高中数学复习题(函数)
- 格式:doc
- 大小:317.13 KB
- 文档页数:7
高中函数专项复习题带答案一、选择题1. 函数f(x) = 2x^2 + 3x - 5的图像的对称轴是:A. x = -1B. x = 1C. x = 3/2D. x = -3/22. 已知函数f(x) = x^3 - 2x^2 + x - 2,若f(a) = f(b),a ≠ b,且f(x)在[a, b]上单调递增,则a和b的关系是:A. a < bB. a > bC. a = bD. 无法确定3. 函数y = 3x + 2在x = 1处的导数是:A. 3B. 5C. 6D. 94. 下列哪个函数不是奇函数?A. y = x^3B. y = sin(x)C. y = cos(x)D. y = x^25. 函数y = 1/x在区间(-1, 0)上是:A. 单调递增B. 单调递减C. 先增后减D. 先减后增答案:1. D2. B3. A4. D5. A二、填空题6. 若函数f(x) = ax^2 + bx + c的顶点坐标为(-1, -4),则a的值为________。
7. 函数g(x) = |x - 1| + |x + 2|的最小值为________。
8. 若函数h(x) = √x在区间[0, 4]上的平均变化率为1/4,则x的值为________。
9. 函数F(x) = log_2(x)的定义域是________。
10. 函数R(x) = sin(x) + cos(x)的周期是________。
答案:6. a = -17. 38. x = 19. (0, +∞)10. 2π三、解答题11. 已知函数f(x) = x^3 - 6x^2 + 9x + 2,求证f(x)在[1, 2]上单调递增。
12. 已知函数g(x) = 2x - 3,求g(x)在x = 2处的切线方程。
13. 已知函数h(x) = x^2 - 4x + 4,求h(x)的极值点。
14. 已知函数p(x) = 3x^2 - 6x + 2,求p(x)在x = 1处的切线斜率。
高中数学函数与导数练习题及参考答案一、选择题(每小题3分,共30分)1. 设函数f(x)=2x^3-3x^2+4x-1,则f'(x)的值为:A. 6x^2-6x+4B. 6x^2-3x+4C. 6x^2-6x-4D. 6x^2-3x-42. 已知函数f(x)=e^(2x)-x,下列说法正确的是:A. f(x)的定义域为RB. f(x)的值域为RC. 对任意x∈R,f(x)≥0D. f(x)在R上递增3. 函数f(x)=log(2x+1)的定义域为:A. x>1/2B. x≥1/2C. x>1D. x≥-1/24. 函数f(x)=(x-2)^2-1的图像对称于:A. x轴B. y轴C. 原点D. 直线x=25. 函数f(x)=x^3+3x^2-x+2的最小值为:A. -∞B. -4C. 1D. 66. 函数f(x)=log_a(x^2-4)的定义域为:A. x>2B. x<-2C. x>2或x<-2D. x>07. 设函数f(x)=(x+1)e^x,则f'(x)=:A. (x+2)e^xB. xe^xC. (x+1)e^x+e^xD. (x+1)e^x+18. 函数y=2^(x^2)的图像在y轴的左侧为:A. 上拋曲线B. 下落曲线C. 开口向上的曲线D. 开口向下的曲线9. 函数f(x)=√(x-1)的定义域为:A. x>1B. x≥1C. x>0D. x≥010. 设函数f(x)=x^3-3x^2+2,则f''(x)的值为:A. 6x-6B. 6x-2C. 6x-3D. 6x-4二、计算题(每小题5分,共40分)1. 计算函数f(x)=e^(2x)-3x在x=1处的导数f'(1)的值。
解答:f'(x)=2e^(2x)-3f'(1)=2e^2-32. 已知函数y=log_a(x^2-4),求f(x)在x=0处的导数f'(0)。
高中函数复习题高中函数复习题高中数学是一门非常重要的学科,而其中的函数部分更是学生们需要重点掌握的内容之一。
函数作为数学中的一种基本概念,贯穿于整个数学学科中的各个领域。
因此,对于高中生来说,熟练掌握函数的相关知识和技巧是非常重要的。
下面,我们来复习一些高中函数的相关题目。
1. 已知函数 f(x) = 2x^2 - 3x + 1,求函数 f(x) 的零点。
解析:函数的零点即为函数的解,即 f(x) = 0。
将函数 f(x) 的表达式代入方程中,得到 2x^2 - 3x + 1 = 0。
通过配方法,我们可以求得该方程的解为 x = 1 和 x = 0.5。
2. 已知函数 g(x) = |x - 3|,求函数 g(x) 的定义域和值域。
解析:函数的定义域是指函数的自变量 x 的取值范围。
对于绝对值函数来说,其定义域是整个实数集。
即定义域为 (-∞, +∞)。
函数的值域是指函数的因变量 y 的取值范围。
对于绝对值函数来说,其值域是非负实数。
即值域为[0, +∞)。
3. 已知函数 h(x) = log2(x + 1),求函数 h(x) 的反函数。
解析:反函数是指将函数的自变量和因变量互换得到的新函数。
对于对数函数来说,其反函数为指数函数。
即反函数为 h^(-1)(x) = 2^x - 1。
4. 已知函数 f(x) = 2^x,求函数 f(x) 的增减性和极值点。
解析:函数的增减性是指函数在定义域内的增减变化情况。
对于指数函数来说,其增减性与底数的大小有关。
当底数大于 1 时,函数是递增的;当底数小于 1 时,函数是递减的。
函数的极值点是指函数在定义域内的最大值和最小值点。
对于指数函数来说,其没有极值点。
5. 已知函数 g(x) = sin(x),求函数 g(x) 的周期和对称轴。
解析:函数的周期是指函数在一个周期内的重复性。
对于正弦函数来说,其周期为2π。
函数的对称轴是指函数图像关于某一直线对称。
对于正弦函数来说,其对称轴为 y 轴。
高中数学函数专题练习题库一、单项选择题1. 已知函数 f(x) = 3x^2 - 2x + 5,求 f(-1) 的值是多少?A) -7 B) -4 C) 3 D) 82. 若函数 f(x) 为奇函数,且 f(2) = -4,则 f(-2) 的值是多少?A) -4 B) 2 C) 4 D) -23. 已知函数 f(x) 为偶函数,且 f(3) = 7,则 f(-3) 的值是多少?A) 7 B) 3 C) -7 D) -34. 通过点(-1, 3)且与直线 y = x - 1 平行的直线的方程是什么?A) y = x + 2 B) y = x - 2 C) y = -x + 2 D) y = -x - 25. 给定函数 f(x) = 2x^3 - 3x + 1,求 f'(x) 的表达式。
A) 6x^2 - 3 B) 4x^2 - 3x + 1 C) 6x^2 - 3x + 1 D) 4x^2 - 3二、填空题1. 若函数 f(x) = a(x - 3)^2 + b 为抛物线,顶点坐标为 (3, -2),则 a 的值为____, b 的值为____。
2. 已知函数 f(x) = 2x^3 + kx^2 + 3x + 1 有两个零点 x = -1, x = 2,则k 的值为____。
3. 若函数 f(x) 为偶函数,且 f(x) 在 x = 3 处取得最小值 -4,则 f(x) 在 x = -3 处取得的值为____。
4. 若函数 f(x) = log2(x - 1),则定义域为____,值域为____。
5. 若函数 f(x) = (x + 1)(x - 2)/(x - 2),则该函数在 x = 2 处的值为____。
三、计算题1. 已知函数 f(x) = 2x^3 - 4x^2 + 2x - 1,求 f(1) 的值。
2. 设函数 f(x) 由 f(x) = x^3 + bx^2 + cx + d 表示,其中 b, c, d 均为常数。
• 高中数学必修一复习练习(四)函数班 号 姓名 指数函数及其性质1.下列函数中指数函数的个数为( )①y =(12)x -1; ②y =2·3x ; ③y =a x (a >0且a ≠1,x ≥0); ④y =1x ; ⑤y =(12)2x -1.A .1个B .2个C .4个D .5个2.函数y =3x 与y =3-x 的图象关于下列哪条直线对称( )A .x 轴B .y 轴C .直线y =xD .直线y =-x3.若集合M ={y |y =2x ,x ∈R },N ={y |y =x 2,x ∈R },则集合M ,N 的关系为( ) A .M NB . M ⊆NC .N MD .M =N4.已知1>n >m >0,则指数函数①y =m x ,②y =n x 的图象为( )5.若函数y =(2a -1)x 为指数函数,则实数a 的取值范围是________. 6.函数y =a x +1(a >0且a ≠1)的图象必经过点________(填点的坐标). 7.已知函数f (x )=a x -1(x ≥0)的图象经过点(2,12),其中a >0且a ≠1.(1)求a 的值; (2)求函数y =f (x )(x ≥0)的值域.8.已知指数函数f (x )=a x 在区间[1,2]上的最大值比最小值大a2,求a 的值.1.若2x +1<1,则x 的取值范围是( )A .(-1,1)B .(-1,+∞)C .(0,1)∪(1,+∞)D .(-∞,-1)2.函数y =⎝⎛⎭⎫121-x的单调递增区间为( )A .(-∞,+∞)B .(0,+∞)C .(1,+∞)D .(0,1)3.下列不等关系中,正确的是( ) A .(12)23<1<(12)13B .(12)13<(12)23<1C .1<(12)13<(12)23D .(12)23<(12)13<14.函数f (x )=2|x |,则f (x )( )A .在R 上是减函数B .在(-∞,0]上是减函数C .在[0,+∞)上是减函数D .在(-∞,+∞)上是增函数 5.方程3x -1=19的解是________.6.已知函数y =(13)x 在[-2,-1]上的最小值是m ,最大值是n ,则m +n 的值为________.7.已知2x ≤(14)x -3,求函数y =(12)x 的值域.8.已知函数f (x )=a 2-3x(a >0,且a ≠1).(1)求该函数的图象恒过的定点坐标; (2)指出该函数的单调性.1.使式子log (x -1)(x 2-1)有意义的x 的值是( ) A .x <-1或x >1 B .x >1且x ≠2 C .x >1D .x ≠22.方程2log 3x =14的解是( )A.33B.3C.19D .93.化简:2lg (lg a 100)2+lg (lg a )的结果是( )A.12B .1C .2D .44.已知2x =3,log 483=y ,则x +2y 的值为( )A .3B .8C .4D .log 485.若log a x =2,log b x =3,log c x =6,则log abc x 的值为________.6.已知x ,y ∈(0,1),若lg x +lg y =lg(x +y ),则lg(1-x )+lg(1-y )=________. 7.计算下列各式的值:(1)lg12.5-lg 58+lg 12; (2)12lg25+lg2+lg 10+lg(0.01)-1; (3)log 2(log 264).8.方程lg 2x +(lg2+lg3)lg x +lg2lg3=0的两根之积为x 1x 2,求x 1x 2的值.1.下列函数中,定义域相同的一组是( ) A .y =a x 与y =log a x (a >0,a ≠1) B .y =x 与y =x C .y =lg x 与y =lg xD .y =x 2与y =lg x 22.函数y =2+log 2x (x ≥1)的值域为( )A .(2,+∞)B .(-∞,2)C .[2,+∞)D .[3,+∞) 3.函数y =log 12(3x -2)的定义域是( )A .[1,∞)B .(23,+∞)C .[23,1]D .(23,1]4.函数y =lg(x +1)的图象大致是( )5.函数y =log x (2-x )的定义域是________.6.若a >0且a ≠1,则函数y =log a (x -1)+1的图象恒过定点________. 7.求下列函数的定义域:(1)y =log 2(4x -3); (2)y =log 5-x (2x -2).8.已知f (x )=log 3x .(1)作出这个函数的图象;(2)当0<a <2时,有f (a )>f (2),利用图象求a 的取值范围.参考答案指数函数及其性质1.选A 由指数函数的定义可判定,只有③正确. 2.B3.选A x ∈R ,y =2x >0,y =x 2≥0,即M ={y |y >0},N ={y |y ≥0},所以M N. 4.选C 由0<m <n <1可知①②应为两条递减曲线,故只可能是选项C 或D , 进而再判断①②与n 和m 的对应关系,判断方法很多,不妨选择特殊点,令x =1, 则①②对应的函数值分别为m 和n ,由m <n 知选C.5.解析:函数y =(2a -1)x 为指数函数,则2a -1>0且2a -1≠1,∴a >12且a ≠1. 答案:a >12且a ≠16.∵指数函数y =a x 恒过定点(0,1).∴y =a x +1的图象必过点(0,2).答案:(0,2) 7.解:(1)函数图象过点(2,12),所以a 2-1=12,则a =12.(2)f (x )=(12)x -1(x ≥0),由x ≥0得,x -1≥-1,于是0<(12)x -1≤(12)-1=2.所以函数的值域为(0,2]. 8.解:由指数函数的概念知a >0,a ≠1.当a >1时,函数f (x )=a x 在区间[1,2]上是增函数,所以当x =2时,f (x )取最大值a 2,当x =1时,f (x )取最小值a , 由题意得a 2=a +a 2,即a 2=32a ,因为a >1,所以a =32;当0<a <1时,函数f (x )=a x 在区间[1,2]上是减函数,同理可以求得a =12.综上可知,a 的值为32或12✠✠指数函数及其性质的应用1.选D 不等式2x +1<1=20,∵y =2x 是增函数,∴x +1<0,即x <-1.2.选A 定义域为R.设u =1-x ,y =⎝⎛⎭⎫12u,∵u =1-x 在R 上为减函数,又∵y =⎝⎛⎭⎫12u在(-∞,+∞)上为减函数,∴y =⎝⎛⎭⎫121-x在(-∞,+∞)上是增函数.3.选D ∵函数y =(12)x 在R 上是减函数,而0<13<23,∴(12)23<(12)13<(12)0,即(12)23<(12)13<1.4.选B ∵y =2x 在R 上递增,而|x |在(-∞,0]上递减,在[0,+∞)是递增,∴f (x )=2|x |在(-∞,0]上递减,在[0,+∞)上递增.5.解析:∵3x -1=19,∴3x -1=3-2,∴x -1=-2,∴x =-1. 答案:-16.解析:函数y =(13)x 在定义域内单调递减,∴m =(13)-1=3,n =(13)-2=9, ∴m +n =12. 答案:127.解:∵2x ≤(14)x -3,即2x ≤26-2x ,∴x ≤6-2x ,∴x ≤2,∴y = (12)x ≥ (12)2=14,∴函数值域是[14,+∞).8.解:(1)当2-3x =0,即x =23时,a 2-3x =a 0=1. 所以,该函数的图象恒过定点(23,1)(2)∵u =2-3x 是减函数,∴当0<a <1时,f (x )在R 上是增函数;当a >1时,f (x )在R 上是减函数.❑❑对数与对数运算1.选B 由⎩⎪⎨⎪⎧x -1>0,x 2-1>0,x -1≠1,解得x >1且x ≠2.2.选C 由已知得log 3x =-2 ,∴ x =3-2=19.3.选C 由对数运算可知:lg(lg a 100)=lg(100lg a )=2+lg(lg a ),∴原式=2. 4.选A 由2x =3得:x =log 23.∴x +2y =log 23+2log 483=log 23+2log 283log 24=log 23+(3log 22-log 23)=3.5.解析:log a x =1log x a =2,∴log x a =12. 同理log x b =13,log x c =16.log abc x =1log x abc =1log x a +log x b +log x c =1. 答案:16.解析:lg(x +y )=lg x +lg y =lg(xy )⇒x +y =xy ,lg(1-x )+lg(1-y )=lg[(1-x )(1-y )]=lg(1-x -y +xy )=lg1=0. 答案:0 7.解:(1)原式=lg(252×85×12)=lg10=1.(2)原式=lg[2512×2×1012×(10-2)-1]=lg(5×2×1012×102)=lg1072=72.(3)原式=log 2(log 226)=log 26=1+log 23.8.解:因为lg2x +(lg2+lg3)lg x +lg2lg3=(lg x +lg2)(lg x +lg3),所以lg x =-lg2=lg2-1或lg x =-lg3=lg3-1,即x 1=12,x 2=13,所以x 1x 2=16.对数函数及其性质1.C2.选C 当x ≥1时,log 2x ≥0,所以y =2+log 2x ≥2.3.选D 由函数的解析式得log 12(3x -2)≥0=log 121.∴0<3x -2≤1,解得:23<x ≤1.4.选C 当x =0时y =0,而且函数为增函数,可见只有C 符合.5.解析:由对数函数的意义可得⎩⎪⎨⎪⎧2-x >0x >0x ≠1⇒⎩⎪⎨⎪⎧x <2x >0且x ≠1⇒0<x <2且x≠1. 答案:(0,1)∪(1,2)6.解析:当x =2时y =1. 答案:(2,1)7.解:(1)要使函数有意义,须满足:log 2(4x -3)≥0=log 21,⇒1≤ 4x -3⇒x ≥1,∴函数的定义域为[1,+∞).(2)要使函数有意义,须满足⎩⎪⎨⎪⎧2x -2>05-x >05-x ≠1⇒1<x <5且x ≠4. ∴函数的定义域为(1,4)∪(4,5).8.解:(1)作出函数y =log 3x 的图象如图所示.(2)令f (x )=f (2),即log 3x =log 32,解得x =2. 由如图所示的图象知:当0<a <2时,恒有f (a )<f (2). 故当0<a <2时,不存在满足f (a )>f (2)的a 的值.。
高中数学必修一函数试题(一)一、选择题: 1、若()f x =(3)f = ( )A 、2B 、4 C、 D 、10 2、对于函数()y f x =,以下说法正确的有 ( )①y 是x 的函数;②对于不同的,x y 的值也不同;③()f a 表示当x a =时函数()f x 的值,是一个常量;④()f x 一定可以用一个具体的式子表示出来。
A 、1个B 、2个C 、3个D 、4个 3、下列各组函数是同一函数的是( )①()f x =与()g x =;②()f x x =与2()g x =;③0()f x x =与01()g x x =;④2()21f x x x =--与2()21g t t t =--。
A 、①②B 、①③C 、③④D 、①④4、二次函数245y x mx =-+的对称轴为2x =-,则当1x =时,y 的值为 ( ) A 、7- B 、1 C 、17 D 、25 5、函数y =的值域为 ( )A 、[]0,2B 、[]0,4C 、(],4-∞D 、[)0,+∞ 6、下列四个图像中,是函数图像的是 ( )A 、(1)B 、(1)、(3)、(4)C 、(1)、(2)、(3)D 、(3)、(4)7、)(x f 是定义在R 上的奇函数,下列结论中,不正确的是( )A 、()()0f x f x -+=B 、()()2()f x f x f x --=-C 、()()0f x f x -≤D 、()1()f x f x =-- 8、如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上是减少的,那么实数a 的取值范围是( ) A 、3a -≤ B 、3a -≥ C 、a ≤5 D 、a ≥5 9、设函数()(21)f x a x b =-+是R 上的减函数,则有 ( )(1) (2)(3)(4)A 、12a >B 、12a <C 、12a ≥D 、12a ≤ 10、下列所给4个图象中,与所给3件事吻合最好的顺序为 ( )(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学; (2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。
《函 数》复习题一、 求函数的定义域1、求下列函数的定义域:⑴33y x =+-⑵y =⑶01(21)111y x x =+-++-2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________;3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x+的定义域为 。
4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。
二、求函数的值域5、求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷311x y x -=+ (5)x ≥⑸y =⑹ 225941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =-⑼y ⑽4y =⑾y x =-6、已知函数222()1x ax bf x x ++=+的值域为[1,3],求,a b 的值。
三、求函数的解析式1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。
2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。
3、已知函数()f x 满意2()()34f x f x x +-=+,则()f x = 。
4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+,则当(,0)x ∈-∞时()f x =____ _()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析表达式四、求函数的单调区间6、求下列函数的单调区间:⑴ 223y x x =++ ⑵y =⑶ 261y x x =--7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是8、函数236xy x -=+的递减区间是 ;函数y =的递减区间是五、综合题9、推断下列各组中的两个函数是同一函数的为 ( ) ⑴3)5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g =; ⑷x x f =)(, ()g x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。
某某省富阳市场口中学高三数学 函数复习练习一、选择题1.幂函数y =f (x )的图象经过点⎝ ⎛⎭⎪⎫4,12,则f ⎝ ⎛⎭⎪⎫14的值为( ). A .1 B .2 C .3 D .42.(2013·某某长郡中学一模)设函数f (x )=⎩⎪⎨⎪⎧x +12,x ≤-1,2x +2,x >-1,若f (x )>1成立,则实数x 的取值X 围是( ).A .(-∞,-2)B.⎝ ⎛⎭⎪⎫-12,+∞C.⎝ ⎛⎭⎪⎫-2,-12D .(-∞,-2)∪⎝ ⎛⎭⎪⎫-12,+∞3.(2013·某某一模)设函数f (x )是奇函数,并且在R 上为增函数,若0≤θ≤π2时,f (m sinθ)+f (1-m )>0恒成立,则实数m 的取值X 围是( ).A .(0,1)B .(-∞,0) C.⎝⎛⎭⎪⎫-∞,12D .(-∞,1) 4.(2013·某某模拟)已知函数f (x )是奇函数,当x >0时,f (x )=a x (a >0且a ≠1),且f ⎝ ⎛⎭⎪⎫log 124=-3,则a 的值为( ). A.3B .3 C .9 D.325.(2013·某某质检)已知a =2,b =,c ,则( ). A .a >b >c B .a >c >b C .c >a >b D .b >c >a6.(2013·某某调研)已知函数f (x )=⎩⎪⎨⎪⎧1-x ,x ≤0,a x,x >0,若f (1)=f (-1),则实数a 的值等于( ).A .1B .2C .3D .47.设a >1,且m =log a (a 2+1),n =log a (a -1),p =log a (2a ),则m ,n ,p 的大小关系为( ). A .n >m >p B .m >p >n C .m >n >p D .p >m >n8.(2013·东城区综合练习)设a =log 123,b =⎝ ⎛⎭⎪⎫13,c =ln π,则( ). A .a <b <c B .a <c <b C .c <a <b D .b <a <c9.(2013·某某名校模拟)设函数f (x )定义在实数集上,f (2-x )=f (x ),且当x ≥1时,f (x )=ln x ,则有( ).A .f ⎝ ⎛⎭⎪⎫13<f (2)<f ⎝ ⎛⎭⎪⎫12B .f ⎝ ⎛⎭⎪⎫12<f (2)<f ⎝ ⎛⎭⎪⎫13C .f ⎝ ⎛⎭⎪⎫12<f ⎝ ⎛⎭⎪⎫13<f (2)D .f (2)<f ⎝ ⎛⎭⎪⎫12<f ⎝ ⎛⎭⎪⎫13 10.设函数y =f (x )在(-∞,+∞)内有定义,对于给定的正数K ,定义函数:f K (x )=⎩⎪⎨⎪⎧f x ,f x ≤K ,K ,f x >K .取函数f (x )=a-|x |(a >1).当K =1a时,函数f K (x )在下列区间上单调递减的是( ). A .(-∞,0) B .(-a ,+∞) C .(-∞,-1) D .(1,+∞) 二、填空题11.(2012·某某质检)若函数f (x )=⎩⎪⎨⎪⎧2x ,x <3,3x -m ,x ≥3,且f (f (2))>7,则实数m 的取值X围是________.12.(2013·某某质检)函数y =log 12(3x -a )的定义域是⎝ ⎛⎭⎪⎫23,+∞,则a =________. 13.若f (x )=1+lg x ,g (x )=x 2,那么使2f [g (x )]=g [f (x )]的x 的值是________. 14.已知函数f (x )=|log 2x |,正实数m ,n 满足m <n ,且f (m )=f (n ),若f (x )在区间[m 2,n ]上的最大值为2,则m +n =________.15.(2012·某某高中月考)关于函数f (x )=lg x 2+1|x |(x ≠0),有下列命题:①其图象关于y 轴对称;②当x >0时,f (x )是增函数;当x <0时,f (x )是减函数; ③f (x )的最小值是lg 2;④f (x )在区间(-1,0),(2,+∞)上是增函数; ⑤f (x )无最大值,也无最小值.其中所有正确结论的序号是________.16.若实数x 满足log3 x =1+sin θ,则|x -1|+|x -9|的值为________. 17.已知函数f(x)=⎩⎪⎨⎪⎧log2⎝ ⎛⎭⎪⎫1x +1,x≥0,⎝ ⎛⎭⎪⎫12x -1,x <0.若f(3-2a2)>f(a),则实数a 的取值X 围为________.18.(2013·某某模拟)函数f(x)=log 12(x2-2x -3)的单调递增区间是________.19.设min{p ,q}表示p ,q 两者中的较小者,若函数f(x)=min{3-x ,log2x},则满足f(x)<12的集合为________.20.(2011·某某卷改编)若点(a ,b)在y =lg x 图象上,a≠1,则下列点也在此图象上的是________(填序号).①⎝ ⎛⎭⎪⎫1a ,b ;②(10a,1-b);③⎝ ⎛⎭⎪⎫10a ,b +1;④(a2,2b). 21.已知点⎝ ⎛⎭⎪⎫12,2在幂函数y =f (x )的图象上,点⎝ ⎛⎭⎪⎫-2,14在幂函数y =g (x )的图象上,则f (2)+g (-1)=________.22.(2012·苏锡常镇四市调研)如图,已知二次函数y =ax 2+bx +c (a ,b ,c 为实数,a ≠0)的图象过点C (t,2),且与x 轴交于A ,B 两点,若AC ⊥BC ,则a 的值为________.23.(2012·某某模拟)已知函数f (x )=|2x -3|,若0<2a <b +1,且f (2a )=f (b +3),则T =3a 2+b 的取值X 围为________.24.(2012·某某模拟)已知函数f (x )=9x -m ·3x+m +1在x ∈(0,+∞)上的图象恒在x 轴上方,则m 的取值X 围为________.25.对于函数f (x )=e x -e -x(x ∈R ),有下列结论:①f (x )的值域是R ;②f (x )是R 上的增函数;③对任意x ∈R ,有f (-x )+f (x )=0成立;④若方程|f (x )|=a 有两个相异实根,则a ≥0,其中所有正确的命题序号是________. 26.函数y =a2x -2(a >0,a ≠1)的图象恒过点A ,若直线l :mx +ny -1=0经过点A ,则坐标原点O 到直线l 的距离的最大值为________. 三.解答题1.已知函数f (x )=log a (3-ax )(a >0,且a ≠1).(1)当x ∈[0,2]时,函数f (x )恒有意义,某某数a 的取值X 围;(2)是否存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1,如果存在,试求出a 的值;如果不存在,请说明理由.2.(2012·某某学情调查)已知函数f (x )=log 4(4x+1)+kx (x ∈R )是偶函数. (1)求k 的值;(2)若方程f (x )-m =0有解,求m 的取值X 围.基本初等函数(2)1.已知函数f (x )=-x +log 21-x1+x .(1)求f ⎝⎛⎭⎪⎫12 014+f ⎝ ⎛⎭⎪⎫-12 014的值;(2)当x ∈(-a ,a ],其中a ∈(0,1),a 是常数时,函数f (x )是否存在最小值?若存在,求出f (x )的最小值;若不存在,请说明理由.2.已知函数f (x )=x |x -2|. (1)写出f (x )的单调区间; (2)解不等式f (x )<3;(3)设0<a ≤2,求f (x )在[0,a ]上的最大值.3.(2012·某某调研)已知13≤a ≤1,若f (x )=ax 2-2x +1在区间[1,3]上的最大值为M (a ),最小值为N (a ),令g (a )=M (a )-N (a ). (1)求g (a )的函数表达式;(2)判断g (a )的单调性,并求出g (a )的最小值.4.(2012·某某检测)设二次函数f(x)=ax2+bx+c(a≠0)在区间[-2,2]上的最大值、最小值分别是M,m,集合A={x|f(x)=x}.(1)若A={1,2},且f(0)=2,求M和m的值;(2)若A={1},且a≥1,记g(a)=M+m,求g(a)的最小值.5.已知函数f(x)=2x-12x(x∈R).(1)讨论f(x)的单调性与奇偶性;(2)若2x f(2x)+mf(x)≥0对任意的x∈[0,+∞)恒成立,求m的取值X围.6.(2013·某某模拟)已知函数f(x)=a x-24-a x-1(a>0且a≠1).(1)求函数f(x)的定义域、值域;(2)某某数a的取值X围,使得当定义域为[1,+∞)时,f(x)≥0恒成立.7.如果函数f(x)=a x(a x-3a2-1)(a>0,a≠1)在区间[0,+∞)上是增函数,某某数a的取值X围.8.设函数f (x )=ka x -a -x(a >0且a ≠1)是奇函数. (1)求k 的值;(2)若f (1)>0,解关于x 的不等式f (x 2+2x )+f (x -4)>0;(3)若f (1)=32,且g (x )=a 2x +a -2x-2mf (x )在[1,+∞)上的最小值为-2,求m 的值.方程的解与函数的零点(1)一、选择题1 .已知函数f(x)是R 上的偶函数,且f(1-x)=f(1+x),当x ∈[0,1]时,f(x)=x 2,则函数y=f(x)-log 5x 的零点个数是 ( )A .3B .4C .5D .62 .已知函数⎩⎨⎧>-≤-=0,120,2)(x x x a x f x (R a ∈),若函数)(x f 在R 上有两个零点,则a 的取值X围是 ( )A .)1,(--∞B .]1,(-∞C .)0,1[-D .]1,0(3 .设函数f (x )=x |x |+bx +c ,给出下列四个命题:①c =0时,f (x )是奇函数 ②b =0,c >0时,方程f (x )=0只有一个实根 ③f (x )的图象关于(0,c )对称 ④方程f (x )=0至多两个实根其中正确的命题是 ( )A .①④B .①③C .①②③D .①②④4 .已知函数()ln 38f x x x =+-的零点0[,]x a b ∈,且1(,)b a a b N +-=∈,则a b +=( )A .5B .4C .3D .25 .函数21f ()log 22x x x =-+的零点个数为 ( ) ( )A .0B .1C .3D . 26 .函数()22x f x x =-零点的个数为( )A .1B .2C .3D .47 .函数12ln )(-+=x x x f 的零点的个数是( )A .0B .1C .2D .38 .奇函数()f x ,偶函数()g x 的图像分别如图1、2所示,方程(())0,(())0f g x g f x ==的实根个数分别为,a b ,则a b +=( )A .14B .10C .7D .39 .实系数一元二次方程01)1(2=+++++b a x a x 的两个实根为21,x x ,若有2110x x <<<,则ab的取值X 围是( )A .)21,1(-B .)21,2(-C .)21,1(--D .)21,2(--10已知函数()y f x =的周期为2,当[0,2]x ∈时,2()(1)f x x =-,如果()()g x f x =-5log 1x -,则函数()y g x =的所有零点之和为( )A .4B .6C .8D .1011.已知0x 是xx f x1)21()(+=的一个零点,)0,(),,(0201x x x x ∈-∞∈,则 ( )A .0)(,0)(21<<x f x fB .0)(,0)(21>>x f x fC .0)(,0)(21<>x f x fD .0)(,0)(21><x f x f提升:定义在R上的函数()g x 及二次函数()h x 满足:2()2()9,(2)(0)1x x g x g x e h h e+-=+--==且(3)2h -=-. (1)求()g x 和()h x 的解析式;(2)对于12,[1,1]x x ∈-,均有11222()5()()h x ax g x x g x ++≥-成立,求a 的取值X 围; (3)设(),(0)()(),(0)g x x f x h x x >⎧=⎨≤⎩,讨论方程[()]2f f x =的解的个数情况.方程的解与函数的零点(2)12.已知函数()()21,2,03,2,1x x f x f x a x x ⎧-⎪=-=⎨≥⎪-⎩<若方程有三个不同的实数根,则实数a 的取值X 围( )A .()0,1B .()0,2C .()0,3D .()1,313.若关于x 的方程24||5x x m -+=有四个不同的实数解,则实数m 的取值X 围是( )A .(2,3)B .[2,3]C .(1,5)D .[1,5]14.已知函数y=f(x)的周期为2,当x∈[-1,1]时f(x)=x2,那么函数y=f(x)的图象与函数y=|lgx|的图象的交点共有 ( )A .10个B .9个C .8个D .1个15.已知函数()()f x x ∈R 是偶函数,且()(4)f x f x =-+,当x ∈[0,2]时,()1f x x =-,则方程1()1||f x x =-在区间[-8,8]上的解的个数为( )A .6B .7C .8D .916.函数()22xf x a x=--的一个零点在区间()1,2内,则实数a 的取值X 围是 ( )A .()1,3B .()1,2C .()0,3D .()0,217.如右上图:二次函数a bx x x f +-=2)(的部分图象,则函数)()(x f e x g x '+=的零点所在的区间是( )A .)0,1(-B .()1,2C .)1,0(D .)3,2(18.设函数2()2,()ln 3xf x e xg x x x =+-=+-,若实数,a b 满足()0,()0f a g b ==,则 ( )A .0()()g a f b <<B .()()0f b g a <<C .()0()f b g a <<D .()0()g a f b <<19函数()ln x f x x e =+的零点所在的区间是( )A .(10,e)B .(1,1e)C .(1,e )D .(,e ∞)20.已知函数||()e ||x f x x =+.若关于x 的方程()f x k =有两个不同的实根,则实数k 的取值X 围是( )A .(0,1)B .(1,)+∞C .(1,0)-D .(,1)-∞-21.已知()f x 是定义在(0,)+∞上的单调函数,且(0,),[()ln ]1x f f x x ∀∈+∞-=,则方程2()2()7f x x f x '+=的解所在的区间为( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)22.函数f(x)对任意x ∈R,满足f(x)=f(4-x).如果方程f(x)=0恰有2011个实根,则所有这些实根之和为 ( )A .0B .2011C .4022D .804423.已知关于x 的方程26(0)x x a a -=>的解集为P ,则P 中所有元素的和可能是( )A .3,6,9B .6,9,12C .9,12,15D .6,12,15【答案】B24.函数0.5() 2 |log |1x f x x =⋅-的零点个数为A . 1B . 2C . 3D .425.函数xx x f 2)1ln()(-+= 的零点所在的大致区间是( )A .(3,4) B(1, 2) C .(2,e )D .(0,1)【答案】B26.下列区间中,函数()=+43xf x e x -的零点所在的区间为( )A .(1-4,0) B .(0,14) C .(14,12) D .(12,34) 二、填空题27.已知关于x 的方程220x x m -+=(0m ≤)的解集为M ,则集合M 中所有的元素的和的最大值为____________.。
高中数学函数练习题(完整版).doc1、在A、B、C、D四个函数中,只有函数y=1/(x+1)的值域是(0,+∞),因此答案为A。
2、由题意可得:f(-2)=f(2)=3,即2a+12a+a=3,解得a=-1/2.在闭区间[-2,2]上,f(x)的最小值是f(0)=-a=1/2,因此答案为A。
3、对于函数y=x-2x^2+3,在[0,m]上有最大值3,最小值2,因此其开口向下,且顶点在[0,m]上。
由于开口向下,顶点为最大值,因此m=1,即答案为A。
4、设函数f(x)=log_a(x),则f(a)=1,f(2a)=log_a(2a)=1+log_a2,由题意可得:f(2a)=3f(a),即1+log_a2=3,解得a=1/4,因此答案为B。
5、在区间[0,1]上,f(x)的最大值为a+log_a2,最小值为a+log_a1=a,因此有:a+log_a2+a=2a,解得a=2,因此答案为D。
6、由题意可得:y-2xy/(x-1)^3的最小值为-1/3,1/(x-1)的最大值为正无穷,因此答案为正无穷和-1/3.7、由于XXX(ax+2x+1)的值域为R,因此ax+2x+1>0,解得a>-1/2.又因为XXX(ax+2x+1)=lg(a)+lg(x+2x+1/a)>0,解得a>0.因此a的取值范围为(0,1/2)。
8、将x=y=1代入f(x+y)=f(x)+f(y)+2xy,得f(2)=f(1)+f(1)+2=4.又因为f(1)=2,因此f(0)=f(1)+f(-1)+2(1)(-1)=0.9、将x=0代入f(x+1)=(1/3)(1/(x^2-1)),得f(1)=(1/3)(1/2)=1/6.因此f(x)=f(x+1-1)=f(x+1)-2(x+1-1)=f(x+1)-2x-2,代入f(x+1)=(1/3)(1/(x^2-1)),得f(x)=(1/3)(1/[(x-1)(x+1)])-2x-2,因此函数f(x)的值域为R。
高中数学复习题库1. 函数的基本概念1.1 函数的定义域和值域1.2 函数的单调性1.3 函数的奇偶性1.4 函数的周期性2. 函数的性质2.1 函数的连续性2.2 函数的可导性2.3 函数的极值2.4 函数的拐点3. 导数与微分3.1 导数的定义3.2 导数的几何意义3.3 微分的定义3.4 微分的几何意义4. 导数的应用4.1 利用导数求切线4.2 利用导数求极值4.3 利用导数求拐点4.4 利用导数求函数的单调区间5. 积分5.1 不定积分的概念5.2 定积分的概念5.3 积分的基本公式5.4 积分的计算方法6. 积分的应用6.1 利用积分求面积6.2 利用积分求体积6.3 利用积分求曲线的长度 6.4 利用积分求物理量7. 空间几何7.1 空间直线与平面7.2 空间多面体7.3 空间曲线7.4 空间向量8. 解析几何8.1 直线的方程8.2 圆的方程8.3 椭圆、双曲线、抛物线 8.4 参数方程与极坐标9. 概率论初步9.1 随机事件9.2 概率的计算9.3 条件概率9.4 独立性10. 统计初步10.1 总体与样本10.2 样本的分布10.3 样本的数字特征10.4 统计图表11. 数列11.1 数列的概念11.2 等差数列11.3 等比数列11.4 数列的求和12. 极限12.1 极限的概念12.2 极限的性质12.3 极限的运算12.4 无穷小与无穷大13. 复数13.1 复数的概念13.2 复数的运算13.3 复数的几何意义 13.4 复数的代数形式14. 矩阵与行列式14.1 矩阵的概念14.2 矩阵的运算14.3 行列式的概念 14.4 行列式的计算15. 算法初步15.1 算法的概念15.2 算法的表示15.3 算法的复杂度 15.4 算法的应用16. 逻辑与推理16.1 命题逻辑16.2 推理方法16.3 证明方法16.4 数学归纳法17. 集合论初步17.1 集合的概念17.2 集合的运算17.3 子集与幂集17.4 集合的表示18. 组合数学18.1 排列组合18.2 二项式定理18.3 组合数的性质18.4 组合数的应用19. 初等数论19.1 整数的性质19.2 素数与合数19.3 最大公约数与最小公倍数 19.4 同余与模运算20. 微分方程20.1 微分方程的概念20.2 一阶微分方程20.3 高阶微分方程20.4 微分方程的应用以上是高中数学复习题库的主要内容,涵盖了高中数学的主要知识点。
(名师选题)(精选试题附答案)高中数学第三章函数的概念与性质知识总结例题单选题1、函数f(x)=−x2+2(1−m)x+3在区间(−3,4]上单调递增,则m的取值范围是()A.[−3,+∞)B.[3,+∞)C.(−∞,5]D.(−∞,−3]答案:D分析:首先求出函数的对称轴,根据二次函数的性质得到不等式,解得即可;解:因为函数f(x)=−x2+2(1−m)x+3,开口向下,对称轴为x=1−m,依题意1−m≥4,解得m≤−3,即m∈(−∞,−3]故选:D2、若函数f(x+1x )=x2+1x2,且f(m)=4,则实数m的值为()A.√6B.√6或−√6C.−√6D.3答案:B分析:令x+1x=t,配凑可得f(t)=t2−2,再根据f(m)=4求解即可令x+1x =t(t≥2或t≤−2),x2+1x2=(x+1x)2−2=t2−2,∴f(t)=t2−2,f(m)=m2−2=4,∴m=±√6.故选;B3、已知f(x)是一次函数,且f(x−1)=3x−5,则f(x)=()A.3x−2B.2x+3C.3x+2D.2x−3答案:A分析:设一次函数y=ax+b(a≠0),代入已知式,由恒等式知识求解.设一次函数y=ax+b(a≠0),则f(x−1)=a(x−1)+b=ax−a+b,由f(x−1)=3x−5得ax−a+b=3x−5,即{a=3b−a=−5,解得{a=3b=−2,∴f(x)=3x−2.故选:A.4、已知函数f(x)是定义在R上的奇函数,且x>1时,满足f(2−x)=−f(x),当x∈(0,1]时,f(x)=x2,则f(−2021)+f(2022)=()A.−4B.4C.−1D.1答案:C分析:由已知条件可得x>1时f(x+2)=f(x),然后利用f(−2021)+f(2022)=−f(1)+f(0)求解即可.因为函数f(x)是定义在R上的奇函数,且x>1时,满足f(2−x)=−f(x),所以f(0)=0,f(2−x)=−f(x)=f(−x),即可得x>1时f(x+2)=f(x),因为当x∈(0,1]时,f(x)=x2,所以f(−2021)+f(2022)=−f(2×1010+1)+f(2×1011+0)=−f(1)+f(0)=−1+0=−1,故选:C5、幂函数y=x a,y=x b,y=x c,y=x d在第一象限的图像如图所示,则a,b,c,d的大小关系是()A.a>b>c>d B.d>b>c>a C.d>c>b>a D.b>c>d>a答案:D分析:根据幂函数的性质,在第一象限内,x =1的右侧部分的图像,图像由下至上,幂指数增大,即可判断; 根据幂函数的性质,在第一象限内,x =1的右侧部分的图像,图像由下至上,幂指数增大, 所以由图像得:b >c >d >a , 故选:D6、已知幂函数y =x a 与y =x b 的部分图象如图所示,直线x =14,x =12与y =x a ,y =x b 的图象分别交于A 、B 、C 、D 四点,且|AB|=|CD|,则12a +12b =( )A .12B .1C .√2D .2 答案:B分析:把|AB |=|CD |用函数值表示后变形可得.由|AB |=|CD |得(14)a−(14)b=(12)a−(12)b,即[(12)a−(12)b][(12)a+(12)b]=(12)a−(12)b≠0,所以(12)a +(12)b=1, 故选:B .7、已知幂函数y =xm 2−2m−3(m ∈N ∗)的图象关于y 轴对称,且在(0,+∞)上单调递减,则满足(a +1)−m3<(3−2a )−m3的a 的取值范围为( )A .(0,+∞)B .(−23,+∞) C .(0,32)D .(−∞,−1)∪(23,32) 答案:D分析:由条件知m 2−2m −3<0,m ∈N ∗,可得m =1.再利用函数y =x −13的单调性,分类讨论可解不等式. 幂函数y =x m 2−2m−3(m ∈N ∗)在(0,+∞)上单调递减,故m 2−2m −3<0,解得−1<m <3.又m ∈N ∗,故m=1或2.当m =1时,y =x −4的图象关于y 轴对称,满足题意; 当m =2时,y =x −3的图象不关于y 轴对称,舍去,故m =1. 不等式化为(a +1)−13<(3−2a )−13,函数y =x −13在(−∞,0)和(0,+∞)上单调递减,故a +1>3−2a >0或0>a +1>3−2a 或a +1<0<3−2a ,解得a <−1或23<a <32. 故应选:D .8、“幂函数f (x )=(m 2+m −1)x m 在(0,+∞)上为增函数”是“函数g (x )=2x −m 2⋅2−x 为奇函数”的( )条件 A .充分不必要B .必要不充分 C .充分必要D .既不充分也不必要 答案:A分析:要使函数f (x )=(m 2+m −1)x m 是幂函数,且在(0,+∞)上为增函数,求出m =1,可得函数g (x )为奇函数,即充分性成立;函数g (x )=2x −m 2⋅2−x 为奇函数,求出m =±1,故必要性不成立,可得答案. 要使函数f (x )=(m 2+m −1)x m 是幂函数,且在(0,+∞)上为增函数,则{m 2+m −1=1m >0,解得:m =1,当m =1时,g (x )=2x −2−x ,x ∈R ,则g (−x )=2−x −2x =−(2x −2−x )=−g (x ),所以函数g (x )为奇函数,即充分性成立; “函数g (x )=2x −m 2⋅2−x 为奇函数”,则g(x)=−g(−x),即2x−m2⋅2−x=−(2−x−m2⋅2x)=m2⋅2x−2−x,解得:m=±1,故必要性不成立,故选:A.9、若函数y=√ax2+4x+1的值域为[0,+∞),则a的取值范围为()A.(0,4)B.(4,+∞)C.[0,4]D.[4,+∞)答案:C分析:当a=0时易知满足题意;当a≠0时,根据f(x)的值域包含[0,+∞),结合二次函数性质可得结果. 当a=0时,y=√4x+1≥0,即值域为[0,+∞),满足题意;若a≠0,设f(x)=ax2+4x+1,则需f(x)的值域包含[0,+∞),∴{a>0Δ=16−4a≥0,解得:0<a≤4;综上所述:a的取值范围为[0,4].故选:C.10、已知函数f(x+2)=x2+6x+8,则函数f(x)的解析式为()A.f(x)=x2+2x B.f(x)=x2+6x+8C.f(x)=x2+4x D.f(x)=x2+8x+6答案:A分析:利用配凑法(换元法)计算可得.解:方法一(配凑法)∵f(x+2)=x2+6x+8=(x+2)2+2(x+2),∴f(x)=x2+2x.方法二(换元法)令t=x+2,则x=t−2,∴f(t)=(t−2)2+6(t−2)+8=t2+2t,∴f(x)=x2+2x.故选:A填空题11、若函数f (x )=12x 2−x +a 的定义域和值域均为[1,b ](b >1),则a +b 的值为____.答案:92分析:根据二次函数的性质,结合定义域和值域均为[1,b ](b >1),列出相应方程组,求出a ,b 的值即可. 解:由函数f (x )=12x 2−x +a ,可得对称轴为x =1, 故函数在[1,b ]上是增函数.∵函数f (x )=12x 2−x +a 的定义域和值域均为[1,b ](b >1), ∴ {f (1)=1f (b )=b ,即{12−1+a =112b 2−b +a =b. 解得a =32,b =1或b =3.∵ b >1,∴ b =3. ∴ a +b =32+3=92.所以答案是:92.12、已知函数f (x )={3x −1,x ≥12−x +3,x <1,则f (−2)=________.答案:7分析:根据题意直接求解即可 解:因为f (x )={3x −1,x ≥12−x +3,x <1,所以f (−2)=22+3=7, 所以答案是:713、设m 为实数,若函数f(x)=x 2−mx +m +2(x ∈R )是偶函数,则m 的值为__________. 答案:0分析:根据函数的奇偶性的定义可得答案.解:因为函数f(x)=x 2−mx +m +2(x ∈R )是偶函数,所以f(−x)=f (x ), 所以(−x )2−m (−x )+m +2=x 2−mx +m +2,得2mx =0,所以m =0,14、已知幂函数f(x)=(m2−3m+3)x m+1的图象关于原点对称,则满足(a+1)m>(3−2a)m成立的实数a的取值范围为___________.答案:(23,4)分析:利用幂函数的定义及性质求出m值,再解一元二次不等式即可得解.因函数f(x)=(m2−3m+3)x m+1是幂函数,则m2−3m+3=1,解得m=1或m=2,当m=1时,f(x)=x2是偶函数,其图象关于y轴对称,与已知f(x)的图象关于原点对称矛盾,当m=2时,f(x)=x3是奇函数,其图象关于原点对称,于是得m=2,不等式(a+1)m>(3−2a)m化为:(a+1)2>(3−2a)2,即(3a−2)(a−4)<0,解得:23<a<4,所以实数a的取值范围为(23,4).所以答案是:(23,4)15、设函数f(x)=x3+(x+1)2x2+1在区间[−2,2]上的最大值为M,最小值为N,则(M+N−1)2022的值为______.答案:1分析:先将函数化简变形得f(x)=x 3+2xx2+1+1,然后构造函数g(x)=x3+2xx2+1,可判断g(x)为奇函数,再利用奇函数的性质结合f(x)=g(x)+1可得M+N=2,从而可求得结果由题意知,f(x)=x 3+2xx2+1+1(x∈[−2,2]),设g(x)=x 3+2xx2+1,则f(x)=g(x)+1,因为g(−x)=−x 3−2xx2+1=−g(x),所以g(x)为奇函数,g(x)在区间[−2,2]上的最大值与最小值的和为0,故M+N=2,所以(M+N−1)2022=(2−1)2022=1.解答题16、记函数f(x)=√2−x+3x+1的定义域为A,函数g(x)=√(x−a−1)(2a−x)(a<1)的定义域为B.(1)求A;(2)若B⊆A,求实数a的取值范围.答案:(−∞,−2]∪[12,1)解析:(1)求函数的定义域,就是求使得根式有意义的自变量x的取值范围,然后求解分式不等式即可;(2)因为a<1,所以一定有2a<a+1,从而得到B=(2a,a+1),要保证B⊆A,由它们的端点值的大小列式进行计算,即可求得结果.(1)要使函数f(x)有意义,则需2−x+3x+1≥0,即x−1x+1≥0,解得x<−1或x≥1,所以A=(−∞,−1)∪[1,+∞);(2)由题意可知,因为a<1,所以2a<a+1,由(x−a−1)(2a−x)>0,可求得集合B=(2a,a+1),若B⊆A,则有{a<1a+1≤−1或{a<12a≥1,解得a≤−2或12≤x<1,所以实数a的取值范围是(−∞,−2]∪[12,1).小提示:该题考查的是有关函数的定义域的求解,以及根据集合之间的包含关系确定参数的取值范围的问题,属于简单题目.17、已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)=x+1x+1.(1)求f(x)在R上的解析式;(2)判断f(x)在(0,1)的单调性,并给出证明. 答案:(1)f(x)={x +1x +1,x >00,x =0x +1x −1,x <0; (2)f(x)在(0,1)上是减函数,证明见解析.分析:(1)根据奇函数的性质进行转化求解析式即可. (2)根据函数单调性的定义进行判断单调性. (1)∵f(x)是定义在R 上的奇函数,∴f(0)=0,又当x >0时,f(x)=x +1x +1.∴当x <0时,则−x >0,则f(−x)=−x −1x +1=−f(x),则f(x)=x +1x −1(x <0),综上,f(x) ={x +1x +1,x >00,x =0x +1x −1,x <0. (2)设0<x 1<x 2<1,则f(x 1)−f(x 2)=x 1+1x 1+1−x 2−1x 2−1=(x 1−x 2) +x 2−x 1x 1x 2= (x 1−x 2)(1−1x1x 2)=(x 1−x 2) ⋅x 1x 2−1x 1x 2,∵0<x 1<x 2<1,∴x 1−x 2<0,0<x 1x 2<1,x 1x 2−1<0,则f(x 1)−f(x 2)>0,即f(x 1)>f(x 2), ∴函数f(x)在(0,1)上是减函数. 18、已知幂函数f(x)=x −m 2+4m(m ∈Z )的图象关于y 轴对称,且在区间(0,+∞)上是严格增函数.(1)求m 的值;(2)求满足不等式f(2a −1)<f(a +1)的实数a 的取值范围. 答案:(1)m =2(2)0<a<2分析:(1)先利用幂函数在区间(0,+∞)上是严格增函数得到−m2+4m>0,再验证其图象关于y轴对称进行求值;(2)利用(1)中函数的奇偶性和单调性进行求解.(1)解:因为幂函数f(x)=x−m2+4m在区间(0,+∞)上是严格增函数,所以−m2+4m>0,解得0<m<4,又因为m∈Z,所以m=1或m=2或m=3,当m=1或m=3时,f(x)=x3为奇函数,图象关于原点对称(舍);当m=2时,f(x)=x4为偶函数,图象关于y轴对称,符合题意;综上所述,m=2.(2)解:由(1)得f(x)=x4为偶函数,且在区间(0,+∞)上是严格增函数,则由f(2a−1)<f(a+1)得|2a−1|<|a+1|,即(2a−1)2<(a+1)2,即a2−2a<0,解得0<a<2,所以满足f(2a−1)<f(a+1)的实数a的取值范围为0<a<2.19、已知f(x),g(x)分别是R上的奇函数和偶函数,且f(x)+g(x)=3x2−x+1,试求f(x)和g(x)的表达式.答案:f(x)=−x,g(x)=3x2+1分析:本题考查函数的奇偶性的性质以及应用,关键是利用函数的奇偶性构造方程.解析:以-x代替条件等式中的x,则有f(−x)+g(−x)=3x2+x+1,又f(x),g(x)分别是R上的奇函数和偶函数,故−f(x)+g(x)=3x2+x+1.又f(x)+g(x)=3x2−x+1,联立可得f(x)=−x,g(x)=3x2+1.。
高中数学函数试题及答案一、选择题(每题3分,共30分)1. 函数f(x) = 2x^2 - 3x + 1在x=1处的导数是()A. 1B. 2C. 4D. 52. 已知函数y = x^3 - 2x^2 + x - 2,求其在x=0时的值是()A. -2B. 0C. 1D. 23. 函数y = sin(x)在x=π/2处的值是()A. 0B. 1C. -1D. π/24. 已知函数f(x) = 3x + 5,求f(-2)的值是()A. -1B. 1C. -7D. 75. 如果函数f(x) = x^2 + 2x + 3在区间[-3, 1]上是增函数,那么下列哪个选项是错误的()A. f(-3) = 12B. f(1) = 6C. f(-2) = 4D. f(0) = 36. 函数y = 1 / (x + 1)的渐近线是()A. x = -1B. y = 0C. x = 1D. y = 17. 函数f(x) = x^3 - 6x^2 + 11x - 6的极值点是()A. x = 1B. x = 2C. x = 3D. x = 48. 函数y = x^2在x=2处的切线斜率是()A. 0B. 2C. 4D. 89. 函数y = 2^x的值域是()A. (0, +∞)B. (-∞, +∞)C. [0, +∞)D. [1, +∞)10. 函数f(x) = |x - 2|的零点是()A. x = 0B. x = 1C. x = 2D. x = 3二、填空题(每题4分,共20分)11. 若函数f(x) = √x在区间[0, 4]上是增函数,则f(4) - f(0) = _______。
12. 函数g(x) = x^2 + bx + c,若g(1) = 2,g(2) = 6,则b + c = _______。
13. 若函数h(x) = 3x - 2的反函数为h^(-1)(x),则h^(-1)(5) =_______。
高中数学专题20函数真题汇编与预赛典型例题1.已知正实数a满足,则的值为.【答案】【解析】由..2.设f(x)是定义在R上的以2为周期的偶函数,在区间[0,1]上严格递减,且满足,则不等式组的解集为.【答案】【解析】由f(x)为偶函数及在[0,1]上严格递减知,f(x)在[-1,0]上严格递增,再结合f(x)以2为周期可知,[1,2]是f(x)的严格递增区间.注意到.所以.而,故原不等式组成立当且仅当.3.设为定义在R上的函数,对任意实数x有.当0≤x<7时,.则的值为____________。
【答案】【解析】由题得,所以函数的周期为7,.故答案为:4.设正实数u、v、w均不等于1.若,则的值为________.【答案】【解析】令.则:.故. 从而,.5.设为不相等的实数.若二次函数满足,则的值为______.【答案】4 【解析】由已知条件及二次函数图像的轴对称性得.故答案为:46.若正数a ,b 满足2362log 3log log ()a b a b +=+=+,则11a b+= . 【答案】108 【解析】试题分析:设232362log 3log log ()2,3,6t t t a b a b t a b a b --+=+=+=⇒==+=⇒11a ba b ab++=23610823tt t --==•. 考点:指数与对数运算. 7.设集合中的最大、最小元素分别为M 、m ,则的值为___________.【答案】【解析】 由,知. 当时,取得最大元素.又,当时,取得最小元素.因此,.8.若函数()21f x x a x =--在[)0,+∞上单调递增,则实数a 的取值范围是 .【答案】[0,2] 【解析】试题分析:()[)()22,1,,,1x ax a x f x x ax a x ⎧-+∈+∞⎪=⎨+-∈-∞⎪⎩,[)1,x ∈+∞时,()f x =2x ax a -+=22a x ⎛⎫- ⎪⎝⎭24a a +-,(),1x ∈-∞时,()f x =2x ax a +-=2224a a x a ⎛⎫+-- ⎪⎝⎭.①当12a >即a >2时,()f x 在2a ⎛⎫1, ⎪⎝⎭上单调递减,在,2a ⎛⎫+∞⎪⎝⎭上单调递增,不合题意;②当012a ≤≤即02a ≤≤时,符合题意;③当02a <即0a <时,不符合题意.综上,a 的取值范围是[]0,2.考点:绝对值定义、函数单调性、分类讨论. 9.设为实数,函数满足:对任意的,有.则的最大值为______.【答案】 【解析】 易知,则.当,即时,取最大值.10.设.则的最大值是______.【答案】.【解析】 不妨设.则.由.当且仅当时,上式等号同时成立.11.函数的值域为______.【答案】【解析】由题得x≠1,设.则.设.因为,所以,所以,则,且.故.故答案为:12.设为正实数,且.则______.【答案】【解析】由,得.又,即. ①于是,②再由式①中等号成立的条件,得.与式②联立解得故.故答案为:-113.函数的值域是________.【答案】【解析】易知,的定义域是,且上是增函数.从而,的值域为.14.函数在区间上的最大值为8.则它在这个区间上的最小值是________.【答案】【解析】试题分析:由题意得,令,因为,当时,则,则,所以当时,函数取得最大值,此时最大值为,解得,所以函数的最小值为;当时,则,则,所以当时,函数取得最大值,此时最大值为,解得,所以函数的最小值为,所以函数的最小值为.考点:函数的最值问题.【方法点晴】本题主要考查了函数的最值问题,其中解答中涉及到函数的单调性的应用、一元二次函数的图象与性质的应用、指数函数的图象与性质等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,同时考查了换元法和转化与化归思想的考查,属于中档试题,本题的解答中换元后,灵活应用二次函数的图象与性质是解答问题的关键.15.若函数,且.则______.【答案】【解析】因为,所以.故.16.若方程仅有一个实根,那么的取值范围是.【答案】【解析】当且仅当①②③对③由求根公式得④.(ⅰ)当时,由③得所以同为负根.又由④知所以原方程有一个解.(ⅱ)当时,原方程有一个解.(ⅲ)当时,由③得所以同为正根,且,不合题意,舍去.综上可得为所求.17.已知定义在R+上的函数f(x)为.设a,b,c是三个互不相同的实数,满足f(a)=f(b)=f(c),求abc的取值范围.【答案】(81,144).【解析】不妨假设a<b<c.由于f(x)在(0,3]上严格递减,在[3,9]上严格递增,在[9,+∞)上严格递减,且f(3) =0,f(9)=1,故结合图像可知:a∈(0,3),b∈(3,9),c∈(9,+∞),并且f(a)=f(b)=f(c)∈(0,1).由f(a)=f(b)得.即,因此ab=32=9.于是abc=9c.又,故c∈(9,16).进而abc=9c∈(81,144).所以,abc的取值范围是(81,144).18.已知为R上的奇函数,,且对任意,均有.求的值.【答案】【解析】设.则.在中,取.注意到,,及为奇函数.故.则. 19.求所有的正实数对,使得函数满足:对任意的实数.【答案】【解析】由题意得. ①先求所满足的必要条件.在式①中令,得.由于,故可取到任意大的正值,因此,必有,即.在式①中再令,得.②将式②左边记为.显然,.否则,由,知,此时,.则可取到负值,矛盾.故对一切实数成立.于是,,即.进一步,考虑到此时,再由,知.从而,求得满足的必要条件为.③下面证明,对满足条件③的任意实数对及任意非负实数,式①总成立,即.事实上,在条件③成立时,有.再结合,得.综上,所求的正实数对全体为.20.设是定义在R上的奇函数,且当时,,若对任意的,不等式恒成立,则实数的取值范围是.【答案】【解析】略21.设函数,实数满足.求的值.【答案】【解析】由题设得.则.由,知.故①又由有意义,知.从而,.于是,.则.故.从而,.解得(舍去).把,代入式①解得.因此,.22.求函数的最大值和最小值.【答案】【解析】函数的定义域为.因为当时等号成立.故的最小值为.……………………………………………5分又由柯西不等式得所以.………………………………………………………………………………10分由柯西不等式等号成立的条件,得,解得.故当时等号成立.因此的最大值为.…………………………………………………………………………………15分23.设是正整数).证明:对满足的任意实数,数列中有无穷多项属于表示不超过实数的最大整数).【答案】(1)见解析(2)见解析【解析】证法1 (1)对任意,有.令.则.又令.则.从而,存在,使得.否则,存在,使得.于是,,与,矛盾.故一定存在,使得.(2)假设只有有限个正整数,使得.令.则.故不存在,使得,与(1)的结论矛盾.所以,数列中有无穷多项属于.综上,原命题成立.证法2 由证法1,知当充分大时,可以大于任何一个正数.令.则.当时,.同证法1可证,对于任何大于的正整数,总存在,使得,即.令.则.故一定存在,使得.从而,.这样的有无穷多个.所以,数列中有无穷多项属于.24.设是给定的正整数,.记.证明:存在正整数,使得为一个整数,其中,表示不小于实数的最小整数(如).【答案】见解析【解析】记表示正整数所含的2的幂次.则当时,为整数.下面对用数学归纳法.当时,为奇数,为偶数,此时,为整数.假设命题对成立对于,设的二进制表示具有形式,其中,或l,.故.①显然,中所含的2的幂次为.故由归纳假设知,经过次迭代得到整数.由式①知,是一个整数.1.已知a为正实数,且是奇函数,则的值域为________.【答案】【解析】由为奇函数可知,解得a= 2,即,由此得的值域为.2.函数的值域为________.【答案】【解析】由条件知.令.则,,,因为,所以,.3.函数的最小值为________.【答案】【解析】设log3x=t,则.∴.∴当时,f(x)取最小值.4.若函数f(x)=x2-2ax+a2-4在区间[a-2,a2](a>0)上的值域为[-4,0],则实数a的取值范围为________. 【答案】[1,2]【解析】∵f(x)=x2-2ax+a2-4=(x-a)2-4,f(a)=-4,f(a-2)=0,f(x)在区间[a-2,a2]上的值域为[-4,0],f(x)的图像为开口向上的拋物线.∴,解得-1≤a≤0或1≤a≤2.结合a>0,得1≤a≤2.∴a的取值范围为[1,2].5.设,期中表示的最大公约数,则的值为________.【答案】520【解析】如果,则,所以.又,所以.故答案为:5206.牛得亨先生、他的妹妹、他的儿子,还有他的女儿都是网球选手,这四人中有以下情况:①最佳选手的孪生同胞与最差选手性别不同;②最佳选手与最差选手年龄相同.则这四人中最佳选手是_______.【答案】牛得亨先生的女儿【解析】由题意知,最佳选手和最佳选手的孪生同抱年龄相同;由②,最佳选手和最差选手的年龄相同;由①,最佳选手的孪生同胞和最差选手不是间一个人.因此,四个人中有三个人的年龄相同.由于牛得亨先生的年龄肯定大于他的儿子和女儿,从而年龄相同的三个人必定是牛得亨先生的儿子、女儿和妹妹.由此,牛得亨先生的儿子和女儿必定是①中所指的孪生同胞.因此,牛得亨先生的儿子或女儿是最佳选手,而牛得亨先生的妹妹是最差选手.由①,最佳选手的孪生同胞一定是牛得亨先生的儿子,而最佳选手无疑是牛得亨先生的女儿.故答案为:牛得亨先生的女儿7.函数的最小值是______.【答案】【解析】因为此即为直线y=x上的点(x,y)到点(0,1)与到点(2,3)的距离之和,根据镜像原理,z的最小值应为点(1,0)到点(2,3)的距离.故答案为:8.若方程a x>x(a>0,a≠1)有两个不等实根,则实数a的取值范围是_______.【答案】【解析】由a x>x知x>0,故,令(x>0),则.当时,;当时,.所以在(0,e)上递增,在(e,+∞)上递减.故,即.故答案为:9.已知实数满足,则________.【答案】1【解析】化为对数,有,所以.10.已知函数满足,那么的值域为_______.【答案】【解析】设函数满足,.所以所求函数是,其图像如图,易知的值域是.11.设是由有限个正整数构成的集合,且,这里,2,…,20.并对任意的,都有,已知对任意的,若,则.求集合的元素个数的最小值.(这里,表示集合的元素个数)【答案】180【解析】记.不妨设,2,...,, (20)设,2,…,.因为对任意的,都有,所以,…,互不相同,,即.又对任意的,若,则,所以当,…,20时,.即,当,…,20时,.所以.若,则.若,则.所以总有.另一方面,取,其中,2, (20)则符合要求.此时,.综上所述,集合的元素个数的最小值为180.12.已知函数.(1)若对于任意的,均有,证明:;(2)当时,证明:对于任意的成立的充分必要条件为.【答案】(1)见解析;(2)见解析【解析】(1)因为恒成立,所以,.又,故.(2)必要性:对于任意的.则,即.又,得.从而,.因此,.充分性:由,且,则对于任意的,有.又,故.13.求方程的实数解.【答案】【解析】令.则.令.注意到,.则,即.又,当时,.故.于是,对任意的,有.从而,.综上,原方程的实数解构成的集合为.14.已知奇函数的定义域为,且在内递减,求满足:的实数的取值范围.【答案】【解析】由f(x)的定义域是[-2,2],知解得-1≤m≤.因为函数f(x)是奇函数,所以f(1-m)<-f(1-m2),即f(1-m)<f(m2-1).由奇函数f(x)在区间[-2,0]内递减,所以在[-2,2]上是递减函数,所以1-m>m2-1,解得-2<m<1.综上,实数m的取值范围是-1≤m<1.15.黑板上写有方程.证明:任取三个两两不同的整数能适当安放在方程的的位置(每颗星安放一个数),使得方程有实根.【答案】见解析【解析】设三个★的位置为.则原方程为①将任意三个两两不同的整数中最大的放在,设.则三个数中另外两个较小的数为.故.于是,若以放在左边第一个★的位置的二次方程为,则.从而,方程①有实根.因此,任意三个两两不同的整数,只要以其中最大的一个放在左边第一个★的位置,其余两个放在后两个★的位置,所得的方程就有实根.。
(名师选题)(精选试题附答案)高中数学第三章函数的概念与性质经典知识题库单选题1、已知函数f(x)在定义域R 上单调,且x ∈(0,+∞)时均有f(f(x)+2x)=1,则f(−2)的值为( )A .3B .1C .0D .−1答案:A分析:设f(x)+2x =t ,则f(x)=−2x +t ,即可由f(f(x)+2x)=1得f(t)=−2t +t =1,解出t ,从而得到f(x)=−2x −1,进而求出f(−2)的值.根据题意,函数f(x)在定义域R 上单调,且x ∈(0,+∞)时均有f(f(x)+2x)=1,则f(x)+2x 为常数,设f(x)+2x =t ,则f(x)=−2x +t ,则有f(t)=−2t +t =1,解可得t =−1,则f(x)=−2x −1,故f(−2)=4−1=3;故选:A.2、函数f (x )=x +4x+1在区间[−12,2]上的最大值为( )A .103B .152C .3D .4 答案:B分析:利用换元法以及对勾函数的单调性求解即可.设t =x +1,则问题转化为求函数g (t )=t +4t −1在区间[12,3]上的最大值.根据对勾函数的性质,得函数g (t )在区间[12,2]上单调递减,在区间[2,3]上单调递增,所以g (t )max =max {g (12),g (3)}=max {152,103}=152.故选:B3、定义在R 上的偶函数f(x)在[0,+∞)上单调递增,且f(2)=0,则不等式x ⋅f(x)>0的解集为( )A .(−∞,−2)∪(2,+∞)B .(−2,0)∪(0,2)C .(−2,0)∪(2,+∞)D .(−∞,−2)∪(0,2)答案:C分析:结合函数的单调性与奇偶性解不等式即可.义在R 上的偶函数f(x)在[0,+∞)上单调递增,且f(2)=0,所以f(x)在(−∞,0)上单调递减,且f(−2)=0,x ⋅f(x)>0⇒{x >0f (x )>0 或{x <0f (x )<0, 故x >2或−2<x <0,故选:C4、设函数f (x )的定义域为R ,f (x +1)为奇函数,f (x +2)为偶函数,当x ∈[1,2]时,f(x)=ax 2+b .若f (0)+f (3)=6,则f (92)=( )A .−94B .−32C .74D .52答案:D分析:通过f (x +1)是奇函数和f (x +2)是偶函数条件,可以确定出函数解析式f (x )=−2x 2+2,进而利用定义或周期性结论,即可得到答案.[方法一]:因为f (x +1)是奇函数,所以f (−x +1)=−f (x +1)①;因为f (x +2)是偶函数,所以f (x +2)=f (−x +2)②.令x =1,由①得:f (0)=−f (2)=−(4a +b ),由②得:f (3)=f (1)=a +b ,因为f (0)+f (3)=6,所以−(4a +b )+a +b =6⇒a =−2,令x =0,由①得:f (1)=−f (1)⇒f (1)=0⇒b =2,所以f (x )=−2x 2+2.思路一:从定义入手.f (92)=f (52+2)=f (−52+2)=f (−12) f (−12)=f (−32+1)=−f (32+1)=−f (52) −f (52)=−f (12+2)=−f (−12+2)=−f (32) 所以f (92)=−f (32)=52.[方法二]:因为f (x +1)是奇函数,所以f (−x +1)=−f (x +1)①;因为f (x +2)是偶函数,所以f (x +2)=f (−x +2)②.令x =1,由①得:f (0)=−f (2)=−(4a +b ),由②得:f (3)=f (1)=a +b ,因为f (0)+f (3)=6,所以−(4a +b )+a +b =6⇒a =−2,令x =0,由①得:f (1)=−f (1)⇒f (1)=0⇒b =2,所以f (x )=−2x 2+2.思路二:从周期性入手由两个对称性可知,函数f (x )的周期T =4.所以f (92)=f (12)=−f (32)=52.故选:D .小提示:在解决函数性质类问题的时候,我们通常可以借助一些二级结论,求出其周期性进而达到简便计算的效果.5、下列图形中,不能表示以x 为自变量的函数图象的是( ) A .B .C .D .答案:B 分析:根据函数的定义判断即可.B 中,当x >0时,y 有两个值和x 对应,不满足函数y 的唯一性,A ,C ,D 满足函数的定义,故选:B6、已知幂函数y =x a 与y =x b 的部分图象如图所示,直线x =14,x =12与y =x a ,y =x b 的图象分别交于A 、B 、C 、D 四点,且|AB|=|CD|,则12a +12b =( )A .12B .1C .√2D .2 答案:B分析:把|AB |=|CD |用函数值表示后变形可得.由|AB |=|CD |得(14)a −(14)b =(12)a −(12)b ,即[(12)a −(12)b ][(12)a +(12)b ]=(12)a −(12)b ≠0,所以(12)a +(12)b=1,故选:B .7、下列图形能表示函数图象的是( )A .B .C .D .答案:D 分析:根据函数的定义,判断任意垂直于x 轴的直线与函数的图象的交点个数,即可得答案.由函数的定义:任意垂直于x 轴的直线与函数的图象至多有一个交点,所以A 、B 显然不符合,C 在x =0与函数图象有两个交点,不符合,只有D 符合要求.故选:D8、“幂函数f (x )=(m 2+m −1)x m 在(0,+∞)上为增函数”是“函数g (x )=2x −m 2⋅2−x 为奇函数”的( )条件A .充分不必要B .必要不充分C .充分必要D .既不充分也不必要答案:A分析:要使函数f (x )=(m 2+m −1)x m 是幂函数,且在(0,+∞)上为增函数,求出m =1,可得函数g (x )为奇函数,即充分性成立;函数g (x )=2x −m 2⋅2−x 为奇函数,求出m =±1,故必要性不成立,可得答案. 要使函数f (x )=(m 2+m −1)x m 是幂函数,且在(0,+∞)上为增函数,则{m 2+m −1=1m >0,解得:m =1,当m =1时,g (x )=2x −2−x ,x ∈R , 则g (−x )=2−x −2x =−(2x −2−x )=−g (x ),所以函数g (x )为奇函数,即充分性成立;“函数g(x)=2x−m2⋅2−x为奇函数”,则g(x)=−g(−x),即2x−m2⋅2−x=−(2−x−m2⋅2x)=m2⋅2x−2−x,解得:m=±1,故必要性不成立,故选:A.9、若函数f(x+1x )=x2+1x2,且f(m)=4,则实数m的值为()A.√6B.√6或−√6C.−√6D.3答案:B分析:令x+1x=t,配凑可得f(t)=t2−2,再根据f(m)=4求解即可令x+1x =t(t≥2或t≤−2),x2+1x2=(x+1x)2−2=t2−2,∴f(t)=t2−2,f(m)=m2−2=4,∴m=±√6.故选;B10、如图,可以表示函数f(x)的图象的是()A.B.C.D.答案:D分析:根据函数的概念判断根据函数的定义,对于一个x,只能有唯一的y与之对应,只有D满足要求故选:D填空题11、已知y =f (x )是定义在区间(-2,2)上单调递减的函数,若f (m -1)>f (1-2m ),则m 的取值范围是_______. 答案:(−12,23) 分析:结合函数定义域和函数的单调性列不等式求解即可.由题意得:{-2<m -1<2,-2<1-2m <2,m -1<1-2m ,解得−12<m <23. 所以答案是:(−12,23)12、幂函数y =f(x)的图象经过点(4,12),则f(14)=____.答案:2分析:根据幂函数过点(4,12),求出解析式,再有解析式求值即可. 设f(x)=x α,则f(4)=4α=22α=12=2−1,所以α=−12,故f(x)=x −12,所以f(14)=(14)−12=2.所以答案是:213、若幂函数y =f(x)的图像经过点(18,2),则f(−18)的值为_________.答案:−2分析:根据已知求出幂函数的解析式f(x)=x −13,再求出f(−18)的值得解.设幂函数的解析式为f(x)=x a ,由题得2=(18)a =2−3a ,∴−3a =1,∴a =−13,∴f(x)=x −13. 所以f(−18)=(−18)−13=(−12)3×(−13)=−2.所以答案是:−2.小提示:本题主要考查幂函数的解析式的求法和函数值的求法,意在考查学生对这些知识的理解掌握水平.14、设函数f (x )=x 3+(x+1)2x 2+1在区间[−2,2]上的最大值为M ,最小值为N ,则(M +N −1)2022的值为______. 答案:1分析:先将函数化简变形得f (x )=x 3+2xx 2+1+1,然后构造函数g (x )=x 3+2xx 2+1,可判断g (x )为奇函数,再利用奇函数的性质结合f(x)=g(x)+1可得M +N =2,从而可求得结果由题意知,f (x )=x 3+2x x 2+1+1(x ∈[−2,2]), 设g (x )=x 3+2xx 2+1,则f(x)=g(x)+1,因为g (−x )=−x 3−2xx 2+1=−g (x ),所以g (x )为奇函数,g (x )在区间[−2,2]上的最大值与最小值的和为0,故M +N =2,所以(M +N −1)2022=(2−1)2022=1.所以答案是:115、已知具有性质:f (1x )=−f (x )的函数,我们称为满足“倒负”变换的函数,下列函数:①f (x )=x −1x;②f (x )=x +1x ;③f (x )={x,0<x <10,x =1−1x ,x >1 ,其中满足“倒负”变换的函数是______. 答案:①③分析:验证①②③中的函数是否满足f (1x )=−f (x ),由此可得出结论.对于①,∵f (x )=x −1x ,该函数的定义域为{x |x ≠0 },对任意的x ∈{x |x ≠0 },f (1x )=1x −x =−f (x ),满足条件;对于②,∵f (x )=x +1x,该函数的定义域为{x |x ≠0 }, 对任意的x ∈{x |x ≠0 },f (1x )=1x +x =f (x ),不满足条件; 对于③,因为f (x )={x,0<x <10,x =1−1x,x >1 ,当0<x <1时,1x >1,则f (1x )=−x =−f (x ), 当x >1时,0<1x <1,f (1x )=−x =−f (x ),当x =1时,f (11)=0=−f (1). 所以,对任意的x >0,f (1x)=−f (x ). 综上可知,满足“倒负”变换的函数是①③.所以答案是:①③.解答题16、已知f(x),g(x)分别是R 上的奇函数和偶函数,且f(x)+g(x)=3x 2−x +1,试求f(x)和g(x)的表达式. 答案:f(x)=−x ,g(x)=3x 2+1分析:本题考查函数的奇偶性的性质以及应用,关键是利用函数的奇偶性构造方程.解析: 以-x 代替条件等式中的x ,则有f(−x)+g(−x)=3x 2+x +1,又f (x ),g (x )分别是R 上的奇函数和偶函数,故−f(x)+g(x)=3x 2+x +1.又f(x)+g(x)=3x 2−x +1,联立可得f (x )=−x ,g(x)=3x 2+1.17、已知幂函数f(x)=(m −1)2x m2−4m+2在(0,+∞)上单调递增,函数g(x)=2x −k .(1)求m 的值;(2)当x ∈[1,2)时,记f(x),g(x)的值域分别为集合A ,B ,设p:x ∈A,q:x ∈B ,若p 是q 成立的必要条件,求实数k 的取值范围.(3)设F(x)=f(x)−kx +1−k 2,且|F(x)|在[0,1]上单调递增,求实数k 的取值范围.答案:(1)m =0;(2)0≤k ≤1;(3)[−1,0]∪[2,+∞)分析:(1)由幂函数的定义(m −1)2=1,再结合单调性即得解.(2)求解f(x),g(x)的值域,得到集合A ,B ,转化命题p 是q 成立的必要条件为B ⊆A ,列出不等关系,即得解.(3)由(1)可得F(x)=x 2−kx +1−k 2,根据二次函数的性质,分类讨论k 2≤0和k 2≥1两种情况,取并集即可得解.(1)由幂函数的定义得:(m −1)2=1,⇒m =0或m =2,当m =2时,f(x)=x −2在(0,+∞)上单调递减,与题设矛盾,舍去;当m =0时,f(x)=x 2在(0,+∞)上单调递增,符合题意;综上可知:m =0.(2)由(1)得:f(x)=x 2,当x ∈[1,2)时,f(x)∈[1,4),即A =[1,4),当x ∈[1,2)时,g(x)∈[2−k,4−k ),即B =[2−k,4−k ),由命题p 是q 成立的必要条件,则B ⊆A ,显然B ≠∅,则{2−k ≥14−k ≤4 ,即{k ≤1k ≥0, 所以实数k 的取值范围为:0≤k ≤1.(3)由(1)可得F(x)=x 2−kx +1−k 2,二次函数的开口向上,对称轴为x =k 2,要使|F(x)|在[0,1]上单调递增,如图所示: 或即{k2≤0F(0)≥0或{k2≥1F(0)≤0,解得:−1≤k≤0或k≥2.所以实数k的取值范围为:[−1,0]∪[2,+∞)小提示:关键点点睛:本题考查幂函数的定义及性质,必要条件的应用,已知函数的单调性求参数,理解p是q 的必要不充分条件,则q对应集合是p对应集合的真子集是解题的关键,考查学生的分析试题能力与分类讨论思想,及数形结合思想,属于较难题.18、已知幂函数f(x)=x m2−m−2(m∈Z)是偶函数,且在(0,+∞)上是减函数,求函数f(x)的解析式.答案:f(x)=x−2分析:根据幂函数的单调性,可知m2−m−2<0,又m∈Z,则m=0,1,再根据函数f(x)是偶函数,将m= 0,1分别代入验证可得答案.因为幂函数f(x)在区间(0,+∞)上单调递减,则m2−m−2<0,得m∈(−1,2),又∵m∈Z,∴m=0或1.因为函数f(x)是偶函数,将m=0,1分别代入,当m=0时,m2−m−2=−2,函数为f(x)=x−2是偶函数,满足条件.当m=1时,m2−m−2=−2,函数为f(x)=x−2是偶函数,满足条件.∴f(x)的解析式为f(x)=x−2.19、函数f(x)对任意x,y∈R,总有f(x+y)=f(x)+f(y),当x<0时,f(x)<0,且f(1)=13.(1)证明f(x)是奇函数;(2)证明f(x)在R上是单调递增函数;(3)若f(x)+f(x−3)≥−1,求实数x的取值范围.答案:(1)证明见解析;(2)证明见解析;(3)[0,+∞).分析:(1)先用赋值法求出f(0)=0,令y=−x,即可根据定义证明f(x)是奇函数;(2)利用定义法证明f(x)是R上的增函数;(3)先把f(x)+f(x−3)≥−1转化为f(2x−3)≥f(−3),利用单调性解不等式即可.(1)令x =y =0,则f (0)=f (0)+f (0),解得f (0)=0,令y =−x ,则f (0)=f (x )+f (−x ),即f (x )+f (−x )=0,即f (−x )=−f (x ), 易知f (x )的定义域为R ,关于原点对称,所以函数f (x )是奇函数;(2)任取x 1,x 2∈R ,且x 1<x 2,则x 1−x 2<0,因为当x <0时,f (x )<0,所以f (x 1−x 2)<0,则f (x 1)−f (x 2)=f (x 1)+f (−x 2)=f (x 1−x 2)<0,即f (x 1)<f (x 2),所以函数f (x )是R 上的增函数;(3)由f (1)=13,得f (2)=23,f (3)=1,又由f (x )是奇函数得f (−3)=−1. 由f (x )+f (x −3)≥−1,得f (2x −3)≥f (−3),因为函数f (x )是R 上的增函数, 所以2x −3≥−3,解得x ≥0,故实数x 的取值范围为[0,+∞).。
✍✍✍高中数学必修一练习题(三)函数班号姓名✍✍奇偶性1.下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的是()A.f(x)=x B.f(x)=|x|C.f(x)=-x2D.f(x)=2.函数f(x)=x2+的奇偶性为()A.奇函数B.偶函数C.既是奇函数又是偶函数D.非奇非偶函数3.已知f(x)是偶函数,且f(4)=5,那么f(4)+f(-4)的值为()A.5 B.10C.8 D.不确定4.(2011·潍坊高一检测)已知函数f(x)在[-5,5]上是偶函数,f(x)在[0,5]上是单调函数,且f(-3)<f(-1),则下列不等式一定成立的是()A.f(-1)<f(3) B.f(2)<f(3)C.f(-3)<f(5) D.f(0)>f(1)5.函数y=ax2+bx+c为偶函数的条件是________.6.函数f(x)=x3+ax,若f(1)=3,则f(-1)的值为________.7.已知函数f(x)=是定义在(-1,1)上的奇函数,且f()=,求函数f(x)的解析式.8.设函数f(x)在R上是偶函数,在区间(-∞,0)上递增,且f(2a2+a+1)<f(2a2-2a+3),求a的取值范围.✍✍函数的最大(小)值1.函数y=在区间[,2]上的最大值是()B.-1C.4 D.-42.函数f(x)=9-ax2(a>0)在[0,3]上的最大值为()A.9 B.9(1-a)C.9-a D.9-a23.函数f(x)=则f(x)的最大值、最小值分别为()A.10,6 B.10,8C.8,6 D.以上都不对4.某公司在甲乙两地同时销售一种品牌车,利润(单位:万元)分别为L1=-x2+21x和L2=2x,其中销售量单位:辆.若该公司在两地共销售15辆,则能获得的最大利润为()A.90万元B.60万元C.120万元D.万元5.若一次函数y=f(x)在区间[-1,2]上的最小值为1,最大值为3,则y=f(x)的解析式为_____.6.(2011·合肥高一检测)函数y=-x2-4x+1在区间[a,b](b>a>-2)上的最大值为4,最小值为-4,则a=__________,b=________.7.画出函数f(x)=的图象,并写出函数的单调区间,函数最小值.8.已知函数f(x)=x2+2ax+2,x∈[-5,5].(1)当a=-1时,求函数f(x)的最大值和最小值;(2)求实数a的取值范围,使y=f(x)在区间[-5,5]上是单调函数.✍✍指数与指数幂的运算1.下列等式一定成立的是()A.a·a=a B.a12-·a=0C.(a3)2=a9D.a÷a=a+(a-4)0有意义,则a的取值范围是()A.a≥2 B.2≤a<4或a>4C.a≠2 D.a≠4 3.(1)0-(1--2)÷()的值为()A.-4.设a-a12-=m,则=()A.m2-2 B.2-m2C.m2+2 D.m25.计算:(π)0+2-2×=________.6.若102x=25,则10-x等于________.7.根据条件进行计算:已知x=,y=,求-的值.8.计算或化简下列各式:(1)[)-]+[-(-32)-×()-2];(2).✍✍幂函数1.幂函数y=x n的图象一定经过(0,0),(1,1),(-1,1),(-1,-1)中的()A.一点B.两点C.三点D.四点2.下列幂函数中过点(0,0),(1,1)的偶函数是()A.y=x B.y=x4C.y=x-2D.y=x3.如图,函数y=x的图象是()4.幂函数f(x)=xα满足x>1时f(x)>1,则α满足的条件是()A.α>1B.0<α<1C.α>0D.α>0且α≠15.函数y=(2m-1)x2m是一个幂函数,则m的值是________.6.下列六个函数①y=x,②y=x,③y=x-,④y=x,⑤y=x-2,⑥y=x2中,定义域为R的函数有________(填序号).7.比较下列各组数的大小:(1)352-和52-;(2)-878-和-();(3)(-)23-和(-)23-.8.已知幂函数y=x3m-9(m∈N*)的图象关于y轴对称,且在(0,+∞)上函数值随x的增大而减小,求该函数的解析式.参考答案✍✍函数的奇偶性1.选C f(x)=|x|及f(x)=-x2为偶函数,而f(x)=|x|在(0,+∞)上单调递增,故选C.2.选D函数的定义域为[0,+∞),不关于原点对称,∴f(x)为非奇非偶函数.3.选B f(4)+f(-4)=2f(4)=10.4.选D函数f(x)在[-5,5]上是偶函数,因此f(x)=f(-x),于是f(-3)=f(3),f(-1)=f(1),则f(3)<f(1).又f(x)在[0,5]上是单调函数,从而函数f(x)在[0,5]上是减函数,观察四个选项,并注意到f(x)=f(-x),易得只有D正确.5.解析:根据偶函数的性质,得ax2+bx+c=a·(-x)2+b(-x)+c,∴b=0.答案:b=06.解析:∵f(-x)=-f(x),∴f(x)为奇函数,∴f(-1)=-f(1)=-3.答案:-37.解:∵f(x)是定义在(-1,1)上的奇函数,∴f(0)=0,即=0,∴b=0,又f()==,∴a=1,∴f(x)=.8.解:由f(x)在R上是偶函数,在区间(-∞,0)上递增,可知f(x)在(0,+∞)上递减.∵2a2+a+1=2(a+)2+>0,2a2-2a+3=2(a-)2+>0,且f(2a2+a+1)<f(2a2-2a+3),∴2a2+a+1>2a2-2a+3,即3a-2>0,解得a>.✍✍函数的最大(小)值1.C2.选A f(x)=-ax2+9开口向下,在[0,3]上单调递减,所以在[0,3]上最大值为9.3.选A f(x)在[-1,2]上单调递增,∴最大值为f(2)=10,最小值为f(-1)=6.4.选C设公司在甲地销售x辆,则在乙地销售15-x辆,公司获利为L=-x2+21x+2(15-x)=-x2+19x+30=-(x-)2+30+,∴当x=9或10时,L最大为120万元.5.解析:设f(x)=ax+b,易知a≠0.当a>0时,f(x)单调递增,则有,∴,即,∴f(x)=x+;当a<0时,f(x)单调递减,则有,∴,即,∴f(x)=-x+.综上,y=f(x)的解析式为f(x)=x+或f(x)=-x+.答案:f(x)=x+或f(x)=-x+6.解析:∵y=-(x+2)2+5,∴函数图象对称轴是x=-2.故在[-2,+∞)上是减函数.又∵b>a>-2,∴y=-x2-4x+1在[a,b]上单调递减.∴f(a)=4,f(b)=-4.由f(a)=4,得-a2-4a+1=4,∴a2+4a+3=0,即(a+1)(a+3)=0.∴a=-1或a=-3(舍去),∴a=-1.由f(b)=-4,得-b2-4b+1=-4,b=1或b=-5(舍去),∴b=1.答案:-1 17.解:f(x)的图象如图所示,f(x)的单调递增区间是(-∞,0)和[0,+∞),函数的最小值为f(0)=-1.8.解:(1)当a=-1时,f(x)=x2-2x+2=(x-1)2+1,x∈[-5,5],当x=1时,有f(x)min=1,当x=-5时,有f(x)max=37.(2)∵函数f(x)=(x+a)2+2-a2图象的对称轴为x=-a,f(x)在区间[-5,5]上是单调函数,∴-a≤-5或-a≥5,即a≥5或a≤-5.✍✍指数与指数幂的运算1.选D a·a=a 1332+=a;a12-·a=a0=1;(a3)2=a6;a÷a=a1123-=a,故D正确.2.选B要使原式有意义,应满足得a≥2且a≠4. 3.选D原式=1-(1-4)÷=1+3×=.4.选C将a-a12-=m平方得(a-a12-)2=m2,即a-2+a-1=m2,所以a+a-1=m2+2,即a+=m2+2?=m2+2. 5.解析:(π)0+2-2×=1+×=1+×=.答案:6.解析:由102x=25得:(10x)2=25,∴10x是25的平方根.由于10x>0,∴10x=5,∴10-x==.答案:7.解:∵-=-=,把x=,y=代入得,原式==4.8.解:(1)原式=()3××(-)×+(81+32-×100)=+9=.(2)原式==a111326---·b115236+-=.✍✍幂函数1.选A当n≥0时,一定过(1,1)点,当n<0时,也一定过(1,1)点.2.选B y=x不是偶函数;y=x-2不过(0,0);y=x是奇函数.3.选D幂函数y=x是偶函数,图象关于y轴对称.4.选C因为x>1时xα>1=1α,所以y=xα单调递增,故α>0.5.解析:令2m-1=1得m=1,该函数为y=x.答案:16.解析:函数①④⑥的定义域为R,函数②定义域为[0,+∞),③⑤的定义域为{x|x≠0}.答案:①④⑥7.解:(1)函数y=x52-在(0,+∞)上为减函数,因为3<,所以352->52-.(2)-878-=-(),函数y=x在(0,+∞)上为增函数,因为>,则()>(),从而-8-<-().(3)(-)23-=()23-,(-)23-=()23-,函数y=x23-在(0,+∞)上为减函数,因为>,所以()23-<()23-,即(-)23-<(-)23-.8.解:∵函数在(0,+∞)上递减,∴3m-9<0,解得m<3.又m∈N*,∴m=1,2.又函数图象关于y轴对称,∴3m-9为偶数,故m=1.即幂函数y=x3m-9的解析式为y=x-6.。
高中数学高考总复习函数概念习题及详解一、选择题1.(文)(2010·浙江文)已知函数f (x )=log 2(x +1),若f (a )=1,则a =( ) A .0 B .1 C .2D .3[答案] B[解析] 由题意知,f (a )=log 2(a +1)=1,∴a +1=2, ∴a =1.(理)(2010·广东六校)设函数f (x )=⎩⎪⎨⎪⎧2xx ∈(-∞,2]log 2x x ∈(2,+∞),则满足f (x )=4的x 的值是( )A .2B .16C .2或16D .-2或16[答案] C[解析] 当f (x )=2x 时.2x =4,解得x =2. 当f (x )=log 2x 时,log 2x =4,解得x =16. ∴x =2或16.故选C.2.(文)(2010·湖北文,3)已知函数f (x )=⎩⎪⎨⎪⎧log 3x x >02x x ≤0,则f (f (19))=( )A .4 B.14 C .-4D .-14[答案] B[解析] ∵f (19)=log 319=-2<0∴f (f (19))=f (-2)=2-2=14.(理)设函数f (x )=⎩⎪⎨⎪⎧21-x-1 (x <1)lg x (x ≥1),若f (x 0)>1,则x 0的取值范围是( )A .(-∞,0)∪(10,+∞)B .(-1,+∞)C .(-∞,-2)∪(-1,10)D .(0,10) [答案] A[解析] 由⎩⎪⎨⎪⎧ x 0<121-x 0-1>1或⎩⎪⎨⎪⎧x 0≥1lg x 0>1⇒x 0<0或x 0>10.3.(2010·天津模拟)若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“同族函数”,那么函数解析式为f (x )=x 2,值域为{1,4}的“同族函数”共有( )A .7个B .8个C .9个D .10个[答案] C[解析] 由x 2=1得x =±1,由x 2=4得x =±2,故函数的定义域可以是{1,2},{-1,2},{1,-2},{-1,-2},{1,2,-1},{1,2,-2},{1,-2,-1},{-1,2,-2}和{-1,-2,1,2},故选C.4.(2010·柳州、贵港、钦州模拟)设函数f (x )=1-2x1+x ,函数y =g (x )的图象与y =f (x )的图象关于直线y =x 对称,则g (1)等于( )A .-32B .-1C .-12D .0[答案] D[解析] 设g (1)=a ,由已知条件知,f (x )与g (x )互为反函数,∴f (a )=1,即1-2a1+a =1,∴a =0.5.(2010·广东六校)若函数y =f (x )的图象如图所示,则函数y =f (1-x )的图象大致为( )[答案] A[解析] 解法1:y =f (-x )的图象与y =f (x )的图象关于y 轴对称.将y =f (-x )的图象向右平移一个单位得y =f (1-x )的图象,故选A.解法2:由f (0)=0知,y =f (1-x )的图象应过(1,0)点,排除B 、C ;由x =1不在y =f (x )的定义域内知,y =f (1-x )的定义域应不包括x =0,排除D ,故选A.高考总复习含详解答案6.(文)(2010·广东四校)已知两个函数f (x )和g (x )的定义域和值域都是集合{1,2,3},其定义如下表,填写下列g (f (x ))的表格,其三个数依次为( )A.3,1,2 C .1,2,3D .3,2,1[答案] D[解析] 由表格可知,f (1)=2,f (2)=3,f (3)=1,g (1)=1,g (2)=3,g (3)=2, ∴g (f (1))=g (2)=3,g (f (2))=g (3)=2,g (f (3))=g (1)=1, ∴三个数依次为3,2,1,故选D.(理)(2010·山东肥城联考)已知两个函数f (x )和g (x )的定义域和值域都是集合{1,2,3},其定义如下表:则方程g [f (x )]=x 的解集为( ) A .{1} B .{2} C .{3}D .∅[答案] C[解析] g [f (1)]=g (2)=2,g [f (2)]=g (3)=1; g [f (3)]=g (1)=3,故选C.7.若函数f (x )=log a (x +1) (a >0且a ≠1)的定义域和值域都是[0,1],则a 等于( ) A.13B. 2C.22D .2[答案] D[解析] ∵0≤x ≤1,∴1≤x +1≤2,又∵0≤log a (x +1)≤1,故a >1,且log a 2=1,∴a =2.8.(文)(2010·天津文)设函数g (x )=x 2-2(x ∈R),f (x )=⎩⎪⎨⎪⎧g (x )+x +4,x <g (x )g (x )-x ,x ≥g (x ),则f (x )的值域是( )A.⎣⎡⎦⎤-94,0∪(1,+∞) B .[0,+∞)C.⎣⎡⎭⎫-94,+∞D.⎣⎡⎦⎤-94,0∪(2,+∞) [答案] D[解析] 由题意可知f (x )=⎩⎪⎨⎪⎧x 2+x +2 x <-1或x >2x 2-x -2 -1≤x ≤21°当x <-1或x >2时,f (x )=x 2+x +2=⎝⎛⎭⎫x +122+74 由函数的图可得f (x )∈(2,+∞).2°当-1≤x ≤2时,f (x )=x 2-x -2=⎝⎛⎭⎫x -122-94, 故当x =12时,f (x )min =f ⎝⎛⎭⎫12=-94, 当x =-1时,f (x )max =f (-1)=0, ∴f (x )∈⎣⎡⎦⎤-94,0. 综上所述,该分段函数的值域为⎣⎡⎦⎤-94,0∪(2,+∞). (理)定义在R 上的函数f (x )满足f (x )=⎩⎪⎨⎪⎧log 2(1-x ) (x ≤0)f (x -1)-f (x -2) (x >0),则f (2010)的值为( ) A .-1 B .0 C .1D .2[答案] B[解析] f (2010)=f (2009)-f (2008)=(f (2008)-f (2007))-f (2008)=-f (2007),同理f (2007)=-f (2004),∴f (2010)=f (2004),∴当x >0时,f (x )以6为周期进行循环, ∴f (2010)=f (0)=log 21=0.9.(文)对任意两实数a 、b ,定义运算“*”如下:a *b =⎩⎪⎨⎪⎧a ,若a ≤b ;b ,若a >b函数f (x )=log 12(3x高考总复习含详解答案-2)*log 2x 的值域为( )A .(-∞,0)B .(0,+∞)C .(-∞,0]D .[0,+∞)[答案] C[解析] ∵a *b =⎩⎪⎨⎪⎧a ,若a ≤b ,b ,若a >b .而函数f (x )=log 12(3x -2)与log 2x 的大致图象如右图所示,∴f (x )的值域为(-∞,0].(理)定义max{a 、b 、c }表示a 、b 、c 三个数中的最大值,f (x )=max{⎝⎛⎭⎫12x,x -2,log 2x (x >0)},则f (x )的最小值所在范围是( )A .(-∞,-1)B .(-1,0)C .(0,1)D .(1,3)[答案] C[解析] 在同一坐标系中画出函数y =⎝⎛⎭⎫12x,y =x -2与y =log 2x 的图象,y =⎝⎛⎭⎫12x 与y =log 2x 图象的交点为A (x 1,y 1),y =x -2与y =log 2x 图象的交点为B (x 2,y 2),则由f (x )的定义知,当x ≤x 1时,f (x )=⎝⎛⎭⎫12x,当x 1<x <x 2时,f (x )=log 2x ,当x ≥x 2时,f (x )=x -2,∴f (x )的最小值在A 点取得,∵0<y 1<1,故选C.10.(文)(2010·江西吉安一中)如图,已知四边形ABCD 在映射f :(x ,y )→(x +1,2y )作用下的象集为四边形A 1B 1C 1D 1,若四边形A 1B 1C 1D 1的面积是12,则四边形ABCD 的面积是()A .9B .6C .6 3D .12[答案] B[解析] 本题考察阅读理解能力,由映射f 的定义知,在f 作用下点(x ,y )变为(x +1,2y ),∴在f 作用下|A 1C 1|=|AC |,|B 1D 1|=2|BD |,且A 1、C 1仍在x 轴上,B 1、D 1仍在y 轴上,故S ABCD =12|AC |·|BD |=12|A 1C 1|·12|B 1D 1|=12SA 1B 1C 1D 1=6,故选B.(理)设函数f (x )=⎩⎪⎨⎪⎧x 2+bx +c x ≤02 x >0,若f (-4)=f (0),f (-2)=-2,则关于x 的方程f (x )=x 的解的个数为( )A .1B .2C .3D .4[答案] C[解析] 解法1:当x ≤0时,f (x )=x 2+bx +c . ∵f (-4)=f (0),f (-2)=-2,∴⎩⎪⎨⎪⎧ (-4)2+b ·(-4)+c =c (-2)2+b ·(-2)+c =-2,解得⎩⎪⎨⎪⎧b =4c =2, ∴f (x )=⎩⎪⎨⎪⎧x 2+4x +2 x ≤02 x >0,当x ≤0时,由f (x )=x 得,x 2+4x +2=x , 解得x =-2,或x =-1; 当x >0时,由f (x )=x 得,x =2, ∴方程f (x )=x 有3个解.解法2:由f (-4)=f (0)且f (-2)=-2可得,f (x )=x 2+bx +c 的对称轴是x =-2,且顶点为(-2,-2),于是可得到f (x )的简图如图所示.方程f (x )=x 的解的个数就是函数图象y =f (x )与y =x 的图象的交点的个数,所以有3个解.二、填空题11.(文)(2010·北京东城区)函数y =x +1+lg(2-x )的定义域是________. [答案] [-1,2)[解析] 由⎩⎪⎨⎪⎧x +1≥02-x >0得,-1≤x <2.(理)函数f (x )=x +4-x 的最大值与最小值的比值为________. [答案]2[解析] ∵⎩⎪⎨⎪⎧x ≥04-x ≥0,∴0≤x ≤4,f 2(x )=4+2x (4-x )≤4+[x +(4-x )]=8,且f高考总复习含详解答案2(x )≥4,∵f (x )≥0,∴2≤f (x )≤22,故所求比值为 2.[点评] (1)可用导数求解;(2)∵0≤x ≤4,∴0≤x 4≤1,故可令x 4=sin 2θ(0≤θ≤π2)转化为三角函数求解.12.函数y =cos x -1sin x -2 x ∈[0,π]的值域为________.[答案] ⎣⎡⎦⎤0,43 [解析] 函数表示点(sin α,cos α)与点(2,1)连线斜率.而点(sin α,cos α)α∈[0,π]表示单位圆右半部分,由几何意义,知y ∈[0,43].13.(2010·湖南湘潭市)在平面直角坐标系中,横坐标、纵坐标均为整数的点称为整点,如果函数f (x )的图象恰好通过n (n ∈N *)个整点,则称函数f (x )为n 阶整点函数,有下列函数①f (x )=sin2x ②g (x )=x 3 ③h (x )=⎝⎛⎭⎫13x ④φ(x )=ln x .其中是一阶整点函数的是________.(写出所有正确结论的序号) [答案] ①④[解析] 其中①只过(0,0)点,④只过(1,0)点;②过(0,1),(1,1),(2,8)等,③过(0,1),(-1,3)等.14.(文)若f (a +b )=f (a )·f (b )且f (1)=1,则f (2)f (1)+f (3)f (2)+…+f (2012)f (2011)=________.[答案] 2011[解析] 令b =1,则f (a +1)f (a )=f (1)=1,∴f (2)f (1)+f (3)f (2)+…+f (2012)f (2011)=2011. (理)设函数f (x )=x |x |+bx +c ,给出下列命题: ①b =0,c >0时,方程f (x )=0只有一个实数根; ②c =0时,y =f (x )是奇函数; ③方程f (x )=0至多有两个实根.上述三个命题中所有的正确命题的序号为________. [答案] ①②[解析] ①f (x )=x |x |+c=⎩⎪⎨⎪⎧x 2+c ,x ≥0-x 2+c ,x <0, 如右图与x 轴只有一个交点.所以方程f (x )=0只有一个实数根正确. ②c =0时,f (x )=x |x |+bx 显然是奇函数.③当c =0,b <0时,f (x )=x |x |+bx =⎩⎪⎨⎪⎧x 2+bx ,x ≥0-x 2+bx ,x <0如右图方程f (x )=0可以有三个实数根. 综上所述,正确命题的序号为①②. 三、解答题15.(文)(2010·深圳九校)某自来水厂的蓄水池存有400吨水,水厂每小时可向蓄水池中注水60吨,同时蓄水池又向居民小区不间断供水,t 小时内供水总量为1206t 吨,(0≤t ≤24).(1)从供水开始到第几小时时,蓄水池中的存水量最少?最少水量是多少吨?(2)若蓄水池中水量少于80吨时,就会出现供水紧张现象,请问在一天的24小时内,有几小时出现供水紧张现象.[解析] (1)设t 小时后蓄水池中的水量为y 吨, 则y =400+60t -1206t (0≤t ≤24) 令6t =x ,则x 2=6t 且0≤x ≤12,∴y =400+10x 2-120x =10(x -6)2+40(0≤x ≤12); ∴当x =6,即t =6时,y min =40,即从供水开始到第6小时时,蓄水池水量最少,只有40吨. (2)依题意400+10x 2-120x <80, 得x 2-12x +32<0,解得4<x <8,即4<6t <8,∴83<t <323;∵323-83=8,∴每天约有8小时供水紧张.(理)某物流公司购买了一块长AM =30米,宽AN =20米的矩形地块AMPN ,规划建设占地如图中矩形ABCD 的仓库,其余地方为道路和停车场,要求顶点C 在地块对角线MN 上,B 、D 分别在边AM 、AN 上,假设AB 长度为x 米.(1)要使仓库占地ABCD 的面积不少于144平方米,AB 长度应在什么范围内? (2)若规划建设的仓库是高度与AB 长度相同的长方体形建筑,问AB 长度为多少时仓库的库容最大?(墙体及楼板所占空间忽略不计)高考总复习含详解答案[解析] (1)依题意得三角形NDC 与三角形NAM 相似,所以DC AM =ND NA ,即x 30=20-AD20,AD =20-23x ,矩形ABCD 的面积为S =20x -23x 2 (0<x <30),要使仓库占地ABCD 的面积不少于144平方米, 即20x -23x 2≥144,化简得x 2-30x +216≤0,解得12≤x ≤18. 所以AB 长度应在[12,18]内.(2)仓库体积为V =20x 2-23x 3(0<x <30),V ′=40x -2x 2=0得x =0或x =20, 当0<x <20时,V ′>0,当20<x <30时V ′<0, 所以x =20时,V 取最大值80003m 3,即AB 长度为20米时仓库的库容最大.16.(2010·皖南八校联考)对定义域分别是Df ,Dg 的函数y =f (x ),y =g (x ),规定: 函数h (x )=⎩⎪⎨⎪⎧f (x )g (x ),当x ∈Df 且x ∈Dg ,f (x ),当x ∈Df 且x ∉Dg ,g (x ),当x ∈Dg 且x ∉Df .(1)若函数f (x )=1x -1,g (x )=x 2,写出函数h (x )的解析式;(2)求问题(1)中函数h (x )的值域;(3)若g (x )=f (x +α),其中α是常数,且α∈[0,π],请设计一个定义域为R 的函数y =f (x ),及一个α的值,使得h (x )=cos4x ,并予以证明.[解析] (1)由定义知,h (x )=⎩⎪⎨⎪⎧x 2x -1,x ∈(-∞,1)∪(1,+∞),1,x =1.(2)由(1)知,当x ≠1时,h (x )=x -1+1x -1+2,则当x >1时,有h (x )≥4(当且仅当x =2时,取“=”); 当x <1时,有h (x )≤0(当且仅当x =0时,取“=”). 则函数h (x )的值域是(-∞,0]∪{1}∪[4,+∞).(3)可取f (x )=sin2x +cos2x ,α=π4,则g (x )=f (x +α)=cos2x -sin2x ,于是h (x )=f (x )f (x +α)=cos4x .(或取f (x )=1+2sin2x ,α=π2,则g (x )=f (x +α)=1-2sin2x .于是h (x )=f (x )f (x +α)=cos4x ).[点评] 本题中(1)、(2)问不难求解,关键是读懂h (x )的定义,第(3)问是一个开放性问题,乍一看可能觉得无从下手,但细加观察不难发现,cos4x =cos 22x -sin 22x =(cos2x +sin2x )(cos2x -sin2x )积式的一个因式取作f (x ),只要能够找到α,使f (x +α)等于另一个因式也就找到了f (x )和g (x ).17.(文)某种商品在30天内每件的销售价格P (元)与时间t (天)的函数关系如图所示:该商品在30天内日销售量Q (件)与时间t (天)之间的关系如表所示:(1)(2)在所给直角坐标系中,根据表中提供的数据描出实数对(t ,Q )的对应点,并确定日销售量Q 与时间t 的一个函数关系式;(3)求该商品的日销售金额的最大值,并指出日销售金额最大的一天是30天中的第几天?(日销售金额=每件的销售价格×日销售量)[解析] (1)P =⎩⎪⎨⎪⎧t +20 (0<t <25,t ∈N *)-t +100 (25≤t ≤30,t ∈N *) (2)图略,Q =40-t (t ∈N *) (3)设日销售金额为y (元),则y =⎩⎪⎨⎪⎧-t 2+20t +800 (0<t <25,t ∈N *)t 2-140t +4000 (25≤t ≤30,t ∈N *)高考总复习含详解答案=⎩⎪⎨⎪⎧-(t -10)2+900 (0<t <25,t ∈N *)(t -70)2-900 (25≤t ≤30,t ∈N *) 若0<t <25(t ∈N *),则当t =10时,y max =900;若25≤t ≤30(t ∈N *),则当t =25时,y max =1125.由1125>900,知y max =1125,∴这种商品日销售金额的最大值为1125元,30天中的第25天的日销售金额最大. (理)(2010·广东六校)某西部山区的某种特产由于运输的原因,长期只能在当地销售,当地政府通过投资对该项特产的销售进行扶持,已知每投入x 万元,可获得纯利润P =-1160(x -40)2+100万元(已扣除投资,下同),当地政府拟在新的十年发展规划中加快发展此特产的销售,其规划方案为:在未来10年内对该项目每年都投入60万元的销售投资,其中在前5年中,每年都从60万元中拨出30万元用于修建一条公路,公路5年建成,通车前该特产只能在当地销售;公路通车后的5年中,该特产既在本地销售,也在外地销售,在外地销售的投资收益为:每投入x 万元,可获纯利润Q =-159160(60-x )2+1192·(60-x )万元,问仅从这10年的累积利润看,该规划方案是否可行?[解析] 在实施规划前,由题设P =-1160(x -40)2+100(万元),知每年只需投入40万,即可获得最大利润100万元,则10年的总利润为W 1=100×10=1000(万元)实施规划后的前5年中,由题设P =-1160(x -40)2+100知,每年投入30万元时,有最大利润P max =7958(万元) 前5年的利润和为7958×5=39758(万元) 设在公路通车的后5年中,每年用x 万元投资于本地的销售,而剩下的(60-x )万元用于外地区的销售投资,则其总利润为W 2=[-1160(x -40)2+100]×5+(-159160x 2+1192x )×5=-5(x -30)2+4950. 当x =30时,W 2=4950(万元)为最大值,从而10年的总利润为39758+4950(万元). ∵39758+4950>1000, ∴该规划方案有极大实施价值.。
高等数学复习题一、选择题1、已知函数)2arctan(2)(-+-=x x x f ,则函数)(x f 的定义域为 ( ) ①)2,1(-, ②]3,1(-, ③]2,1[, ④]2,(-∞.2、已知函数)(x f 的定义域为[0,1],则函数)2(x f -的定义域为 ( )①]2,(-∞, ②(1,2), ③[0,1], ④[1,2].3、已知函数|1|arcsin )(-=x x f ,则函数)(x f 的定义域为 ( ) ①]1,1[-, ②]1,1(-, ③)2,0(, ④]2,0[.4、=∞→xx x πsinlim ( )① 1 ② π ③不存在 ④ 0 5、下列函数中为奇函数的是( )①)1(log 2++x x a , ②2x x e e -+, ③x cos , ④x 2.6、下列函数中是相同函数的是( )① 1)(,)(==x g xx x f ② 33341)(,)(-=-=x x x g x x x f ③ 2)()(,)(x x g x x f == ④ x x g x x f lg 2)(,lg )(2== 7、=→xxx 3sin lim( )①1 ② 2 ③ 3 ④ ∞8、()=+→xx x 1021lim( )①2-e , ②2e , ③2, ④+∞. 9、=→xx x arcsin 0lim( )①0, ②1, ③2, ④不存在.10、=⎪⎭⎫⎝⎛+∞→xx x 21lim ( )①2-e , ②2e , ③2, ④+∞. 11、=++--∞→103422lim 22x x x x x ( )①0, ②1, ③2, ④不存在.12、=⎪⎭⎫⎝⎛+∞→xx x x 2lim ( )①2-e , ②2e , ③2, ④+∞. 13、=∞→x x x arctan lim ( )① 0, ② 1, ③ 2, ④不存在. 14、()=+→xx x 1021lim( )①2-e , ②2e , ③2, ④+∞.15、当0→x 时,下列函数为无穷小量的是 ( ) ①x x sin ②x x 1sin 2 ③)1ln(1+x x ④x11+ 16、当xx 2t a n 0时,与→等价的无穷小量是( )①x -, ②x , ③2x , ④2x .17、下列函数在指定变化趋势下是无穷小量的是 ( )①1,ln →x x , ②+→0,ln x x , ③∞→x e x ,, ④+∞→x e x ,.18、下列函数在指定变化趋势下不是无穷小量的是 ( )①1,ln →x x , ②0,cos →x x , ③∞→x x ,sin 1, ④+∞→-x ex,. 19、当x x 2s in 0时,与→等价的无穷小量是( )①x -, ②x , ③2x , ④2x . 20、点0=x 是函数⎩⎨⎧≥-<=0,10,)(x e x x x f x的 ( ) ①连续点 ②可去间断点③第二类间断点 ④第一类间断点,但不是可去间断点 21、函数)(x f y =由参数方程0sin cos ≠⎩⎨⎧==a ta y ta x ,则=dxy d( )①t sin - ② t tan ③ t cot - ④t sec22、设==dy e y x 则,( )①dx e x x, ②dx e x, ③xdx e x 2, ④xdx e x23、设==-dy e y x则,1( )①dx e x1-, ②dx e xx 121--, ③dx e x x 121-, ④dx e x x 11--24、设,sin 2x y = 则=dy ( ) ① x x cos sin 2 ② xdx cos 2 ③ xdx sin 2 ④xdx 2sin 25、设函数||)(x x f = 则在=x 点处( )①不连续, ②连续但左右导数均不存在, ③连续且可导, ④连续但不可导. 26、设函数||cos )(x x f = 则在=x 点处( )①不连续, ②连续但左右导数均不存在, ③连续且可导, ④连续但不可导.27、设函数x x f =)(,则)(x f 在点0=x 处 ( ) ①可导 ②不连续③连续,但不可导 ④可微 28、设21,1,()31,1x x f x x x ⎧+<=⎨-≥⎩,则f (x )在x =1处 ………………………………( )①既可导又连续 ②可导但不连续 ③不连续也不可导 ④连续但不可导 29、函数xy sin =,则=)12(y( )①x cos ② x cos - ③ x sin ④x sin -30、曲线26322-+=x x y 在点(3,1)处的切线的斜率=k ( )①3 ②1 ③15 ④ 0 31、设'0000(2)()()limh f x h f x f x h→+-=存在,则 ………………………..…..( )①'0()f x ②'0()f x h - ③'02()f x h - ④'02()f x 32.设函数3)(x x f = , 则在0=x 是函数的( )① 驻点与极值点; ②不是驻点与极值点; ③极值点; ④驻点. 33、设函数()f x 区间[0,1]满足罗尔定理的是( )①|5.0|)(-=x x f , ②⎩⎨⎧≥-<=5.0225.02)(x x x xx f , ③)sin()(x x f π=, ④ x x f =)(34、设函数()f x 在x 的()00f x '=,则()f x 在0x( )① 一定取极大值 ② 一定 取极小值 ③ 一定 不取极值 ④ 极值情况不确定35、设函数)(x f 在0x 处具有二阶导数,且0)(0='x f ,0)(0<''x f ,则)(0x f 为 ① 最小值 ②极小值 ③最大值 ④极大值 36、⎰='])([dx x F d( )①dx x F )(', ②)(x F , ③dx x F )(, ④. )(x F '37、设x sin 是)(x f 的一个原函数,则⎰=dx x f )( ( ) ①C x +sin ② C x +cos ③C x x ++cos sin ④C x x +sin 38、⎰=-dx xx 212( )①C x +arcsin , ②C x +-21, ③C x +--212, ④C x +2arcsin 21 39、⎰=+dx x x212( )①C x +arctan , ②C x +2arctan 21, ③C x +2, ④C x ++)1ln(2 40、下列函数中,为)(222x x e e y --=的原函数的是………………………….( )① x x e e 22-- ②)(2122x x e e -- ③x x e e 22-+ ④)(2122x x e e -+ 41、dx x x e⎰+1)ln 1(1= ( )① 12ln + ②C +2ln ③2 ④2ln 42、=⎰badad dx x f )(( )① )()(a f b f - ②)(a f - ③ f(b ) ④ 0 43、=⎰21sin xdx x dx d( )① x sin x ②0 ③2 ④3 44、=⎰badbd dx x f )(( )① )()(a f b f -, ② f(b ), ③)(a f -, ④ 0. 二、填空题 1、 若)(x f 的定义域为)0,(-∞,则)(ln x f 的定义域为 ; 2、已知函数291)(xx f -=,则函数)(x f 的定义域为 。
高中数学复习:用函数解决实际问题练习及答案1.某药品分两次降价,假设平均每次降价的百分率为x.已知该药品的原价是m元,降价后的价格是y元,则y与x的函数关系是( )A.y=m(1-x)2 B.y=m(1+x)2 C.y=2m(1-x) D.y=2m(1+x)2.已知等腰三角形的周长为20cm,底边长y cm是腰长x cm的函数,则此函数的定义域为( )A.(0,10) B.(0,5) C.(5,10) D.[5,10)3.某个体户在进一批服装时,进价是原标价的75%.现打算对该服装定一个新标价在价目表上,并注明按新价降低20%销售,这样,仍可获得25%的纯利,求该个体户给这批服装定的新标价与原标价之间的函数关系式.4.如图给出了红豆生长时间t(月)与枝数y(枝)的散点图.那么“红豆生南国,春来发几枝.”的红豆生长时间与枝数的关系用下列哪个函数模型拟合最好?( )A.指数函数:y=2t B.对数函数:y=log2tC.幂函数:y=t3 D.二次函数:y=2t25.今有一组实验数据如表所示:则体现这些数据关系的最佳函数模型是( )D.u=2t-2A.u=log2t B.u=2t-2 C.u=t2−126.以下是三个变量y1、y2、y3随变量x变化的函数值表:其中关于x呈指数函数变化的函数是________.7.辽宁号航母纪念章从2012年10月5日起开始上市.通过市场调查,得到该纪念章每1枚的市场价y(单位:元)与上市时间x(单位:天)的数据如下:(1)根据上表数据结合散点图,从下列函数中选取一个恰当的函数描述辽宁号航母纪念章的市场价y与上市时间x的变化关系并说明理由:①y=ax+b;②y=ax2+bx+c;③y=a log b x;(2)利用你选取的函数,求辽宁号航母纪念章市场价最低时的上市天数及最低的价格.8.某服装厂某年1月份、2月份、3月份分别生产某名牌衣服1万件、1.2万件、1.3万件,为了估测当年每个月的产量,以这三个月的产品数量为依据,用一个函数模型模拟该产品的月产量y 与月份x的关系,模拟函数可选用函数y=p·qx+r(其中p,q,r为常数)或二次函数.又已知当年4月份该产品的产量为1.36万件,请问用以上哪个函数作为模拟函数较好,并说明理由.9.某沿海地区养殖的一种特色海鲜上市时间仅能持续5个月,预测上市初期和后期会因供不应求使价格呈持续上涨趋势,而中期又将出现供大于求使价格连续下跌.现有三种价格模拟函数:①f(x)=p·q x;②f(x)=px2+qx+1;③f(x)=x(x-q)2+p(以上三式中p,q均为常数,且q>1).(1)为准确研究其价格走势,应选哪种价格模拟函数(不必说明理由);(2)若f(0)=4,f(2)=6,求出所选函数f(x)的解析式.(注:函数定义域是[0,5].其中x=0表示8月1日,x=1表示9月1日,…,以此类推)10.20世纪90年代,气候变化专业委员会向政府提供的一项报告指出:全球气候逐年变暖的一个重要因素是人类在能源利用与森林砍伐中使CO2体积分数增加.据测,1990年、1991年、1992年大气中的CO2体积分数分别比1989年增加了1个可比单位、3个可比单位、6个可比单位.若用一个函数模拟20世纪90年代中每年CO2体积分数增加的可比单位数y与年份增加数x(即当年数与1989的差)的关系,模拟函数可选用二次函数f(x)=px2+qx+r(其中p,q,r为常数)或函数g(x)=abx+c(其中a,b,c为常数,且b>0,b≠1).(1)根据题中的数据,求f(x)和g(x)的解析式;(2)如果1994年大气中的CO2体积分数比1989年增加了16个可比单位,请问用以上哪个函数作为模拟函数较好?并说明理由.11.某跨国饮料公司对所有人均GDP(即人均纯收入)在0.5—8千美元的地区销售该公司M饮料的调查中发现:人均GDP处在中等的地区对该饮料的销售量最多,然后向两边递减.(1)下列几个模拟函数中(x表示人均GDP,单位:千美元;y表示年人均M饮料的销量,单位:升),用哪个来描述人均饮料销量与地区的人均GDP的关系更合适?说明理由;A.f(x)=ax2+bx;B.f(x)=log a x+b;C.f(x)=a x+b;D.f(x)=xα+b.(2)当人均GDP为1千美元时,年人均M饮料的销量为2升;人均GDP为4千美元时,年人均M饮料的销量为5升;把你所选的模拟函数求出来;(3)因为M饮料在N国被检测出杀虫剂的含量超标,受此事件影响,M饮料在人均GDP不高于3千美元的地区销量下降5%,不低于6千美元的地区销量下降5%,其他地区的销量下降10%,根据(2)所求出的模拟函数,求在各个地区中,年人均M饮料的销量最多为多少?12.某汽车销售公司在A、B两地销售同一种品牌的汽车,在A地的销售利润(单位:万元)为y1=4.1x-0.1x2,在B地的销售利润(单位:万元)为y2=2x,其中x为销售量(单位:辆).若该公司在两地共销售16辆这种品牌的汽车,则能获得的最大利润是( )A.10.5万元B.11万元C.43万元D.43.025万元13.某种新药服用x小时后血液中的残留量为y毫克,如图所示为函数y=f(x)的图象,当血液中药物残留量不小于240毫克时,治疗有效.设某人上午8:00第一次服药,为保证疗效,则第二次服药最迟的时间应为( )A.上午10∶00B.中午12∶00C.下午4∶00D.下午6∶0014.如图,某单位准备修建一个面积为600平方米的矩形场地(图中ABCD)的围墙,且要求中间用围墙EF隔开,使得ABEF为矩形,EFDC为正方形,设AB=x米,已知围墙(包括EF)的修建费用均为每米800元,设围墙(包括EF)的修建总费用为y元.(1)求出y关于x的函数解析式;(2)当x为何值时,围墙(包括EF)的修建总费用y最小?并求出y的最小值.15.某地需要修建一条大型输油管道通过240公里宽的沙漠地带,该段输油管道两端的输油站已建好,余下工程是在该段两端已建好的输油站之间铺设输油管道和等距离修建增压站(又称泵站).经预算,修建一个增压站的工程费用为400万元,铺设距离为x公里的相邻两增压站之间的输油管道费用为(x2+x)万元.设余下工程的总费用为y万元.(1)试将y表示成x的函数;(2)需要修建多少个增压站才能使y最小,其最小值为多少?16.为了降低能源损耗,某体育馆的外墙需要建造隔热层.体育馆要建造可使用20年的隔热层,1cm厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系C(x)=k(0≤x≤10,k为常数),若不建隔热层,每年能源消耗费用为83x+5万元.设f(x)为隔热层建造费用与20年的能源消耗费用之和.(1)求k的值及f(x)的表达式;(2)隔热层修建多厚时,总费用f(x)达到最小?并求出最小值.17.某公司对营销人员有如下规定:①年销售额x在9万元以下,没有奖金;②年销售额x(万元),当x∈[9,81]时,奖金为y(万元),y=log ax,y∈[2,4],且年销售额x越大,奖金越多;③年销售额超过81万元,按5%(x-1)发奖金(年销售额x万元).(1)求奖金y关于x的函数解析式;(2)某营销人员争取年奖金3≤y≤10(万元),则年销售额x在什么范围内?18.南博汽车城销售某种型号的汽车,进货单价为25万元,市场调研表明,当销售单价为29万元时,每周平均售出8辆汽车;当每辆汽车每降价0.5万元时,平均每周能多售出4辆汽车,如果设每辆汽车降价x万元,每辆汽车的销售利润为y万元(每辆车的销售利润=销售单价-进货单价).(1)求y与x之间的函数关系式,并在保证商家不亏本的前提下,写出x的取值范围;(2)假设这种汽车平均每周的销售利润为z万元,试写出z与x之间的函数关系式;(3)当每辆汽车的销售单价为多少万元时,平均每周的销售利润最大?最大利润是多少?19.“学习曲线”可以用来描述学习达到某一水平所需的学习时间,假设“学习曲线”符合函数t)(B为常数),N(单位:字)表示某一英文词汇量水平,t(单位:天)表示达到这一英文词=5log2(NB汇量所需要的学习时间.(1)已知某人学习达到40个词汇量,需要10天,求他的学习曲线解析式;(2)他学习几天能掌握160个词汇量;(3)如果他学习时间大于30天,他的词汇量情况如何.20.手机上网每月使用量在500分钟以下(包括500分钟)60分钟以上(不包括60分钟)按30元计费,超过500分钟的部分按0.15元/分钟计费,假如上网时间过短,使用量在1分钟以下不计费,在1分钟以上(包括1分钟)按0.5元/分钟计费,计费时间均取整数,不足1分钟的按1分钟计费,手机上网不收通话费和漫游费.(1)12月份小王手机上网使用量为20小时,要付多少钱?(2)小周10月份付了90元的手机上网费,那么他上网的计费时间是多少?(3)电脑上网费包月60元/月,根据时间长短,你会选择哪种方式上网呢?答案1.某药品分两次降价,假设平均每次降价的百分率为x.已知该药品的原价是m元,降价后的价格是y元,则y与x的函数关系是( )A.y=m(1-x)2 B.y=m(1+x)2 C.y=2m(1-x) D.y=2m(1+x)【答案】A【解析】由题意,药品的原价是m元,分两次降价,每次降价的百分率为x,则降价后的价格为y =m(1-x)(1-x)=m(1-x)2.故选A.2.已知等腰三角形的周长为20cm,底边长y cm是腰长x cm的函数,则此函数的定义域为( )A.(0,10) B.(0,5) C.(5,10) D.[5,10)【答案】C【解析】由题意知y=20-2x,因为三角形两边之和大于第三边,所以2x>y,即2x>20-2x,x>5.又因为y>0,即20-2x>0,所以x<10.故5<x<10.3.某个体户在进一批服装时,进价是原标价的75%.现打算对该服装定一个新标价在价目表上,并注明按新价降低20%销售,这样,仍可获得25%的纯利,求该个体户给这批服装定的新标价与原标价之间的函数关系式.【答案】设原标价为x元/件,新标价为y元/件,则有(1−20%)y−75%x=25%,75%xx(x>0).化简得y=75644.如图给出了红豆生长时间t(月)与枝数y(枝)的散点图.那么“红豆生南国,春来发几枝.”的红豆生长时间与枝数的关系用下列哪个函数模型拟合最好?( )A.指数函数:y=2tB.对数函数:y=log2tC.幂函数:y=t3D.二次函数:y=2t2【答案】A【解析】由题意知函数的图象在第一象限是增函数,并且增长较快,且图象过(2,4)点,∴图象由指数函数y =2t来模拟比较好,故选A.5.今有一组实验数据如表所示:则体现这些数据关系的最佳函数模型是( )A .u =log 2tB .u =2t -2C .u =t 2−12D .u =2t -2【答案】C【解析】由散点图可知,图象不是直线,排除D ;图象不符合对数函数的图象特征,排除A ;当t =3时,2t -2=23-2=6,t 2−12=32−12=4,由表格知当t =3时,u =4.04,模型u =t 2−12能较好地体现这些数据关系.故选C.6.以下是三个变量y 1、y 2、y 3随变量x 变化的函数值表:其中关于x呈指数函数变化的函数是________.【答案】y1【解析】从题表格可以看出,三个变量y1、y2、y3都是越来越大,但是增长速度不同,其中变量y1的增长速度最快,画出它们的图象,可知变量y1呈指数函数变化,故填y1.7.辽宁号航母纪念章从2012年10月5日起开始上市.通过市场调查,得到该纪念章每1枚的市场价y(单位:元)与上市时间x(单位:天)的数据如下:(1)根据上表数据结合散点图,从下列函数中选取一个恰当的函数描述辽宁号航母纪念章的市场价y与上市时间x的变化关系并说明理由:①y=ax+b;②y=ax2+bx+c;③y=a log b x;(2)利用你选取的函数,求辽宁号航母纪念章市场价最低时的上市天数及最低的价格.【答案】(1)∵随着时间x的增加,y的值先减后增,而所给的三个函数中y=ax+b和y=a log b x 显然都是单调函数,不满足题意,∴y=ax2+bx+c.(2)把点(4,90),(10,51),(36,90)代入y=ax2+bx+c中,得{16a +4b +c =90,100a +10b +c =51,1296a +36b +c =90,解得a =14,b =-10,c =126.∴y =14x 2-10x +126=14(x -20)2+26,∴当x =20时,y min =26.即上市20天时,市场价最低,为26元.8.某服装厂某年1月份、2月份、3月份分别生产某名牌衣服1万件、1.2万件、1.3万件,为了估测当年每个月的产量,以这三个月的产品数量为依据,用一个函数模型模拟该产品的月产量y 与月份x 的关系,模拟函数可选用函数y =p ·qx+r (其中p ,q ,r 为常数)或二次函数.又已知当年4月份该产品的产量为1.36万件,请问用以上哪个函数作为模拟函数较好,并说明理由.【答案】设y 1=f (x )=ax 2+bx +c (a ≠0),依题意得{f (1)=a +b +c =1,f (2)=4a +2b +c =1.2,f (3)=9a +3b +c =1.3,解得{a =−0.05,b =0.35,c =0.7.y 1=f (x )=-0.05x 2+0.35x +0.7,故f (4)=1.3.设y 2=g (x )=p ·q x+r ,依题意得{g (1)=p ·q +r =1,g (2)=p ·q 2+r =1.2,g (3)=p ·q 3+r =1.3,解得{p =−0.8,q =0.5,r =1.4.y 2=g (x )=-0.8×0.5x +1.4,故g (4)=1.35.由以上可知,函数y 2=g (x )=-0.8×0.5x+1.4作为模拟函数较好.9.某沿海地区养殖的一种特色海鲜上市时间仅能持续5个月,预测上市初期和后期会因供不应求使价格呈持续上涨趋势,而中期又将出现供大于求使价格连续下跌.现有三种价格模拟函数:①f (x )=p ·q x ;②f (x )=px 2+qx +1;③f (x )=x (x -q )2+p (以上三式中p ,q 均为常数,且q >1).(1)为准确研究其价格走势,应选哪种价格模拟函数(不必说明理由);(2)若f (0)=4,f (2)=6,求出所选函数f (x )的解析式.(注:函数定义域是[0,5].其中x =0表示8月1日,x =1表示9月1日,…,以此类推)【答案】(1)根据题意,应选模拟函数f (x )=x (x -q )2+p .(2)由f (0)=4,f (2)=6,得{p =4,(2−p )2=1⇒{p =4,q =3. ∴f (x )=x 3-6x 2+9x +4(0≤x ≤5).10.20世纪90年代,气候变化专业委员会向政府提供的一项报告指出:全球气候逐年变暖的一个重要因素是人类在能源利用与森林砍伐中使CO 2体积分数增加.据测,1990年、1991年、1992年大气中的CO 2体积分数分别比1989年增加了1个可比单位、3个可比单位、6个可比单位.若用一个函数模拟20世纪90年代中每年CO 2体积分数增加的可比单位数y 与年份增加数x (即当年数与1989的差)的关系,模拟函数可选用二次函数f (x )=px 2+qx +r (其中p ,q ,r 为常数)或函数g (x )=abx +c (其中a ,b ,c 为常数,且b >0,b ≠1).(1)根据题中的数据,求f (x )和g (x )的解析式;(2)如果1994年大气中的CO 2体积分数比1989年增加了16个可比单位,请问用以上哪个函数作为模拟函数较好?并说明理由.【答案】(1)根据题中的数据,得{p +q +r =1,4p +2q +r =3,9p +3q +r =6和{ab +c =1,ab 2+c =3,ab 3+c =6,解得{p =12,q =12,r =0和{a =83,b =32,c =−3,∴f (x )=12x 2+12x ,g (x )=83·(32)x-3.(2)∵f (5)=15,g (5)=17.25,f (5)更接近于16,∴选用f (x )=12x 2+12x 作为模拟函数较好.11.某跨国饮料公司对所有人均GDP(即人均纯收入)在0.5—8千美元的地区销售该公司M 饮料的调查中发现:人均GDP 处在中等的地区对该饮料的销售量最多,然后向两边递减.(1)下列几个模拟函数中(x 表示人均GDP ,单位:千美元;y 表示年人均M 饮料的销量,单位:升),用哪个来描述人均饮料销量与地区的人均GDP 的关系更合适?说明理由;A .f (x )=ax 2+bx ;B.f (x )=log a x +b ;C.f (x )=a x +b ;D.f (x )=x α+b .(2)当人均GDP 为1千美元时,年人均M 饮料的销量为2升;人均GDP 为4千美元时,年人均M 饮料的销量为5升;把你所选的模拟函数求出来;(3)因为M 饮料在N 国被检测出杀虫剂的含量超标,受此事件影响,M 饮料在人均GDP 不高于3千美元的地区销量下降5%,不低于6千美元的地区销量下降5%,其他地区的销量下降10%,根据(2)所求出的模拟函数,求在各个地区中,年人均M 饮料的销量最多为多少?【答案】(1)因为B ,C ,D 表示的函数在区间[0.5,8]上是单调的,所以用A 来模拟比较合适.(2)因为当人均GDP 为1千美元时,年人均M 饮料的销售量为2升;当人均GDP 为4千美元时,年人均M 饮料的销售量为5升,把x =1,y =2;x =4,y =5代入函数f (x )=ax 2+bx ,得{2=a +b ,5=16a +4b ,解得{a =−14,b =94,所以所求函数的解析式为 f (x )=-14x 2+94x (x ∈[0.5,8]).(3)根据题意可得 y =-1980[(x -92)2-814]在[0.5,3]上是增函数,则当x =3时,y max =17140;当x ∈(3,6)时,y =-940[(x -92)2-814],92∈(3,6),则当x =92时,y max =729160; y =-1980[(x -92)2-814]在[6,8]上是减函数,则当x =6时,y max =17140;显然729160>17140,所以在人均GDP 为4.5千美元的地区,年人均M 饮料的销量最多,为729160升.12.某汽车销售公司在A 、B 两地销售同一种品牌的汽车,在A 地的销售利润(单位:万元)为y 1=4.1x -0.1x 2,在B 地的销售利润(单位:万元)为y 2=2x ,其中x 为销售量(单位:辆).若该公司在两地共销售16辆这种品牌的汽车,则能获得的最大利润是( )A .10.5万元B .11万元C .43万元D .43.025万元【答案】C【解析】设利润为y ,则y =4.1x -0.1x 2+2(16-x )=-0.1x 2+2.1x +32=-0.1(x -212)2+32+44.14,当x =10或x =11时,有最大利润y =43.13.某种新药服用x 小时后血液中的残留量为y 毫克,如图所示为函数y =f (x )的图象,当血液中药物残留量不小于240毫克时,治疗有效.设某人上午8:00第一次服药,为保证疗效,则第二次服药最迟的时间应为( )A .上午10∶00B .中午12∶00C .下午4∶00D .下午6∶00【答案】C【解析】当x ∈[0,4]时,设y =k 1x ,把(4,320)代入,得k 1=80,∴y =80x .当x ∈[4,20]时,设y =k 2x +b .把(4,320),(20,0)代入,得{4k 2+b =320,20k 2+b =0,解得{k 2=−20,b =400,∴y =400-20x .∴y =f (x )={80x ,0≤x ≤4,400−20x ,4<x ≤20,由y ≥240,得{0≤x ≤4,80x ≥240或{4<x ≤20,400−20x ≥240,解得3≤x ≤4或4<x ≤8,∴3≤x ≤8.故第二次服药最迟应在当日下午4∶00.故选C.14.如图,某单位准备修建一个面积为600平方米的矩形场地(图中ABCD )的围墙,且要求中间用围墙EF 隔开,使得ABEF 为矩形,EFDC 为正方形,设AB =x 米,已知围墙(包括EF )的修建费用均为每米800元,设围墙(包括EF )的修建总费用为y 元.(1)求出y 关于x 的函数解析式;(2)当x 为何值时,围墙(包括EF )的修建总费用y 最小?并求出y 的最小值.【答案】(1)设AD =t 米,则由题意得xt =600,且t >x ,故t =600x >x ,可得0<x <10√6.则y =800(3x +2t )=800(3x +2×600x )=2400(x +400x ), 所以y 关于x 的函数解析式为y =2400(x +400x )(0<x <10√6). (2)y =2400(x +400x ),由对勾函数的性质知,当x =400x ,即x =20时,y 有最小值,最小值为96000元.15.某地需要修建一条大型输油管道通过240公里宽的沙漠地带,该段输油管道两端的输油站已建好,余下工程是在该段两端已建好的输油站之间铺设输油管道和等距离修建增压站(又称泵站).经预算,修建一个增压站的工程费用为400万元,铺设距离为x 公里的相邻两增压站之间的输油管道费用为(x 2+x )万元.设余下工程的总费用为y 万元.(1)试将y 表示成x 的函数;(2)需要修建多少个增压站才能使y 最小,其最小值为多少?【答案】(1)设需要修建k 个增压站,则(k +1)x =240,即k =240x -1. 所以y =400k +(k +1)(x 2+x )=400(240x -1)+240x (x 2+x )=96000x +240x -160.因为x 表示相邻两增压站之间的距离,则0<x ≤240.故y 与x 的函数关系是y =96000x +240x -160(0<x ≤240). (2)y =96000x +240x -160,由对勾函数的性质知,当96000x =240x ,即x =20时y 有最小值. 此时,k =240x -1=24020-1=11.故需要修建11个增压站才能使y 最小,其最小值为9440万元.16.为了降低能源损耗,某体育馆的外墙需要建造隔热层.体育馆要建造可使用20年的隔热层,1cm 厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C (单位:万元)与隔热层厚度x (单位:cm)满足关系C (x )=k 3x+5(0≤x ≤10,k 为常数),若不建隔热层,每年能源消耗费用为8万元.设f (x )为隔热层建造费用与20年的能源消耗费用之和.(1)求k 的值及f (x )的表达式;(2)隔热层修建多厚时,总费用f (x )达到最小?并求出最小值.【答案】(1)当x =0时,C =8,∴k =40,∴C (x )=403x+5.∴f (x )=6x +20×403x+5=6x +8003x+5(0≤x ≤10).(2)f (x )=2(3x +5)+8003x+5-10,设3x +5=t ,t ∈[5,35],∴y =2t +800t -10, 由对勾函数的性质知,当2t =800t ,即t =20时,y 有最小值.此时x =5,因此f (x )的最小值为70.即隔热层修建5cm 厚时,总费用f (x )达到最小,最小值为70万元.17.某公司对营销人员有如下规定:①年销售额x 在9万元以下,没有奖金;②年销售额x (万元),当x ∈[9,81]时,奖金为y (万元),y =log ax ,y ∈[2,4],且年销售额x 越大,奖金越多;③年销售额超过81万元,按5%(x -1)发奖金(年销售额x 万元).(1)求奖金y 关于x 的函数解析式;(2)某营销人员争取年奖金3≤y ≤10(万元),则年销售额x 在什么范围内?【答案】(1)∵y =log a x 在[9,81]上是增函数,∴log a9=2,∴a=3.经验证log381=4符合题意,∴y={0(0≤x<9),log3x(9≤x≤81),5%(x-1)(x>81).(2)∵3≤y≤10,∴3≤log3x≤4,∴27≤x≤81.∵4<120(x-1)≤10,∴81<x≤201,∴27≤x≤201.所以年销售额x的取值范围为[27,201]万元.18.南博汽车城销售某种型号的汽车,进货单价为25万元,市场调研表明,当销售单价为29万元时,每周平均售出8辆汽车;当每辆汽车每降价0.5万元时,平均每周能多售出4辆汽车,如果设每辆汽车降价x万元,每辆汽车的销售利润为y万元(每辆车的销售利润=销售单价-进货单价).(1)求y与x之间的函数关系式,并在保证商家不亏本的前提下,写出x的取值范围;(2)假设这种汽车平均每周的销售利润为z万元,试写出z与x之间的函数关系式;(3)当每辆汽车的销售单价为多少万元时,平均每周的销售利润最大?最大利润是多少?【答案】(1)∵y=29-25-x,∴y=-x+4(0≤x≤4,x=0.5n,n∈N).(2)z=(8+x0.5×4)y=(8x+8)(-x+4)=-8x2+24x+32(0≤x≤4,x=0.5n,n∈N).(3)由(2)知,z=-8x2+24x+32=-8(x-1.5)2+50(0≤x≤4,x=0.5n,n∈N).故当x=1.5时,z max=50.所以当销售单价为29-1.5=27.5(万元)时,有最大利润,最大利润为50万元.19.“学习曲线”可以用来描述学习达到某一水平所需的学习时间,假设“学习曲线”符合函数t)(B为常数),N(单位:字)表示某一英文词汇量水平,t(单位:天)表示达到这一英文词=5log2(NB汇量所需要的学习时间.(1)已知某人学习达到40个词汇量,需要10天,求他的学习曲线解析式;(2)他学习几天能掌握160个词汇量;(3)如果他学习时间大于30天,他的词汇量情况如何.【答案】(1)把t=10,N=40代入t=5log2(N),B),解得B=10,得10=5log2(40B)(N>0).所以t=5log2(N10(2)当N=160时,t=5log2(160)=5log216=20.10)>30,(3)当t>30时,5log2(N10解得N>640,所以当学习时间大于30天时,他的词汇量大于640个.20.手机上网每月使用量在500分钟以下(包括500分钟)60分钟以上(不包括60分钟)按30元计费,超过500分钟的部分按0.15元/分钟计费,假如上网时间过短,使用量在1分钟以下不计费,在1分钟以上(包括1分钟)按0.5元/分钟计费,计费时间均取整数,不足1分钟的按1分钟计费,手机上网不收通话费和漫游费.(1)12月份小王手机上网使用量为20小时,要付多少钱?(2)小周10月份付了90元的手机上网费,那么他上网的计费时间是多少?(3)电脑上网费包月60元/月,根据时间长短,你会选择哪种方式上网呢?【答案】设上网时间为x分钟,用[x]表示不小于x的最小整数,由已知条件知,所付费用y关于x的函数解析式为y={0,0≤x<1,0.5[x],1≤x≤60,30,60<x≤500,30+0.15([x]−500),x>500.(1)当x=20×60=1200(分钟),即当x>500时,应付费y=30+0.15×(1200-500)=135(元).(2)90元已超过30元,所以上网时间超过500分钟,∴30+0.15×([x]-500)=90,解得[x]=900,所以他上网的计费时间为900分钟.(3)令60=30+0.15([x]-500),解得[x]=700.故当一个月经常上网(一个月上网计费时间超过700分钟)时,选择电脑上网,而当一个月短时间上网(一个月上网计费时间不超过700分钟)时,选择手机上网.。
南昌市高中新课程复习训练题(函数3)
命题人:江西师大附中朱涤非
一、选择题(本题共12小题,每小题5分,共60分)
1. 如果函数的图像与函数的图像关于原点对称,则y=的表达式
为()
A.B. C.
D.
2. 若则当x>1时,a、b、c的大小关系
是()
A. B. C.
D.
3. 下列函数中,在其定义域内既是奇函数又是减函数的是()
A. B. C. D.
4. 已知函数的图象如图,则以下四个函数,,与
的图象分别和下面四个图的正确对应关系
是()
A.①②④③
B.①②③④
C. ④③②
① D.④③①②
5. 已知是周期为2的奇函数,当时,.设,
,,则()
A. B. C.
D.
6. 0<a≤是函数f(x)=ax2+2(a-1)x+2在区间(-∞,4]上为减函数的()
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充
分也不必要条件
7. 函数的定义域为,且对其内任意实数均有
,则在上是()
A.增函数
B.减函数
C.奇函
数 D.偶函数
8. 已知函数在上的最大值为,则的值
是
A、 B、 C、
D、
9. 设函数,,是函数的单调递增区间,将
的图象按平移得到一个新的函数的图象,则的单调递增区间
必定是( )
A. B. C.
D.
10. 若f(x)为R上的奇函数,给出下列结论:
①f(x)+f(-x)=0 ;②f(x)-f(-x)=2f(x);③f(x)·f(-x)≤0;
④。
其中不正确的结论有()
A.0个
B.1个
C.2
个 D.3个
11. 函数的最小值为( )
A. 45
B. 90
C.
171 D. 190
12. 已知函数f(x)=ax2+2ax+4(0<a<3),若x1<x2,x1+x2=1-a,则( )
A.f(x1)<f(x2)
B.f(x1)=f(x2)
C.f(x1)>f(x2)
D.f(x1)
与f(x2)的大小不能确定
二、填空题(本题共4题,每小题4分,共16分)
13.已知定义在R上的奇函数满足,则的值为____。
14.已知函数,若为奇函数,则
=
15.若关于的方程的两根分别在区间与内,则的取
值范围是。
16.三个同学对问题“关于的不等式+25+|-5|≥在[1,12]上恒成立,
求实数的取值范围”提出各自的解题思路.
甲说:“只须不等式左边的最小值不小于右边的最大值”.乙说:“把不等式变形为左边含变量的函数,右边仅含常数,求函数的最值”.丙说:“把不等式两边看成关于的函数,作出函数图像”.
参考上述解题思路,你认为他们所讨论的问题的正确结论,即的取值范围
是.
三、解答题(本题共6小题,共74分)
17.(本小题满分12分)已知f(x)是对数函数,f()+f()=1,求
f()的值。
18.(本小题满分12分)设,若,
求证:
(Ⅰ)且;
(Ⅱ)方程在(0,1)内有两个实根。
19.(本小题满分12分)已知函数图象志函数的图象关于点A
(0,1)对称。
(1)求的解析式;(2)若,且在区间上
为减函数,求实数的取值范围。
20.(本小题满分12分)设二次函数f(x)=ax2+2bx+c(a≠0),已知f(1)=b.(1)求证:存在x1,x2∈R,且x1≠x2,使f(x1)=f(x2)=0;(2)对(1)中的x1, x2 ,若(a-b)(a-c)>0,求
|x1-x2|的取值范围.
21.(本小题满分12分)设函数的定义域是R,对于任意实数,恒有
,且当时,.
(1)求证:,且当时,有;
(2)判断在R上的单调性;
(3)(理科生做)设集合,集合,若,求的取值范围.
22.(本小题满分14分)函数的定义域为(为实数).
(1)当时,求函数的值域;
(2)若函数在定义域上是减函数,求的取值范围;
(3)(理科生做)讨论函数在上的最大值及最小值,并求出函数取最值时的值.
南昌市高中新课程复习训练题数学(函数(3))参考答案
一、选择题
题号123456789101112
答案D C A A D A B B D A D C
二、填空题
(13). 0;(14). ;(15). ;(16).
三、解答题
17.解:设f(x)=log a x,已知f(+1)+f(-1)=1,
则log a(+1)+log a(-1)=log a5=1,
∴f(+1)+f(-1)=log a(+1)+log a(-1)
=log a25=log a52=2log a5=2。
18. 证明:(I)因为,所以.
由条件,消去,得;
由条件,消去,得,.故.
(II)抛物线的顶点坐标为,
在的两边乘以,得.
又因为而
所以方程在区间与内分别有一实根。
故方程在内有两个实根.
19.解:(1)设图象上任一点坐标为,点关于点A(0,1)的对称
点在图象上
∴
∴,即
(2),设0<,则
∵在区间上为减函数,
,∴而必须同时在区间
上, ∴,即.
20.解:(1)
∴方程f(x)=0有二不等实根,即结论成立.
21.(1)证明:,令,则,且由时,,所以;
设,,.
(2)解:,则时,,
,在R上单调递减.
(3)解:,由单调性知,
又
22.解:(1)显然函数的值域为;
(2)若函数在定义域上是减函数,则任取且都有成立,即
只要即可,由,故,所以
,
故的取值范围是;
(3)当时,函数在上单调增,无最小值,
当时取得最大值;
由(2)得当时,函数在上单调减,无最大值,
当时取得最小值;
当时,函数在上单调减,在上单调
增,无最大值,
当时取得最小值.。