化归思想
- 格式:ppt
- 大小:315.00 KB
- 文档页数:13
浅谈化归思想数学思想方法是数学的灵魂所在,而化归思想不仅是一种重要数学思想,也是一种最基本的思维策略,更是一种非常有效的数学思维方式和解题方法。
一、什么是化归从字面上来看,化归,可以理解为转化和归结。
数学方法论中提到的“化归”,是指把需要解决的问题,运用一些手段方法先把它转化(或再转化)然后归结到已经能解决(或容易解决)的问题中去,采用迂回的方式以先求转化后的问题答案再反过来,求未解决的问题,最终得到原问题答案的一种方法。
数学中的化归形成,还与数学本身的根源有关即公理化方法。
数学总是用已有的概念去定义新出现的概念,并且以此为据去处理解决各种新出现的未解决问题或者说把未知转化归结为已知,这就是化归思想。
化归有三个最基本的要素:化归对象(把什么进行转化),化归目标(化归对象转化成什么形式),化归途径(用什么方法进行转化)。
二、化归原则一般情况下,化归的时应遵循以下几个原则:1.熟悉化原则(也叫一般化原则),把我们所遇到的“陌生”问题转化成相对熟悉的问题以便于解答。
2.简单化原则,把复杂的问题转化为简单且容易解答的问题。
这里的简单与复杂是相对而言,简单也可以是解决问题的方案或处理方式简单。
3.直观化原则,把抽象的或内部关系模糊不清的问题转化为比较直观具体的问题。
有利于理清并把握问题涉及的各对象间的相互关系。
4.和谐化原则,指的是在对未知问题进行转化时应注意问题内部的和谐统一,便于制定解决问题的程序和选择处理方法。
5.寻找对立面原则,是指在解决问题时,如果从正面无法处理或很难处理,此时可以解决问题的反面从中找到处理原问题的灵感和方法。
化归的过程中这几个基本原则是相互联系、相互渗透和相互补充的,在解决实际性问题的过程中,常常需要把它们结合起来使用,这样可以让化归过程更加快速和简洁,会收到更好的效果。
三、化归方法进行化归时,选择适当的方法可以使转化处理问题更快捷。
化归有五种基本方法:分割法与组合法、一般化与特殊化法、恒等变形法、RMI方法和基本模型法。
运用“化归”思想发展学生核心素养的实践与探索1. 引言1.1 引言在教育领域,运用“化归”思想发展学生核心素养已经成为一种重要的教育方法和理念。
化归,源自于数学中的概念,是指将一个问题归结为已知的、更容易解决的问题,通过不断分解和转化,最终找到问题的解决方案。
在教育实践中,化归思想被引入到学生的核心素养发展中,旨在帮助学生培养问题解决能力、批判思维能力和创新能力。
随着教育领域对学生素养的要求越来越高,运用化归思想发展学生核心素养变得尤为重要。
化归思想可以帮助学生从复杂的问题中抽丝剥茧,找到问题的本质和关键点,从而更好地解决问题。
通过化归,学生可以培养出良好的分析和思考能力,更好地适应未来社会的发展需求。
本文将探讨化归思想在教育实践中的具体运用,并通过案例分析来展示其实际效果。
结合当前教育发展的趋势,展望未来化归思想在学生核心素养发展中的发展方向。
通过这篇文章,期望能够为教育工作者提供一些新的思路和启发,促进学生核心素养的全面发展。
2. 正文2.1 化归思想的概念化归思想是一种在数学、逻辑学和计算机科学等领域中经常应用的思维方法。
它指的是将一个较为复杂或难以理解的问题转化为一个更简单、更容易解决的问题的过程。
化归思想的核心在于将问题化简,通过找到问题的关键点和规律,将其归纳总结,从而找到解决问题的方法。
在化归思想中,常常通过寻找问题的共性和规律性,将问题归为一类。
这样一来,我们就可以通过研究这一类问题的特点和解决方法,来解决具体的问题,从而提高解决问题的效率和准确性。
化归思想在教育领域中也具有重要意义。
通过引导学生运用化归思想,可以帮助他们更好地理解和解决问题,培养他们的逻辑思维能力和创新能力。
学生在学习过程中,将面对各种各样的问题和挑战,如果能够通过化归思想将这些问题归纳总结,将大大提高学习效率和成就感。
了解和掌握化归思想对于学生来说是非常重要的。
通过引导学生在学习和生活中灵活运用化归思想,可以帮助他们更好地理解和解决问题,提高他们的核心素养水平。
运用“化归”思想发展学生核心素养的实践与探索一、什么是“化归”思想?“化归”这个词源自于古代哲学家老子的思想,“大道废,有仁义;智慧出,有大诈;六亲不和,有孝慈;国家昏乱,有忠臣”。
老子认为,一切事物都有其原始状态,而当事物发展到一定程度之后,可能会回归到其原始状态,这就是“化归”的思想。
在教育领域,“化归”思想强调了对学生核心素养的发展,并通过合理的方法和手段,引导学生回归到本真的状态,实现学生的全面发展。
二、运用“化归”思想发展学生的思维素养1. 引导学生反思在培养学生的思维素养方面,我们可以运用“化归”思想,通过引导学生反思自己的学习情况,使他们能够认识到自己的不足之处,然后通过合理的教学方法和手段,引导学生回归到学习的本真状态,实现学生的全面发展。
我们可以在课堂教学中引导学生自主学习,引导学生反思学习过程中的困难和挫折,激发学生的学习动力,使他们在反思的过程中不断提高自己的思维素养。
2. 培养学生批判思维能力在现代社会,学生需要具备较强的批判思维能力,才能在复杂的社会环境中成功应对各种问题。
我们可以通过“化归”思想,培养学生的批判思维能力。
在课堂教学中,我们可以引导学生思考问题,通过发散性思维和逻辑思维,帮助他们提升批判思维能力,引导学生回归到批判性思维的本真状态,实现学生的全面发展。
五、结语在教育实践中,我们应当充分发挥“化归”思想的作用,结合实际教学,发展学生的核心素养。
通过培养学生的思维素养、情感素养和行为素养,引导学生回归到真实的学习、生活和社会中,实现学生的全面发展。
相信在这种理念的指引下,我们一定能够更好地促进学生的全面发展,为社会培养更多的优秀人才。
所谓“化归”,就是转化和归结。
在解决数学问题时,人们常常将待解决的问题甲,通过某种转化过程,归结为一个已经解决或者比较容易解决的问题乙,然后通过乙问题的解答返回去求得原问题甲的解答,这就是化归方法的基本思想。
化归方法的要素:化归对象,即对什么东西进行化归;化归目标,即化归到何处去;化归途径,即如何进行化归。
下举例说明如何在教学中应用这一思想。
一、有关几何图形教学的应用例1:下图中小正方形的边长是4厘米,大正方形的边长是8厘米求阴影部分的面积。
阴景部分不规则图形是化归的对象,三角形是化归的目标。
(附图{图})图一中旋转法(旋转成一个大的直角三角形)是实施化归的途径。
图二中分割法(分割成两个钝角三角形)是实施化归的途径。
对于图三,长方形是化归的目标,补整法(补成一个大的长方形,然后去掉一个大的直角三角形、一个小的正方形、一个等腰直角三角形)是实施化归的途径。
平行四边形、三角形、梯形面积计算公式的推导,都是根据化归思想进行教学的,它们的化归过程简单地图示如下:(附图{图})平行四边形通过割补化归成长方形,平行四边形是化归的对象,长方形是化归的目标,割补法是化归的途径。
三角形是化归的对象,平行四边形是化归的目标,两个完全一样的三角形拼成平行四边形是实施化归的途径。
梯形是化归的对象,三角形是化归的目标,旋转法是实施化归的途径。
在这里长方形面积的计算方法是平行四边形面积计算方法的已有知识;平行四边形面积的计算方法是三角形面积计算的已有知识;三角形面积的计算方法是梯形面积计算方法的已有知识;前一种平面几何图形面积计算方法是后一种面积计算的基础;后一种平面图形面积计算需化归为前一种学生熟悉的图形,从而使问题得到解决。
(附图{图})例2:下图阴影部分是梯形,左面长方形的长为3厘米,宽为4厘米,A点为宽的中点,求阴影部分的面积。
(附图{图})图中梯形(阴影部分)的上底、下底和高都不知道,阴影部分梯形面积是化归的对象,左面长方形中的一个直角梯形面积是化归的目标,同底等高的长方形面积与平行四边形面积相等是实施化归的途径。
中学数学中常见的数学思想有哪些答题内容:1、化归的思想方法:所谓化归思想方法又叫转换思想方法、也叫转换思想方法、也叫转化思想方法,是一种把未解决的问题或特解决的问题,通过某种方式的转化,归化到一类已经能解决或比较容易解决的问题,最终得原问题的解答的思想方法.化归思想方法的三要素:化归谁化归对象、化归到哪化归目标、怎样化归化归方法.常见的化归方式有:已知与未知的化归、特殊与一般的化归、动与静的化归、抽象与具体的化归等.化归思想方法的特点:是实际问题的规范化、简单化、熟悉化、模式化、直观化、正难侧反思化、以便应用已知的理论、方法和技巧到解决问题的目的.其形式如图所示:例如方程问题转化为不等式问题:已知关于,的方程组,的解满足,求的取值范围.解析:先解关于,的方程组,再把用表示的,的代数式代入不等式组中,解关于的不等式组.2、数形结合的思想方法所谓数形结合的思想方法是指把数学问题用数量关系与图形结合起来解答数学问题.数形结合的思想方法的特点:数→形→问题的解答;形→数→问题的解答;数形,问题的解答.例如:如图所示、在数轴上的位置,请化简+的结果是:3、分类讨论的思想方法所谓分类讨论的思想方法是指根据所研究的问题的某种相同性和差异性将它们分类来进行研究的思想方法.分类讨论的思想方法的特点:分类不能重复也不能遗漏;同一次分类时,标准须相同;分类须有一定的范围,不能超范围.例如:三角形按边分类方法:三角形可分为不等边三角形、等腰三角形,等腰三角形又可分为等边三角形、底边和腰不相等的等腰三角形.三角形按角分类方法:三角形可分为直角三角形、锐角三角形、钝角三角形.4、类比与归纳的思想方法所谓类比与归纳的思想方法是包括类比思想方法和归纳思想方法.类比思想方法是指不同的研究对象在某些方面有相似或相同之处,来联想、推导、猜想这些研究对象在其它方面也可能相同或相似,并作出某种判断的推理的思想方法.其特点是从特殊到特殊的推理方式.例如:从分数性质到分式性质;从全等三角形到相似三角形等.归纳思想方法是指由个别的、特殊的事例来推出同一类事物一般性的方法.其特点是由特殊至一般的推理方式.例如:1个点分割直线为2个部分,2个点分割直线为3个部分,3个点分割直线为4个部分,4个点分割直线为5个部分,5个点分割直线为6个部分,┉,n个点分割直线为1个部分.类比与归纳的思想方法活动过程如下:研究对象形成命题证明5、数学建模的思想方法所谓数学建模的思想方法是根据所研究问题的一些属性、关系,用形式化的数学语言表示的一种数学结构,中学数学中常用的数学模型有:图形、图象、表格和数学表达式,具体讲有方程模型、函数模型、几何模型、三角模型、不等式模型和统计模型.数学建模的思想方法一般原则:简化原则、可推演原则、反映性原则,其一般形式如图所示:例如:某公司计划购买若干台电脑,现从两家协力商厂了解到同一型号的电脑报价均为5000元,并且多买都有一定的优惠,A协力商厂优惠条件:第一台按原报价收款,共余每台优惠30%;B协力商厂优惠条件:每台优惠20%.如果你是老板,你该怎么考虑,如何选择分析:什么情况下,两家协力商厂收费相同;什么情况下,A协力商厂优惠;什么情况下,B协力商厂优惠;列不等式解决实际问题的数学建模的思想方法.解:设购买台电脑,如果到A协力厂更优惠,则移项且合并得,不等式两边同除以-500得.所以购买大于3台时A协力厂更优惠;购买小于3台时B协力厂更优惠;购买3台时两家协力商厂收费相同.6、整体的思想方法所谓整体的思想方法是指将有共同特征的某一类问题看成一个完整的整体,通过对其全面深刻的观察,着眼于问题的整体结构上,从整体上把握问题的内容和解决的方向和策略的思想方法.例如:已知二元一次方程组为,求=,=.分析:通过观察可知两式相减得,则=;两式相加得,则+=15,即得.7、方程的思想方法所谓方程的思想方法是指在研究数学问题时,从问题中的已知量和未知量之间的数量关系中找出相等关系,运用数学语言将这种相等关系列出方程组,然后解方程组,从而使这个数学问题得解.其特点是将繁琐的过程简单化,殊殊的问题一般化.例如:把一长为30米的绳子做成一个长方形,已知宽:长=1:2,求这个长方形的宽和长各是多少解析:宽和长总和为30米,其比为1:2,所以设方程解答.解:设宽为米,长为米.解得:答:长方形的宽为5 米,长为10 米.8、符号化的思想方法所谓符号化的思想方法:指用符号及符号组成的数学语言来表达数学的概念、运算和命题等的思想方法,是方程思想方法的基础.例如:∥、∠、≤、≥、=、、、%、{}、≠、∴、∵、⊙、⊥、△、、、、等等.9、统计思想方法所谓统计思想方法:是通过样本来推断总体,是关于如何收集数据、整体数据、描述数据、分析数据,如何解释数据统计结果的思想方法.例如:为了了解某所初级中学学生对6月5日“世界环境日”是否知道,从该校全体学生1000名中,随机抽查了100名学生,结果显示有2名学生“不知道”.由此,估计该校全体学生中对“世界环境日”约有名学生“不知道”.10、公理化的思想方法所谓公理化的思想方法:指从尽可能少的不加定义的原始概念和不加证明的原始命题即公理公设出发,按照逻辑规则推导出其他命题,建立起一个演绎科学理论系统的方法.例如:平行公理:经过直线外一点,有且只有一条直线与这条直线平行.11、函数的思想方法。
化归思想1. 化归思想的概念。
人们在面对数学问题,如果直接应用已有知识不能或不易解决该问题时,往往将需要解决的问题不断转化形式,把它归结为能够解决或比较容易解决的问题,最终使原问题得到解决,把这种思想方法称为化归(转化)思想。
从小学到中学,数学知识呈现一个由易到难、从简到繁的过程;然而,人们在学习数学、理解和掌握数学的过程中,却经常通过把陌生的知识转化为熟悉的知识、把繁难的知识转化为简单的知识,从而逐步学会解决各种复杂的数学问题。
因此,化归既是一般化的数学思想方法,具有普遍的意义;同时,化归思想也是攻克各种复杂问题的法宝之一,具有重要的意义和作用。
2. 化归所遵循的原则。
化归思想的实质就是在已有的简单的、具体的、基本的知识的基础上,把未知化为已知、把复杂化为简单、把一般化为特殊、把抽象化为具体、把非常规化为常规,从而解决各种问题。
因此,应用化归思想时要遵循以下几个基本原则:(1)数学化原则,即把生活中的问题转化为数学问题,建立数学模型,从而应用数学知识找到解决问题的方法。
数学来源于生活,应用于生活。
学习数学的目的之一就是要利用数学知识解决生活中的各种问题,课程标准特别强调的目标之一就是培养实践能力。
因此,数学化原则是一般化的普遍的原则之一。
(2)熟悉化原则,即把陌生的问题转化为熟悉的问题。
人们学习数学的过程,就是一个不断面对新知识的过程;解决疑难问题的过程,也是一个面对陌生问题的过程。
从某种程度上说,这种转化过程对学生来说既是一个探索的过程,又是一个创新的过程;与课程标准提倡培养学生的探索能力和创新精神是一致的。
因此,学会把陌生的问题转化为熟悉的问题,是一个比较重要的原则。
(3)简单化原则,即把复杂的问题转化为简单的问题。
对解决问题者而言,复杂的问题未必都不会解决,但解决的过程可能比较复杂。
因此,把复杂的问题转化为简单的问题,寻求一些技巧和捷径,也不失为一种上策。
(4)直观化原则,即把抽象的问题转化为具体的问题。
浅谈化归思想东莞中学数学科 刘瑞红论文摘要:数学学科的全部内容,是由数学问题、数学知识、数学方法和数学思想组成的。
其中数学方法是数学活动的行为规则,而数学思想又是数学方法的灵魂。
在中学数学教学中,数学思想对于培养学生的创造思维能力和数学素养具用十分重要的作用,其中化归思想在中学数学中的应用广泛,本文将以举例子的形式,从定义、化归原则、化归策略介绍化归思想。
关键词:数学思想 ;化归思想;化规策略;代换一 什么是化归思想定义:把问题A 通过一定的手段进行转化,归结为问题B ,而问题B 是相对容易解决的问题或已有固定的解决程式的问题,且通过B 的解决,能够得到A 的解决。
转化(化归途径) 还原 二 化归的原则(一).划归目标简单化原则:主要表现为问题结构表示形式的简单。
如问题的方式、方法上的简单。
例1. 已知:22222(21)(12)4,0af x bf x x a b -+-=-≠,求)(x f 。
解:设t x =-122,则原式可变形为:22)()(+=-+t t bf t af ① 把t 换成t -,则 22)()(+-=+-t t bf t af ② ① ,② 式联立可得:b a t b a t f b a 22)22()()(22-++=-∵ 022≠-b a∴ 得 ba b a t t f ++-=22)( ∵ 022≠-b a ∴ 得 b a b a t t f ++-=22)( 即 ba xb a x f ++-=22)( 即 b a x b a x f ++-=22)(例2.已知:c b a ,,是三角形的三条边,求证:0)(22222=+-++c x a c b bx 无实根。
证明:)0(0sin 4)1(cos 44)cos 2(4)(222222222222222≠<-=-=-=--+=∆A A c b A c b c b A bc c b a c b 所以,原方程无实根。
“化归”思想在小学数学教学中的运用一、“化归”思想的内涵“化归”思想,是世界数学家们都十分重视的一种数学思想方法,从字面意思上讲,“化归”理解为“转化”和“归结”两种含义,即不是直接寻找问题的答案,而是寻找一些熟悉的结果,设法将面临的问题转化为某一规范的问题,以便运用已知的理论、方法和技术使问题得到解决。
而渗透化归思想的核心,是以可变的观点对所要解决的问题进行变形,就是在解决数学问题时,不是对问题进行直接进攻,而是采取迂回的战术,通过变形把要解决的问题,化归为某个已经解决的问题。
从而求得原问题的解决。
化归思想不同于一般所讲的“转化”或“变换”。
它的基本形式有:化未知为已知,化难为易,化繁为简,化曲为直。
匈牙利著名数学家罗莎·彼得在他的名著《无穷的玩艺》中,通过一个十分生动而有趣的笑话,来说明数学家是如何用化归的思想方法来解题的。
有人提出了这样一个问题:“假设在你面前有煤气灶,水龙头、水壶和火柴,你想烧开水,应当怎样去做?”对此,某人回答说:“在壶中灌上水,点燃煤气,再把壶放在煤气灶上。
”提问者肯定了这一回答,但是,他又追问道:“如果其他的条件都没有变化,只是水壶中已经有了足够的水,那么你又应该怎样去做?”这时被提问者一定会大声而有把握地回答说:“点燃煤气,再把水壶放上去。
”但是更完善的回答应该是这样的:“只有物理学家才会按照刚才所说的办法去做,而数学家却会回答:‘只须把水壶中的水倒掉,问题就化归为前面所说的问题了’”。
“把水倒掉”,这就是化归,这就是数学家常用的方法。
翻开数学发展的史册,这样的例子不胜枚举,著名的哥尼斯堡七桥问题便是一个精彩的例证。
二、“化归”思想在小学数学教学中的渗透1、数与代数----在简单计算中体验“化归”例1:计算48×53+47×48机械地应用乘法分配律公式进行计算,学生不容易真正理解。
将48这一数化归成物,即看到了相同的数48,想起了红富士苹果,以物红富士苹果代替数4 8,相同的数48是化归的对象,红富士苹果是实施化归的途径,于是48×53+47×48就转化成求53个苹果与47个苹果之和的问题是化归的目标。
高中数学基本数学思想1.转化与化归思想:是把那些待解决或难解决的问题化归到已有知识范围内可解问题的一种重要的基本数学思想.这种化归应是等价转化,即要求转化过程中的前因后果应是充分必要的,这样才能保证转化后所得结果仍为原题的结果. 高中数学中新知识的学习过程,就是一个在已有知识和新概念的基础上进行化归的过程.因此,化归思想在数学中无处不在. 化归思想在解题教学中的的运用可概括为:化未知为已知,化难为易,化繁为简.从而达到知识迁移使问题获得解决.但若化归不当也可能使问题的解决陷入困境. 例证2.逻辑划分思想(即分类与整合思想):是当数学对象的本质属性在局部上有不同点而又不便化归为单一本质属性的问题解决时,而根据其不同点选择适当的划分标准分类求解,并综合得出答案的一种基本数学思想.但要注意按划分标准所分各类间应满足互相排斥,不重复,不遗漏,最简洁的要求. 在解题教学中常用的划分标准有:按定义划分;按公式或定理的适用范围划分;按运算法则的适用条件范围划分;按函数性质划分;按图形的位置和形状的变化划分;按结论可能出现的不同情况划分等.需说明的是: 有些问题既可用分类思想求解又可运用化归思想或数形结合思想等将其转化到一个新的知识环境中去考虑,而避免分类求解.运用分类思想的关键是寻找引起分类的原因和找准划分标准. 例证3. 函数与方程思想(即联系思想或运动变化的思想):就是用运动和变化的观点去分析研究具体问题中的数量关系,抽象其数量特征,建立函数关系式,利用函数或方程有关知识解决问题的一种重要的基本数学思想.4. 数形结合思想:将数学问题中抽象的数量关系表现为一定的几何图形的性质(或位置关系);或者把几何图形的性质(或位置关系)抽象为适当的数量关系,使抽象思维与形象思维结合起来,实现抽象的数量关系与直观的具体形象的联系和转化,从而使隐蔽的条件明朗化,是化难为易,探索解题思维途径的重要的基本数学思想.5. 整体思想:处理数学问题的着眼点或在整体或在局部.它是从整体角度出发,分析条件与目标之间的结构关系,对应关系,相互联系及变化规律,从而找出最优解题途径的重要的数学思想.它是控制论,信息论,系统论中“整体—部分—整体”原则在数学中的体现.在解题中,为了便于掌握和运用整体思想,可将这一思想概括为:记住已知(用过哪些条件?还有哪些条件未用上?如何创造机会把未用上的条件用上?),想着目标(向着目标步步推理,必要时可利用图形标示出已知和求证);看联系,抓变化,或化归;或数形转换,寻求解答.一般来说,整体范围看得越大,解法可能越好.在整体思想指导下,解题技巧只需记住已知,想着目标, 步步正确推理就够了.中学数学中还有一些数学思想,如:集合的思想;补集思想;归纳与递推思想;对称思想;逆反思想;类比思想;参变数思想有限与无限的思想;特殊与一般的思想。
化归思想化归思想是初中数学中常见的一种思想方法。
“化归”是转化和归结的简称。
我们在处理和解决数学问题时,总的指导思想是把问题转化为能够解决的问题,这就是化归思想。
正如古之“围魏救赵”是战史上“避实就虚”的典型战例,军事上的这种策略思想迁移到数学解题方面,可以这样理解它:“实”是指繁、难、隐蔽、曲折,“虚”是指简、易、明显、径直。
在解题中表现为:化难为易,避繁从简,转暗为明,化生为熟。
具体的说,即把生疏的问题转化为熟悉的问题,把抽象的问题转化为具体的问题,把复杂的问题转化为简单的问题,把一般的问题转化为特殊的问题,把高次的问题转化为低次的问题,把未知转化为已知,把一个综合的问题转化为几个基本的问题等等。
化归思想无处不在,它是分析问题解决问题的有效途径。
在初中数学学习中运用这种化归的思维方法解决问题的例子非常多。
例如,在代数方程求解时大多采用“化归”的思路,它是解决方程(组)问题的最基本的思想。
即将复杂的方程(组)通过各种途径转化为简单的方程(组),最后归结为一元一次方程或一元二次方程。
这种化归过程可以概括为“高次方程低次化,无理方程有理化,分式方程整式化,多元方程组一元化”。
这里化归的主要途径是降次和消元。
虽然各类方程(组)具体的解法不尽相同,然而万变不离其宗,化归是方程求解的金钥匙。
平面几何的学习中亦是如此。
例如,研究四边形、多边形问题时通过分割图形,把四边形、多边形知识转化为三角形知识来研究;解斜三角形的问题,通过作三角形一边上的高,转化为解直角三角形问题;我们熟悉的梯形问题,常通过作腰的平行线或作两条高等常用辅助线,把梯形问题转化为平行四边形与三角形问题。
又如,圆中有关弦心距、半径、弦长的计算亦能通过连结半径或作弦心距把问题转化为直角三角形的求解。
还有,解正多边形的问题,通过添半径和边心距,转化为解直角三角形问题等等。
化归思想贯穿整个初中数学,在学习的过程中要有意识的体会这种科学的思维方法,有利于我们在解决问题的过程中思维通畅、方法得当,从而达到事半功倍的效果。
化归思想化归是转化和归结的简称,所谓化归思想就是化未知为已知、化繁为简、化难为易.如将分式方程化为整式方程,将代数问题化为几何问题,将四边形问题转化为三角形问题等.实现这种转化的方法有:待定系数法、配方法、整体代人法以及化动为静、由抽象到具体等。
实数中的应用1的结果是 。
因式分解中的应用1、分解因式22(52)(53)12x x x x ++++-2、分解因式()(2)(1)(1)x y x y xy xy xy +++++-在解方程(组)中的应用1、解方程:22(1)5(1)20x x ---+=2、解方程组x x x y x x y ()()++=++=⎧⎨⎩135144452423、已知实数a 、b 、c 满足222870660a bc abc bc a ⎧--+=⎪⎨++-+=⎪⎩,求a 的取值范围。
4、对于方程222x x m -+=,如果方程实数根的个数是3个,则m 的值等于 。
5、解方程组1213x y x xy y ⎧+=⎪⎨++=⎪⎩6、解方程22x 223x 2xx -+=- 在解不等式(组)中的应用1> x+12、解不等式263x x -+>13、已知a 、b 、c 、d四边形转化为三角形1、在四边形ABCD 中,∠A=60度,∠B=∠C=90度,BC=2,CD=3,求AB 的长2、在四边形ABCD 中,边AB 最长,BC 最短,求证:BCD ∠>BAD ∠,ABC ∠>ADC ∠A B C D A BD3、四边形ABCD 中,∠=︒ABC 60,AC 平分∠BAD ,AC AD ==76,,S ADC ∆=1523,求BC 和AB 的长。
4、已知点P 是四边形ABCD 中一点,且OA=1,OB=3,OC=4,哪么OD 的长为多少?坐标法1、证明:直角三角形斜边上的中线等于斜边的一半。
2、已知边长为4的正方形截去一个角后成为五边形ABCDE (如图),其中AF =2,BF =1,试在AB 上求一点P ,使矩形PNDM 有最大面积。