初中新人教版数学八年级上册15.1分式优质课公开课教学设计版本1.
- 格式:doc
- 大小:1.00 MB
- 文档页数:11
15.1分式15。
1.1从分数到分式教学目标1. 了解分式、有理式的概念.2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件。
重点难点1.重点:理解分式有意义的条件,分式的值为零的条件。
2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件。
一、课堂引入1.让学生填写P4[思考],学生自己依次填出:710,a s ,33200,sv 。
2.学生看P3的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?请同学们跟着教师一起设未知数,列方程。
设江水的流速为x 千米/时.轮船顺流航行100千米所用的时间为v +20100小时,逆流航行60千米所用时间v -2060小时,所以v +20100=v-2060. 3。
以上的式子v +20100,v -2060,a s ,sv ,有什么共同点?它们与分数有什么相同点和不同点? 二、例题讲解 P128例1。
当x 为何值时,分式有意义.[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解出字母x 的取值范围。
[提问]如果题目为:当x 为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念。
(补充)例2. 当m 为何值时,分式的值为0? (1) (2) (3) [分析] 分式的值为0时,必须同时..满足两个条件:错误!分母不能为零;错误! 1-m m32+-m m 112+-m m分子为零,这样求出的m 的解集中的公共部分,就是这类题目的解。
[答案] (1)m=0 (2)m=2 (3)m=1三、随堂练习1.判断下列各式哪些是整式,哪些是分式? 9x+4, x 7 , 209y +, 54-m , 238y y -,91-x 2. 当x 取何值时,下列分式有意义?(1) (2) (3) 3。
八年级数学上册 15.1 分式 15.1.1 从分数到分式教学设计(新版)新人教版一. 教材分析《八年级数学上册》第15.1节主要介绍分式的概念。
通过这一节的学习,学生能够理解分数与分式的联系,掌握分式的基本性质,并能够进行简单的分式运算。
本节内容是整个分式部分的基础,对于学生来说具有重要的意义。
二. 学情分析八年级的学生已经掌握了分数的基本知识,对于分数的加减乘除等运算也有一定的了解。
但是,学生对于分数与分式的区别和联系可能还不是很清楚,对于分式的运算也可能会感到困惑。
因此,在教学过程中,需要引导学生理解分数与分式的关系,并通过具体的例子让学生掌握分式的运算方法。
三. 教学目标1.知识与技能:学生能够理解分数与分式的联系,掌握分式的基本性质,并能够进行简单的分式运算。
2.过程与方法:学生通过观察、思考、操作等活动,培养自己的观察能力、思维能力和动手能力。
3.情感态度与价值观:学生能够积极参与课堂活动,对数学产生兴趣,培养自己的抽象思维能力。
四. 教学重难点1.重点:分数与分式的联系,分式的基本性质,分式的运算方法。
2.难点:分式的运算规律,分式方程的解法。
五. 教学方法采用问题驱动法、案例教学法和小组合作法。
通过设置问题引导学生思考,通过具体的案例让学生理解分式的概念和运算方法,通过小组合作让学生互相交流和探讨,提高学生的学习效果。
六. 教学准备1.教学课件:制作精美的教学课件,帮助学生直观地理解分式的概念和运算方法。
2.教学案例:准备一些具体的案例,让学生通过观察和操作来理解分式的运算方法。
3.练习题:准备一些练习题,让学生在课堂上进行练习,巩固所学知识。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾分数的基本知识,如分数的定义、分数的加减乘除等。
然后引导学生思考分数与分式的关系,引出分式的概念。
2.呈现(15分钟)利用教学课件呈现分式的定义和基本性质,让学生直观地理解分式的概念。
从分数到分式教学设计一、教学目标1.了解分式、有理式的概念.2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件.二、重点、难点1.重点:理解分式有意义的条件,分式的值为零的条件.2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件.三、课堂讲解回顾与思考:1.下列两个整数相除如何表示成分数的形式:3÷4= , 10 ÷ 3= ,2、在代数式中,整式的除法也可以类似地表示。
试用用类似分数的形式表示下列整式的除法:(1) 90÷x 可以用式来表示。
(2)60÷(x-6)可以用式子来表示新课引入:引例11.长方形的面积为10cm²,长为7cm,宽应为____cm;长方形的面积为S,长为a,宽应为______.引例22.把体积为200cm ³的水倒入底面积为33cm ²的圆柱形容器中,水面高度为____cm ;把体积为V 的水倒入底面积为S 的圆柱形容器中,水面高度为______.想一想有什么相同点?不同点?相同点都是(即A÷B )的形式不同点分数的分子A 与分母B 都是整数分式的分子A 与分母B 都是整式, 并且分母 B 中含有字母、a S 、S V 与a133200引入新知:一般地,如果A, B 表示两个整式,并且B 中含有字母,那么式子就叫做分式.判断:下面的式子哪些是分式?类比 分数 来 学习 分式 1、分数,有意义吗?2、分式成立有条件吗?有什么条件?3、计算a =-1, a =2时,分式值分别是多少? 讨论我们知道:除数不能为0,那么分式中的分母应满足什么条件呢?分式的分母表示除数,由于除数不能为0,所以分式的分母不能为0,即当B ≠0时,分式才能有意义,否则无意义. 讲解例1:(1)当x 时,分式 有意义;(2)当x 时,分式 有意义;(3)当b 时,分式 有意义; sb -275-x 7232S 5122+x SV 1222-+-x y xy x x 321-x xb351-(4)当x ,y 满足关系 时,分式 有意义.类比 分数 来 学习 分式补充例题:当 x 取什么值时,下列分式的值为零 :解:由分子|x|-2=0,得 x =±2。
人教版数学八年级上册教学设计15.1《分式》一. 教材分析人教版数学八年级上册第15.1节《分式》是初中数学的重要内容,主要让学生了解分式的概念、性质和分式的运算。
本节内容为后续的分式方程和不等式的学习打下基础。
教材通过丰富的实例引入分式,让学生在具体的情境中感受分式的意义,进而总结出分式的概念。
本节课的内容包括分式的定义、分式的基本性质、分式的运算以及分式的化简。
二. 学情分析八年级的学生已经掌握了实数、代数式的相关知识,具备了一定的逻辑思维能力和抽象思维能力。
但是,对于分式的理解还需要通过具体的实例来帮助学生建立直观的认识。
学生在学习过程中可能对分式的运算规则和分式的化简部分存在一定的困难,因此需要教师在教学过程中进行详细的讲解和引导。
三. 教学目标1.知识与技能:让学生掌握分式的概念、性质和分式的运算方法,能够正确进行分式的化简。
2.过程与方法:通过实例引入分式,让学生在具体的情境中感受分式的意义,培养学生的抽象思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神,使学生能够自主探究、合作交流。
四. 教学重难点1.重点:分式的概念、性质和分式的运算。
2.难点:分式的化简以及分式运算的灵活运用。
五. 教学方法1.情境教学法:通过具体的实例引入分式,让学生在实际情境中感受分式的意义。
2.启发式教学法:引导学生主动探究分式的性质和运算规律,培养学生的抽象思维能力。
3.小组合作学习:学生进行小组讨论,培养学生的团队合作精神,提高学生的交流能力。
六. 教学准备1.准备相关的实例和图片,用于引入分式和解释分式的概念。
2.准备分式的运算练习题,用于巩固学生的运算能力。
3.准备分式的化简示例,用于引导学生掌握分式的化简方法。
七. 教学过程1.导入(5分钟)利用实例引入分式,如“一块土地的长是宽的2倍,若长方形土地的面积为36平方米,求这块土地的宽是多少米?”让学生在具体的情境中感受分式的意义。
分式教学目标:1.掌握分式中分子、分母和分式本身符号变号的法则。
2.能正确熟练地运用分式的变号法则解决有关的问题。
教学重点:分式的分子、分母和分式本身符号变号的法则。
教学难点:分式的变号法则,在分式运算中应用十分广泛。
应用时要注意:分子与分母是多项式时,第一项的符号不能作为分子或分母的符号,应将其中的每一项变号。
教具准备: 多媒体课件.教学过程:一.解题方法指导【例1】不改变分式的值,使下列分式的分子、分母不含“-”号:(1)ba 34-- (2)y r 5- (3)nm 75-分析:由于要求分式的分子、分母不含“-”号,而对分式本身的符号未做规定。
解:由分式的符号变化法则,可得结果(1)b a 34--=ba 34 (2)y r 5-=y r 5- (3)n m 75-=nm 75-【例2】不改变分式的值,使下列分式的分子与分母的最高次项的系数是正数:(1)13232-+---a a a a (2)32211x x x x ++-- (3)1123+---a a a分析:由于要求分式的分子、分母的最高次项的系数是正数,而对分式本身的符号未做规定,所以根据分式的符号法则,使分式中分子、分母与分式本身改变两处符号即可。
解:(1)原式=13232-+-+--a a a a =)13()2(32+---+-a a a a =13232+--+a a a a 。
(2)原式=11232+++--x x x x =1)1(232++-+-x x x x =11232++-+-x x x x 。
(3)原式=1123+-+--a a a =1)1(23+----a a a =1123+--a a a 。
说明:两个整式相除,所得的分式,其符号法则与有理数除法的符号法则相类似,也同样遵循“同号得正,异号得负”的原则。
二、激活思维训练【例】根据下列条件,求值或允许值的范围:(1)分式121+-x x 的值是负数;(2)分式xx 2)3(-的值是正数; 说明:此题是根据分式的符号法则,来判定分式的正负性。
分式教案:15.1.1 分 式一、学习目标:(1)让学生了解分式的概念,能用分式表示实际问题中的数量关系;(2)能确定分式有意义的条件.二、学习重点:分式的概念三、学习难点:(1)分式有意义的条件;(2)分式的值为零的条件.四、教学思路:本课时由实际问题引入,通过类比分数的概念得到分式的概念,并进一步研究分式有意义的条件.五、教学设计:(一)引出新知【思考】(1)长方形的面积为102cm ,长为7cm,则宽为 Cm; 长方形的面积为s ,长为a,则宽为 .(2)把体积为2003cm 的水倒入底面积为332cm 的圆柱形容器中,则水面高度为 ;把体积为V 的水倒入底面积为S 的圆柱形容器中,则水面高度为 ; (二)探索新知1.分式的概念(1)概念:一般地,如果A ,B 表示两个整式,并且B .中含有字母.....,那么式子A B叫做分式. (2)三个要素(条件):①形如A B的式子; ②A ,B 为整式;③分母B 中含有字母.这三个条件缺一不可.破疑点 区分整式与分式 整式和分式的区别在于分式的分母中含有字母.因此,在判断一个式子是否是分式时,只看未化简的式子的分母中是否含有字母,即分母中含有字母的为分式.【例1】 在下列式子中,哪些是分式?哪些是整式?x 3,4x ,y -2y ,y x -y ,ab 2,3π,-x -y x +y. 解:分式有:4x ,y -2y ,y x -y ,-x -y x +y; 整式有:x 3,ab 2,3π. 2.分式有意义的条件(1)分式有意义的条件:分母不等于零(因为0不能作除数,所以分式有意义的条件是分母不等于零).(2)分式无意义的条件:分母等于零.(3)分式的值为零的条件:分子等于零,分母不等于零.二者缺一不可.分式的值为零,千万不要忽视分母不为零这个条件.谈重点 分式有意义的理解 (1)分式与分数不同,因为分数的分母是一个具体的数,是否为零,一目了然,而要明确分式是否有意义,需要分析、讨论分母中所含有的字母的取值范围,以免分母为零的情况发生.(2)必须在分式有意义的前提下,才能计算分式的值是多少;也必须在分式有意义的前提下,才能讨论分式的值等于零的条件.【例2】下列分式中的字母满足什么条件时分式有意义?x 32)1(; 1)2(-x x ; b351)3(-; y x y x -+)4(. 解:;,即有意义,则分母要使分式0033x2)1(≠≠x x ;,即有意义,则分母要使分式1011)2(≠≠--x x x x ;,即有意义,则分母要使分式35035351)3(≠≠--b b b .0)4(y x y x yx y x ≠≠--+,即有意义,则分母要使分式 (三)运用新知下列分式中,当x 取何值时,分式有意义?当x 取何值时,分式的值为零?(1)x -1x 2+1;(2)3x +12x -3;(3)|x |-2x +2;(4)2x 2+5. 解:(1)对于一切实数x ,x 2≥0恒成立,所以x 2+1>0.所以无论x 为何实数,分式x -1x 2+1都有意义.由⎩⎪⎨⎪⎧x -1=0,x 2+1≠0,得x =1,所以当x =1时,分式x -1x 2+1的值为零. (2)由分母2x -3≠0,得x ≠32,所以当x ≠32时,分式3x +12x -3有意义.由⎩⎪⎨⎪⎧3x +1=0,2x -3≠0,得x =-13,所以当x =-13时,分式3x +12x -3的值为零. (3)由分母x +2≠0,得x ≠-2,所以当x ≠-2时,分式|x |-2x +2有意义. 由⎩⎪⎨⎪⎧|x |-2=0,x +2≠0,得x =2,所以当x =2时,分式|x |-2x +2的值为零. (4)因为对于一切实数x ,x 2≥0,所以x 2+5>0恒成立,所以无论x 为何实数,分式2x 2+5都有意义.因为分子2≠0,所以分式的值不可能为零,即使该分式的值为零的x 的值不存在.(五)布置作业:.3,2,1129P1、用类比分数学习分式;2、分式中分母必含有字母;3、分式的分母不能为零;4、当①分子为零,②分母不为零时,分式值为零。
人教版八年级数学上册教学设计15.1 分式一. 教材分析人教版八年级数学上册第15.1节“分式”是学生在掌握了实数、代数式等基础知识后,进一步学习数学的重要内容。
分式是数学中基本的代数表达式,它在生活中、物理、化学等学科中都有广泛的应用。
本节内容主要介绍分式的概念、性质和运算,为学生今后学习函数、方程等知识打下基础。
二. 学情分析八年级的学生已经具备了一定的代数基础,能够进行简单的代数运算。
但是,对于分式的概念和性质,学生可能还比较陌生,需要通过具体的例子和练习来逐步理解和掌握。
同时,学生可能对分式的运算规则感到困惑,需要通过大量的练习来熟练运用。
三. 教学目标1.理解分式的概念,掌握分式的性质。
2.学会分式的基本运算,能够熟练进行分式的化简和求值。
3.培养学生的逻辑思维能力,提高学生解决实际问题的能力。
四. 教学重难点1.分式的概念和性质。
2.分式的运算规则。
五. 教学方法采用讲授法、例题演示法、练习法、小组合作法等教学方法。
通过生动的例子和丰富的练习,让学生理解和掌握分式的概念和性质,熟练运用分式的运算规则。
六. 教学准备1.教学PPT。
2.例题和练习题。
3.学生分组合作的学习材料。
七. 教学过程1.导入(5分钟)通过一个实际问题引入分式的概念,如“某班级有男生和女生共60人,其中男生是女生的2倍,求男生和女生各有多少人?”让学生思考和讨论,引出分式的定义。
2. 呈现(15分钟)讲解分式的概念,通过PPT 展示分式的基本性质,如分式的分子、分母、分式的值等。
同时,给出一些分式的例子,让学生理解和掌握分式的概念和性质。
3.操练(15分钟)让学生进行分式的化简和求值的练习,如“化简分式2x 3x+5”,“求分式x−1x+2的值,当x =3时”。
通过这些练习,让学生熟练运用分式的性质和运算规则。
4. 巩固(10分钟)让学生分组合作,解决一些实际问题,如“某商品的原价是120元,打八折后的价格是多少?”让学生运用分式进行计算和解决实际问题,提高学生的应用能力。
人教版义务教育教科书八年级上册
15.1.2《分式的基本性质》第1课时教学设计
一、教材分析
1、地位作用:“分式的基本性质(第1课时)”是新人教版八年级数学上册第十五章第一节“分式” 的重点内容之一,是在小学学习了分数的基本性质的基础上进行的,是分式变形的依据,也是进一步学习分式的通分、约分及四则运算的基础,使学生掌握本节内容是学好本章及以后学习方程、函数等问题的关键,对后续学习有重要影响.
2、教学目标:
(1)、能总结分式的基本性质;利用分式的基本性质对分式进行“等值”变形;
(2)、说出分式约分的步骤和依据及方法,能将分式化为最简分式。
3、教学重、难点:
重点:(1)利用分式的基本性质约分;
(2)将一个分式化简为最简分式。
难点:分子、分母是多项式的分式的约分。
重难点突破方法:通过类比分数的基本性质及分数的约分、通分,推测出分式的基本性质、约分和通分,通过例题、练习来巩固这些知识点。
二、教学准备:多媒体课件、导学案
三、教学过程:
- 1 -
- 4 -。
人教版义务教育教科书八年级数学上册
15.1.1《从分数到分式》第1课时教学设计
一、教材分析
1、地位作用:本节课的主要内容是分式的概念以及掌握分式有意义、无意义的条件.它是在学生掌握了整式的四则运算.多项式的因式分解,并以分数知识为基础,对比引出分式的概念,把学生对“式”的认识由整式扩充到有理式.学好本节知识是为进一步学习分式知识打下扎实的基础,也是以后学习函数.方程等问题的关键。
2、教学目标:
(1)、能用分式表示现实情境中的数量关系,理解分式的概念,能够根据定义判断一个式子是否是分式。
(2)、能熟练地求出分式有意义、无意义及分式值为零的条件。
3、教学重、难点
重点:分式的概念
难点:理解和掌握分式有意义的条件
突破难点的方法:由于部分学生容易忽略分式分母的值不能为0,所以在教学中,采取类比分数的意义,加强对分式的分母不能为0的教学.
二、教学准备:多媒体课件
三、教学过程。
15.1.2 分式的基本性质1.通过类比分数的基本性质,说出分式的基本性质,并能用字母表示.(重点)2.理解并掌握分式的基本性质和符号法则.(难点)3.理解分式的约分、通分的意义,明确分式约分、通分的理论依据.(重点)4.能正确、熟练地运用分式的基本性质,对分式进行约分和通分.(难点)一、情境导入中国古代的数学论著中就有对“约分”的记载,如《九章算术》中就曾记载“约分术”,并给出了详细的约分方法,这节课我们就学习分式化简的相关知识,下面先探索分式的基本性质.二、合作探究探究点一:分式的基本性质【类型一】 利用分式的基本性质对分式进行变形下列式子从左到右的变形一定正确的是( )A.a +3b +3=a bB.a b =ac bcC.3a 3b =a bD.a b =a 2b2 解析:A 中在分式的分子与分母上同时加上3不符合分式的基本性质,故A 错误;B 中当c =0时不成立,故B 错误;C 中分式的分子与分母同时除以3,分式的值不变,故C 正确;D 中分式的分子与分母分别乘方,不符合分式的基本性质,故D 错误;故选C.方法总结:考查分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.【类型二】 不改变分式的值,将分式的分子、分母中各项系数化为整数不改变分式0.2x +12+0.5x的值,把它的分子、分母的各项系数都化为整数,所得结果正确的为( )A.2x +12+5xB.x +54+xC.2x +1020+5xD.2x +12+x解析:利用分式的基本性质,把0.2x +12+0.5x 的分子、分母都乘以10得2x +1020+5x.故选C. 方法总结:观察分式的分子和分母,要使分子与分母中各项系数都化为整数,只需根据分式的基本性质让分子和分母同乘以某一个数即可.【类型三】 分式的符号法则不改变分式的值,使下列分式的分子和分母都不含“-”号.(1)-3b 2a ;(2)5y -7x ;(3)-a -2b 2a +b. 解析:在分子的符号,分母的符号,分式本身的符号三者当中同时改变其中的两个,分式的值不变.解:(1)原式=-3b 2a ;(2)原式=-5y 7x 2;(3)原式=-a +2b 2a +b. 方法总结:这类题目容易出现的错误是把分子的符号,分母的项的符号,特别是首项的符号当成分子或分母的符号.探究点二:最简分式、分式的约分和通分【类型一】 判定分式是否是最简分式下列分式是最简分式的是( )A.2a 2+a ab B.6xy 3a C.x 2-1x +1 D.x 2+1x +1解析:A 中该分式的分子、分母含有公因式a ,则它不是最简分式.错误;B 中该分式的分子、分母含有公因数3,则它不是最简分式.错误;C 中分子为(x +1)(x -1),所以该分式的分子、分母含有公因式(x +1),则它不是最简分式.错误;D 中该分式符合最简分式的定义.正确.故选D.方法总结:最简分式的标准是分子,分母中不含公因式.判断的方法是把分子、分母分解因式,并且观察有无公因式.【类型二】 分式的约分约分:(1)-5a 5bc 325a 3bc 4;(2)x 2-2xy x 3-4x 2y +4xy 2. 解析:先找分子、分母的公因式,然后根据分式的基本性质把公因式约去.解:(1)-5a 5bc 325a 3bc 4=5a 3bc 3(-a 2)5a 3bc 3·5c =-a 25c ; (2)x 2-2xy x 3-4x 2y +4xy 2=x (x -2y )x (x -2y )2=1x -2y. 方法总结:约分的步骤:(1)找公因式.当分子、分母是多项式时应先分解因式;(2)约去分子、分母的公因式.【类型三】 分式的通分通分:(1)b 3a 2c 2,c -2ab ,a 5cb3; (2)1a 2-2a ,a a +2,1a 2-4. 解析:确定最简公分母再通分.解:(1)最简公分母为30a 2b 2c 2,b 3a 2c 2=10b 430a 2b 3c 2,c -2ab =-15ab 3c 330a 2b 3c 2,a 5cb 3=6a 3c 30a 2b 3c 2; (2)最简公分母为a (a +2)(a -2),1a 2-2a =a 2+2a a (a +2)(a -2),a a +2=a 3-2a 2a (a +2)(a -2),1a 2-4=a a (a +2)(a -2). 方法总结:通分的一般步骤:(1)确定分母的最简公分母.(2)用最简公分母分别除以各分母求商.(3)用所得到的商分别乘以分式的分子、分母,化成同分母的分式.三、板书设计分式的基本性质1.分式的基本性质:分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变.2.符号法则:分式的分子、分母及分式本身,任意改变其中两个符号,分式的值不变;若只改变其中一个的符号或三个全变号,则分式的值变成原分式值的相反数.本节课的流程比较顺畅,先探究分式的基本性质,然后顺势探究分式变号法则.在每个活动中,都设计了具有启发性的问题,对各个知识点进行分析、归纳总结、例题示范、方法指导和变式练习.一步一步的完成既定目标.整个学习过程轻松、愉快、和谐、高效.。
15.1 分式15.1.1 从分数到分式1.了解分式的概念,能判断一个代数式是否为分式,会求分式的值.(重点)2.理解当分母不为零时分式才有意义;在分式有意义的条件下,会求分式的分母中所含字母的取值范围;会确定分式的值为零的条件.(难点)一、情境导入多媒体展示,学生欣赏一组图片(长江三峡).长江三峡自古以就是四川通往中原的重要水路,也是秀美壮丽、享誉中外的世界旅游胜地.早在1500多年前的魏晋时期,地理学家郦道元就在他的著作《水经注》中留下一段生动的描述:“有时朝发白帝城,暮至江陵,期间千二里,虽乘龙御风,不以疾也.”多媒体出示以下问题:(1)如果客船早6时从白帝城启航,顺水而下,傍晚6时到达江陵,航程600千米,客船航行的平均速度约为多少千米/小时?(2)如果客船8小时航行了s千米,该船航行的平均速度是多少?(3)如果客船在静水中的航行速度为v千米/小时,江水流动的平均速度为20千米/小时.那么客船顺水而下,航行600千米需多少时间?如果客船逆水航行s千米,需要多少时间?你能解答情境导入中的问题吗?与同学交流.二、合作探究探究点一:分式的概念【类型一】 判断代数式是否为分式 在式子1a 、2xy π、3a 2b 3c 4、56+x 、x 7+y 8、9x +10y中,分式的个数有( ) A .2个 B .3个 C .4个 D .5个 解析:1a 、56+x 、9x +10y这3个式子的分母中含有字母,因此是分式.其他式子分母中均不含有字母,是整式,而不是分式.故选B.方法总结:分母中含有字母的式子就是分式,注意π不是字母,是常数.【类型二】 探究分式的规律 观察下面一列分式:x 3y ,-x 5y 2,x 7y 3,-x 9y4,…(其中x ≠0). (1)根据上述分式的规律写出第6个分式;(2)根据你发现的规律,试写出第n (n 为正整数)个分式,并简单说明理由.解析:(1)根据已知分式的分子与分母的次数与系数关系得出答案;(2)利用(1)中数据的变化规律得出答案.解:(1)观察各分式的规律可得:第6个分式为-x 13y6;(2)由已知可得:第n (n 为正整数)个分式为(-1)n +1×x 2n +1y n ,理由:∵分母的底数为y ,次数是连续的正整数,分子底数是x ,次数是连续的奇数,且偶数个为负,∴第n (n 为正整数)个分式为(-1)n +1×x 2n +1y n . 方法总结:此题主要考查了分式的定义以及数字变化规律,得出分子与分母的变化规律是解题关键.【类型三】 根据实际问题列分式每千克m 元的糖果x 千克与每千克n 元的糖果y 千克混合成杂拌糖,这样混合后的杂拌糖果每千克的价格为( )A.nx +my x +y 元B.mx +ny x +y元C.m +n x +y 元D.12(x m +y n)元 解析:由题意可得杂拌糖每千克的价格为mx +ny x +y 元.故选B. 方法总结:解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系,列出代数式.探究点二:分式有意义或无意义的条件【类型一】 分式有意义的条件分式x -1(x -1)(x -2)有意义,则x 应满足的条件是( ) A .x ≠1 B .x ≠2C .x ≠1且x ≠2D .以上结果都不对解析:∵分式有意义,∴(x -1)(x -2)≠0,∴x -1≠0且x -2≠0,∴x ≠1且x ≠2.故选C.方法总结:分式有意义的条件是分母不等于零.【类型二】 分式无意义的条件使分式x3x -1无意义的x 的值是( ) A .x =0 B .x ≠0 C .x =13 D .x ≠13解析:由分式有意义的条件得3x -1≠0,解得x ≠13.则分式无意义的条件是x =13,故选C. 方法总结:分式无意义的条件是分母等于0.探究点三:分式的值为零、为正或为负的条件 若使分式x 2-1x +1的值为零,则x 的值为( ) A .-1 B .1或-1C .1D .以上都不对解析:由题意得x 2-1=0且x +1≠0,解得x =1,故选C.方法总结:分式的值为零的条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.三、板书设计从分数到分式1.分式的概念:一般地,如果A 、B 表示两个整式,并且B 中含有字母,那么式子A B 叫做分式.2.分式A B 有无意义的条件:当B ≠0时,分式有意义;当B =0时,分式无意义.3.分式A B值为0的条件:当A =0,B ≠0时,分式的值为0.本节采取的教学方法是引导学生独立思考、小组合作,完成对分式概念及意义的自主探索;通过“课后练习应用拓展”这一环节发展了学生思维,巩固了课堂知识,增强了学生实践应用能力.提出问题让学生解决,问题由易到难,层层深入,既复习了旧知识又在类比过程中获得了解决新知识的途径.在这一环节提问应注意循序性,先易后难、由简到繁、层层递进,台阶式的提问使问题解决水到渠成.。
15.1 分式第1课时从分数到分式教学目标1.了解分式的概念,知道分式与整式的区别和联系.2.了解分式有意义的含义,会根据具体的分式求出分式有意义时字母所满足的条件.3.理解分式的值为零、为正、为负时,分子分母应具备的条件.教学重点分式的意义.教学难点准确理解分式的意义,明确分母不得为零.教学设计一师一优课一课一名师(设计者:)教学过程设计一、创设情景,明确目标一艘轮船在静水中的最大航速是20 km/h,它沿江以最大船速顺流航行100 km 所用时间,与以最大航速逆流航行60 km所用的时间相等.江水的流速是多少?提示:顺流速度=水速+静水中的速度;逆流速度=静水中的速度-水速.●自主学习指向目标1.自学教材第127至128页.2.学习至此:请完成《学生用书》相应部分.三、合作探究,达成目标探究点一分式的概念活动一:阅读教材思考问题:式子Sa,VS以及式子10020+v和6020-v有什么共同特点?它们与分数有什么相同点和不同点?展示点评:如果A,B表示两个________(整式),并且B中含有________(字母),那么式子AB叫做分式.小组讨论:如何判断一个式子是否为分式?分式与整式有什么区别?反思小结:判断一个式子是否为分式,可根据:①具有分数的形式;②分子、分母都是整式;③分母中含有字母,分式与整式的区别在于:分式的分母中含有字母,而整式的分母中不含字母.针对训练:见《学生用书》相应部分探究点二分式有意义的条件活动二:(1)当x≠0时,分式23x有意义;(2)当x≠1时,分式xx-1有意义;(3)当b≠53时,分式15-3b有意义;(4)x,y满足__x≠y__时,分式x+yx-y有意义.展示点评:教师示范解答的一般步骤,强调分母不为零.小组讨论:归纳分式有意义的条件.反思小结:对于任何分式,分母均不能为零,即当分母不为零时,分式有意义;反之,分母为零时,分式无意义.针对训练:见《学生用书》相应部分四、总结梳理,内化目标1.知识小结——(1)学习了分式,知道了分式与分数的区别.(2)知道了分式有意义和值为零的条件.2.思想方法小结——类比、转化等数学思想.五、达标检测,反思目标1.下列各式①2x ,②x +y 5,③12-a ,④x π-1中,是分式的有( C ) A .①② B .③④ C .①③ D .①②③④2.当x 为任意实数时,下列分式中,一定有意义的是( C )A.x -1x 2B.x +1x 2-1C.x -1x 2+1D.x -1x +23.某食堂有煤m t ,原计划每天烧煤a t ,现每天节约用煤b(b<a) t ,则这批煤可比原计划多烧__mb a (a -b )__天. 4.如果分式|x|-1x 2+x -2的值为0,那么x 的值是__-1__. 5.当x 取何值时,下列分式有意义?(1)3x -62x +5; (2)5x x 2-9. 解:(1)2x +5≠0 ∴x≠-52(2)x 2-9≠0 ∴x≠±36.求分式x +82x 2-1的值,其中x =-12. 解:当x =-12 原式=(-12+8)2×14-1=-15●布置作业,巩固目标教学难点1.上交作业课本第133页1-3. 2.课后作业见《学生用书》.第2课时分式的基本性质(一)教学目标1.理解并掌握分式的基本性质,并能运用这些性质对分式进行变形.2.体会类比转化的数学思想方法.教学重点理解并掌握分式的基本性质.教学难点运用分式的基本性质进行分式化简.教学设计一师一优课一课一名师(设计者:)教学过程设计一、创设情景,明确目标分数的基本性质是什么?你能用字母来表示分数的基本性质吗?二、自主学习,指向目标1.自学教材第129页.2.学习至此:请完成《学生用书》相应部分.三、合作探究,达成目标探究点一分式的基本性质活动一:类比分数的基本性质,你能想出分式有什么性质吗?例1(1)x3xy =()y;3x2+3xy6x2=x+y()(2)1ab=()a2b;2a-ba2=()a2b展示点评:学生说出填空的思考过程.小组讨论:运用分式的基本性质应注意什么问题?分数的基本性质与分式的基本性质有什么区别?反思小结:运用分式的基本性质应注意:(1)分子、分母必须是同乘以或除以同一个整式.(2)分子、分母同乘(或除以)的式子不能为零.它们的区别在于:分数的分子、分母同乘(或除)一个不为零的数,而分式的分子、分母同乘(或除)一个不为零的整式,体现了由数到式的深化.针对训练:见《学生用书》相应部分探究点二分式基本性质的应用活动二:不改变分式的值,把下列各式中分子、分母各项系数化为整数.(1)a+12b34a-b(2)12a-0.2b0.5b-14a展示点评:(1)4a+2b3a-4b;(2)10a-4b10b-5a.小组讨论:把分式中的分子、分母各项系数化成整数的依据是什么?反思小结:要根据分子和分母中的数字系数特点,运用分式的基本性质变形.针对训练:见《学生用书》相应部分四、总结梳理,内化目标1.知识小结——(1)理解并掌握分式的基本性质,并能运用这些性质对分式进行变形.2.思想方法小结——类比、转化等数学思想.五、达标检测,反思目标1.把分式2x2x-3y中的x和y都扩大5倍,那么这个分式的值( B )A.扩大为原来的5倍B.不变C.缩小到原来的15D.扩大为原来的52倍2.对于分式1x+1的变形一定成立的是( C )A.1x+1=2x+2B.1x+1=x-1x2-1C.1x+1=x+1(x+1)2D.1x+1=-1x-13.不改变分式的值,使分式的分子与分母都不含负号:①--5x2y=__5x2y__;②--a-3b=__-a3b__.4.当2x-1xy=(2x-1)kx2y3时,k代表的代数式是__xy2__.5.不改变分式的值,把下列各式的分子与分母中各项的系数都化为整数:①13x-12yx+16y②0.2x-12y13x+14解:①2x-3y6x+y②12x-30y20x+156.不改变分式的值,使分式的分子.分母中的首项的系数都不含“-”号:①-2x-3y②-x2+2x-1x-2解:①2x3y②-x2-2x+1x-2●布置作业,巩固目标教学难点1.上交作业课本第133页第5题.2.课后作业见《学生用书》.第3课时分式的基本性质(二)教学目标1.理解并掌握分式的基本性质,运用分式的基本性质进行分式的约分和通分.2.通过分式的约分和通分体会类比的思想.教学重点分式的基本性质.教学难点运用分式的基本性质进行分式的约分和通分.教学设计一师一优课一课一名师(设计者:)教学过程设计一、创设情景,明确目标想一想对分数812怎样化简?你认为分式a2a与12相等吗?n2mn与nm呢?二、自主学习,指向目标1.自学教材第130至第132页.2.学习至此:请完成《学生用书》相应部分.三、合作探究,达成目标探究点一约分活动一:1.阅读教材思考问题:类比分数的约分,思考什么叫分式约分?什么叫最简分式?2.例1约分:(1)-25a2bc3 15ab2c解:-5ac2 3b(2)x2-9 x2+6x+9解:x-3 x+3(3)6x2-12xy+6y23x-3y解:2x-2y展示点评:分式的约分类似于分数的约分,结果都是最简分式.小组讨论:分式约分的一般步骤是什么?反思小结:若分式的分子和分母是单项式,约分时先确定公因式,再约分;若分子,分母是多项式,约分时先对分子分母分解因式,再约分成最简分式.针对训练:见《学生用书》相应部分探究点二通分活动二:1.阅读教材思考问题:类比分数的通分,思考如何对分式进行通分?什么叫最简公分母?例2通分(1)32a2b与a-bab2c(2)2xx-5与3xx+5展示点评:(1)32a2b=3bc2a2b2ca-bab2c=2a2-2ab2a2b2c(2)2xx-5=2x2+10x(x+5)(x-5)3xx+5=3x2-15x(x-5)(x+5)小组讨论:分式通分的关键是什么?反思小结:通分的关键是找准最简公分母.若各项是多项式,应先分解因式,再确定最简公分母.针对训练:见《学生用书》相应部分四、总结梳理,内化目标1.知识小结——(1)约分的步骤及最简分式;(2)通分的步骤及最简公分母.2.思想方法小结——渗透类比转化的数学思想方法.五、达标检测,反思目标1.下列分式12b2c4a、5(x+y)2y+x、a2+b23(a+b)、4a2-b22a-b、a-bb-a中,最简分式的个数是( A )A.1个 B.2个 C.3个 D.4个2.化简m2-3m9-m2的结果是( B )A.mm+3B.-mm+3C.mm-3D.m3-m3.分式y5x2和y2x5的最简公分母是( C )A.10x7 B.7x10 C.10x5 D.7x74.分式1(x+5)(5-x)2和1(5+x)2(x-5)的最简公分母是( B )A.(x+5)3(5-x)3B.(x+5)2(x-5)2 C.(x+5)3(x-5)2 D.(x+5)2(x-5)3 5.通分:(1)y2x2,56xy2z,4c3xy;解:y2x2=3y3z6x2y2z5 6xy2z =5x 6x2y2z4c 3xy =4c·2xyz3xy·2xyz=8xyzc6x2y2z(2)1x +2,4x x 2-4,22-x. 解:1x +2=x -2(x +2)(x -2)4x x 2-4=4x(x +2)(x -2)22-x =-2(x +2)(x -2)(x +2)=-2x +4(x +2)(x -2)6.约分:(1)-36xy 2z 36yz 2 (2)2x 2y -2xy 2x 2-2xy +y 2解:(1)原式=-6xyz(2)原式=2xy (x -y )(x -y )2=2xy x -y●布置作业,巩固目标教学难点1.上交作业 课本第133页第6、7题.2.课后作业 见《学生用书》.。