高分子材料物理化学实验复习资料
- 格式:doc
- 大小:463.00 KB
- 文档页数:9
一、热塑性高聚物熔融指数的测定熔融指数 (Melt Index 缩写为MI) 是在规定的温度、压力下,10min 内高聚物熔体通过规定尺寸毛细管的重量值,其单位为g 。
min)10/(600g tW MI ⨯=影响高聚物熔体流动性的因素有内因和外因两个方面。
内因主要指分子链的结构、分子量及其分布等;外因则主要指温度、压力、毛细管的内径与长度为了使MI 值能相对地反映高聚物的分子量及分子结构等物理性质,必须将外界条件相对固定。
在本实验中,按照标准试验条件,对于不同的高聚物须选取不同的测试温度与压力。
因为各种高聚物的粘度对温度与剪切力的依赖关系不同,MI 值只能在同种高聚物间相对比较。
一般说来,熔融指数小,即在12、 34测定取向度的方法有X 射线衍射法、双折射法、二色性法和声速法等。
其中,声速法是通过对声波在纤维中传播速度的测定,来计算纤维的取向度。
其原理是基于在纤维材料中因大分子链的取向而导致声波传播的各向异性。
几个重要公式:①传播速度C=)/(10)(1063s km t T L L ⨯∆-⨯- 单位:C-km/s ;L-m ;T L -?s ;△t-?s ②模量关系式 2C E ρ= ③声速取向因子 221CC f u a -= ④?t(ms)=2t 20-t 40(解释原因)Cu 值(km/s ):PET= 1.35,PP=1.45,PAN=2.1,CEL=2.0 (可能出选择题)测定纤维的C u 值一般有两种方法:一种是将聚合物制成基本无取向的薄膜,然后测定其声速值;另一种是反推法,即先通过拉伸试验,绘出某种纤维在不同拉伸倍率下的声速曲线,然后将曲线反推到拉伸倍率为零处,该点的声速值即可看做该纤维的无规取向声速值C u (见图1)。
思考题:1、影响实验数据精确性的关键问题是什么?答:对纤维的拉伸会改变纤维的取向。
所以为保证测试的精确性,每种纤维试样至少取3根以上迸行测定。
2、比较声速法与双折射法,两者各有什么特点?三、光学解偏振法测聚合物的结晶速度(无计算题,最好知道公式。
高物第一章习题1.测量数均分子量,不可以选择以下哪种方法:(B)。
A.气相渗透法B.光散射法C.渗透压法D.端基滴定法2.对于三大合成材料来说,要恰当选择分子量,在满足加工要求的前提下,尽量( B )分子量。
A.降低B.提高C.保持D.调节3.凝胶色谱法(GPC)分离不同分子量的样品时,最先流出的是分子量(大)的部分,是依据(体积排除)机理进行分离的。
4.测量重均分子量可以选择以下哪种方法:(D)A.粘度法B.端基滴定法C.渗透压法D.光散射法5. 下列相同分子量的聚合物,在相同条件下用稀溶液粘度法测得的特性粘数最大的为( D )(A)高支化度聚合物(B)中支化度聚合物(C)低支化度聚合物(D)线性聚合物6. 内聚能密度:定义克服分子间作用力,1mol的凝聚体汽化时所需的能量为内聚能密度,表征分子间作用力的强弱。
7. 同样都是高分子材料,在具体用途分类中为什么有的是纤维,有的是塑料,有的是橡胶?同样是纯的塑料薄膜,为什么有的是全透明的,有的是半透明的?答:(1)塑料橡胶的分类主要是取决于使用温度和弹性大小。
塑料的使用温度要控制在玻璃化温度以下且比Tg室温低很多。
而橡胶的使用温度控制在玻璃化温度以上且Tg比室温高很多,否则的话,塑料就软化了,或者橡胶硬化变脆了,都无法正常使用。
玻璃化温度你可以理解为高分子材料由软变硬的一个临界温度。
塑料拉伸率很小,而有的橡胶可以拉伸10倍以上。
纤维是指长径比大于100以上的高分子材料,纤维常用PA(聚酰胺)等材料,这类材料有分子间和分子内氢键,结晶度大,所以模量和拉伸强度都很高,不容易拉断。
(2)结晶的高聚物常不透明,非结晶高聚物通常透明。
不同的塑料其结晶性是不同的。
加工条件不同对大分空间构型有影响,对结晶有影响,这些都能导致透明性不同。
大多数聚合物是晶区和非晶区并存的,因而是半透明的。
8. 在用凝胶渗透色谱方法测定聚合物分子量时,假如没有该聚合物的标样,但是有其它聚合物的标样,如何对所测聚合物的分子量进行普适标定?需要知道哪些参数?参考答案:可以用其它聚合物标样来标定所测聚合物的分子量。
高吸水树脂的吸水原理:高吸水树脂一般为含有亲水基团和交联结构的高分子电解质。
吸水前,高分子链相互靠拢缠在一起,彼此交联成网状结构,从而达到整体上的紧固。
与水接触时,因为吸水树脂上含有多个亲水基团,故首先进行水润湿,然后水分子通过毛细作用及扩散作用渗透到树脂中,链上的电离基团在水中电离。
由于链上同离子之间的静电斥力而使高分子链伸展溶胀。
由于电中性要求,反离子不能迁移到树脂外部,树脂内外部溶液间的离子浓度差形成反渗透压。
水在反渗透压的作用下进一步进入树脂中,形成水凝胶时树脂本身的交联网状结构及氢键作用,又限制了凝胶的无限膨胀。
高吸水树脂的吸水性受多种因素制约,归纳起来主要有结构因素、形态因素和外界因素三个方面。
结构因素包括亲水基的性质、数量、交联剂种类和交联密度,树脂分子主链的性质等,树脂的结构与生产原料、制备方法有关。
交联剂的影响:交联剂用量越大,树脂交联密度越大,树脂不能充分地吸水膨胀;交联剂用量太低时,树脂交联不完全,部分树脂溶解于水中而使吸水率下降。
吸水力与水解度的关系:当水解度在60~85%时,吸收量较大;水解度大于时,吸收量下降,其原因是随着水解度的增加,尽管亲水的羧酸基增多,但交联剂也发生了部分水解,使交联网络被破坏。
形态因素主要指高吸水性树脂的主品形态。
增大树脂主品的表面,有利于在较短时间内吸收较多的水,达到较高吸水率,因而将树脂制成多孔状或鳞片可保证其吸水性。
外界因素主要指吸收时间和吸收液的性质。
随着吸收时间的延长,水分由表面向树脂产品内部扩散,直至达到饱和。
高吸水树脂多为高分子电解质。
其吸水性受吸收液性质,2特别是离子种类和浓度的制约。
在纯水中吸收能力最高;盐类物质的存在,会产生同离子效应,从而显著影响树脂的吸收能力;遇到酸性或碱性物质,吸水能力也会降低。
电解质浓度增大,树脂的吸收能力下降。
对于二盐离子如,除盐效应外,还可能在树脂的大分子之间羧基上产生交联,阻碍树脂凝胶的溶胀作用,从而影响吸水能力,因而二价金属离子对树脂吸水性的降低将更为显著。
《物理化学》复习提纲一:基本概念及公式第 1章热力学基础1. 系统与环境的概念(P1-22. 性质与状态的概念:状态函数,广度性质,强度性质(P23. 热力学平衡态:热平衡、力平衡、相平衡、化学平衡(P34. 理想气体方程式(P3公式(1-1-1 , R 的数值及单位。
5. 过程与途径(P4 :等压、等容、等温过程。
6. 可逆过程的概念(P57. 热和功的概念。
(P6-78. 热力学第一定律的表达公式(P7 公式 1-2-5 Q 和 W 符号的规定。
9. 内能的数学性质(P8-9 ,状态函数和过程函数的区别。
10. 焓的定义(P9公式 1-2-1211. 理想气体的内能和焓(P10-11,公式 1-2-20, 1-2-2312. 等容热的计算(P11-12 公式 1-3-1到 1-3-1013. 等压热的计算(P12-13 公式 1-3-11到 1-3-2014. Cp 与 Cv 的关系(P13-15 公式 1-3-22 ; 1-3-2015. 等温功的概念及计算(P15-18 公式 1-3-27、 1-3-30、 1-3-33的区别16. 绝热功、绝热指数、绝热过程 T 、 P 、 V 的关系。
(P18-2017. 功热转化过程的方向性(P21-2218. 热力学第二定律的几种不同说法(P2319. 卡诺循环、卡诺定理及热温商(P23-27,公式 1-4-17, 1-4-1920. 熵增原理及自发过程判断(P27-28 公式 1-4-23, 1-4-2421. 理想气体熵变的计算(P28-31,包括等温、等压、等容、绝热过程22. A 、 G 的定义公式(P31-32 公式 1-5-2, 1-5-523. 热力学基本方程(P33-34 ,公式 1-5-10、 11、 12、 13、 14、 15、 16、 17、18 24. 麦克斯伟关系式、倒易关系、循环关系(P3425. 热力学计算(内能的增量、焓的增量、熵的增量 (P35-37第 2章多组分多相系统热力学1. 偏摩尔量的定义(P41-42 G公式 2-1-3 2-1-52. 吉布斯 -杜亥姆公式及偏摩尔量之间的函数关系(P44 公式 2-1-93. 化学势的定义(P44-46 公式 2-1-12 、 2-1-204. 化学势与温度压力的关系(P46,公式 2-1-21、 22、 23、5. 单组分多相系统的热力学基本方程(P46-48 公式 2-1-32、 33、 34、 356. 过程自发性判据(P48-50 S 判据、 G 判据7. 组成的表示及标准态(P50-528. 单组分、多组分理想气体的化学势(P52-539. 压缩因子的定义(P53-55 公式 2-2-610. 非理想气体方程式(P56,公式 2-2-8、 911. 单组分及多组分非理想气体化学势的计算,逸度的概念(P56-5912. 液体和固体的化学势的计算(P59-6013. 拉乌尔定律(P60 公式 2-3-114. 理想、非理想溶液化学势的计算(P60-6215. 亨利定律(P63-64 公式 2-4-116. 理想、非理想稀溶液化学的计算(P64-6917. 理想溶液的混合性质(P69-71 公式 2-5-1、 2、 3、 418. 非理想溶液的混合性质(P71-73 公式 2-5-5、 6、 7、 819. 稀溶液的依数性的概念及计算(蒸汽压下降、凝固点降低、沸点上升、渗透压, P73-78, 公式 2-5-9、 10、 11、 12、 13 。
第一章高分子链的结构一.解释名词、概念1.高分子的构型:高分子中由化学键固定了的原子或原子团在空间的排列方式2.全同立构高分子:由一种旋光异构单元键接形成的高分子3.间同立构高分子:由两种旋光异构单元键接形成的高分子4.等规度:聚合物中全同异构和间同异构的高分子占高分子总数的百分数5.高分子的构象:由于单键内旋转而产生的分子在空间的不同形态6.高分子的柔顺性:高分子能够呈现不同程度卷曲构象状态的性质7.链段:高分子中能做相对独立运动的段落8.静态柔顺性:由反式微构象和旁氏微构象构象能之差决定的柔顺性,是热力学平衡条件下的柔顺性9.动态柔顺性:高分子由一种平衡构象状态转变成另一种平衡构象状态所需时间长短决定的柔顺性10.等效自由连接链:在一般条件下,高分子链中只有部分单键可以内旋转,相邻的两个可以内旋转的单键间的一段链称为链段,这样可以把高分子链看作是由链段连接而成的,链段之间的链不受键角的限制,链段可以自由取向,这种高分子链的均方末段距以及末端距分布函数的表达式与自由连接链相同,只是把链数n转换成链段数n,把键长l换成链段长l,这种链称为等效自由链接链11.高斯链:末端距分布服从高斯分布的链12.高分子末端距分布函数:表征高分子呈现某种末端距占所有可能呈现末端剧的比例二.线型聚异戊二烯可能有哪些构型?答:1.4-加成有三种几何异构,1.2加成有三种旋光异构,3.4加成有三种旋光异构三.聚合物有哪些层次的结构?哪些属于化学结构?哪些属于物理结构?四.为什么说柔顺性是高分子材料独具的特性?答:这是由高分子的结构决定的,高分子分子量大,具有可以内旋转的单键多,可呈现的构象也多,一般高分子长径比很大,呈链状结构,可以在很大程度内改变其卷曲构想状态。
对于小分子,分子量小,可内旋转的单键少,可呈现的构象数也不多,且小分子一般呈球形对称,故不可能在很大的幅度范围内改变其构象状态五.通常情况下PS是一种刚性很好的塑料,而丁二烯与苯乙烯的无规共聚物(B:S=75:25)和三嵌段共聚物SBS(B:S=75:25)是相当好的橡胶材料,从结构上分析其原因。
高分子物理实验必备复习材料一、浊点滴定法测定聚合物的溶解度参数1、测定聚合物溶解度参数的实验方法有:黏度法、交联后的溶胀平衡法、反相色谱法和浊点滴定法等,实验用浊点滴定法2、溶解度参数是表示物体混合能与相互溶解的关系:2/1)(VE ?=δ,单位3/cm J ,根据溶解度参数的定义,溶解度参数δ应为“内聚能密度”的平方根原理:浊点滴定法是在两元互溶体系中,如果聚合物的溶解度参数p δ在两个互溶的溶剂s δ值的范围内,就可调节这两个互溶混合溶剂的溶解度参数sm δ,使sm δ与p δ很接近。
只要把两个互溶的溶剂按照一定的百分比配成混合溶剂,该混合溶剂的溶解度参数sm δ可以近似地表示成:2211δ?δ?δ+=sm3、混合溶剂的溶解度参数sm δ:2211δ?δ?δ+=sm,1?,2?分别是混合溶剂中组分1和组分2的体积分数。
1δ、2δ为混合溶剂中组分1和组分2的溶解度参数。
4、聚合物的溶解度参数p δ:2mlmh p δδδ+=,式中,mh δ为高溶解度参数的沉淀剂滴定聚合物溶液在混浊点时混合溶剂的溶解度参数;ml δ为低溶解度参数的沉淀剂滴定聚合物的混浊点时混合溶剂的溶解度参数。
5、试剂:三氯甲烷,正戊烷(ml δ),甲醇(mh δ),聚苯乙烯(PMMA ,溶于三氯甲烷)6、注意事项:(1)溶解PMMA 时,PMMA 与CHCl3要充分混匀,防止滴定时容易出现浑浊;(2)所用试剂为有机溶剂,故滴定管塞口不能涂凡士林,以免污染试剂;(3)读数时视线要与凹液面相平;(4)判定终点时,要将试剂对着阳光,以便判定终点;(5)CHCl3有挥发性,故在配制试样和移取过程中要准确迅速,防止其挥发,造成浓度变化,且其有剧毒,用完应回收,不可随意倾倒。
7、浊点滴定法测定聚合物溶解度参数时候,根据什么原则选择溶剂和沉淀剂?溶剂与聚合物的溶解度参数相近,能否保证二者相溶?为什么?答:对非极性溶剂,根据相似相溶原理,对极性溶剂,根据溶剂比原则来选择溶剂和沉淀剂。
名词解释:1. 时间依赖性:在一定的温度和外力作用下,高聚物分子从一种平衡态过渡到另一种平衡态需要一定的时间2. 松弛时间τ :橡皮由ΔX(t)恢复到ΔX(0)的 1/e 时所需的时间3. 松弛时间谱:松弛过程与高聚物的相对分子质量有关,而高聚物存在一定的分子量分布,因此其松弛时间不是一个定值,而呈现一定的分布。
4. 时温等效原理:升高温度或者延长观察时间(外力作用时间)对于聚合物的分子运动是等效的,对于观察同一个松弛过程也是等效的。
5. 模量:材料受力时,应力与应变的比值6. 玻璃化温度:为模量下降最大处的温度。
7. 自由体积:任何分子的转变都需要有一个自由活动的空间 ,高分子链活动的空间8. 自由体积分数(f):自由体积与总体积之比。
9. 自由体积理论:当自由体积分数为 2.5%时,它不能够再容纳链段的运动,链段运动的冻结导致玻璃化转变发生。
10. 物理老化:聚合物的某些性质随时间而变化的现象11. 化学老化:聚合物由于光、热等作用下发生的老化12. 外增塑:添加某些低分子组分使聚合物 T g 下降的现象13. 次级转变或多重转变: Tg 以下,链段运动被冻结,存在需要能量小的小尺寸运动单元的运动14. 结晶速率:物品结晶过程进行到一半所需要时间的倒数15. 结晶成核剂:能促进结晶的杂质在结晶过程中起到晶核的作用16. 熔融:物质从结晶态转变为液态的过程17. 熔限:结晶聚合物的熔融过程,呈现一个较宽的熔融温度范围18. 熔融熵S m :熔融前后分子混乱程度的变化19. 橡胶: 施加外力时发生大的形变,外力除去后可以恢复的弹性材料20. 应变: 材料受到外力作用而所处的条件使其不能产生惯性移动时 ,它的几何形状和尺寸将发生变化21. 附加应力:可以抵抗外力的力22. 泊松比:拉伸实验中材料横向应变与纵向应变比值的负数23. 热塑性弹性体:兼有橡胶和塑料两者的特性,在常温下显示高弹,高温下又能塑化成型24. 力学松弛:聚合物的各种性能表现出对时间的依赖性25. 蠕变:在一定的温度下和较小恒应力的持续作用下,材料应变随时间的增加而增大的现象26. 应力松驰:在恒定温度和形变保持不变条件下,聚合物内部应力随时间的增加而逐渐衰减的现象27. 滞后:聚合物在交变应力作用下形变落后于应力变化的现象28. 力学损耗或者内耗:单位体积橡胶经过一个拉伸 ~ 回缩循环后所消耗的功29. 储存模量 E’:同相位的应力与应变的比值30. 损耗模量 E”:相差 90 度相位的应力振幅与应变振幅的比值31. Boltzmann 叠加原理:聚合物的力学松弛行为是其整个历史上各松弛过程的线性加和32. 应变软化:随应变增大,应力不再增加反而有所下降33. 银纹屈服:聚合物受到张应力作用后,由于应力集中产生分子链局部取向和塑性变形,在材料表面或内部垂直于应力方向上形成的长 100 、宽 10 、厚为 1 微米左右的微细凹槽或裂纹的现象34. 裂纹:由于分子链断裂而在材料内部形成的空隙,不具有强度,也不能恢复。
第一章高分子链的结构高分子结构的层次:●高分子链的结构:高分子的链结构又称一级结构,指的是单个分子的结构和形态,它研究的是单个分子链中原子或基团的几何排列情况。
包含一次结构和二次结构。
●高分子的一次结构:研究的范围为高分子的组成和构型,指的是单个高分子内一个或几个结构单元的化学结构和立体化学结构,故又称化学结构或近程结构。
●高分子的二次结构:研究的是整个分子的大小和在空间的形态(构象)。
例如:是伸直链、无规线团还是折叠链、螺旋链等。
这些形态随着条件和环境的变化而变化,故又称远程结构。
●高分子的聚集态结构:高分子的聚集态结构又称二级结构,是指具有一定构象的高分子链通过范德华力或氢键的作用,聚集成一定规则排列的高分子聚集体结构。
§1.1组成和构造1、结构单元的化学组成:按化学组成不同聚合物可分成下列几类:①碳链高分子(C)分子链全部由碳原子以共价键相连接而组成,多由加聚反应制得。
如:聚苯乙烯(PS)、聚氯乙烯(PVC)、聚丙烯(PP)、聚丙烯腈(PAN)、聚甲基丙烯酸甲酯PMMA。
②杂链高分子(C、O、N、S)分子主链上除碳原子以外,还含有氧、氮、硫等二种或二种以上的原子并以共价键相连接而成。
由缩聚反应和开环聚合反应制得。
如:聚酯、聚醚、聚酰胺、聚砜。
POM、PA66(工程塑料)PPS、PEEK。
③元素高分子(Si、P、Al等)主链不含碳原子,而由硅、磷、锗、铝、钛、砷、锑等元素以共价键结合而成的高分子。
侧基含有有机基团,称作有机元素高分子,如: 有机硅橡胶有机钛聚合物侧基不含有机基团的则称作无机高分子,例如:梯形和双螺旋型高分子,分子的主链不是一条单链而是像“梯子”和“双股螺线”那样的高分子链。
※表1-1,一些通用高分子的化学结构,俗称2、高分子的构型:构型(configurafiom):指分子中由化学键所固定的原子在空间的几何排列。
这种排列是稳定的,要改变构型必须经过化学键的断裂和重组。
第一章绪论1、高分子:也叫聚合物分子或大分子,具有高的相对分子量(104~106) ,其结构必须是由多个重复单元所组成,并且这些重复单元实际上或概念上是由相应的小分子衍生而来。
2、高分子的分类:根据高分子受热后的形态变化:热塑性高分子热塑性高分子在受热后会从固体状态逐步转变为流动状态。
这种转变理论上可重复无穷多次。
或者说,热塑性高分子是可以再生的。
聚乙烯、聚丙烯、聚氯乙烯、聚苯乙烯和涤纶树脂等均为热塑性高分子。
热固性高分子热固性高分子在受热后先转变为流动状态,进一步加热则转变为固体状态。
这种转变是不可逆的。
换言之,热固性高分子是不可再生的。
通过加入固化剂使流体状转变为固体状的高分子,也称为热固性高分子。
典型的热固性高分子如:酚醛树脂、环氧树脂、氨基树脂、不饱和聚酯、聚氨酯、硫化橡胶等。
第二章逐步聚合1、逐步聚合反应的种类2、官能度:分子中能参加反应的官能团数3、缩聚反应的特点4、官能团等活性概念逐步聚合中的官能团的活性不随分子量的增加而降低。
实验表明,二元官能度单体在分子量很小(n=1-3)时,活性随分子量增加而降低,但达到一定分子量后活性趋于恒定。
因此官能团等活性概念成立。
5、逐步聚合实施方法(1)熔融缩聚聚合体系中只加单体和少量的催化剂,不加入任何溶剂,聚合过程在生成聚合物熔点以上温度进行,聚合物处于熔融状态。
特点:➢产物纯净,分离简单;➢通常以釜式聚合,生产设备简单;➢反应温度高,一般比生成的聚合物的熔点高10~20 ℃;一般不适合生产高熔点的聚合物;➢反应时间长,一般都在几个小时以上;➢为避免高温时缩聚产物的氧化降解,常需在惰性气体中进行。
用途:主要用于平衡缩聚反应,如聚酯、聚酰胺等的生产。
(3)界面缩聚界面缩聚是将两种单体分别溶于两种不互溶的溶剂中,再将这两种溶液倒在一起,在两液相的界面上进行缩聚反应,聚合产物不溶于溶剂,在界面析出。
第三章自由基聚合逐步聚合反应:➢无活性中心,单体官能团间相互反应而逐步增长➢大部分缩聚属逐步机理,大多数烯类加聚属连锁机理3、烯类单体的聚合反应性能电子效应的影响:(1) X为供电子基团带供电子基团的烯类单体易进行阳离子聚合。
高分子物理复习资料高分子物理复习资料高分子物理是研究高分子材料的物理性质和行为的学科,它在材料科学和工程领域中具有重要的地位。
对于学习高分子物理的学生来说,复习资料是提高复习效率和理解知识的重要工具。
本文将介绍一些高分子物理复习资料的内容和使用方法。
第一部分:高分子物理基础知识在复习高分子物理时,首先需要掌握一些基础知识。
这包括高分子的结构与性质、高分子的物理性质和高分子的力学性质等。
对于这些知识,可以通过查阅教材和课堂笔记来进行复习。
同时,还可以通过阅读相关的学术论文和综述来深入了解这些知识。
第二部分:高分子物理实验技术高分子物理实验技术是研究高分子物理的重要手段。
在复习时,可以通过学习实验技术来加深对高分子物理的理解。
这包括高分子的合成方法、高分子的表征方法和高分子的测试方法等。
可以通过查阅相关的实验教材和实验手册来学习这些实验技术。
第三部分:高分子物理理论模型高分子物理理论模型是解释高分子物理现象的重要工具。
在复习时,可以通过学习理论模型来深入理解高分子物理的本质。
这包括高分子的统计力学模型、高分子的自洽场理论和高分子的动力学模型等。
可以通过阅读相关的学术论文和专著来学习这些理论模型。
第四部分:高分子物理应用研究高分子物理的应用研究是将高分子物理理论应用于实际问题的重要领域。
在复习时,可以通过学习应用研究来了解高分子物理在材料科学和工程领域中的应用。
这包括高分子材料的功能性和高分子材料的性能调控等。
可以通过阅读相关的学术论文和专著来学习这些应用研究。
第五部分:高分子物理的前沿研究高分子物理的前沿研究是推动高分子物理学科发展的重要动力。
在复习时,可以通过学习前沿研究来了解高分子物理的最新进展。
这包括高分子自组装和高分子纳米材料等。
可以通过阅读相关的学术论文和综述来学习这些前沿研究。
总结:高分子物理复习资料的内容和使用方法多种多样,可以根据自己的学习需求选择合适的资料进行复习。
通过系统地学习高分子物理的基础知识、实验技术、理论模型、应用研究和前沿研究,可以提高对高分子物理的理解和应用能力。
1、高聚物结构包括 高分子的链结构 和高分子的聚集态结构,高分子的聚集态结构又包括 晶态结构 、 非晶态结构 、 取向态结构 和 液晶态结构以及织态结构 。
2、高分子链结构单元的化学组成有 碳链高分子 、 杂链高分子 、元素高分子和 梯形和双螺旋型高分子,元素高分子有 有机元素高分子 和 无机元素高分子 。
3、高分子的结晶形态有 折叠链片晶 、 串晶 、 伸直链片晶 和 纤维状晶 。
4、高聚物的晶态结构模型主要有 缨状胶束模型(或两相模型)、 折叠链结构模型 、 隧道-折叠链模型 、 插线板模型 ;高聚物的非晶态结构模型主要有 无规线团模型 和 折叠链缨状胶束粒子模型(或两相球粒模型) 。
5、测定分子量的方法有 端基分析法 、 气相渗透法 、 膜渗透法 、 光散射法 、 粘度法 和 凝胶色谱法 。
6、提高高分子材料耐热性的途径主要有 增加链刚性 、增加分子间作用力 、 结晶。
7、线性高聚物在溶液中通常为 无规线团 构象,在晶区通常为 伸直链 或 折叠链 现象。
8、高聚物稀溶液冷却结晶易生成 单晶 ,熔体冷却结晶通常生成 球晶 。
熔体在应力作用下冷却结晶常常形成 串晶 。
9、测定高聚物M n 、M w 、M η的方法分别有 膜渗透法 、 光散射法 、和 粘度法 。
测定高聚物相对分子质量分布的方法有 沉淀分级法 和 GPC ;其基本原理分别为 溶解度 和 体积排除 。
10、高聚物的熔体一般属于 假塑性 流体,其特性是 粘度随剪切速率增加而减小 。
高聚物悬浮体系、高填充体系、PVC 糊属于 胀塑性 流体,其特征是 粘度随剪切速率增加而增加 。
11、对于聚乙烯自由旋转链,均方末端距与链长的关系是 222nl h 。
12、当温度T= θ 时,第二维里系数A 2= 0 ,此时高分子溶液符合理想溶液性质。
13、测定PS 重均相对分子质量采用的方法可以是 光散射法 。
14、均相成核生长成为三维球晶时,Avranmi 指数n 为 4 。
高分子科学实验讲义(内部教材)高分子教研室目录实验一常见塑料和纤维的简易鉴别 (1)实验二甲基丙烯酸甲酯的本体聚合 (4)实验三丙烯酰胺的溶液聚合 (6)实验四苯乙烯的悬浮聚合 (9)实验五熔融缩聚反应制备尼龙-66 (12)实验六聚氨酯泡沫塑料的制备 (16)实验七热固性脲醛树脂的制备 (19)实验八膨胀计法测定高聚物的玻璃化转变温度 (22)实验九用偏光显微镜研究聚合物结晶形态 (25)实验十粘度法测定聚合物的分子量 (28)实验十一差示扫描量热法(DSC)测定聚合物热性能 (33)实验十二、热失重法(TGA)测定聚合物的热稳定性 (41)实验十三DMA测定高聚物的动态力学性能 (44)实验十四用扫描电子显微镜观察聚合物形态 (48)实验十五高聚物熔融指数的测定 (51)实验十六高聚物熔体流变特性的测定 (54)综合性、设计性实验 (61)实验十七改性苯丙乳液的合成与性能分析 (63)实验十八丙烯酸脂类压敏胶的制备与性能测试 (68)实验一常见塑料和纤维的简易鉴别一、实验目的1.了解聚合物燃烧试验和气味试验的特殊现象,借以初步辨认各种聚合物。
2.利用聚合物溶解的规律及溶剂选择的原则,了解并掌握溶解法对常见聚合物的定性分析。
二、基本原理聚合物的鉴别,特别对未知聚合物试样的鉴别颇为复杂,即使经纯化处理的聚合物也很难用单一的方法进行鉴别。
常见聚合物通常可用红外、质谱、X 光衍射、气相色谱等仪器进行不同程度的定性和定量分析。
而基于聚合物的特性简单地通过外观、在水中的浮沉、燃烧、溶解性和元素分析的方法进行实验室的鉴别则方便易行。
1.根据试样的表观鉴别HDPE、PP、PA 66、PA 6、PA1010质硬,表面光滑。
LDPE、PVF、PA11质较软,表面光滑,有蜡状感觉。
硬PVC、PMMA表面光滑,无蜡状感觉。
PS质硬,敲打会发出清脆的“打铃声”。
2.根据试样的透明程度鉴别透明的聚合物:聚丙烯酸酯类,聚甲基丙烯酸酯类,再生纤维素,纤维素酯类和醚类,聚甲基戊烯类,PC、PS,PVC及其共聚物。
⾼分⼦材料物理化学实验复习资料⼀、热塑性⾼聚物熔融指数的测定熔融指数 (Melt Index 缩写为MI) 是在规定的温度、压⼒下,10min ⾼聚物熔体通过规定尺⼨⽑细管的重量值,其单位为g 。
min)10/(600g tW MI ?=影响⾼聚物熔体流动性的因素有因和外因两个⽅⾯。
因主要指分⼦链的结构、分⼦量及其分布等;外因则主要指温度、压⼒、⽑细管的径与长度等因素。
为了使MI 值能相对地反映⾼聚物的分⼦量及分⼦结构等物理性质,必须将外界条件相对固定。
在本实验中,按照标准试验条件,对于不同的⾼聚物须选取不同的测试温度与压⼒。
因为各种⾼聚物的粘度对温度与剪切⼒的依赖关系不同,MI 值只能在同种⾼聚物间相对⽐较。
⼀般说来,熔融指数⼩,即在10min 从⽑细管中压出的熔体克数少,样品的分⼦量⼤,如果平均分⼦量相同,粘度⼩,则表⽰物料流动性好,分⼦量分布较宽。
1、测烯烃类。
2、聚酯(⽐如涤纶)不能测。
3、只能区别同种物质。
聚丙烯的熔点为165℃,聚酯的熔点为265℃。
熔融加⼯温度在熔点上30~50考:简述实验步骤:①选择适当的温度、压强和合适的⽑细管。
(聚丙烯230℃)②装上⽑细管,预热2~3min 。
③加原料,“少加压实”。
平衡5min ,使其充分熔融。
④加砝码,剪掉⼀段料头。
1min 后,剪下⼀段。
⑤称量⑥重复10次,取平均值。
⑦关闭,清洁仪器。
思考题:1、影响熔融指数的外部因素是什么?(4个)2、熔融指数单位:g/10min3、测定热塑性⾼聚物熔融指数有何意义?参考答案:热塑性⾼聚物制品⼤多在熔融状态加⼯成形,其熔体流动性对加⼯过程及成品性能有较⼤影响,为此必须了解热塑性⾼聚物熔体的流变性能,以确定最佳⼯艺条件。
熔融指数是⽤来表征熔体在低剪切速率下流变性能的⼀种相对指标。
4、聚合物的熔融指数与其分⼦量有什么关系?为什么熔融指数值不能在结构不同的聚合物之间进⾏⽐较?答:见前⽂。
⼆、声速法测定纤维的取向度和模量测定取向度的⽅法有X 射线衍射法、双折射法、⼆⾊性法和声速法等。
第一章高分子链的结构与形态一、填空、选择题1高分子链中反式、旁式构象越接近于无规排列,链的静态柔顺性越 __________2、单烯类单体形成聚合物的键接方式有_______ 键接和__________ 键接。
3、聚丙烯分子可能产生的空间立构有_______ 、___________ 和___________ 。
4、聚丁二烯分子可能产生的几何异构有__________ 和___________ 。
5、交联聚合物不溶解也不_______ 。
6、构象熵(S)与构象数(W)的关系是________________。
7、橡胶产品的加工对分子量分布要求最________ (宽、窄)8 PAN、PVC、PP中柔性最大的是____________________ 。
9、一般用末端距来衡量高分子链_________的大小。
10、碳链高分子,若其是自由结合链,由n个键组成,键长为I,其均方末端距为 _____________ 。
11碳链高分子,若其是自由旋转链,由n个键组成,键长为I,其均方末端距为。
12、一般高分子主链键长较大,键角较大的键,其柔性更___________ 。
13、库恩的柔性链模型是一种________ 自由结合链。
14、聚异丁烯的柔性_____ 于聚乙烯的柔性15、聚偏二氯乙烯的柔性_____ 于聚1,2-二氯乙烯的柔性16、聚氯丁二烯的柔性_____ 于聚氯乙烯的柔性。
17、分子链为伸直形态时,构想熵为________ 。
18、长支链的存在,使聚合物的柔性________ 。
19、高分子共聚物的序列结构指两种或两种以上共聚单体在分子中的排列,二元共聚物可以分为无规型、交替型、_______ 型和_______ 型共聚物。
20、下列四种聚合物中,不存在旋光异构和几何异构的为()。
A、聚丙烯,B、聚异丁烯,C、聚丁二烯,D、聚苯乙烯21、自由基聚合制得的聚丙烯酸为()聚合物。
A、全同立构,B、无规立构,C、间同立构,D、旋光22、热塑性弹性体SBS是苯乙烯和丁二烯的()。
高分子化学与物理基础知识点
1. 高分子的定义和分类
高分子是由许多重复单元通过共价键连接而成的大分子。
根据来源,高分子可分为天然高分子和合成高分子;根据性能和用途,高分子可分为塑料、橡胶、纤维、涂料、胶粘剂等。
2. 高分子的结构
高分子的结构包括一级结构(近程结构)和二级结构(远程结构)。
一级结构指的是高分子链中原子的化学组成和排列方式,如头尾结构、顺反异构等;二级结构指的是高分子链的形态,如伸直链、螺旋链、折叠链等。
3. 高分子的合成
高分子的合成方法包括加聚反应、缩聚反应、开环聚合等。
其中,加聚反应是通过单体分子间的加成反应形成高分子的方法;缩聚反应是通过单体分子间的缩合反应形成高分子的方法。
4. 高分子的物理性能
高分子的物理性能包括力学性能、热性能、电性能、光学性能等。
其中,力学性能是高分子材料最重要的性能之一,包括拉伸强度、弯曲强度、冲击强度等。
5. 高分子的溶液性质
高分子在溶液中的性质包括溶解过程、溶剂选择、分子量测定等。
高分子的溶解过程一般分为溶胀和溶解两个阶段;溶剂选择要考虑高分子的极性、分子量、溶液的黏度等因素。
以上是高分子化学与物理的一些基础知识点,希望对你有所帮助。
第一章聚合物、聚合度和链节的定义区别结构单元、单体单元、重复单元数均分子量、重均分子量和多分散系数D的计算(计算题)高分子的分类(3种)表1-2常见高分子的英文缩写,结构式书写高分子合成反应的分类图1-2 三相两转变第二章缩聚反应的定义官能团和官能度的定义官能团等活性理论缩聚反应的两大特征:逐步性和可逆性反应程度P的定义,与平均聚合度的关系计算题:式2-18和式2-20(计算题)体型缩聚的概念凝胶点的计算,式2-42(计算题)简述缩聚反应的四种实施方法(简答题)第三章自由基的定义聚合单体的反应类型判断自由基聚合的基元反应终止反应的类型链转移反应的定义引发剂的定义和种类引发剂效率小于1的原因在自由基聚合反应过程中所做的三点假设(简答题)自动加速效应的定义动力学链长的定义链转移常数的定义常见的阻聚剂自由基聚合四种实施方法的体系组成第四章阳离子聚合的单体和引发剂阳离子聚合机理特点阴离子聚合的单体和引发剂阴离子聚合机理特点活性聚合的定义配位聚合催化剂的组成第五章二元共聚物的四种类型共聚曲线的四种类型(简答题)判断单体和自由基的活性大小第六章高分子化学反应的分类影响高分子反应活性的化学因素高分子官能团反应的定义降解的定义和分类第七章结构单元的键接方式有高分子链的构造有高分子链的构型包括典型的构象状态包括链段的定义影响高分子链柔性的因素(简答题)高分子链柔性的表征聚集态结构的定义和意义高分子间作用力包括常用内聚能密度大小评价高分子分子间作用力高分子的结晶形态主要有球晶是高分子结晶中最重要的结晶形态,在正交偏光显微镜下出现特有的黑十字消光图案。
结晶度的定义和测定结晶度的方法链结构与结晶能力的关系(简答题)结晶过程包括晶核的生长和晶体生长,晶核生产包括和淬火和退火结晶度和晶体尺寸的影响取向的应用改善共混组分间相容性的有效途径是第八章高分子运动的特点(简答题)玻璃化转变温度的测定方法影响玻璃化转变温度的因素(简答题)P193 加入增塑剂的目的P195 熔点和熔限的定义P197 结晶温度对熔点的影响P201 高分子流动的机理P201 塑料的成型加工温度链的柔顺性、极性和分子量对粘流温度的影响P202 图8-22 识别牛顿流体、假塑性流体、胀塑性流体和宾汉流体大多数高分子熔体属于流体,黏度随剪切速率增大而P204 高分子流动行为的表征(填空)P212 熔体流动中的弹性效应第九章力学性能P218 泊松比和杨氏模量的定义P219 脆性断裂和韧性断裂、强迫高弹形变的定义P221 图9-6 屈服点和断裂点表9-1 高分子五种类型的应力-应变曲线P224 银纹和裂纹的区别(简答题)P230 橡胶高弹性的本质P233 粘弹性、蠕变和应力松弛的定义P241 时温等效原理第十章P243 高分子溶解过程需经两个阶段:先溶胀后溶解交联高分子只能溶胀,不能溶解,最后达到溶胀平衡P244 溶度参数的定义P247 溶解度参数相近原则Huggins参数X1判断溶剂的优劣P257 重均分子量的测定方法数均分子量的测定方法黏均分子量的测定方法,测定特性粘度常使用毛细管粘度计中的P267 凝胶渗透色谱法的分离过程完全有体积排除效应所致,分子量大的先被淋洗出来;分子量小的后被淋洗出来第11章P274 介电常数的定义考试题型一、选择题10小题,每题1分二、填空题20小题,每题2分三、简答题5小题,每题6分四、计算题2小题,每题10分。
1.高分子的结构1高分子链的近程结构(一级结构)一、高分子的化学组成二、结构单元的键接顺序三.支化与交联四、共聚物的结构五.高分子链的构型2高分子链的远程结构(二级结构)一、聚合物的分子量二、高分子的分子量分布三、高分子链的构象四.高分子链的柔顺性五、高分子链的构象统计3高分子的化学组成1. 碳链高分子2. 杂链高分子3. 元素高分子4. 无机高分子1-3出题方式:如:4支化与交联1. 支化支化高分子的性质与线形分子相似,可溶解,加热可融化;但结晶度大大降低。
2. 交联交联的高分子不能溶解。
交联高分子加热不能融化但在溶剂中可以溶涨,交联的程度越高,溶胀度越小。
5共聚物的结构交替、无规、嵌段、接枝6高分子链的构型是指分子中由化学键所固定的原子在空间的几何排列。
构型不能用物理方法改变,改变构型必须通过化学键的断裂和重组。
1.旋光异构体由手性碳原子(不对称碳原子)形成的。
(1)全同立构全部由一种旋光异构体单元键接而成,取代基R 处在平面的同一侧(2)间同立构由两种旋光异构体单元交替键接而成,取代基R 交替处在平面两侧。
(3)无规立构两种旋光异构单元完全无规键接,取代基R 无规分布在平面两侧。
7分子的立体构型不同,材料的性能也不同:全同立构的聚苯乙烯可结晶,熔点为240 ︒C ,而无规立构的聚苯乙烯不能结晶,软化温度为80 ︒C ;全同或间同的PP 易结晶,可纺丝成纤;而无规聚丙烯却是一种橡胶状的弹性体。
自由基聚合的高聚物大都是无规的,定向聚合可制得有规立构的高聚物。
8.几何异构体顺式:取代基在双键的同一侧反式:取代基在双键的两侧顺式1,4-聚丁二烯:分子与分子之间的距离较大,在室温下是一种弹性很好的橡胶。
反式1,4-聚丁二烯:分子链结构比较规整,容易结晶,在室温下是弹性很差的塑料。
9.单分散性:如果聚合物的分子量完全均一、大小相同,就称为单分散性。
阴离子聚合得到的产物接近单分散性。
(1)数均分子量(2)重均分子量(3)粘均分子量对单分散性样品,则:对单分散性试样,d=1对多分散性试样,d>1M Mn Wd =10.高分子链的构象1.内旋转单键是由σ电子组成,电子云分布是轴对称的,因此高分子在运动时C -C 单键可以绕轴旋转,称为内旋转。
一、热塑性高聚物熔融指数的测定熔融指数 (Melt Index 缩写为MI) 是在规定的温度、压力下,10min 高聚物熔体通过规定尺寸毛细管的重量值,其单位为g 。
min)10/(600g tW MI ⨯=影响高聚物熔体流动性的因素有因和外因两个方面。
因主要指分子链的结构、分子量及其分布等;外因则主要指温度、压力、毛细管的径与长度等因素。
为了使MI 值能相对地反映高聚物的分子量及分子结构等物理性质,必须将外界条件相对固定。
在本实验中,按照标准试验条件,对于不同的高聚物须选取不同的测试温度与压力。
因为各种高聚物的粘度对温度与剪切力的依赖关系不同,MI 值只能在同种高聚物间相对比较。
一般说来,熔融指数小,即在10min 从毛细管中压出的熔体克数少,样品的分子量大,如果平均分子量相同,粘度小,则表示物料流动性好,分子量分布较宽。
1、 测烯烃类。
2、聚酯(比如涤纶)不能测。
3、只能区别同种物质。
聚丙烯的熔点为165℃,聚酯的熔点为265℃。
熔融加工温度在熔点上30~50考:简述实验步骤:① 选择适当的温度、压强和合适的毛细管。
(聚丙烯230℃) ② 装上毛细管,预热2~3min 。
③ 加原料,“少加压实”。
平衡5min ,使其充分熔融。
④ 加砝码,剪掉一段料头。
1min 后,剪下一段。
⑤ 称量⑥ 重复10次,取平均值。
⑦ 关闭,清洁仪器。
思考题:1、影响熔融指数的外部因素是什么?(4个)2、 熔融指数单位:g/10min3、测定热塑性高聚物熔融指数有何意义?参考答案:热塑性高聚物制品大多在熔融状态加工成形,其熔体流动性对加工过程及成品性能有较大影响,为此必须了解热塑性高聚物熔体的流变性能,以确定最佳工艺条件。
熔融指数是用来表征熔体在低剪切速率下流变性能的一种相对指标。
4、聚合物的熔融指数与其分子量有什么关系?为什么熔融指数值不能在结构不同的聚合物之间进行比较? 答:见前文。
二、声速法测定纤维的取向度和模量测定取向度的方法有X 射线衍射法、双折射法、二色性法和声速法等。
其中,声速法是通过对声波在纤维中传播速度的测定,来计算纤维的取向度。
其原理是基于在纤维材料中因大分子链的取向而导致声波传播的各向异性。
几个重要公式:①传播速度C=)/(10)(1063s km t T L L ⨯∆-⨯- 单位:C-km/s ;L-m ;T L -μs ;△t-μs ②模量关系式 2C E ρ= ③声速取向因子 221CC f u a -= ④∆t(ms)=2t 20-t 40(解释原因)Cu 值(km/s ):PET= 1.35,PP=1.45,PAN=2.1,CEL=2.0 (可能出选择题)测定纤维的C u 值一般有两种方法:一种是将聚合物制成基本无取向的薄膜,然后测定其声速值;另一种是反推法,即先通过拉伸试验,绘出某种纤维在不同拉伸倍率下的声速曲线,然后将曲线反推到拉伸倍率为零处,该点的声速值即可看做该纤维的无规取向声速值C u (见图1)。
思考题:1、影响实验数据精确性的关键问题是什么?答:对纤维的拉伸会改变纤维的取向。
所以为保证测试的精确性,每种纤维试样至少取3根以上迸行测定。
2、比较声速法与双折射法,两者各有什么特点?三、光学解偏振法测聚合物的结晶速度(无计算题,最好知道公式。
背思考题。
)测定聚合物等温结晶速率的方法:比容、红外光谱、X 射线衍射、广谱核磁共振、双折射法等。
本实验采用光学解偏振法,它具有制样简便、操作容易、结晶温度平衡快、实验重复性好等优点。
实验原理:由实验测定等温结晶的解偏振光强-时间曲线,从曲线可以看出,在达到样品的热平衡时间后,首先是结晶速度很慢的诱导期,在此期间没有透过光的解偏振发生,而随着结晶开始,解偏振光强的增强越来越快,并以指数函数形式增大到某一数值后又逐渐减小,直到趋近于一个平衡值。
对于聚合物而言,因链段松弛时间围很宽,结晶终止往往需要很长时间,为了实验测量的方便,通常采用211t 作为表征聚合物结晶速度的参数,21t 为半结晶期。
即为图2中210=--∞∞I I I I t 时所对应的时间。
聚合物结晶过程可用下面的方程式描述:nKt eC -=-1 。
式中:C 为t 时刻的结晶度;K 为与成核及核成长有关的结晶速度常数;n 为Avrami 指数,为整数,它与成核机理和生长方式有关。
t n k I I I I t lg lg ln lg 0+=⎪⎪⎭⎫⎝⎛---∞∞ 若将上式左边对lg t 作图得一条直线,其斜率为Awami 指数n ,截距就是lg K 。
本实验以等规聚丙烯粒料为试样,采用结晶速度仪测定其结晶速率。
思考题:1、聚合物的结晶速度与哪些因素有关?答:分子主链结构,取代基侧链,分子量;温度,压力,应力、添加剂等。
2、根据实验图分析结晶温度对结晶速度的影响。
四、差示扫描量热法测定聚合物等温结晶速率实验原理:采用DSC 法测定聚合物的等温结晶速率时,首先将样品装入样品池,加热到熔点以上某温度保温一段时间,消除热历史,然后迅速降到并保持某一低于熔点的温度,记录结晶热随时间的变化,如图1(a )。
可以看到随结晶过程的进行,DSC 谱图上出现一个结晶放热峰。
当曲线回到基线时,表明结晶过程已完成。
记放热峰总面积为A0,从结晶起始时刻(t 0)到任一时刻t 的放热峰面积A t 与A 0之2I I +∞0I ∞I iτ0t 21t ∞解偏振光强时间图2 等温结晶的解偏振光强—时间曲线结晶在Tg 和Tm 之间。
靠近Tg ,链段难运动;靠近Tm ,晶核难生比记为结晶分数X(t):()0A A t X t=以结晶分数X(t)对时间作图,可得到图1(b体放射性生长,形成球晶的阶段,称为一次结晶;曲线斜率再次减小即进入第三阶段,到此阶段大多数球晶发生碰撞,结晶只能在球晶的缝隙间进行,生成附加晶片,称为二次结晶。
聚合物等温结晶过程可以用Avrami 方程进行描述:()nKt X -=-ex p 1式中,X 为结晶分数,K 为总结晶速率常数,n 为Avrami 指数,与成核机理和晶粒生长的方式有关。
对Avrami 方程取两次对数: ()[]t n K X lg lg 1lnlg +=--以lg[-ln(1-X)]对lgt 作图得一直线,其斜率为Avrami 指数,其截距为lgK 。
实验容:样品的质量取8~10mg ,保护气为N 2。
注意:定要掌握三图的含义。
五、粘度法测定高聚物分子量1、测定高聚物分子量的方法有多种,如端基测定法、渗透法、光散射法、超速离心法和粘度法等。
2、马克(Mark)公式:[]αηKM =。
该式实用性很广,式中K 、α值主要依赖于大分子在溶液中的形态。
无规线团形状的大分子,α为0.5~0.8;在良溶剂中,大分子溶剂化,α为0.8~l ;硬棒状分子,α>1。
求某一高聚物溶剂系的K 、α值的具体测量,可取对数得: []M K lg lg lg αη+=3、几个粘度的关系(问答题):sp η为增比粘度,1-=τηηsp;τη为相对粘度,)()(0s s 溶剂粘度溶液粘度==ηηητ。
当C →0时, []CCc spc τηηη0limlim →→==4、特性粘度[η]的求得:(1)、稀释法(外推法)[][]C K CHuggins H sp 2ηηη+=式:[][]C K CKramer K 2ln ηηητ+=式:外推至C →0,两直线相交于一点此截距即为[η]。
两条直线的斜率分别代表常数K H 和K K 。
(2)一点法5、换算前提:极稀溶液。
所以 00t t==ηηητ图2 的关系图C CC C sp 对和对τηln当选择的乌氏粘度计t 0<100s 时,需要动能校正。
6、该实验使用PV A (聚乙烯醇),溶剂为去离子水。
思考题1、讨论影晌分子量测定的主要因素。
答:毛细管粘度计的选择(选溶剂的流经时间>100s ),溶液浓度,测试温度。
2、什么情况下需要做动能校正?为什么?六、加聚反应动力学——膨胀计法测反应速度1、膨胀计是测定聚合速度的一种方法。
它的依据是单体密度小,聚合物密度大,此时随着聚合反应的进行,体积会发生收缩。
当一定量单体聚合时,体积的变化与转化率成正比。
如果将这种体积的变化放在一根直径很窄的毛细管中观察,其灵敏度将大为提高,这种方法就是膨胀计法。
2、几种方法测反应速度:直接法和间接法。
间接法有膨胀计法、测比重、测折射率、测比容等。
3、[][][]M I k dtM d v p 21=-=。
此式表示聚合反应速度v p 与引发剂浓度[I ]的平方根成正比,与单体浓度[M ]成正比。
如果转化率低(<16%),可假定引发剂浓度保持恒定,则反应速率只与本体浓度有关。
若对[]⎪⎪⎭⎫⎝⎛M M In 0作图,其斜率即为k 。
由于单体聚合物的密度不同,在单体聚合时必然发生体积变化,故可求得不同时间的单体浓度,进而可求得反应速度常数。
思考题:1、 膨胀计放入恒温糟中,为什么先膨胀后收缩?答:将膨胀计迅速放入预先已恒温的超级恒温水浴中,此时膨胀计液面因液体受热膨胀而上升。
当达到平衡时,液面停止上升。
加聚反应开始后,使体积收缩。
2、实验结果的误差分析。
答:①空气②引发剂没完全溶解③毛细管标定时误差④读数方法误差⑤计时误差七、聚己二酰己二胺的制备1、等摩尔的己二酸和己二胺合成聚己二胺的主要化学反应为:n H 2N(CH 2)6NH 2+n HOOCH(CH 2)4COOHH [ HN(CH2)6NHCO(CH 2)4CO ]n OH+(2n -1)H 2O2、缩聚反应往往具有可逆平衡的性质。
欲提高产物的聚合度,必须使平衡向右移动,这样就得不断地排除反应中所析出的小分子。
反应体系入惰性气体或采用真空设施都是为了这个目的。
3、通常,控制分子量的可靠方法有两种。
(1)、控制原料单体的摩尔比:加己二酸 (2)、加入单官能团的化合物:加月桂酸4、气体钢瓶颜色:黑色——N 2,灰色——H 2,蓝——O 2,绿——Cl 2,黄——SO 2。
思考题:1、在反应过程中为什么要通入氮气?答:氮气的作用是:开始时检验装置是否漏气,并排除空气,反应时排除产生的大量水分,最后起搅拌作用。
2、为什么在尼龙66盐熔融后会产生大量水分?而随着反应进行水分反而消失?答:尼龙66盐在200℃熔融以及发生缩聚反应,在水的脱出的同时伴随着酰胺键的生成,形成线型高分子,因此反应开始水分大量生成,产生水的速度比水蒸发的速度慢所以逐渐减少。
八、丝朊-聚丙烯腈系接枝共聚物的制备接枝共聚物一般借骨架高聚物的大分子接上支链而成。
接枝共聚反应亦单体和骨架高聚物所处的状态可分为均相接枝共聚物和非均相接枝共聚物反应。
后者又可以分为气一固相及液一固相介质共聚反应。