24.如图,在△ABC 中,AD 平分∠BAC 交BC 于点D .点E 、F 分别在边AB 、AC 上,且BE =AF ,图②I J KL EF GD AC B 图①FED A CBFG ∥AB 交线段AD 于点G ,连接BG 、EF .(1)求证:四边形BGFE 是平行四边形.(4分)(2)若△ABC ∽△AGF ,AB =10,AG =6,求线段BE 的长.(3分)长春市中考原题之5-7分反比例函数专题(2009-2012)2012.22. 如图,在平面直角坐标系中,□ABCO 的顶点A 、C 的坐标分别为A (2,0) 、C (1-,2),反比例函数(0)ky k x=≠的图象经过点B . (1)求k 的值.(2)将□ABCO 沿x 轴翻折,点C 落在点C 'C’是否落在反比例函数(0)ky k x=≠的图象上,请通过计算说明理由.2011.19.(2011吉林长春,19,5分)如图,平面直角坐标系中,直线1122y x =+与x 轴交于点A ,与双曲线ky x=在第一象限内交于点B ,BC ⊥x 轴于点C ,OC=2AO ,求双曲线的解析式.yxOCBA2009.21.如图,点P 的坐标为(2,23),过点P 作x 轴的平行线交y 轴于点A ,交双曲线xk y =(x>0)于点N ;作PM ⊥AN 交双曲线xky =(x>0)于点M ,连结AM.已知PN=4. (1)求k 的值.(3分) (2)求△APM 的面积.(3分)长春市数学中考原题之6-8分一次函数专题(2012-2013)2013.21.(8分)甲、乙两工程队维修同一段路面,甲队先清理路面,乙队在甲队清理后铺设路面.乙队在中途停工了一段时间,然后按停工前的工作效率继续工作.在整个工作过程中,甲队清理完的路面长y (米)与时间x (时)的函数图象为线段OA ,乙队铺设完的路面长y (米)与时间x (时)的函数图象为折线BC -CD -DE ,如图所示,从甲队开始工作时计时. (1)分别求线段BC 、DE 所在直线对应的函数关系式. (2)当甲队清理完路面时,求乙队铺设完的路面长.(第21题)2012.23.y (元)与加工个数x (个)之间的部分函数图象为折线OA -AB -BC ,如图所示. (1)求工人一天加工零件不超过20个时每个零件的加工费. (2)求40≤x ≤60时y 与x 的函数关系式.(3)小王两天一共加工了60个零件,共得到加工费220元.在这两天中,小王第一天加工零件不足20个,求小王第一天加工的零件个数.长春市数学中考原题之6-9分二次函数专题(2009-2011)2011.23.如图,平面直角坐标系中,抛物线32212+-=x x y 交y 轴于点A .P 为抛物线上一点,且与点A 不重合.连结AP ,以AO 、AP 为邻边作□OAPQ ,PQ 所在直线与x 轴交于点B .设点P 的横坐标为m .(1)点Q 落在x 轴上时m 的值.(3分)(3)若点Q 在x 轴下方,则m 为何值时,线段BQ 的长取最大值,并求出这个最大值.(4分)【参考公式:二次函数)0(2≠++=a c bx ax y 的顶点坐标为(ab ac a b 44,22--)】2009.23.如图,抛物线232--=x ax y 与x 轴正半轴交于点A (3,0).以OA 为边在x 轴上方作正方形OABC ,延长CB 交抛物线于点D ,再以BD 为边向上作正方形BDEF. (1)求a 的值.(2分) (2)求点F 的坐标.(5分)长春市中考原题之倒2专题(2008-2013)2013.23.(10分)如图,在平面直角坐标系中,抛物线y=ax 2+bx-2 与x 轴交于点A (-1,0)、B (4,0).点M 、N 在x 轴上,点N 在点M 右侧,MN=2.以MN 为直角边向上作等腰直角三角形CMN ,∠CMN=90°.设点M 的横坐标为m . (1)求这条抛物线所对应的函数关系式. (2)求点C 在这条抛物线上时m 的值.(3)将线段CN 绕点N 逆时针旋转90°后,得到对应线段DN.①当点D 在这条抛物线的对称轴上时,求点D 的坐标.②以DN 为直角边作等腰直角三角形DNE, 当点E 在这条抛物线的对称轴上时,直接写出所有符合条件的m 值.【参考公式:抛物线2y ax bx c =++(a≠0)的顶点坐标为24()24,b ac b a a--】(第23题)2012.25. 如图,在平面直角坐标系中,直线242y x =-+交x 轴于点A ,交直线y x =22y ax x c =-+分别交线段AB 、OB 于点C 、D ,点C 和点D 的横坐标分别为16和4,点P 在这条抛物线上. (1)求点C 、D 的纵坐标. (2)求a 、c 的值.(3)若Q 为线段OB 上一点,且P 、Q 两点的纵坐标都为5,求线段PQ 的长.(4)若Q 为线段OB 或线段AB 上一点,PQ ⊥x 轴.设P 、Q 两点之间的距离为d (d>0),点Q 的横坐标为m ,直接写出d 随m 的增大而减小时m 的取值范围.【参考公式:二次函数2y ax bx c =++(a≠0)图象的顶点坐标为24()24,b ac b a a--】2011.25.甲、乙两组工人同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y (件)与时间x (时)的函数图象如图所示. (1)求甲组加工零件的数量y 与时间x 之间的函数关系式.(2分) (2)求乙组加工零件总量a 的值.(3分)(3)甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?再经过多长时间恰好装满第2箱?(5分)AB 图①图②C y /升t /分 y Cy A21086 4O20 120 100 80 60 402010.25.如图①,A 、B 、C 三个容积相同的容器之间有阀门连接.从某一时刻开始,打开A 容器阀门,以4升/分的速度向B 容器内注水5分钟,然后关闭,接着打开B 阀门,以10升/分的速度向C 容器内注水5分钟,然后关闭.设A 、B 、C 三个容器的水量分别为y A 、y B 、y C (单位:升),时间为t(单位:分).开始时,B 容器内有水50升.y A 、y C 与t 的函数图象如图②所示.请在0≤t≤10的范围内解答下列问题:(1)求t =3时,y B 的值.(2)求y B 与t 的函数关系式,并在图②中画出其图象. (3)求y A ∶y B ∶y C =2∶3∶4时t 的值.2009.25.甲(棵),乙班植树的总量为y 乙(棵),两班一起植树所用的时间(从甲班开始植树时计时)为x (时).y 甲、y 乙分别与x 之间的部分函数图象如图所示.(1)当0≤x≤6时,分别求y 甲、y 乙与x 之间的函数关系式.(3分)(2)如果甲、乙两班均保持前6个小时的工作效率,通过计算说明,当x=8时,甲、乙两班植树的总量之和能否超过260棵.(3分)(3)如果6个小时后,甲班保持前6个小时的工作效率,乙班通过增加人数,提高了工作效率,这样继续植树2小时,活动结束.当x=8时,两班之间植树的总量相差20棵,求乙班增加人数后平均每小时植树多少棵.(4分)2008.25.在直角坐标系中,抛物线c bx x y ++=2经过点(0,10)和点(4,2).(1)求这条抛物线的解析式.(3分)(2)如图,在边长一定的矩形ABCD 中,CD=1,点C 在y 轴右侧沿抛物线c bx x y ++=2滑动,在滑动过程中CD ∥x 轴,AB 在CD 的下方.当点D 在y 轴上时,AB 落在x 轴上. ①求边BC 的长.(2分)②当矩形ABCD 在滑动过程中被x 轴分成两部分的面积比为1:4时,求点C 的坐标.(5分)长春市中考原题之压轴专题(2005-2013)2013.24:(12分)如图①,在□ABCD 中,AB =13,BC =50,BC 边上的高为12.点P 从点B 出发,沿B -A -D -A 运动,沿B -A 运动时的速度为每秒13个单位长度,沿A -D -A 运动时的速度为每秒8个单位长度.点Q 从点 B 出发沿BC 方向运动,速度为每秒5个单位长度. P 、Q 两点同时出发,当点Q 到达点C 时,P 、Q 两点同时停止运动.设点P 的运动时间为t (秒).连结PQ . (1)当点P 沿A -D -A 运动时,求AP 的长(用含t 的代数式表示).(2)连结AQ ,在点P 沿B -A -D 运动过程中,当点P 与点B 、点A 不重合时,记△APQ 的面积为S .求S与t 之间的函数关系式.(3)过点Q 作QR //AB ,交AD 于点R ,连结BR ,如图②.在点P 沿B -A -D 运动过程中,当线段PQ 扫过的图形(阴影部分)被线段BR 分成面积相等的两部分时t 的值.(4)设点C 、D 关于直线PQ 的对称点分别为'C 、'D ,直接写出''C D //BC 时t 的值.(第24题)2012.26.如图,在Rt △ABC 中,∠ACB =90°,AC =8cm,BC =4cm,D 、E 分别为边AB 、BC 的中点,连结DE .点P 从点A 出发,沿折线AD-DE -EB 运动,到点B 停止.点P 在AD 5的速度运动,在折线DE -EBP 与点A 不重合时,过点P 作PQ ⊥AC 于点Q ,以PQ 为边作正方形PQMN ,使点M 落在线段ACP 的运动时间为t (s ).(1)当点P 在线段DE 上运动时,线段DP 的长为 cm (用含t 的代数式表示).(2)当点N落在AB边上时,求t的值.(3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式.(4)连结CD.当点N与点D重合时,有一点H从点M出发,在线段MNM-N-M连续做往返运动,直至点P与点E重合时,点H停止往返运动;当点P在线段EB上运动时,点H始终在线段MN 的中点处. 直接写出在点P的整个运动过程中,点H落在线段CD上时t的取值范围.2011.26.(2011吉林长春,26,10分)如图,∠C=90°,点A、B在∠C的两边上,CA=30,CB=20,连结AB.点P从点B出发,以每秒4个单位长度的速度沿BC方向运动,到点C停止.当点P与B、C两点不重合时,作PD⊥BC交AB于D,作DE⊥AC于E.F为射线CB上一点,且∠CEF=∠ABC.设点P的运动时间为x(秒).(1)用含x的代数式表示CE的长.(2分)(2)求点F与点B重合时x的值.(2分)(3)当点F 在线段CB 上时,设四边形DECP 与四边形DEFB 重叠部分图形的面积为y(平方单位).求y 与x 之间的函数关系式.(3分)(4)当x 为某个值时,沿PD 将以D 、E 、F 、B 为顶点的四边形剪开,得到两个图形,用这两个图形拼成不重叠且无缝隙的图形恰好是三角形.请直接写出所有符合上述条件的x 的值(3分)F EACBP2010.26.如图①,在平面直角坐标系中,等腰直角△AOB 的斜边OB 在x 轴上,顶点A 的坐标为(3,3),AD 为斜边上的高.抛物线y =ax 2+2x 与直线y = 12x 交于点O 、C ,点C 的横坐标为6.点P 在x 轴的正半轴上,过点P 作PE ∥y 轴,交射线OA 于点E .设点P 的横坐标为m ,以A 、B 、D 、E 为顶点的四边形的面积为S .(1)求OA 所在直线的解析式. (2)求a 的值.(3)当m ≠3时,求S 与m 的函数关系式.(4)如图②,设直线PE 交射线OC 于点R ,交抛物线于点Q .以RQ 为一边,在RQ 的右侧作矩形RQMN ,其中RN = 32.直接写出矩形RQMN 与△AOB 重叠部分为轴对称图形时m 的取值范围.2009.26.如图,直线643+-=x y 分别与x 轴、y 轴交于A 、B 两点;直线x y 45=△ACD 重叠部分(阴影部分)的面积为S (平方单位),点E 的运动时间为t (秒). (1)求点C 的坐标.(1分)(2)当0<t<5时,求S 与t 之间的函数关系式.(4分) (3)求(2)中S 的最大值.(2分) (4)当t>0时,直接写出点(4,29)在正方形PQMN 内部时t 的取值范围.(3分) 【参考公式:二次函数y=ax 2+bx+c 图象的顶点坐标为(ab ac a b 44,22--).】。
长春z08中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 0.33333...(循环)B. √2C. 1/3D. 4答案:B2. 一个二次函数的图象开口向上,且经过点(1,0)和(-1,0),则该二次函数的对称轴是:A. x=0B. x=1C. x=-1D. x=2答案:A3. 计算下列表达式的结果:(3x^2 - 2x + 1) - (x^2 - 4x + 3)A. 2x^2 + 2x - 2B. 2x^2 - 2x + 2C. x^2 + 2x - 2D. x^2 - 2x + 2答案:B4. 一个直角三角形的两条直角边长分别为3和4,那么斜边的长度是:A. 5B. 7C. 9D. 12答案:A5. 一个等差数列的首项为2,公差为3,那么该数列的第5项是:A. 17B. 14C. 11D. 8答案:A6. 下列哪个图形是轴对称图形?A. 平行四边形B. 矩形C. 等腰梯形D. 不规则多边形答案:B7. 一个圆的半径为5,那么该圆的面积是:A. 25πB. 50πC. 75πD. 100π答案:C8. 一个正方体的棱长为a,那么该正方体的体积是:A. a^3B. 3a^2C. 6a^2D. 12a^3答案:A9. 计算下列表达式的结果:(2x - 3)(x + 1)A. 2x^2 - x - 3B. 2x^2 + x - 3C. 2x^2 - x + 3D. 2x^2 + x + 3答案:B10. 一个等比数列的首项为2,公比为2,那么该数列的第3项是:A. 8B. 16C. 32D. 64答案:A二、填空题(每题4分,共20分)11. 计算下列表达式的值:(5x^2 - 3x + 2) / (x - 1) = _______。
答案:5x + 212. 一个圆的直径为10,那么该圆的周长是 _______。
答案:10π13. 一个等差数列的首项为1,公差为2,那么该数列的前5项和是_______。
2008年长春市初中毕业生学业考试英语试题本试卷包括五道大题,共8页。
满分120分。
考试时间为120分钟。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内。
2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试题卷上答题无效。
一、听力(共25分)I.根据所听到的句子,选择正确答语。
(5分)1. A. Good night, Lily. B. Goodbye, Lily. C. Good morning, Lily.2. A. Glad to help. B. Of course. C. It doesn’t matter.3. A. Thank you. B. Let me see. C. Don’t say that.4. A. Certainly. B. Well done. C. Never mind.5. A. Don’t worry. B. Good idea. C. Nothing much.II.根据所听到的对话和对话后的问题,选择正确答案。
(5分)6. A. By taxi. B. By bus. C. By subway.7. A. Comedies. B. Thrillers. C. Action movies.8. A. It’s rainy. B. It’s sunny. C. It’s windy.9. A. Every Friday. B. Every Sunday. C. Every Saturday.10. A. In a shoe store. B. In a bookstore. C. In a clothes store.III.根据所听到的描述,选出与其相符的图片。
其中有一幅图片是多余的。
(5分)11. ________ 12. ________ 13. ________ 14. ________ 15. ________ IV .根据所听到的对话内容,完成下面表格。
2024年长春市初中学业水平考试数学本试卷包括三道大题,共6页.全卷满分为120分,考试时间为120分钟.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内.2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试卷上答题无效.一、选择题:本题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.根据有理数加法法则,计算()23+-过程正确的是()A.()32++B.()32+-C.()32-+ D.()32--2.南湖公园是长春市著名旅游景点之一,图①是公园中“四角亭”景观的照片,图②是其航拍照片,则图③是“四角亭”景观的().A.主视图B.俯视图C.左视图D.右视图3.在剪纸活动中,小花同学想用一张矩形纸片剪出一个正五边形,其中正五边形的一条边与矩形的边重合,如图所示,则α∠的大小为()A.54oB.60C.70D.72 4.下列运算一定正确的是()A.236a a a ⋅=B.236a a a ⋅=C.()222ab a b =D.()235a a =5.不等关系在生活中广泛存在.如图,a 、b 分别表示两位同学的身高,c 表示台阶的高度.图中两人的对话体现的数学原理是()A.若a b >,则a c b c+>+ B.若a b >,b c >,则a c >C.若a b >,0c >,则ac bc > D.若a b >,0c >,则a b c c>6.2024年5月29日16时12分,“长春净月一号”卫星搭乘谷神星一号火箭在黄海海域成功发射.当火箭上升到点A 时,位于海平面R 处的雷达测得点R 到点A 的距离为a 千米,仰角为θ,则此时火箭距海平面的高度AL 为()A .sin a θ千米 B.sin a θ千米 C.cos a θ千米 D.cos a θ千米7.如图,在ABC 中,O 是边AB 的中点.按下列要求作图:①以点B 为圆心、适当长为半径画弧,交线段BO 于点D ,交BC 于点E ;②以点O 为圆心、BD 长为半径画弧,交线段OA 于点F ;③以点F 为圆心、DE 长为半径画弧,交前一条弧于点G ,点G 与点C 在直线AB 同侧;④作直线OG ,交AC 于点M .下列结论不一定成立的是()A.AOM B ∠=∠B.180OMC C ∠+∠=C.AM CM =D.12OM AB =8.如图,在平面直角坐标系中,点O 是坐标原点,点()4,2A 在函数()0,0k y k x x=>>的图象上.将直线OA 沿y 轴向上平移,平移后的直线与y 轴交于点B ,与函数()0,0k y k x x =>>的图象交于点C .若BC =,则点B 的坐标是()A.(B.()0,3C.()0,4D.(0,二、填空题:本题共6小题,每小题3分,共18分.9.单项式22a b -的次数是_____.10.=____.11.若抛物线2y x x c =-+(c 是常数)与x 轴没有交点,则c 的取值范围是________.12.已知直线y kx b =+(k 、b 是常数)经过点()1,1,且y 随x 的增大而减小,则b 的值可以是________.(写出一个即可)13.一块含30︒角的直角三角板ABC 按如图所示的方式摆放,边AB 与直线l 重合,12cm AB =.现将该三角板绕点B 顺时针旋转,使点C 的对应点C '落在直线l 上,则点A 经过的路径长至少为________cm .(结果保留π)14.如图,AB 是半圆的直径,AC 是一条弦,D 是 AC 的中点,DE AB ⊥于点E ,交AC 于点F ,DB 交AC 于点G ,连结AD .给出下面四个结论:①ABD DAC ∠=∠;②AF FG =;③当2DG =,3GB =时,2FG =;④当 2BD AD =,6AB =时,DFG 上述结论中,正确结论的序号有________.三、解答题:本题共10小题,共78分.15.先化简,再求值:32222x x x x ---,其中x =.16.2021年吉林省普通高中开始施行新高考选科模式,此模式有若干种学科组合,每位高中生可根据自己的实际情况选择一种.一对双胞胎姐妹考入同一所高中且选择了相同组合,该校要将所有选报这种组合的学生分成A 、B 、C 三个班,其中每位学生被分到这三个班的机会均等.用画树状图(或列表)的方法,求这对双胞胎姐妹被分到同一个班的概率.17.《九章算术》被历代数学家尊为“算经之首”.下面是其卷中记载的关于“盈不足”的一个问题:今有共买金,人出四百,盈三千四百;人出三百,盈一百.问人数、金价各几何?这段话的意思是:今有人合伙买金,每人出400钱,会剩余3400钱;每人出300钱,会剩余100钱.合伙人数、金价各是多少?请解决上述问题.18.如图,在四边形ABCD 中,90A B ∠=∠=︒,O 是边AB 的中点,AOD BOC ∠=∠.求证:四边形ABCD 是矩形.19.某校为调研学生对本校食堂的满意度,从初中部和高中部各随机抽取20名学生对食堂进行满意度评分(满分10分),将收集到的评分数据进行整理、描述和分析.下面给出了部分信息:a .高中部20名学生所评分数的频数分布直方图如下图:(数据分成4组:67x ≤<,78x ≤<,89x ≤<,910x ≤≤)b .高中部20名学生所评分数在89x ≤<这一组的是:8.08.18.28.28.48.58.68.78.8c .初中部、高中部各20名学生所评分数的平均数、中位数如下:平均数中位数初中部8.38.5高中部8.3m根据以上信息,回答下列问题:(1)表中m 的值为________;(2)根据调查前制定的满意度等级划分标准,评分不低于8.5分为“非常满意”.①在被调查的学生中,设初中部、高中部对食堂“非常满意”的人数分别为a 、b ,则a ________b ;(填“>”“<”或“=”)②高中部共有800名学生在食堂就餐,估计其中对食堂“非常满意”的学生人数.20.图①、图②、图③均是33⨯的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点.点A 、B 均在格点上,只用无刻度的直尺,分别在给定的网格中按下列要求作四边形ABCD ,使其是轴对称图形且点C 、D 均在格点上.(1)在图①中,四边形ABCD 面积为2;(2)在图②中,四边形ABCD 面积为3;(3)在图③中,四边形ABCD 面积为4.21.区间测速是指在某一路段前后设置两个监控点,根据车辆通过两个监控点的时间来计算车辆在该路段上的平均行驶速度.小春驾驶一辆小型汽车在高速公路上行驶,其间经过一段长度为20千米的区间测速路段,从该路段起点开始,他先匀速行驶112小时,再立即减速以另一速度匀速行驶(减速时间忽略不计),当他到达该路段终点时,测速装置测得该辆汽车在整个路段行驶的平均速度为100千米/时.汽车在区间测速路段行驶的路程y (千米)与在此路段行驶的时间x (时)之间的函数图象如图所示.(1)a 的值为________;(2)当112x a ≤≤时,求y 与x 之间的函数关系式;(3)通过计算说明在此区间测速路段内,该辆汽车减速前是否超速.(此路段要求小型汽车行驶速度不得超过120千米/时)22.【问题呈现】小明在数学兴趣小组活动时遇到一个几何问题:如图①,在等边ABC 中,3AB =,点M 、N 分别在边AC 、BC 上,且AM CN =,试探究线段MN 长度的最小值.【问题分析】小明通过构造平行四边形,将双动点问题转化为单动点问题,再通过定角发现这个动点的运动路径,进而解决上述几何问题.【问题解决】如图②,过点C 、M 分别作MN 、BC 的平行线,并交于点P ,作射线AP .在【问题呈现】的条件下,完成下列问题:(1)证明:AM MP =;(2)CAP ∠的大小为度,线段MN 长度的最小值为________.【方法应用】某种简易房屋在整体运输前需用钢丝绳进行加固处理,如图③.小明收集了该房屋的相关数据,并画出了示意图,如图④,ABC 是等腰三角形,四边形BCDE 是矩形,2AB AC CD ===米,30ACB ∠=︒.MN 是一条两端点位置和长度均可调节的钢丝绳,点M 在AC 上,点N 在DE 上.在调整钢丝绳端点位置时,其长度也随之改变,但需始终保持AM DN =.钢丝绳MN 长度的最小值为多少米.23.如图,在ABC 中,5AB AC ==,6BC =.点D 是边BC 上的一点(点D 不与点B 、C 重合),作射线AD ,在射线AD 上取点P ,使AP BD =,以AP 为边作正方形APMN ,使点M 和点C 在直线AD 同侧.(1)当点D 是边BC 的中点时,求AD 的长;(2)当4BD =时,点D 到直线AC 的距离为________;(3)连结PN ,当PN AC ⊥时,求正方形APMN 的边长;(4)若点N 到直线AC 的距离是点M 到直线AC 距离的3倍,则CD 的长为________.(写出一个即可)24.在平面直角坐标系中,点O 是坐标原点,抛物线22y x x c =++(c 是常数)经过点()2,2--.点A 、B 是该抛物线上不重合的两点,横坐标分别为m 、m -,点C 的横坐标为5m -,点C 的纵坐标与点A 的纵坐标相同,连结AB 、AC .(1)求该抛物线对应的函数表达式;(2)求证:当m 取不为零的任意实数时,tan CAB ∠的值始终为2;(3)作AC 的垂直平分线交直线AB 于点D ,以AD 为边、AC 为对角线作菱形ADCE ,连结DE .①当DE与此抛物线的对称轴重合时,求菱形ADCE的面积;②当此抛物线在菱形ADCE内部的点的纵坐标y随x的增大而增大时,直接写出m的取值范围.参考答案一、选择题:本题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】D【解析】解:()()2332+---=.故选D .2.【答案】B【解析】解:由题意可知图③是从“四角亭”上方看到的,即为俯视图.故选B .3.【答案】D 【解析】解:(52)180180725α-⨯︒∠=︒-=︒,故选:D .4.【答案】C【解析】解:A .2236a a a ⋅=,故本选项不符合题意;B .235a a a ⋅=,故本选项不符合题意;C .()222ab a b =,故本选项符合题意;D .()236a a =,故本选项不符合题意;故选:C .5.【答案】A【解析】解:由作图可知:a b >,由右图可知:a c b c +>+,即A 选项符合题意.故选:A .6.【答案】A 【解析】解:由题意得:sin AL AL AR aθ==∴sin AL a θ=千米故选:A7.【答案】D【解析】解:A .根据作图可知:AOM B ∠=∠一定成立,故A 不符合题意;B .∵AOM B ∠=∠,∴OM BC ∥,∴180OMC C ∠+∠= 一定成立,故B 不符合题意;C .∵O 是边AB 的中点,∴AO BO =,∵OM BC ∥,∴1AM AO CM OB==,∴AM CM =一定成立,故C 不符合题意;D .12OM AB =不一定成立,故D 符合题意.8.【答案】B【解析】解:如图,过点A 作x 轴的垂线交x 轴于点E ,过点C 作y 轴的垂线交y 轴于点D ,则AE y ∥轴,∵()4,2A ,∴4OE =,OA ==,∴sinOE OAE OA ∠===.∵()4,2A 在反比例函数的图象上,∴428k =⨯=.∴将直线OA 向上平移若干个单位长度后得到直线BC ,∴OA BC ∥,∴OAE BOA ∠=∠,∵AE y ∥轴,∴DBC BOA ∠=∠,∴DBC OAE ∠=∠,∴sin si n CD DBC OAE BC ∠===∠=2CD =,即点C 的横坐标为2,将2x =代入8y x =,得4y =,∴C 点的坐标为()2,4,∴2CD =,4OD =,∴1BD ==,∴413OB OD BD =-=-=,∴()0,3B 故选:B .二、填空题:本题共6小题,每小题3分,共18分.9.【答案】3【解析】单项式22a b -的次数是:213+=,故答案为:3.10.==11.【答案】14c >【解析】解:∵抛物线2y x x c =-+与x 轴没有交点,∴20x x c -+=没有实数根,∴2141140c c ∆=-⨯⨯=-<,14c >.故答案为:14c >.12.【答案】2(答案不唯一)【解析】解:∵直线y kx b =+(k 、b 是常数)经过点()1,1,∴1k b =+.∵y 随x 的增大而减小,∴0k <,当1k =-时,11b =-+,解得:2b =,∴b 的值可以是2.故答案为:2(答案不唯一)13.【答案】203π【解析】解:∵将该三角板绕点B 顺时针旋转,使点C 的对应点C '落在直线l 上,∴60ABC A BC '∠=∠=︒,即120A BA '∠=︒,∴点A 经过的路径长至少为12010201803ππ︒⋅⋅=︒.故答案为:203π.14.【答案】①②③【解析】解:如图:连接DC ,∵D 是 AC 的中点,∴ AD DC=,∴ABD DAC ∠=∠,即①正确;∵AB 是直径,∴90ADB ∠=︒,∴90DAC AGD ∠+∠=︒,∵DE AB⊥∴90BDE ABD Ð+Ð=°,∵ABD DAC ∠=∠,∴BDE AGD ∠=∠,∴DF FG =,∵90BDE ABD Ð+Ð=°,90BDE ADE ∠+∠=︒,∴ADE ABD ∠=∠,∵ABD DAC ∠=∠,∴ADE DAC ∠=∠,∴AF FD =,∴AF FG =,即②正确;在ADG △和BDA △,90ADG BDA DAG DBA∠=∠=︒⎧⎨∠=∠⎩,∴ ∽ADG BDA ,∴AD GD BD AD =,即AD GD DG BG AD =+,∴223AD AD =+,即AD =,∴AG ==∵AF FG =,∴122FG AG ==,即③正确;如图:假设半圆的圆心为O ,连接,,OD CO CD ,∵ 2BD AD =,6AB =,D 是AC 的中点,∴ 1,3AD DC AB ==∴60AOD DOC ∠=∠=︒,∵OA OD OC ==,∴,AOD ODC 是等边三角形,∴6OA AD CD OC OD =====,即ADCO 是菱形,∴1302DAC OAC DAO ∠=∠=∠=︒,∵90ADB ∠=︒,∴tan tan 30DG DAC AD ∠=︒=,即36DG =,解得:DG =∴11622ADG S AD DG =⋅=⨯⨯= ,∵AF FG=∴12DFG ADG S S == ,即④错误.故答案为:①②③.三、解答题:本题共10小题,共78分.15.【答案】2x ,2【解析】解:原式()23222222x x x x x x x --===--∵x =,∴原式2=16.【答案】13【解析】解:列表如下:A B CAA ,A A ,B A ,C BB ,A B ,B B ,C C C ,A C ,B C ,C共有9种等可能的结果,其中这对双胞胎姐妹被分到同一个班的结果有3种,所以这对双胞胎姐妹被分到同一个班的概率为3193=.17.【答案】共33人合伙买金,金价为9800钱【解析】解:设共x 人合伙买金,金价为y 钱,依题意得:4003400300100x y x y -=⎧⎨-=⎩,解得:339800x y =⎧⎨=⎩.答:共33人合伙买金,金价为9800钱.18.【答案】证明见解析.【解析】证明:∵O 是边AB 的中点,∴OA OB =,在AOD △和BOC 中,90A B OA OB AOD BOC ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩,∴AOD BOC ≌△△,∴AD BC =,∵90A B ∠=∠=︒,∴AD BC ∥,∴四边形ABCD 是平行四边形,∵90A B ∠=∠=︒,∴四边形ABCD 是矩形.19.【答案】(1)8.3(2)①>;②估计其中对食堂“非常满意”的学生人数为360人【解析】【小问1详解】解:由题意知,高中部评分的中位数为第1011,位数的平均数,即8.28.48.32m +==,故答案为:8.3;【小问2详解】①解:由题意知,初中部评分的中位数为8.5,高中部评分的中位数为8.3,∴a b >,故答案为:>;②解:∵4580036020+⨯=,∴估计其中对食堂“非常满意”的学生人数为360人.20.【答案】(1)见解析(2)见解析(3)见解析【解析】【小问1详解】解:如图①:四边形ABCD 即为所求;(不唯一).【小问2详解】解:如图②:四边形ABCD 即为所求;(不唯一).【小问3详解】解:如图③:四边形ABCD 即为所求;(不唯一).21.【答案】(1)15(2)11902125y x x ⎛⎫=+≤≤⎪⎝⎭(3)没有超速【解析】【小问1详解】解:由题意可得:10020a =,解得:15a =.故答案为:15.【小问2详解】解:设当11125x ≤≤时,y 与x 之间的函数关系式为()0y kx b k =+≠,则:11761205k b k b ⎧+=⎪⎪⎨⎪+=⎪⎩,解得:902k b =⎧⎨=⎩,∴11902125y x x ⎛⎫=+≤≤ ⎪⎝⎭.【小问3详解】解:当112x =时,19029.512y =⨯+=,∴先匀速行驶112小时的速度为:19.5114/12÷=(千米时),∵114120<,∴辆汽车减速前没有超速.22.【答案】问题解决:(1)见解析(2)30,32;方法应用:线段MN长度的最小值为2米【解析】解:问题解决:(1)证明:过点C 、M 分别作MN 、BC 的平行线,并交于点P ,作射线AP,∴四边形MNCP 是平行四边形,NC MP MN PC\==,AM NC= AM MP ∴=;(2)在等边ABC 中,60ACB ∠=︒,MP CN∥60PMC ACB \Ð=Ð=°AM MP= 30CAP MPA \Ð=Ð=°;当CP AP ⊥时,CP 最小,此时MN 最小,在Rt ACP 中,3,30AC CAP =Ð=°13322CP \=´=,∴线段MN 长度的最小值为32;方法应用:过点D 、M 分别作MN 、ED 的平行线,并交于点H ,作射线AH ,连接AD ,∴四边形MNDH 是平行四边形,,ND MH MN DH MH ED\==,∥AM ND= AM MH ∴=,四边形BCDE 是矩形,,90BC ED BCD \Ð=°∥BC MH\∥30ACB CMH \Ð=Ð=°AM MH= 15MAH \Ð=°3m,120AC CD ACD ACB BCD ==Ð=Ð+Ð=° 30DAC ∴∠=︒45DAH ∴∠=︒∴当DH AH ⊥时,DH 最小,此时MN 最小,作CR AD ⊥于点R ,在Rt ACR 中,3,30AC CAR =Ð=°13322CR \=´=,332AR \=233AD AR \==在Rt ADH 中,33,45AD DAH =Ð=°2363322DH AH \===,∴线段MN 长度的最小值为362米.23.【答案】(1)4(2)85(3)177(4)256或259【解析】【小问1详解】解:根据题意可知: 5AB AC ==,ABC ∴ 为等腰三角形,故点D 是边BC 的中点时,AD BC ⊥;在Rt ADC 中,222253164AD AC CD =-=-==;【小问2详解】根据题意作DH AC ⊥,如图所示;当4BD =时,则2CD =,设点D 到直线AC 的距离为DH h =,1124522ACD S h =⨯⨯=⨯⨯ ,解得:85h =;【小问3详解】如图,当NP AC ⊥时,点M 落在AC 上,设AP x =,则BD x =,6CD x =-,过点D 作DH AC ⊥于Q 则()33655CQ CD x ==-,()44655DQ CD x ==-()44655AQ DQ CD x ===-,AQ CQ AC += ,()()3466555x x ∴-+-=解得:177x =故177=AP ,所以正方形APMN 的边长为177;【小问4详解】如图,M ,N 在AC 异侧时;设MQ m =,3NQ m =,则4AN m=ANQ ∴ 三边的比值为3:4:5,AQN C ∴∠=∠,CAD C ∴∠=∠,∴CDE ANQ∽CE CD NQ AQ=∴5525326CD =⨯=当M ,N 在AC 同侧设MQ m =,则3AN AP m ==,2PQ m =,APO ∴ 三边比为2:13AQD ∴ 三边比为2:3:13设CD x =,则35CH x =,45DH x =,3425AH x =⨯3345525x x ∴+⨯=解得:259CD x ==综上所述:CD 的长为256或25924.【答案】(1)222y x x =+-(2)见详解(3)①9ADCE S =菱形;②3m ≤-或10m -≤<或04m <≤【解析】【小问1详解】解:将()2,2--代入22y x x c =++,得:442c -+=-,解得:2x =-,∴抛物线表达式为:222y x x =+-;【小问2详解】解:过点B 作BH AC ⊥于点H ,则90AHB ∠=︒,由题意得:()()22,22,,22A m m m B m m m +----,∴4A B BH y y m =-=,2A B AH x x m =-=,∴在Rt AHB △中,4tan 22m BH CAB AH m∠===;【小问3详解】解:①如图,记,AC DE 交于点M ,由题意得,()25,22C m m m -+-,由2122b a -=-=-,得:对称轴为直线:=1x -∵四边形ADCE 是菱形,∴点A 、C 关于DE 对称,2,2AC AM DE DM ==,∵DE 与此抛物线的对称轴重合,∴512m m -+=-,解得:12m =,∴12A x =,∴()13122AM =--=∴3AC =,∵tan 232DM DM CAB AM ∠===,∴3DM =,则6DE =,∴192ADCE S DE AC =⨯=菱形;②记抛物线顶点为点F ,把=1x -代入222y x x =+-,得:=3y -,∴()1,3F --,∵抛物线在菱形ADCE 内部的点的纵坐标y 随x 的增大而增大,∴菱形中只包含在对称轴右侧的抛物线,当0m >时,如图,符合题意,当m 继续变大,直至当直线CD 经过点F 时,符合题意,如图:过点F 作FQ AC ⊥于点Q ,∵四边形ADCE 是菱形,∴DA DC =,∴CAD FCQ ∠=∠,∴tan tan 2FQ FCQ CAD CQ ∠=∠==,∴()()2223215m m m +---=---,解得:4m =-4m =(舍),∴04m <≤,当4m >当0m <时,如图,符合题意:当m 继续变小,直至点A 与点F 重合,此时1m =-,符合题意,如图:∴10m -≤<;当m 继续变小,直至直线AE 经过点F 时,也符合题意,如图:过点F 作FQ AC ⊥于点Q ,同上可得,tan 2FQ FAQ AQ∠==,∴()222321m m m+---=--,解得:3m =-或1m =-(舍),当m 继续变小时,仍符合题意,如图:∴3m ≤-,综上所述,m 的取值范围为:3m ≤-或10m -≤<或0413m <≤.。
2008年吉林省长春市中考数学试题一、选择题(每小题3分,共分39,每小题给出4个答案,其中只有一个正确,把所选答案的编号写在题目后面的括号内)1、如图,是北京奥运会自行车比赛项目标志,则图中两轮所在圆的位置关系是【 】A .内含B .相交C .相切D .外离2、化简(-3)2的结果是【 】A.3B.-3C.±3 D .93、如果2是方程02=-c x 的一个根,那么c 的值是 【 】A .4B .-4C .2D .-24、下列成语所描述的事件是必然发生的是 【 】A. 水中捞月B. 拔苗助长C. 守株待免D. 瓮中捉鳖5、如图,AB 是⊙O 的直径,弦CD ⊥AB,垂足为E,如果AB=20,CD=16, 那么线段OE 的长为【 】 A 、10 B 、8 C 、6 D 、46、抛物线()223y x =++的顶点坐标是 【 】A.(-2,3)B.(2,3)C.(-2,-3)D.(2,-3) 7、观察下列银行标志,从图案看是中心对称图形的有( )个A 、1个B 、2个C 、3个D 、4个 8、二次函数362+-=x kx y 的图象与x 轴有交点,则k 的取值范围是【 】A .3<kB .03≠<k k 且C .3≤kD .03≠≤k k 且9、某校九年级(1)班50名学生中有20名团员,他们都积极报名参加学校开展的“文明劝导活动”。
根据要求,该班从团员中随机抽取1名参加,则该班团员京京被抽到的概率是 【 】A .150B .12C .120D . 2510、在△ABC 中,已知∠C=90°,BC=3,AC=4,则它的内切圆半径是【 】A .23B .1C .2D . 3211、如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型.若圆的半径为r ,扇形的半径为R ,扇形的圆心角等于90°,则r 与R 之间的关系是【 】 A 、R =2r ; B、R =; C 、R =3r ; D 、R =4r . 12.已知反比例函数x ky =的图象如下右图所示,则二次函数222k x kx y +-=的图象大13、如图,在△ABC 中,BC =4,以点A 为圆心,2为半径的⊙A 与BC 相切于点D ,交AB 于E ,交AC 于F ,点P 是⊙A 上一点,且∠EPF =40°,则图中阴影部分的面积是【 】 A .94π-B .984π-C .948π-D .988π- 二、填空题(每小题3分,共15分,请把答案填在横线上) 14、点(4,-3)关于原点对称的点的坐标是 _____________.15、⊙O 的半径为3cm ,点M 是⊙O 外一点,OM =4 cm ,则以M 为圆心且与⊙O 相切的圆的半径是 cm.16、将抛物线2(0)y a x b x c a=++≠向下平移3个单位,再向左平移4个单位得到抛物线2245y x x =--+,则原抛物线的顶点坐标是 。
17、某商店经营一种水产品,成本为每千克40元的水产品,据市场分析,若按每千克50元销售,一个月能售出500千克;销售价每涨1元,月销售量就减少10千克,针对这种水产品的销售情况, 销售单价定为 元时,获得的利润最多.18、阅读材料:设一元二次方程20ax bx c ++=的两根为1x ,2x ,则两根与方程系数之间有如下关系12b x x a +=-,x 1.2x =ac 根据该材料填空: 已知1x ,2x 是方程2630x x ++=的两实数根,则2112x x x x +的值为____ __ 三、解答题:19、(5分)计算:22)8321464(÷+- 20、(5分)解方程:22)25(96x x x -=+-DCA .B .C .D .PA21、(6分)如上图,在1010⨯正方形网格中,每个小正方形的边长均为1个单位. (1)作ABC △关于点P 的对称图形A B C '''△。
(2)再把A B C '''△,绕着C '逆顺时针旋转90,得到A B C '''''△,请你画出A B C '''△和A B C '''''△(不要求写画法). 22、(6分)为了测量一个圆形铁环的半径,某同学采用了如下办法:将铁环平放在水平桌面上,用一个锐角为30°的三角板和一个刻度尺,按如图所示的方法得到相关数据,进而可求得铁环的半径,若三角板与圆相切且测得PA=5cm ,求铁环的半径.B²o23、(7分)已知,如图,直线l 经过)0,4(A 和)4,0(B 两点,它与抛物线2ax y =在第一象限内相交于点P ,又知AOP ∆的面积为4,求a 的值.24、(7分)汉字是世界上最古老的文字之一,字形结构体现人类追求均衡对称、和谐稳定的天性.如图,三个汉字可以看成是轴对称图形.(1)请在方框中再写出2个类似轴对称图形的汉字; (2)小敏和小慧利用“土”、“口”、“木”三个汉字设计一个游戏,规则如下:将这三个汉字分别写在背面都相同的三张卡片上,背面朝上洗匀后抽出一张,放回洗匀后再抽出一张,若两次抽出的汉字能构成上下结构的汉字(如“土”“土”构成“圭”)小敏获胜,否则小慧获胜.你认为这个游戏对谁有利?请用列表或画树状图的方法进行分析并写出构成的汉字进行说明.解:(1)土 口 木25、(8分)已知:如图,在△ABC 中,AB =AC ,以BC 为直径的半圆O 与边AB 相交于点D ,切线DE ⊥AC ,垂足为点E .求证:(1)△ABC 是等边三角形;(2)CE AE 31=.26、(10分)如图,足球场上守门员在O 处开出一高球,球从离地面1米的A 处飞出(A 在y 轴上),运动员乙在距O 点6米的B 处发现球在自己头的正上方达到最高点M ,距地面约4米高,球落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.(1(2)足球第一次落地点C 距守门员多少米?(取7=(3)运动员乙要抢到第二个落点D (取5=)27、(12分)已知两个关于x 的二次函数1y 与当x k =时,217y =;且二次函数2y 的图象的对称轴是直222112()2(0)612y y a x k k y y x x =-+>+=++,,线1x =-.(1)求k 的值;(2)求函数12y y ,的表达式;(3)在同一直角坐标系内,问函数1y 的图象与2y 的图象是否有交点?请说明理由.O2008年吉林省长春市中考数学试题参考答案:一、DAADCADDCBDDB 二、14、(-4,3) 15、1或7 16、(3,10) 17、70 18、10 三、19、20、x1=2 x2=8321、略 22、连结OA ,OP ,由切线长定理和勾股定理可得半径OP23、由△AOPA 的面积可知P 是AB 的中点,从而可得△OAP 是等腰直角三角形,过P 作PC ⊥OA 于C 可得P (2,2),所以a=1224、解:(1)如:田、日 等(2)这个游戏对小慧有利.每次游戏时,所有可能出现的结果如下:(列表)(树状图)总共有9种结果,每种结果出现的可能性相同, 其中能组成上下结构的汉字的结果有4种:(土,土)“圭”,(口,口)“吕”,(木,口)“杏”或“呆”,(口,木)“呆”或“杏”.()49P =小敏获胜∴,()59P =小慧获胜.... ()P <小敏获胜()P 小慧获胜.∴游戏对小慧有利说明:若组成汉字错误,而不影响数学知识的考查且结论正确,本题只扣1分25.证明:(1)连结OD 得OD ∥AC ∴∠BDO=∠A 又由OB =OD 得∠OBD =∠ODB ∴∠OBD=∠A ∴BC =AC 又∵AB=AC ∴△ABC 是等边三角形 (2)连结CD ,则CD ⊥AB ∴D 是AB 中点∵AE =12AD=14AB ∴EC=3AE ∴CE AE 31=.土 口 木土 (土,土) (土,口) (土,木) 口 (口,土) (口,口) (口,木) 木(木,土) (木,口) (木,木)土口 木开始土(土,土)口(土,口) 木(土,木) 土(口,土)口(口,口) 木(口,木) 土(木,土)口(木,口) 木(木,木)26、解:(1)(3分)如图,设第一次落地时,抛物线的表达式为2(6)4y a x =-+. ²²²²²²²²²²²²²²²²²²²²² 1分 由已知:当0x =时1y =.即1136412a a =+∴=-,. ²²²²²²²²²²²²²²²²²²²²²²²²²² 2分 ∴表达式为21(6)412y x =--+. ²²²²²²²²²²²²²²²²²²²²²²² 3分 (或21112y x x =-++)(2)(3分)令210(6)4012y x =--+=,.212(6)4861360x x x ∴-===-<.≈,(舍去). ²²²²²²²² 2分 ∴足球第一次落地距守门员约13米.²²²²²²²²²²²²²²²²²²²²² 3分 (3)(4分)解法一:如图,第二次足球弹出后的距离为CD根据题意:CD EF =(即相当于将抛物线AEMFC 向下平移了2个单位)212(6)412x ∴=--+解得1266x x =-=+ ²²²²²²²²²²²²² 2分1210CD x x ∴=-=.²²²²²²²²²²²²²²²²²²²²²²²² 3分 1361017BD ∴=-+=(米). ²²²²²²²²²²²²²²²²²²²²²²² 4分解法二:令21(6)4012x --+=.解得16x =-,2613x =+.∴点C 坐标为(13,0). ²²²²²²²²²²²²²²²²²²²²²²²²²² 1分 设抛物线CND 为21()212y x k =--+. ²²²²²²²²²²²²²²²²²²²² 2分将C 点坐标代入得:21(13)2012k --+=.解得:11313k =-(舍去),2667518k =+++=.²²²²²²²²²²²²²²²²²²²²² 3分 21(18)212y x =--+ 令210(18)212y x ==--+,0.118x =-,21823x =+.23617BD ∴=-=(米). 解法三:由解法二知,18k =,所以2(1813)10CD =-=, 所以(136)1017BD =-+=.答:他应再向前跑17米. ²²²²²²²²²²²²²²²²²²²²²²²²²² 4分 (不答不扣分)27、[解] (1)由22112()2612y a x k y y x x =-++=++,得22222121()612()2610()y y y y x x a x k x x a x k =+-=++---=++--. 又因为当x k =时,217y =,即261017k k ++=, 解得11k =,或27k =-(舍去),故k 的值为1.(2)由1k =,得2222610(1)(1)(26)10y x x a x a x a x a =++--=-+++-, 所以函数2y 的图象的对称轴为262(1)a x a +=--,于是,有2612(1)a a +-=--,解得1a =-,所以2212212411y x x y x x =-++=++,.(3)由21(1)2y x =--+,得函数1y 的图象为抛物线,其开口向下,顶点坐标为(12),; 由22224112(1)9y x x x =++=++,得函数2y 的图象为抛物线,其开口向上,顶点坐标为(19)-,; 故在同一直角坐标系内,函数1y 的图象与2y 的图象没有交点.。