7.2.2 用坐标表示平移 练习题
- 格式:ppt
- 大小:1.61 MB
- 文档页数:14
人教版数学七下7.2.2《用坐标表示平移》同步练习一、选择题1.将点A(2,1)向左平移2个单位长度得到点A′,则点A′的坐标是( )A.(2,3)B.(2,-1)C.(4,1)D.(0,1)2.在平面直角坐标系中,将点(2,3)向上平移1个单位,所得到的点坐标是( )A.(1,3)B.(2,2)C.(2,4)D.(3,3)3.如图,如果将三角形ABC向左平移2格得到三角形A′B′C′,则顶点A′的位置用数对表示为( )A.(5,1)B.(1,1)C.(7,1)D.(3,3)4.如图,将三角形PQR向右平移2个单位长度,再向下平移3个单位长度,则顶点P平移后的坐标是( )A.(-2,-4)B.(-2,4)C.(2,-3)D.(-1,-3)5.在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(-3,2)重合,则点A的坐标是( )A.(2,5)B.(-8,5)C.(-8,-1)D.(2,-1)6.如果一个图案沿x轴负方向平移3个单位长度,那么这个图案上的点坐标变化为( )A.横坐标不变,纵坐标减少3个单位长度B.纵坐标不变,横坐标减少3个单位长度C.横纵坐标都没有变化D.横纵坐标都减少3个单位长度7.已知线段CD是由线段AB平移得到的,点A(-1,4)的对应点为点C(4,7),则点B(-4,-1)的对应点D的坐标为( )A.(1,2)B.(2,9)C.(5,3)D.(-9,-4)8.在如图所示的单位正方形网格中,三角形ABC经过平移后得到三角形A1B1C1,已知在AC上一点P(2.4,2)平移后的对应点为P1,则P1点的坐标为( )A.(1.4,-1)B.(1.5,2)C.(-1.6,-1)D.(2.4,1)9.点G(-2,-2),将点G先向右平移6个单位长度,再向上平移5 个单位长度,得到G′,则G′的坐标为( )A.(6,5)B.(4,5)C.(6,3)D.(4,3)10.将点A(a,-3)先向右平移2个单位长度,再向上平移4个单位长度得到点B(4,b),则a和b的值分别为( )A.(1,4)B.(4,1)C.(2,1)D.(1,2)二、填空题11.在平面直角坐标系中,已知点O(0,0),A(1,3),将线段OA向右平移3个单位,得到线段O1A1,则点O1的坐标是,A1的坐标是 .12.将点A(-3,1)向右平移5个单位长度,再向上平移6个单位长度,可以得到对应点A′的坐标为 .13.在平面直角坐标系中,三角形ABC的三个顶点的横坐标保持不变,纵坐标都减去2个单位长度,则得到的新三角形与原三角形相比向平移了个单位长度.14.已知三角形ABC,若将三角形ABC平移后,得到三角形A′B′C′,且点A(1,0)的对应点A′的坐标是(-1,0),则三角形ABC是向平移个单位得到三角形A′B′C′.15.在平面直角坐标系中,已知线段AB的两个端点的坐标分别是A(4,-1)、B(1,1),将线段AB平移后得到线段A′B′,若点A′的坐标为(-2,2),则点B′的坐标为 .三、作图题16.如图所示,一小船,将其向左平移6个单位长度,再向下平移5个单位长度,试确定A,B,C,D,E,F,G平移后对应点的坐标并画出平移后的图形.17.如图,在边长均为1个单位的正方形网格图中,建立了直角坐标系xOy,按要求解答下列问题:(1)写出△ABC三个顶点的坐标;(2)画出△ABC向右平移6个单位后的图形△A1B1C1;(3)求△ABC的面积.四、解答题18.如图所示,三角形ABC三点坐标分别为A(-3,4),B(-4,1),C(-1,2).(1)说明三角形ABC平移到三角形A1B1C1的过程,并求出点A1,B1,C1的坐标;(2)由三角形ABC平移到三角形A2B2C2又是怎样平移的?并求出点A2,B2,C2的坐标.19.如图,三角形ABC是由三角形A1B1C1平移后得到的,三角形ABC中任意一点P(x,y)经平移后对应点为P1(x-3,y-5),求A1、B1、C1的坐标.。
人教版七年级下册7.2.2 用坐标表示平移(147)1.建立平面直角坐标系,并描出下列各点:A(1,1),B(5,1),C(3,3),D(−3,3),E(1,−2),F(1,4),G(3,2),H(3,−2),I(−1,−1),J(−1,1).(1)连接AB,CD,EF,GH,IJ,描出它们的中点并写出这些中点的坐标;(2)将上述中点的横坐标和纵坐标分别与对应线段的两个端点的横坐标和纵坐标进行比较,你发现它们之间有什么关系?(3)根据你的发现,若某线段两端点的坐标分别为(a,b),(c,d),则该线段的中点坐标为多少?2.已知三角形ABC三个顶点的坐标分别是(−2,1),(2,3),(−3,−1),把三角形ABC平移到一个确定位置,则平移后各顶点的坐标可能是()A.(0,3),(0,1),(―1,―1)B.(−3,2),(3,2),(−4,0)C.(1,−2),(3,2),(−1,−3)D.(−1,3),(3,5),(−2,1)3.如图,点A,B的坐标分别为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2B.3C.4D.54.若将点P(1,−m)向右平移2个单位长度,再向上平移1个单位长度后得到点Q(n,3),则点K(m,n)的坐标为.5.点A在平面直角坐标系xOy中的坐标为(5,3),将坐标系xOy中的x轴向上平移2个单位长度,y轴向左平移3个单位长度,得到平面直角坐标系x′O′y′,在新坐标系x′O′y′中,点A的坐标为.6.在平面直角坐标系中,三角形ABC的三个顶点的位置如图所示,点A′的坐标是(−2,2),现将三角形ABC平移,使点A变换成点A′,点B′,C′分别是B,C的对应点.(1)请画出平移后的三角形A′B′C′(不写画法),并直接写出点B′,C′的坐标;(2)若三角形ABC内部一点P的坐标为(a,b),求点P的对应点P′的坐标.7.在如图所示的平面直角坐标系中,三角形ABC的顶点坐标分别是A(0,0),B(6,0),C(5,5).(1)求三角形ABC的面积;(2)如果三角形ABC各点的纵坐标不变,横坐标增加3个单位长度,得到三角形A1B1C1,试在图中画出三角形A1B1C1,并写出点A1,B1,C1的坐标;(3)三角形A1B1C1的大小、形状与三角形ABC的大小、形状有什么关系?8.在平面直角坐标系中,将点P(3,2)向右平移2个单位长度,所得的点的坐标是()A.(1,2)B.(3,0)C.(3,4)D.(5,2)9.在平面直角坐标系中,将点M(2,1)向下平移2个单位长度得到点N,则点N的坐标为()A.(2,−1)B.(2,3)C.(0,1)D.(4,1)10.若将点A(1,3)向左平移2个单位长度,再向下平移4个单位长度得到点B,则点B的坐标为()A.(−2,−1)B.(−1,0)C.(−1,−1)D.(−2,0)11.在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(−3,2)重合,则点A的坐标是()A.(2,5)B.(−8,5)C.(−8,−1)D.(2,−1)12.在平面直角坐标系xOy中,线段AB的两个端点坐标分别为A(−1,−1),B(1,2),平移线段AB,得到线段A′B′,已知点A′的坐标为(3,−1),则点B′的坐标为()A.(4,2)B.(5,2)C.(6,2)D.(5,3)13.如图所示,三架飞机P,Q,R保持编队飞行,某时刻在坐标系中的坐标分别为(−1,1),(−3,1),(−1,−1),30秒后,飞机P飞到P′(4,3)的位置,则飞机Q,R的位置Q′,R′的坐标分别为()A.Q′(2,3),R′(4,1)B.Q′(2,3),R′(2,1)C.Q′(2,2),R′(4,1)D.Q′(3,3),R′(3,1)14.如图,线段AB经过平移得到线段A′B′,其中点A,B的对应点分别为点A′,B′,这四个点都在格点上.若线段AB上有一个点P(a,b),则点P在A′B′上的对应点P′的坐标为()A.(a−2,b+3)B.(a−2,b−3)C.(a+2,b+3)D.(a+2,b−3)15.在平面直角坐标系中,已知点A(−4,0),B(0,2),现将线段AB向右平移,使点A与坐标原点O重合,则点B平移后的坐标是.16.已知△ABC的三个顶点坐标分别为A(0,0),B(3,0),C(2,3).把△ABC向右平移3个单位长度,再向下平移2个单位长度,得到△A′B′C′(A对应A′,B对应B′,C对应C′),写出点A′,B′,C′的坐标.17.如图的网格中,每个小正方形的边长都是1,图中“鱼”的各个顶点都在格点上.(1)把“鱼”向右平移5个单位长度,画出平移后的图形;(2)写出A,B,C三点平移后的对应点A′,B′,C′的坐标.参考答案1(1)【答案】线段AB的中点M的坐标为(3,1);线段CD的中点N的坐标为(0,3);线段EF的中点P的坐标为(1,1);线段GH的中点Q的坐标为(3,0);线段IJ的中点K的坐标为(−1,0)如图:(2)【答案】中点的横坐标(纵坐标)等于对应线段两个端点横坐标(纵坐标)的和的一半(3)【答案】该线段的中点坐标为(a+c2,b+d2)2.【答案】:D【解析】:平移后各顶点的坐标与原顶点坐标相比,必须有统一的变化规律,即每个顶点的横坐标要有相同的变化,纵坐标也有相同的变化.通过计算可知,只有D项各点坐标符合这一要求,这一组坐标的变化规律是“横坐标都加1,纵坐标都加2”3.【答案】:A【解析】:由点B平移前后的纵坐标分别为1,2,可得点B向上平移了1个单位长度,由点A平移前后的横坐标分别为2,3,可得点A向右平移了1个单位长度,由此得线段AB的平移的过程如下:向上平移1个单位长度,再向右平移1个单位长度,由此可得a=0+1=1,b=0+1=1,故a+b=2.故选 A4.【答案】:(−2,3)5.【答案】:(8,1)【解析】:∵点A在平面直角坐标系xOy中的坐标为(5,3),将坐标系xOy中的x轴向上平移2个单位长度,y轴向左平移3个单位长度,∴在新坐标系x′O′y′中,点A的坐标为(5+3,3−2),即点A的坐标为(8,1)6(1)【答案】画图略.B′(−4,1),C′(−1,−1)(2)【答案】P′(a−5,b−2)7(1)【答案】S三角形ABC=15(2)【答案】如图.点A1,B1,C1的坐标分别为(3,0),(9,0),(8,5)(3)【答案】三角形A1B1C1的大小、形状与三角形ABC的大小、形状完全相同8.【答案】:D9.【答案】:A10.【答案】:C11.【答案】:D【解析】:在坐标系中,点(−3,2)先向右平移5个单位得(2,2),再把(2,2)向下平移3个单位后的坐标为(2,−1),则A点的坐标为(2,−1).故选D.12.【答案】:B【解析】:∵点A(−1,−1)平移后得到点A′的坐标为(3,−1),∴线段AB向右平移4个单位长度,∴点B(1,2)的对应点B′的坐标为(1+4,2),即(5,2).故选B13.【答案】:A【解析】:由点P(−1,1)到P′(4,3)知,编队需向右平移5个单位长度、向上平移2个单位长度,∴点Q(−3,1)的对应点Q′的坐标为(2,3),点R(−1,−1)的对应点R′的坐标为(4,1),故选 A14.【答案】:A【解析】:线段AB向左平移2个单位长度,向上平移3个单位长度得到线段A′B′,由此可知线段AB上各点的横坐标减小2,纵坐标增加3,故点P(a,b)的对应点P′的坐标为(a−2,b+3)15.【答案】:(4,2)16.【答案】:∵△ABC的三个顶点坐标分别为A(0,0),B(3,0),C(2,3),把△ABC 向右平移3个单位长度,再向下平移2个单位长度,得到△A′B′C′,∴点A′的坐标是(3,−2),点B′的坐标是(6,−2),点C′的坐标是(5,1)【解析】:∵△ABC的三个顶点坐标分别为A(0,0),B(3,0),C(2,3),把△ABC向右平移3个单位长度,再向下平移2个单位长度,得到△A′B′C′,∴点A′的坐标是(3,−2),点B′的坐标是(6,−2),点C′的坐标是(5,1)17(1)【答案】将能代表图形形状的各点向右平移5个单位长度,顺次连接即可;如图所示.(2)【答案】结合平面直角坐标系,可得出点A′,B′,C′的坐标【解析】:结合坐标系可得A′(5,2),B′(0,6),C′(1,0)。
7.2.2 用坐标表示平移同步讲堂练习基础题知识点 1用坐标表示平移1.在平面直角坐标系中,将点P(3, 1)向下平移 2 个单位长度,获得的点P′的坐标为 ()A . (3,- 1)B .(3,3)C. (1, 1) D . (5, 1)2.在平面直角坐标系中,将点(-2, 3)向右平移 4 个单位长度后获得的点的坐标为()A . (2, 3)B . (- 6, 3)C. (- 2,7) D .(-2,- 1)3.如图,假如将三角形ABC 向左平移 2 格获得三角形A′B′C′,那么极点A′的地点用数对表示为()A.(5, 1)B.(1,1)C. (7, 1) D . (3,3)4.在平面直角坐标系中,将点A(1,- 2)向上平移 3 个单位长度,再向左平移 2 个单位长度,获得点B,则点 B 的坐标是()A . (- 1,1)B . (3,1)C. (4,- 4) D . (4,0)5.在平面直角坐标系中,将点A(x, y)向左平移 5 个单位长度,再向上平移3个单位长度后与点 B(- 3, 2)重合,则点 A 的坐标是 ()A.(2, 5)B.(- 8,5)C. (- 8,- 1)D. (2,- 1)6.在平面直角坐标系中,已知点O(0, 0), A(1, 3),将线段 OA 向右平移 3 个单位长度,获得线段O1A1,则点 O1的坐标是,点 A1的坐标是.7.在平面直角坐标系中,将点A(- 2,3)向右平移 3 个单位长度,再向下平移 2 个单位长度,那么平移后对应的点A′的坐标是.知识点 2依据坐标的变化确立图形平移的方向和距离8.(教材 P78 习题 T1 变式 ) 以下图,三架飞机P,Q,R 保持编队飞翔,某时辰在平面直角坐标系中的坐标分别为(- 1, 1), (- 3, 1), (- 1,- 1).30 秒后,飞机P飞到 P′ (4,3)地点,则飞机Q, R 的地点 Q′,R′分别为 ( )A . Q′,(2 3),R′,(4 1) C. Q′ (2, 2), R′,(4 1)B . Q′,(23) ,R′,(2 1) D . Q′ (3,3) ,R′ (3, 1)9.已知三角形ABC,若将三角形ABC 平移后,获得三角形A′B′C′,且点 A(1,0)的对应点A′的坐标是 (-1, 0),则三角形 ABC 是向平移个单位长度获得三角形A′B′C′.10.如图,在平面直角坐标系xOy 中,将线段AB 平移获得线段MN .若点 A(- 1,3)的对应点为M(2 ,5),则点 B(-3,- 1)的对应点N 的坐标是.知识点 3利用坐标画平移后的图形11.(教材 P78 练习变式 )以下图为一艘小船,将其向左平移 6 个单位长度,再向下平移 5 个单位长度,试确立A,B, C,D ,E, F, G 平移后对应点的坐标并画出平移后的图形.易错点混杂点的平移与坐标系的平移12.已知坐标平面内的点A(- 2, 5),若将平面直角坐标系先向右平移 3 个单位长度,再向上平移 4 个单位长度,则点 A 在平移后的坐标系中的坐标是.中档题13.将点 A(2,- 2)向上平移 4 个单位长度,再向左平移 4 个单位长度获得点C,则以下说法不正确的选项是() A .点 C 的坐标为 (- 2, 2)B.点 C 在第三象限C.点 C 的横坐标与纵坐标互为相反数D.点 C 到 x 轴、 y 轴的距离相等14.如图,已知点A, B 的坐标分别为(2, 0), (0,1) .若将线段AB 平移至 A1B1,则 a+ b 的值为 (A)A.2B.3C.4D.515.如图,点A,B 的坐标分别为 (1,2), (4,0),将三角形AOB 沿 x 轴向右平移,获得三角形CDE,已知 DB= 1,则点 C 的坐标为.16.已知长方形ABCD 在平面直角坐标系中的地点以下图,将长方形ABCD 沿 x 轴向左平移到使点 C 与坐标原点重合后,再沿y 轴向下平移到使点 D 与坐标原点重合,此时点 A 的坐标是,点B的坐标是,点 C 的坐标是.17.以下图,三角形ABC 各极点坐标分别为A(-3, 4), B(- 4, 1), C(- 1, 2).(1)说明三角形 ABC 平移到三角形 A1B1 C1的过程,并写出点 A1, B1, C1的坐标;(2) 由三角形ABC 平移到三角形A2B2C2又是如何的过程?并写出点A2, B2,C2的坐标.18.如图,三角形ABC 内随意一点P(x0, y0),将三角形ABC 平移后,点P 的对应点为P1(x0+ 5, y0- 3).(1) 写出将三角形ABC 平移后,三角形ABC 中 A, B, C 分别对应的点A1, B1,C1的坐标;(2) 若三角形ABC 外有一点M 经过相同的平移后获得点M1(5, 3),写出 M 点的坐标.若连接线段MM 1, PP1,则这两条线段之间的关系是.综合题19.如图,在平面直角坐标系xOy 中,对正方形ABCD 及其内部的每个点进行以下操作:把每个点的横、纵坐标都乘同一实数a,将获得的点先向右平移m 个单位长度,再向上平移n 个单位长度 (m>0, n>0),获得正方形A′B′C′D′及其内部的点,此中点A,B 的对应点分别为A′,B′已.知正方形ABCD 内部的一个点 F 经过上述操作后获得的对应点 F ′与点 F 重合,求点F 的坐标.参照答案基础题知识点 1用坐标表示平移1.在平面直角坐标系中,将点P(3, 1)向下平移 2 个单位长度,获得的点P′的坐标为 (A)A . (3,- 1)B .(3,3)C. (1, 1) D . (5, 1)2.在平面直角坐标系中,将点(-2, 3)向右平移 4 个单位长度后获得的点的坐标为(A)A . (2, 3)B . (- 6, 3)C. (- 2,7) D .(-2,- 1)3.如图,假如将三角形ABC 向左平移 2 格获得三角形A′B′C′,那么极点A′的地点用数对表示为(B)A.(5, 1)B. (1, 1)C. (7, 1)D. (3, 3)4.在平面直角坐标系中,将点A(1,- 2)向上平移 3 个单位长度,再向左平移 2 个单位长度,获得点B,则点 B 的坐标是 (A)A . (- 1,1)B. (3, 1)C. (4,- 4)D. (4, 0)5.在平面直角坐标系中,将点A(x, y)向左平移 5 个单位长度,再向上平移 3 个单位长度后与点B(- 3, 2)重合,则点 A 的坐标是 (D)A . (2, 5)B . (- 8, 5)C. (- 8,- 1)D. (2,- 1)6.在平面直角坐标系中,已知点O(0, 0), A(1, 3),将线段OA 向右平移 3 个单位长度,获得线段O1A1,则点 O1的坐标是 (3, 0),点 A1的坐标是 (4, 3).7.在平面直角坐标系中,将点A(- 2,3)向右平移 3 个单位长度,再向下平移 2 个单位长度,那么平移后对应的点A′的坐标是 (1, 1).知识点 2依据坐标的变化确立图形平移的方向和距离8.(教材 P78 习题 T1 变式 ) 以下图,三架飞机P,Q,R 保持编队飞翔,某时辰在平面直角坐标系中的坐标分别为(- 1, 1), (- 3, 1), (- 1,- 1).30 秒后,飞机P飞到 P′ (4,3) 地点,则飞机Q, R 的地点 Q′,R′分别为 (A)A . Q′ (2, 3),R′ (4, 1)B .Q′,(2 3), R′ (2, 1)C. Q′ (2, 2), R′,(4 1) D .Q′,(3 3), R′ (3, 1)9.已知三角形 ABC,若将三角形 ABC 平移后,获得三角形A′B′C′,且点 A(1,0)的对应点 A′的坐标是 (-1, 0),则三角形 ABC 是向左平移 2 个单位长度获得三角形 A′B′C′.10.如图,在平面直角坐标系xOy 中,将线段 AB 平移获得线段MN .若点 A(- 1,3)的对应点为 M(2,5),则点 B(-3,- 1)的对应点N 的坐标是 (0 ,1).知识点 3利用坐标画平移后的图形11.(教材 P78 练习变式 )以下图为一艘小船,将其向左平移 6 个单位长度,再向下平移 5 个单位长度,试确立A,B, C,D ,E, F, G 平移后对应点的坐标并画出平移后的图形.解:由 A(1,2), B(3, 1),C(4, 1), D(5, 2), E(3,2),F(3, 4), G(2, 3)可得平移后对应点为:A′(-5,- 3), B′(-3,- 4), C′(-2,- 4),D ′(-1,- 3),E′(-3,- 3), F′(-3,- 1), G′(-4,- 2).平移后的图形以下图.易错点混杂点的平移与坐标系的平移12.已知坐标平面内的点A(- 2, 5),若将平面直角坐标系先向右平移 3 个单位长度,再向上平移 4 个单位长度,则点 A 在平移后的坐标系中的坐标是(-5, 1).中档题13.将点 A(2,- 2)向上平移 4 个单位长度,再向左平移 4 个单位长度获得点C,则以下说法不正确的选项是(B)A .点 C 的坐标为 (- 2, 2)B.点 C 在第三象限C.点 C 的横坐标与纵坐标互为相反数D.点 C 到 x 轴、 y 轴的距离相等14.如图,已知点A, B 的坐标分别为(2, 0), (0,1) .若将线段AB 平移至 A1B1,则 a+ b 的值为 (A)A . 2B. 3C. 4D. 515.如图,点A,B 的坐标分别为 (1,2), (4,0),将三角形AOB 沿 x 轴向右平移,获得三角形CDE,已知 DB= 1,则点 C 的坐标为 (4,2).16.已知长方形ABCD 在平面直角坐标系中的地点以下图,将长方形ABCD 沿 x 轴向左平移到使点 C 与坐标原点重合后,再沿y 轴向下平移到使点 D 与坐标原点重合,此时点 A 的坐标是 (-5, 0),点 B 的坐标是 (- 5,- 3),点C 的坐标是 (0,- 3).17.以下图,三角形ABC 各极点坐标分别为A(-3, 4), B(- 4, 1), C(- 1, 2).(1)说明三角形 ABC 平移到三角形 A1B1 C1的过程,并写出点 A1, B1, C1的坐标;(2) 由三角形ABC 平移到三角形A2B2C2又是如何的过程?并写出点A2, B2,C2的坐标.解: (1) 三角形 ABC 向下平移 7 个单位长度获得三角形A1B1C1.A1(- 3,- 3), B1(- 4,- 6),C1(- 1,- 5).(2) 三角形 ABC 向右平移 6 个长度单位,再向下平移 3 个单位长度获得三角形 A B C .A (3, 1), B (2,- 2), C (5,222222- 1).18.如图,三角形ABC 内随意一点P(x0, y0),将三角形ABC 平移后,点P 的对应点为P1(x0+ 5, y0- 3).(1)写出将三角形 ABC 平移后,三角形 ABC 中 A, B,C 分别对应的点 A1, B1,C1的坐标;(2)若三角形 ABC 外有一点 M 经过相同的平移后获得点 M1(5 ,3),写出 M 点的坐标 (0,6) .若连结线段 MM 1,PP1,则这两条线段之间的关系是平行且相等.解: A1(2,- 1),B1(1,- 5), C1 (5,- 6).综合题19.如图,在平面直角坐标系xOy 中,对正方形ABCD 及其内部的每个点进行以下操作:把每个点的横、纵坐标都乘同一实数a,将获得的点先向右平移m 个单位长度,再向上平移n 个单位长度 (m>0, n>0),获得正方形A′B′C′D′及其内部的点,此中点A,B 的对应点分别为A′,B′已.知正方形ABCD 内部的一个点 F 经过上述操作后获得的对应点 F ′与点 F 重合,求点F 的坐标.解:易知 AB = 6, A′B′= 3,1∴ a=2.1由 (-3) ×+ m=- 1,得21m=2.1由 0×+ n=2,得 n=2.2设 F(x, y),则变换后 F ′(ax+ m, ay+n).∵ F 与 F′重合,∴ax+ m= x, ay+ n= y.111y+ 2= y.∴ x+= x,222解得 x= 1,y= 4.∴点 F 的坐标为 (1,4).。
7.2.2用坐标表示平移一、选择题1.已知点A的坐标为(2,1),将点A向下平移4个单位长度,得到的点A'的坐标是()A.(6,1)B.(-2,1)C.(2,5)D.(2,-3)2.在平面直角坐标系中,将点(-2,3)向右平移4个单位长度后得到的点的坐标为()A.(2,3)B.(-6,3)C.(-2,7)D.(-2,-1)3.在平面直角坐标系中,点A'(2,-3)可以由点A(-2,3)通过两次平移得到,正确的是()A.先向左平移4个单位长度,再向上平移6个单位长度B.先向右平移4个单位长度,再向上平移6个单位长度C.先向左平移4个单位长度,再向下平移6个单位长度D.先向右平移4个单位长度,再向下平移6个单位长度4.在平面直角坐标系中,将点P(x,y)先向左平移4个单位长度,再向上平移3个单位长度后得到点P'(1,2),则点P的坐标为()A.(2,6)B.(-3,5)C.(-3,1)D.(5,-1)5.[如图1,在平面直角坐标系中,已知点A(2,1),B(3,-1),平移线段AB,使点A落在点A1(-2,2)处,则点B的对应点B1的坐标为()图1A.(-1,-1)B.(1,0)C.(-1,0)D.(3,0)6.已知三角形ABC的顶点坐标分别是A(0,6),B(-3,-3),C(1,0),将三角形ABC平移后顶点A的对应点A1的坐标为(4,10),则点B的对应点B1的坐标为()A.(7,1)B.(1,7)C.(1,1)D.(2,1)7.[在平面直角坐标系中,将四边形各点的横坐标都减去2,纵坐标保持不变,所得图形与原图形相比()A.向右平移了2个单位长度B.向左平移了2个单位长度C.向上平移了2个单位长度D.向下平移了2个单位长度8.四边形ABCD经过平移得到四边形A'B'C'D',若点A(a,b)变为点A'(a-3,b+2),则对四边形ABCD进行的变换是()A.先向上平移3个单位长度,再向右平移2个单位长度B.先向下平移3个单位长度,再向左平移2个单位长度C.先向右平移3个单位长度,再向下平移2个单位长度D.先向左平移3个单位长度,再向上平移2个单位长度二、填空题9.在平面直角坐标系中,将点(3,-2)先向右平移2个单位长度,再向上平移3个单位长度,则所得点的坐标是.10.[2019·南昌期末]若点A(a-1,a+2)在x轴上,将点A向上平移4个单位长度得点B,则点B 的坐标是.11.如图2,线段AB经过平移得到线段A'B',其中点A,B的对应点分别为点A',B',这四个点都在格点上.若线段AB上有一点P(a,b),则点P在A'B'上的对应点P'的坐标为.图2图312.如图3,点A,B的坐标分别为(2,0),(0,1).若将线段AB平移至A1B1,则a+b的值为.三、解答题13.如图4,在平面直角坐标系中,四边形ABCD的顶点坐标分别为A(1,0),B(5,0),C(3,3),D(2,4).(1)求四边形ABCD的面积;(2)如果把四边形ABCD先向左平移3个单位长度,再向下平移1个单位长度得四边形A'B'C'D',求点A',B',C',D'的坐标.图414.如图5所示,已知单位长度为1的方格中有一个三角形ABC.(1)请画出三角形ABC先向上平移3格,再向右平移2格所得的三角形A'B'C'(点A,B,C的对应点分别为点A',B',C');(2)请以点A为坐标原点,水平向右为x轴正方向,竖直向上为y轴正方向建立平面直角坐标系(在图中画出),然后写出点B,B'的坐标.图515.三角形ABC与三角形A'B'C'在平面直角坐标系中的位置如图6所示.(1)分别写出下列各点的坐标:A; B;C.(2)三角形ABC可以由三角形A'B'C'经过怎样的平移得到?(3)若P(x,y)是三角形ABC内部一点,则三角形A'B'C'内部的对应点P'的坐标为;(4)求三角形ABC的面积.图6答案1.D2.A3.D4.D5.C [解析] 因为点A (2,1)平移后落在点A 1(-2,2)处,所以线段AB 是先向左平移4个单位长度,再向上平移1个单位长度,所以点B (3,-1)平移后的对应点B 1的坐标为(3-4,-1+1),即B 1(-1,0).故选C .6.C [解析] 因为点A (0,6)平移后的对应点A 1的坐标为(4,10),所以三角形ABC 向右平移了4个单位长度,向上平移了4个单位长度,所以点B 的对应点B 1的坐标为(-3+4,-3+4),即(1,1).7.B 8.D 9.(5,1)10.(-3,4) [解析] ∵点A (a-1,a+2)在x 轴上,∴a+2=0,解得a=-2,则点A 的坐标为(-3,0).∵将点A 向上平移4个单位长度得点B ,∴坐标为(-3,4).11.(a-2,b+3) [解析] 由图可知线段AB 向左平移了2个单位长度,向上平移了3个单位长度,所以P'(a-2,b+3).12.213.解:(1)如图,过点D 作DE ⊥x 轴,垂足为E ,过点C 作CF ⊥x 轴,垂足为F ,则S 四边形ABCD =S 三角形ADE +S 四边形DEFC +S 三角形CFB .因为S 三角形ADE =12×1×4=2,S 四边形DEFC =12×(3+4)×1=72,S 三角形CFB =12×2×3=3,所以S 四边形ABCD =2+72+3=172.(2)因为四边形ABCD 先向左平移3个单位长度,再向下平移1个单位长度得四边形A'B'C'D', 所以平移后,各顶点的横坐标减小3,纵坐标减小1.因为A (1,0),B (5,0),C (3,3),D (2,4),所以A'(-2,-1),B'(2,-1),C'(0,2),D'(-1,3).14.解:(1)如图.(2)如图,以点A 为坐标原点,水平向右为x 轴正方向,竖直向上为y 轴正方向建立平面直角坐标系,则B (1,2),B'(3,5).15.解:(1)(1,3) (2,0) (3,1)(2)答案不唯一,如:先向右平移4个单位长度,再向上平移2个单位长度.(3)(x-4,y-2)(4)三角形ABC 的面积=2×3-12×1×3-12×1×1-12×2×2=6-1.5-0.5-2=2.。
7.2.2用坐标表示平移一、选择题1.在平面直角坐标系中,将点(1,1)向右平移2个单位后,得到的点的坐标是( )A.(3,1) B.(-1,1) C.(1,3) D.(1,-1)2.在平面直角坐标系中,将点P(-3,2)向下平移4个单位得到点P′,则点P′所在的象限为( ) A.第一象限B.第二象限C.第三象限D.第四象限3.在平面直角坐标系中,将点A(1,-2)向上平移3个单位长度,再向左平移2个单位长度,得到点B,则点B的坐标是( )A.(-1,1) B.(3,1) C.(4,-4) D.(4,0)4.如图,把三角形ABC先向右平移3个单位,再向上平移2个单位得到三角形DEF,则顶点C(0,-1)的对应点坐标为( )A.(0,0) B.(1,2) C.(1,3) D.(3,1)5.如图,点A(2,1),将线段OA先向上平移2个单位长度,再向左平移3个单位长度,得到线段O′A′,则点A的对应点A′的坐标是( )A.(-3,2) B.(0,4) C.(-1,3) D.(3,-1)6.如图,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(0,1),将线段AB平移,使其一个端点到C(3,2),则平移后另一端点的坐标为( )A.(1,3) B.(5,1) C.(1,3)或(3,5) D.(1,3)或(5,1)7.如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A,B的坐标分别为(-1,0),(0,3).现将该三角板向右平移使点A与点O重合,得到三角形OCB′,则点B的对应点B′的坐标是( )A.(1,0) B.(3,3) C.(1,3) D.(-1,3)二、填空题8.点N(-1,3)可以看作由点M(-1,-1)向平移个单位所得到的.9.已知点M(3a-9,1-a),将点M向左平移3个单位长度后落在y轴上,则a=. 10.如图,三角形OAB的顶点A,B的坐标分别为(3,5),(4,0),把三角形OAB沿x轴向右平移得到三角形CDE.如果CB=1,那么点D的坐标为.11.如图,在平面直角坐标系中,把一个点从原点开始向上平移1个单位,再向右平移1个单位,得到点A1(1,1);把点A1向上平移2个单位,再向左平移2个单位,得到点A2(-1,3);把点A2向下平移3个单位,再向左平移3个单位,得到点A3(-4,0);把点A3向下平移4个单位,再向右平移4个单位,得到点A4(0,-4)……按此做法进行下去,则点A10的坐标为.12.如图①是一个斜角坐标系,水平放置的轴称为横轴(记作a轴),斜向放置的轴称为斜轴(记作b轴).类似于直角坐标系,对于斜角坐标平面内的任意一点P,过点P分别作b轴、a轴的平行线交a轴、b轴于点M,N,若点M,N分别在a轴、b轴上所对应的实数为m与n,则称有序实数对(m,n)为点P的坐标.如图②,三角形ABC中,A(1,4),C(3,5),如果平移三角形ABC 得到三角形A′B′C′,使点A′与点C重合,在三角形ABC内部,有一任意点D(x,y),则平移后点D的对应点D′的坐标为________________.三、解答题13.如图,三角形ABC的顶点坐标分别为A(-2,3),B(-3,0),C(-1,-1).将三角形ABC 平移后得到三角形A′B′C′,且点A的对应点是A′(2,3),点B,C的对应点分别是B′,C′.(1)点A,A′之间的距离是;(2)请在图中画出三角形A′B′C′.14.如图,已知坐标平面内的三个点A(1,3),B(3,1),O(0,0).(1)平移三角形ABO至三角形A1B1O1,当点A1和点B重合时,求点O1的坐标;(2)平移三角形ABO至三角形A2B2O2,需要至少向下平移超过单位,并且至少向左平移超过个单位,才能使三角形A2B2O2位于第三象限.15.在平面直角坐标系中,三角形A′B′C′是由三角形ABC平移后得到的,已知三角形ABC内部的一点P(x0,y0)经平移后的对应点为P′(x0+5,y0-2).(1)三角形A′B′C′是由三角形ABC如何平移得到的?(2)若已知A(-1,2),B(-4,5),C(-3,0),请写出A′,B′,C′的坐标;(3)在(2)的条件下,求三角形A′B′C′的面积.16.如图,第一象限内有两点P(m-3,n),Q(m,n-2),将线段PQ平移,使点P,Q分别落在两条坐标轴上,求点P平移后的对应点的坐标.17.如图,在平面直角坐标系中,A(1,4),B(3,2),O为坐标原点,且OC∥AB,OC=AB.试用平移的知识求C点的坐标,并求四边形ABCO的面积.参考答案一、选择题1.在平面直角坐标系中,将点(1,1)向右平移2个单位后,得到的点的坐标是( A)A.(3,1) B.(-1,1) C.(1,3) D.(1,-1)2.在平面直角坐标系中,将点P(-3,2)向下平移4个单位得到点P′,则点P′所在的象限为( C) A.第一象限B.第二象限C.第三象限D.第四象限3.在平面直角坐标系中,将点A(1,-2)向上平移3个单位长度,再向左平移2个单位长度,得到点B,则点B的坐标是( A)A.(-1,1) B.(3,1) C.(4,-4) D.(4,0)4.如图,把三角形ABC先向右平移3个单位,再向上平移2个单位得到三角形DEF,则顶点C(0,-1)的对应点坐标为( D)A.(0,0) B.(1,2) C.(1,3) D.(3,1)5.如图,点A(2,1),将线段OA先向上平移2个单位长度,再向左平移3个单位长度,得到线段O′A′,则点A的对应点A′的坐标是( C)A.(-3,2) B.(0,4) C.(-1,3) D.(3,-1)6.如图,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(0,1),将线段AB平移,使其一个端点到C(3,2),则平移后另一端点的坐标为( D)A.(1,3) B.(5,1) C.(1,3)或(3,5) D.(1,3)或(5,1)7.如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A,B的坐标分别为(-1,0),(0,3).现将该三角板向右平移使点A与点O重合,得到三角形OCB′,则点B的对应点B′的坐标是( C)A.(1,0) B.(3,3) C.(1,3) D.(-1,3)二、填空题8.点N(-1,3)可以看作由点M(-1,-1)向平移个单位所得到的.【答案】上 49.已知点M(3a-9,1-a),将点M向左平移3个单位长度后落在y轴上,则a=. 【答案】410.如图,三角形OAB的顶点A,B的坐标分别为(3,5),(4,0),把三角形OAB沿x轴向右平移得到三角形CDE.如果CB=1,那么点D的坐标为.【答案】(6,5)11.如图,在平面直角坐标系中,把一个点从原点开始向上平移1个单位,再向右平移1个单位,得到点A1(1,1);把点A1向上平移2个单位,再向左平移2个单位,得到点A2(-1,3);把点A2向下平移3个单位,再向左平移3个单位,得到点A3(-4,0);把点A3向下平移4个单位,再向右平移4个单位,得到点A4(0,-4)……按此做法进行下去,则点A10的坐标为.【答案】(-1,11)12.如图①是一个斜角坐标系,水平放置的轴称为横轴(记作a轴),斜向放置的轴称为斜轴(记作b轴).类似于直角坐标系,对于斜角坐标平面内的任意一点P,过点P分别作b轴、a轴的平行线交a轴、b轴于点M,N,若点M,N分别在a轴、b轴上所对应的实数为m与n,则称有序实数对(m,n)为点P的坐标.如图②,三角形ABC中,A(1,4),C(3,5),如果平移三角形ABC 得到三角形A′B′C′,使点A′与点C重合,在三角形ABC内部,有一任意点D(x,y),则平移后点D的对应点D′的坐标为________________.【答案】(x+2,y+1)三、解答题13.如图,三角形ABC的顶点坐标分别为A(-2,3),B(-3,0),C(-1,-1).将三角形ABC 平移后得到三角形A′B′C′,且点A的对应点是A′(2,3),点B,C的对应点分别是B′,C′.(1)点A,A′之间的距离是;(2)请在图中画出三角形A′B′C′.解:(1)4(2)如图所示,三角形A′B′C′即为所求.14.如图,已知坐标平面内的三个点A(1,3),B(3,1),O(0,0).(1)平移三角形ABO至三角形A1B1O1,当点A1和点B重合时,求点O1的坐标;(2)平移三角形ABO至三角形A2B2O2,需要至少向下平移超过单位,并且至少向左平移超过个单位,才能使三角形A2B2O2位于第三象限.解:(1)点O1的坐标为(2,-2).(2)3 315.在平面直角坐标系中,三角形A′B′C′是由三角形ABC平移后得到的,已知三角形ABC内部的一点P(x0,y0)经平移后的对应点为P′(x0+5,y0-2).(1)三角形A′B′C′是由三角形ABC如何平移得到的?(2)若已知A(-1,2),B(-4,5),C(-3,0),请写出A′,B′,C′的坐标;(3)在(2)的条件下,求三角形A′B′C′的面积.解:(1)三角形ABC先向右平移5个单位长度,再向下平移2个单位长度(或先向下平移2个单位长度,再向右平移5个单位长度)得到三角形A′B′C′.(2)A′(4,0),B′(1,3),C′(2,-2).(3)将三角形A ′B ′C ′补成如图所示的长方形,则S 三角形A ′B ′C ′=3×5-12×5×1-12×2×2-12×3×3=6.16.如图,第一象限内有两点P (m -3,n ),Q (m ,n -2),将线段PQ 平移,使点P ,Q 分别落在两条坐标轴上,求点P 平移后的对应点的坐标.解:设平移后点P ,Q 的对应点分别是P ′,Q ′.分两种情况:①P ′在y 轴上,Q ′在x 轴上,则P ′的横坐标为0,Q ′的纵坐标为0.∵0-(n -2)=-n +2,∴n -n +2=2.∴点P 平移后的对应点的坐标是(0,2).②P ′在x 轴上,Q ′在y 轴上,则P ′的纵坐标为0,Q ′的横坐标为0.∵0-m =-m ,∴m -3-m =-3.∴点P 平移后的对应点的坐标是(-3,0).综上可知,点P 平移后的对应点的坐标是(0,2)或(-3,0).17.如图,在平面直角坐标系中,A (1,4),B (3,2),O 为坐标原点,且OC ∥AB ,OC =AB .试用平移的知识求C 点的坐标,并求四边形ABCO 的面积.解:∵把A 点向左平移1个单位长度,再向下平移4个单位长度可得到原点O (0,0),又∵OC ∥AB ,OC =AB ,∴OC 可由AB 向左平移1个单位长度,再向下平移4个单位长度得到.∴点B (3,2)向左平移1个单位长度,再向下平移4个单位长度得到点C (2,-2).分别过A ,C 作x 轴的平行线,过B 作y 轴的平行线,交点为D ,E ,F ,G ,如图所示.S 四边形ABCO =S 长方形DEFG-S 三角形AOD -S 三角形COE -S 三角形BCF -S 三角形ABG =3×6-12×1×4-12×2×2-12×1×4-12×2×2=10.。
第七章平面直角坐标系7.2坐标方法的简单应用7.2.2用坐标表示平移基础过关全练知识点1坐标系中点的平移1.(2022广东中考)在平面直角坐标系中,将点(1,1)向右平移2个单位后,得到的点的坐标是( )A.(3,1)B.(-1,1)C.(1,3)D.(1,-1)2.在平面直角坐标系中,将点P(-3,4)平移至原点,则平移方式可以是( )A.先向左平移3个单位,再向上平移4个单位B.先向右平移4个单位,再向上平移3个单位C.先向左平移3个单位,再向下平移4个单位D.先向右平移3个单位,再向下平移4个单位3.如图,在平面直角坐标系xO1y中,点A的坐标为(2,2).如果将x轴向上平移6个单位长度,将y轴向左平移4个单位长度,交于点O2,点A 的位置不变,那么在平面直角坐标系xO2y中,点A的坐标是( )A.(-6,4)B.(6,-4)C.(-4,-6)D.(6,8)知识点2坐标系中图形的平移4.如图,点A,B的坐标分别为(-3,1),(-1,-2),若将线段AB平移至A1B1的位置,点A1,B1的坐标分别为(a,4),(3,b),则a+b的值为( )A.2B.3C.4D.55.如图,△ABC经过一定的平移得到△A'B'C',如果△ABC上的点P的坐标为(a,b),那么这个点在△A'B'C'上的对应点P'的坐标为( )A.(a-2,b-3)B.(a-3,b-2)C.(a+3,b+2)D.(a+2,b+3)6.三角形ABC中一点P(x,y)经过平移后对应点为P1(x+4,y-2),将三角形ABC进行同样的平移得到三角形A1B1C1,若点A的坐标为(-4,5),则点A1的坐标为.7.【教材变式·P86T9变式】如图所示,四边形ABCO中,AB∥OC,BC ∥AO,A、C两点的坐标分别为(-√3,√5)、(-2√3,0),A、B两点间的距离等于O、C两点间的距离.(1)点B的坐标为;(2)将这个四边形向下平移2√5个单位长度后得到四边形A'B'C'O',请你写出平移后四边形四个顶点的坐标.8.如图,方格纸中每个小方格都是边长为1个单位长度的正方形,在平面直角坐标系中,已知点A(1,0),B(4,0),C(3,3),D(1,4).(1)描出A、B、C、D四点的位置,并顺次连接A、B、C、D各点,组成一个封闭图形;(2)四边形ABCD的面积是;(3)四边形ABCD向左平移5个单位长度,再向上平移1个单位长度得到四边形A'B'C'D',在图中画出四边形A'B'C'D',并写出A'、B'、C'、D'的坐标.能力提升全练9.(2021重庆丰都期末,10,★★☆)将点P(m+2,2-m)向右平移2个单位长度得到点Q,且Q在y轴上,那么点P的坐标为( )A.(6,-2)B.(-2,6)C.(2,2)D.(0,4)10.【新素材·密码确定】(2022山东济宁兖州期末,5,★★☆)一组密码的一部分如图,为了保密,不同的情况下可以采用不同的密码.若输入数字密码(7,7),(8,5),对应的中转口令是“数学”,最后输出的口令为“文化”,按此方法,若输入数字密码(2,7),(3,4),则最后输出的口令为( )A.垂直B.平行C.素养D.相交11.【代数推理】(2022福建厦门思明湖滨中学期末,9,★★☆)在平面直角坐标系中,将A(n2,1)沿着x轴的正方向平移3+n2个单位后得到B点.有四个点M(-2n2,1)、N(3n2,1)、P(n2,n2+4)、Q(n2+1,1),一定在线段AB上的是( )A.点MB.点QC.点PD.点N12.【易错题】(2021湖北武汉江岸期末,14,★★☆)如图,第一象限内有两点P(m-4,n),Q(m,n-3),将线段PQ平移,使点P、Q分别落在两条坐标轴上,则点P平移后的对应点的坐标是.素养探究全练13.【抽象能力】如图,已知点A1(1,1),点A1向上平移1个单位,再向右平移2个单位,得到点A2;点A2向上平移2个单位,再向右平移4个单位,得到点A3;点A3向上平移4个单位,再向右平移8个单位,得到点A4,……,按这个规律平移得到点A n,则点A n的横坐标为.14.【抽象能力】(2022北京师大附中期末)对于平面直角坐标系xOy 中的图形G和图形G上的任意点P(x,y),给出如下定义:将点P(x,y)平移到P'(x+t,y-t)称为将点P进行“t型平移”,点P'称为将点P进行“t型平移”的对应点;将图形G上的所有点进行“t型平移”称为将图形G进行“t型平移”.例如:将点P(x,y)平移到P'(x+1,y-1)称为将点P进行“1型平移”,将点P(x,y)平移到P'(x-1,y+1)称为将点P进行“-1型平移”.已知点A(1,1)和点B(3,1).(1)将点A(1,1)进行“1型平移”后的对应点A'的坐标为;(2)①将线段AB进行“-1型平移”后得到线段A'B',点P1(2,3),P2(1.5,2),P3(3,0)中,在线段A'B'上的点是;②若线段AB进行“t型平移”后与坐标轴有公共点,则t的取值范围是.答案全解全析基础过关全练1.A将点(1,1)向右平移2个单位后,横坐标加2,所以平移后点的坐标为(3,1),故选A.2.D将点P(-3,4)的横坐标加3,纵坐标减4即可得原点的坐标(0,0),故可以先向右平移3个单位,再向下平移4个单位.3.B新坐标系如图所示,点A在新坐标系中的坐标为(6,-4),故选B.4.A∵点A,B的坐标分别是为(-3,1),(-1,-2),线段AB平移至A1B1的位置后,A1(a,4),B1(3,b),∴线段AB向右平移了4个单位,向上平移了3个单位,∴a=1,b=1,∴a+b=2,故选A.5.C点B的坐标为(-2,0),点B'的坐标为(1,2),横坐标增加了1-(-2)=3,纵坐标增加了2-0=2,∵△ABC上点P的坐标为(a,b),∴点P'的横坐标为a+3,纵坐标为b+2,∴点P'的坐标为(a+3,b+2),故选C.6.答案(0,3)解析∵三角形ABC中任意一点P(x,y)经过平移后对应点为P1(x+4,y-2),∴该点先向右平移了4个单位长度,又向下平移了2个单位长度,又-4+4=0,5-2=3,∴点A的对应点A1的坐标为(0,3).7.解析(1)∵C点的坐标为(-2√3,0),∴OC=2√3.∵AB∥OC,AB=OC,∴将A点向左平移2√3个单位长度得到B点,又∵A点的坐标为(-√3,√5),∴B点的坐标为(-√3−2√3,√5),即(-3√3,√5).(2)∵将四边形ABCO向下平移2√5个单位长度后得到四边形A'B'C'O',∴A'点的坐标为(-√3,-√5),B'点的坐标为(-3√3,-√5),C'点的坐标为(-2√3,-2√5),O'点的坐标为(0,-2√5).8.解析(1)如图..(2)四边形ABCD的面积是172(3)四边形A'B'C'D'如图.其中A'(-4,1)、B'(-1,1)、C'(-2,4)、D'(-4,5).能力提升全练9.B将点P(m+2,2-m)向右平移2个单位长度后得到的点Q的坐标为(m+4,2-m),∵点Q(m+4,2-m)在y轴上,∴m+4=0,即m=-4,则点P 的坐标为(-2,6),故选B.10.D输入数字密码(7,7),(8,5),对应的中转口令是“数学”,最后输出的口令为“文化”,可得平移规律为向左平移1格,向下平移2格,所以输入数字密码(2,7),(3,4),得最后输出的口令为“相交”,故选D.11.B∵将A(n2,1)沿着x轴的正方向平移3+n2个单位后得到B点,∴B(2n2+3,1),∴点B在点A右侧,且AB与x轴平行,AB上的点都距离x轴1个单位,因为点M(-2n2,1)距离x轴1个单位,当n≠0时,M 点在点A左侧,当n=0时,M点跟A点重合,所以点M不一定在线段AB上.点N(3n2,1)距离x轴1个单位,可看作将点A沿着x轴的正方向平移2n2个单位后得到的,不一定在线段AB上.点P(n2,n2+4)在点A 右侧,且距离x轴n2+4个单位,不在线段AB上.点Q(n2+1,1)距离x 轴1个单位,可看作将A(n2,1)沿着x轴的正方向平移1个单位后得到的,一定在线段AB上.所以一定在线段AB上的是点Q.故选B.12.答案(0,3)或(-4,0)解析设平移后点P、Q的对应点分别是P'、Q'.分两种情况:①P'在y轴上,Q'在x轴上,则P'的横坐标为0,Q'的纵坐标为0,∴点P'的纵坐标为n+0-(n-3)=3,∴点P平移后的对应点的坐标是(0,3);②P'在x轴上,Q'在y轴上,则P'的纵坐标为0,Q'的横坐标为0,∴点P'的横坐标为m-4+0-m=-4,∴点P平移后的对应点的坐标是(-4,0).综上可知,点P平移后的对应点的坐标是(0,3)或(-4,0).素养探究全练13.答案2n-1解析由题意知,点A1的横坐标为1=21-1,点A2的横坐标为3=22-1,点A3的横坐标为7=23-1,点A4的横坐标为15=24-1,……,则点A n的横坐标为2n-1.14.解析(1)将点A(1,1)进行“1型平移”后的对应点A'的坐标为(2,0),故答案为(2,0).(2)①如图,将线段AB进行“-1型平移”后得到线段A'B',点P1(2,3),P2(1.5,2),P3(3,0)中,线段A'B'上的点是P2.②若线段AB进行“t型平移”后与坐标轴有公共点,则t的取值范围是-3≤t≤-1或t=1.。
第7章平面直角坐标系7.2坐标方法的简单应用-7.2.2用坐标表示平移班级:姓名:知识点1用坐标表示点的平移1.将点A(2,1)向左平移2个单位长度得到点A',则点A'的坐标是()A.(0,1)B.(2,-1)C.(4,1)D.(2,3)2.把点A(-2,1)向上平移2个单位长度,再向右平移3个单位长度后得到B,点B的坐标是()A.(-5,3)B.(1,3)C.(1,-3)D.(-5,-1)3.点P(2,-3)先向左平移4个单位长度,再向上平移1个单位长度,得到点P'的坐标是.4.将点A(-3,-2)先沿y轴向上平移5个单位长度,再沿x轴向左平移4个单位长度得到点A',则点A'的坐标是.5.将点A(1,-3)向右平移2个单位长度,再向下平移2个单位长度后得到点B(a,b),则ab=.6.(1)如图,将点A向右平移几个单位长度可得到点B()A.3个单位长度B.4个单位长度C.5个单位长度D.6个单位长度(2)将点A向下平移5个单位长度后,将重合于图中的()A.点CB.点FC.点DD.点E(3)将点A先向右平移3个单位长度,再向下平移5个单位长度,得到A',将点B先向下平移5个单位长度,再向右平移3个单位长度,得到B',则A'与B'相距()A.4个单位长度B.5个单位长度C.6个单位长度D.7个单位长度(4)点G(-2,-2),将点G先向右平移6个单位长度,再向上平移5个单位长度,得到G',则G'的坐标为()A.(6,5)B.(4,5)C.(6,3)D.(4,3)7.在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(-3,2)重合,则点A的坐标是()A.(2,5)B.(-8,5)C.(-8,-1)D.(2,-1)知识点2用坐标表示图形的平移8.将一个三角形的三个顶点的坐标分别向上平移1个单位长度,再向左平移4个单位长度所得点的坐标分别是(2,1),(-1,3),(4,-5),则平移前三个顶点的坐标分别是()A.(6,0),(3,2),(8,-6)B.(-1,-5),(2,-7),(3,-1)C.(1,5),(2,-7),(-3,1)D.(-1,5),(2,-7),(-3,1)9.如图,将三角形PQR向右平移2个单位长度,再向下平移3个单位长度,则点P平移后的坐标是()A.(-2,-4)B.(-2,4)C.(2,-3)D.(-1,-3)10.如图在直角坐标系中,右边的图案是由左边的图案经过平移以后得到的.左图案中左右眼睛的坐标分别是(-4,2),(-2,2),右图中左眼的坐标是(3,4),则右图案中右眼的坐标是.11.如图,三角形OAB 的顶点B 的坐标为(4,0),把三角形OAB 沿x 轴向右平移得到三角形CDE.如果CB=1,那么OE 的长为.12.如图,A,B 的坐标分别为(1,0),(0,2),若将线段AB 平移至A 1B 1,A 1,B 1的坐标分别为(2,a),(b,3),则a+b=.13.如图,梯形A'B'C'D'可以由梯形ABCD 经过怎样的平移得到?对应点的坐标有什么变化?综合点学科内综合14.如图,点A,B 的坐标分别为(1,2),(4,0),将三角形AOB 沿x 轴向右平移,得到三角形CDE,已知DB=1,则点C 的坐标为.15.如图,三角形A'B'C'是由三角形ABC 平移后得到的,已知三角形ABC 中一点P(x 0,y 0)经平移后对应点为P'(x 0+5,y 0-2).(1)已知A(-1,2),B(-4,5),C(-3,0),请写出A',B',C'的坐标;(2)试说明三角形A'B'C'是如何由三角形ABC平移得到的;(3)请直接写出三角形A'B'C'的面积为_____.拓展训练拓展点坐标中的规律探究16.如图,三角形DEF 是三角形ABC 经过某种变换后得到的图形,分别写出点A 与点D,点B 与点E,点C 与点F 的坐标,并观察它们的关系,如果三角形ABC 中任一点M 的坐标(x,y),那么它的对应点N的坐标是什么?第7章平面直角坐标系7.2坐标方法的简单应用-7.2.2用坐标表示平移答案与点拨1.A(点拨:点A'的横坐标为2-2=0,纵坐标为1,∴A'的坐标为(0,1).故选A.)2.B(点拨:∵A(-2,1)向上平移2个单位长度,再向右平移3个单位长度后得到B,∴1+2=3,-2+3=1;点B的坐标是(1,3).故选B.)3.(-2,-2)(点拨:点(2,-3)向左平移4个单位长度,横坐标为:2-4=-2,向上平移1个单位长度,纵坐标为:-3+1=-2,∴点P'(-2,-2).)4.(-7,3)(点拨:点A(-3,-2)先沿y轴向上平移5个单位长度,再沿x轴向左平移4个单位长度得到点A',∴A'的坐标是(-3-4,-2+5),即(-7,3).)5.-15(点拨:将点A向右平移2个单位长度,纵坐标不变,横坐标增加2,此时点的坐标为(3,-3),再向下平移2个单位长度,横坐标不变,纵坐标减2,此时的坐标为(3,-5),即点B坐标为(3,-5),∴a=3,b=-5,∴ab=3×(-5)=-15.)6.(1)B(2)D(3)A(点拨:先分别找到A',B'的位置,再观察它们之间的距离.)(4)D7.D(点拨:逆向思考,把点(-3,2)先向右平移5个单位长度,再向下平移3个单位长度可得到A点坐标.)8.A(点拨:将平移后各点横坐标加4,纵坐标减1,可得到平移前的点的坐标分别是:(2+4,1-1),(-1+4,3-1),(4+4,-5-1),即(6,0),(3,2),(8,-6).)9.A(点拨:由图形知点P的坐标为P(-4,-1),由平移规律得平移后P点的坐标是(-4+2,-1-3)即(-2,-4).故选A.)10.(5,4)(点拨:左眼坐标由(-4,2)到(3,4)是向右平移7个单位长度,又向上平移2个单位长度,右眼由(-2,2)作同样的平移得坐标为(5,4).)11.7(点拨:因为三角形OAB的顶点B的坐标为(4,0),所以OB=4,所以OC=OB-CB=4-1=3,因此平移的距离为3.因为把三角形OAB沿x轴向右平移得到三角形CDE,所以CE=OB=4,所以OE=OC+CE=3+4=7.)12.2(点拨:∵A,B的坐标分别为(1,0),(0,2),若将线段AB平移至A1B1,A1,B1的坐标分别为(2,a),(b,3),可知线段AB向右平移了1个单位长度,向上平移了1个单位长度,则a=0+1=1,b=0+1=1,则a+b=1+1=2.)13.可由ABCD向左平移7个单位长度,向上平移7个单位长度得到.各对应点的坐标横坐标减7,纵坐标加7.14.(4,2)(点拨:O与D是一对对应点,因此平移距离为OD=OB-DB=4-1=3,因此平行规律为向右平移3个单位长度,所以A(1,2)的对应点C的坐标为(4,2).)15.(1)A'(4,0),B'(1,3),C'(2,-2)(2)三角形ABC向右平移5个单位长度,再向下平移2个单位长度(或先下平移2个单位长度,再向右平移5个单位长度)即可得到三角形A'B'C'.(3)616.A(4,3),D(-4,-3),B(3,1),E(-3,-1),C(1,2),F(-1,-2);N(-x,-y)。
第七章平面直角坐标系 7.2 坐标方法的简单应用用坐标表示平移一课一练·基础闯关题组点的平移1.将点P(2m+3,m-2)向上平移1个单位长度得到点P′,且点P′在x轴上,那么点P的坐标是( )A.(9,1)B.(5,-1)C.(7,0)D.(1,-3)【解析】选B.∵将点P(2m+3,m-2)向上平移1个单位长度得到点P′,∴点P′的坐标为(2m+3,m-1),∵点P′在x轴上,∴m-1=0,解得m=1,∴点P的坐标是(5,-1).2.(2017·通州区一模)如图,在平面直角坐标系xO1y中,点A的坐标为(1,1).如果将x轴向上平移3个单位长度,将y轴向左平移2个单位长度,交于点O2,点A的位置不变,那么在平面直角坐标系xO2y中,点A的坐标是( )A.(3,-2)B.(-3,2)C.(-2,-3)D.(3,4)【解析】选A.x轴向上平移3个单位长度,y轴向左平移2个单位长度相当于把点A向下平移3个单位长度,再向右平移2个单位长度,所以在平面直角坐标系xO2y中,点A的坐标是(3,-2).3.在平面直角坐标系中,将点P(2,3)向左平移3个单位长度,再向下平移个单位长度后,得到的点位于第________象限.【解析】∵点P(2,3)向左平移3个单位长度,再向下平移个单位长度,∴平移后的点的横坐标为2-3=-1,纵坐标为3-,∴平移后的点的坐标为(-1,3-),在第三象限.答案:三4.点P在平面直角坐标系的位置如图所示,将点P向下平移a个单位长度得到点P′,若点P′到x轴和y轴的距离均相等,且点P′在第三象限,则a的值是________.【解析】由题干图得知:P(-2,4),∵将点P向下平移a个单位长度得点P′,∴P′(-2,4-a),∵点P′到x轴和y轴的距离均相等,且点P′在第三象限,∴4-a=-2,∴a=6.答案:65.已知点P(2a-12,1-a)位于第三象限,点Q(x,y)位于第二象限且是由点P向上平移一定单位长度得到的.(1)若点P的纵坐标为-3,求a的值.(2)在(1)的条件下,试求出符合条件的一个点Q的坐标.【解析】(1)根据题意,1-a=-3,解得a=4.(2)∵a=4,∴2a-12=2×4-12=8-12=-4,∴点P的坐标是(-4,-3),∴点Q的坐标可以是(-4,1).(答案不唯一.只要横坐标是-4,纵坐标大于0即可.)题组图形的平移与坐标1.(2017·市中区一模)如图,在10×6的网格中,每个小方格的边长都是1个单位长度,将△ABC平移到△DEF的位置,下面正确的平移步骤是( )A.先向左平移5个单位长度,再向下平移2个单位长度B.先向右平移5个单位长度,再向下平移2个单位长度C.先向左平移5个单位长度,再向上平移2个单位长度D.先向右平移5个单位长度,再向上平移2个单位长度【解析】选A.根据网格结构,观察对应点A,D,点A向左平移5个单位长度,再向下平移2个单位长度即可到达点D的位置,所以平移步骤是:先把△ABC向左平移5个单位长度,再向下平移2个单位长度.2.在平面直角坐标系中,已知线段AB的两个端点分别是A(1,2),B(2,0),将线段AB平移后得到线段CD,若点A的对应点是点C(3,a),点B的对应点是点D(b,1),则a-b的值是( )A.-1B.0【解析】选A.由题意得,对应点之间的关系是横坐标加2,纵坐标加1,∴2+2=b,2+1=a,∴a=3,b=4.∴a-b=-1.3.如图,把“QQ”笑脸放在直角坐标系中,已知左眼A的坐标是(-2,3),右眼B的坐标为(0,3),则将此“QQ”笑脸向右平移3个单位长度后,嘴唇C的坐标是________.【解析】∵左眼A的坐标是(-2,3),右眼B的坐标为(0,3),∴嘴唇C的坐标为(-1,1),∴将此“QQ”笑脸向右平移3个单位长度后,嘴唇C的坐标为(2,1).答案:(2,1)4.(2017·某某期中)在平面直角坐标系中,△A′B′C′是由△ABC平移后得到的,△ABC中任意一点P(x0,y0)经过平移后对应点为P′(x0+6,y0+1),若点A′的坐标为(5,2),则它的对应的点A的坐标为________.【解析】由平移后P(x0,y0)对应点为P′(x0+6,y0+1)可知平移方式为:向右平移6个单位长度,向上平移1个单位长度,∵点A′(5,2)的对应的点A的坐标为(5-6,2-1),即(-1,1).答案:(-1,1)5.如图所示,在四边形ABCO中,AB∥OC,BC∥AO,A,C两点的坐标分别为(-,),(-2,0),A,B两点间的距离等于O,C两点间的距离.(1)点B的坐标为________.(2)将这个四边形向下平移2个单位长度后得到四边形A′B′C′O′,请你写出平移后四边形四个顶点的坐标.【解析】(1)∵C点的坐标为(-2,0),∴OC=2,∵AB∥OC,AB=OC,∴将点A向左平移2个单位长度得到点B的坐标,∵点A的坐标为(-,),∴点B的坐标为(--2,),即(-3,).答案:(-3,)(2)∵将四边形ABCO向下平移2个单位长度后得到四边形A′B′C′O′,∴点A′的坐标为(-,-),点B的坐标为(-3,-),点C′的坐标为(-2,-2),点O′的坐标为(0,-2).6.如图,将三角形ABC通过平移,使点A移动到点E,请你写出点B,C的对应点F,G的坐标,作出三角形EFG,并说明△ABC通过怎样移动得到三角形EFG?【解析】平移后三角形EFG的顶点坐标分别是:F(6,8),G(10,4),平移后的三角形EFG如图,将三角形ABC向右移动6个单位长度,再向上平移4个单位长度得到三角形EFG.如图,在平面直角坐标系中,点A,B的坐标分别是(-2,0),(4,0),现同时将点A,B分别向上平移2个单位长度,再向右平移2个单位长度,得到A,B的对应点C,D.连接AC,BD,CD.(1)点C的坐标为________,点D的坐标为________,四边形ABDC的面积为________.(2)在x轴上是否存在一点E,使得△DEC的面积是△DEB面积的2倍?若存在,请求出点E的坐标;若不存在,请说明理由.【解析】(1)∵点A,B的坐标分别是(-2,0),(4,0),现同时将点A,B分别向上平移2个单位长度,再向右平移2个单位长度得到A,B的对应点C,D,∴点C的坐标为(0,2),点D的坐标为(6,2);四边形ABDC的面积=2×(4+2)=12.答案:(0,2) (6,2) 12(2)存在.设点E的坐标为(x,0),∵△DEC的面积是△DEB面积的2倍,∴×6×2=2××|4-x|×2,解得x=1或x=7,∴点E的坐标为(1,0)和(7,0).【母题变式】[变式一]如图所示的直角坐标系中,三角形ABC的顶点坐标分别是A(0,0),B(7,1),C(4,5).(1)如果将△ABC向上平移1个单位长度,再向右平移2个单位长度,得到△A1B1C1,则A1的坐标为________;B1的坐标为________.(2)求线段BC扫过的面积.【解析】(1)根据题意,把各点的横坐标加2,纵坐标加1得对应点的坐标,即A1(2,1),B1(9,2). 答案:(2,1) (9,2)(2)线段BC扫过的面积=▱BCC′B′面积+▱B′C′C1B1面积=1×3+2×4=11.[变式二]已知A(0,2),将线段AB平移,使A平移到C(-3,0),B平移到D(1,-2),CD交y轴于点E.(1)求B点的坐标.(2)P为x轴上的一动点,若S△ABP=5,求P点的坐标.【解析】(1)∵A(0,2),将线段AB平移,使A平移到C(-3,0),∴平移规律为向左3个单位长度,向下2个单位长度,∵B平移到D(1,-2),又4-3=1,0-2=-2,∴点B的坐标为(4,0).(2)设P点坐标为(x,0),则BP=|x-4|,∵S△ABP=5,∴×|x-4|×2=5,解得x=-1或9.∴P点坐标为(-1,0)或(9,0).。
第七章7.2.2用坐标表示平移基础巩固练习一.选择题1.在平面直角坐标系中,将点P(3,2)向右平移2个单位,所得的点的坐标是( )A.(1,2)B.(3,0)C.(3,4)D.(5,2)2.在平面直角坐标系中,将点M(2,1)向下平移2个单位长度得到点N,则点N的坐标为( )A.(2,-1)B.(2,3)C.(0,1)D.(4,1)3.若将点A(1,3)向左平移2个单位长度,再向下平移4个单位长度得到点B则点B的坐标为( )A(-2,-1) B(-1,0) C(-1,-1) D.(-2,0)4.在平面直角坐标系中,将点A(m,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(-3,2)重合,则点A的坐标是( )A.(2,5)B.(-8,5)C.(-8,-1)D.(2,-1)5.在平面直角坐标系zOy中,线段AB的两个端点坐标分别为A(-1,-1)B(1,2).平移线段AB,得到线段A′B′.已知点A的坐标为(3,-1),则点B的坐标为( )A(4,2) B.(5,2) C.(6,2) D.(5,3)6.如图,线段AB经过平移得到线段A′B′,其中点A,B的对应点分别为点A′,B′,这四个点都在格点上.若线段AB上有一个点P(a,b),则点P在A′B′上的对应点P′的坐标为( )A.(a-2,b+3)B.(a-2,b-3)C.(a+2,b+3)D.(a+2,b-3)二.填空题7. 11.将点P(1,-m)向右平移2个单位长度,再向上平移1个单位长度得到点Q(n,3),则点K(m,n)的坐为8.点A在平面直角坐标xOy中的坐标为(5,3),将坐标系xOy中的x轴向上平移2个单位长度,y轴向左平移3个单位长度,得到平面直角坐标系z′O′y′,在新坐标系x′O′y′中,点A的坐标为9.已知△ABC的三个顶点坐标分别为A(0,0),B(3,O),C(2,3).把△ABC向右平移3个单位长度,再向下平移2个单位长度,得到△A′B′C′,A对应A′,B对应B′,C对应C′,写出点A,B,C的坐标三.解答题10.如图,下列网格中,每个小正方形的边长都是1,图中“鱼”的各个顶点都在格点上,(1)把“鱼”向右平移5个单位长度,再向上平移1个单位长度,并画出平移后的图形。
7.2.2用坐标表示平移参考答案与试题解析夯基训练知识点1点在坐标系中的平移1.平面直角坐标系中,将点A(-3,-5)向上平移4个单位,再向左平移3个单位到点B,则点B的坐标为()A.(1,-8)B.(1,-2)C.(-6,-1)D.(0,-1)1.解析:利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减求解.点A的坐标为(-3,-5),将点A向上平移4个单位,再向左平移3个单位到点B,点B的横坐标是-3-3=-6,纵坐标为-5+4=-1,即(-6,-1).故选C.方法总结:本题考查图形的平移变换,关键是要懂得左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.2.在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(-3,2)重合,则点A的坐标是()A.(2,5)B.(-8,5)C.(-8,-1)D.(2,-1)2.【答案】D解:本题可用逆向思维法,将点B(-3,2)向右平移5个单位长度,再向下平移3个单位长度,即还原为原来A点位置,由此可得点A的坐标为(2,-1).知识点2图形在坐标系中的平移3.如图,把△ABC经过一定的平移变换得到△A′B′C′,如果△ABC边上点P的坐标为(a,b),那么这个点在△A′B′C′中的对应点P′的坐标为()A.(a+6,b-2)B.(a+6,b+2)C.(-a+6,-b)D.(-a+6,b+2)3.解析:根据已知三对对应点的坐标,得出变换规律,再让点P的坐标也做相应变化.∵A(-3,-2),B(-2,0),C(-1,-3),A′(3,0),B′(4,2),C′(5,-1),∴△ABC向右平移6个单位,向上平移2个单位得到△A ′B ′C ′.∵△ABC 边上点P 的坐标为(a ,b ),∴点P 变换后的对应点P ′的坐标为(a +6,b +2).故选B.方法总结:坐标系中图形上所有点的平移变化规律是一致的,解决此类问题的关键是根据已知对应点找到各对应点之间的平移变化规律.4.如图,线段AB 经过平移得到线段A'B',其中点A,B 的对应点分别为点A',B',这四个点都在格点上.若线段AB 上有一个点P(a,b),则点P 在A'B'上的对应点P'的坐标为()A.(a-2,b+3)B.(a-2,b-3)C.(a+2,b+3)D.(a+2,b-3)4.【答案】A解:根据点A,B 平移后横纵坐标的变化可得线段AB 向左平移了2个单位长度,向上平移了3个单位长度,然后根据向左平移横坐标减,向上平移纵坐标加求点P 的对应点P'的坐标.知识点3平移作图5.如图,在平面直角坐标系中,P (a ,b )是△ABC 的边AC 上一点,△ABC 经平移后点P 的对应点为P 1(a +6,b +2).(1)请画出上述平移后的△A 1B 1C 1,并写出点A 、C 、A 1、C 1的坐标;(2)求出以A 、C 、A 1、C 1为顶点的四边形的面积.5.解析:(1)横坐标加6,纵坐标加2,说明向右移动了6个单位,向上平移了2个单位;(2)以A 、C 、A 1、C 1为顶点的四边形的面积可分割为以AC 1为底的2个三角形的面积.解:(1)△A 1B 1C 1如图所示,各点的坐标分别为A (-3,2)、C (-2,0)、A 1(3,4)、C 1(4,2);(2)如图,连接AA 1、CC 1.S △AC 1A 1=12×7×2=7,S △AC 1C =12×7×2=7,故S 四边形ACC 1A 1=S △AC 1A 1+S △AC 1C =7+7=14.方法总结:坐标系中图形平移的坐标变化规律为:左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.求四边形的面积通常转化为求几个三角形的面积的和.题型总结题型1利用平移坐标系比较其坐标变化规律6.如图,一个动点在第一象限及x轴、y轴上运动,在第1秒钟,它从原点运动到(1,0),然后接着按图中箭头所示方向运动,即(0,0)→(1,0)→(1,1)→(0,1)→…,且每秒移动一个单位,那么第2011秒时动点所在位置的坐标是________.6.解析:方法一:动点运动的规律:(0,0),动点运动了0秒;(1,1),动点运动了1×2=2(秒),接着向左运动;(2,2),动点运动了2×3=6(秒),接着向下运动;(3,3),动点运动了3×4=12(秒),接着向左运动;(4,4),动点运动了4×5=20(秒),接着向下运动;…于是会出现:(44,44),动点运动了44×45=1980(秒),接着动点向下运动,而2011-1980=31,故动点的位置为(44,44-31),即(44,13).方法二:由题目可以知道,动点运动的速度是每秒钟运动一个单位长度,(0,0)→(1,0)→(1,1)→(0,1)用的秒数分别是1秒钟,2秒钟,3秒钟,到(0,2)用4秒,到(2,2)用6秒,到(2,0)用8秒,到(3,0)用9秒,到(3,3)用12秒,到(0,4)用16秒,依次类推,到(5,5)用30秒.由上面的结论,我们可以得到的第一象限角平分线上的点从(0,0)到(1,1)用2秒,到(2,2)用6秒,到(3,3)用12秒,则由(n,n)到(n+1,n+1)所用时间增加(2n+2)秒,这样可以先确定第2011秒时动点所在的正方形,然后就可以进一步推得点的坐标是(44,13).方法三:该动点每一次从一个轴走到另一个轴所走的步数要比上一次多走一横步,多走一竖步,共多走两步.从(0,0)点走到(0,1)点共要3步,从(0,1)点走到(2,0)点共5步……当n为偶数时,从(0,n-1)点到(n,0)点共走(2n+1)步;当n为奇数时,从(n-1,0)点到(0,n)点共走(2n +1)步,这里n=1,2,3,4,….∵3+5+7+…+(2n+1)=n(n+2)=(n+1)2-1,∴当n=44时,n(n+2)=(n+1)2-1=452-1=2024,离2011最近,此时n为偶数,即该过程是从(0,43)到(44,0)的过程.2024-2011=13,即从(44,0)向上“退”13步即可.当到2011秒时动点所在的位置为(44,13).故答案为(44,13).方法总结:此类归纳探索猜想型问题的解题关键是总结规律,由特殊到一般的归纳思想来确定点所在的大致位置,进而确定该点的坐标.7.如图为某动物园的示意图.(图中小正方形的边长代表1个单位长度)(1)以虎山为原点,水平向右为x轴正方向、铅直向上为y轴正方向在图中建立平面直角坐标系,并写出各景点的坐标.(2)若以猴园为原点,水平向右为x 轴正方向、铅直向上为y 轴正方向建立平面直角坐标系,写出各景点的坐标.(3)比较(1)、(2)中各景点的坐标,你发现了什么规律?7.解:(1)如图①,由图可得虎山(0,0)、熊猫馆(3,2)、鸟岛(-1,3)、狮子馆(-2,-2)、猴园(3,-1).(2)如图②,由图可得虎山(-3,1)、熊猫馆(0,3)、鸟岛(-4,4)、狮子馆(-5,-1)、猴园(0,0).(3)(2)中各景点的坐标与(1)中的相比,横坐标减小3,纵坐标增加1.题型2利用图形的特征求平移前后的坐标8.如图,长方形ABCD 在坐标平面内,点A 的坐标是(,1),且边AB,CD 与x 轴平行,边AD,BC与y 轴平行,AB=4,AD=2.(1)求B,C,D 三点的坐标.(2)怎样平移,才能使A 点与原点重合?8.解:(1)因为A(2,1),AB=4,AD=2,所以BC 到y 轴的距离为4+2,CD 到x 轴的距离为2+1=3.所以B(4+2,1),C(4+2,3),D(2,3).(2)由题图可知,先向下平移1个单位长度,再向左平移2个单位长度(或先向左平移2个单位长度,再向下平移1个单位长度).题型3利用坐标的变化确定平移方式9.在平面直角坐标系中,三角形ABC 三个顶点的坐标分别是A(-4,-4),B(-2,-3),C(-3,-1).(1)将三角形ABC 三个顶点的横坐标都加上5,纵坐标不变,分别得到点A 1,B 1,C 1,依次连接A 1,B 1,C 1各点,所得三角形A 1B 1C 1与三角形ABC 在大小、形状和位置上有什么关系?(2)将三角形ABC 三个顶点的纵坐标都加上4,横坐标不变,分别得到点A 2,B 2,C 2,依次连接A 2,B 2,C 2各点,所得三角形A 2B 2C 2与三角形ABC 在大小、形状和位置上有什么关系?9.解:平移后的图形如图所示.(1)所得三角形A 1B 1C 1与三角形ABC 的大小、形状完全相同,三角形A 1B 1C 1可以看作是将三角形ABC 向右平移5个单位长度得到的.(2)所得三角形A 2B 2C 2与三角形ABC 的大小、形状完全相同,三角形A 2B 2C 2可以看作是将三角形ABC 向上平移4个单位长度得到的.分析:从图形上的点的坐标的某种变化,我们也可以看出对这个图形进行了怎样的平移;横坐标的变化决定图形左右平移,纵坐标的变化决定图形上下平移.题型4利用平移方式确定坐标的变化10.在平面直角坐标系中,三角形ABC的三个顶点的位置如图所示,点A'的坐标是(-2,2),现将三角形ABC平移,使点A变换为点A',点B',C'分别是B,C的对应点.(1)请画出平移后的三角形A'B'C'(不写画法),并直接写出B',C'的坐标;(2)若三角形ABC内部一点P的坐标为(a,b),则点P的对应点P'的坐标是_________. 10.解:(1)如图,B'(-4,1),C'(-1,-1).(2)(a-5,b-2)拓展培优拓展角度1利用图形平移的坐标变化求其覆盖坐标平面的面积11.已知三角形ABC在平面直角坐标系中的位置如图所示,将三角形ABC先向下平移5个单位长度,再向左平移2个单位长度,求平移后C点的对应点的坐标和三角形ABC所扫过部分的面积.11.解:如图,平移后C 点的对应点的坐标为(1,-2).三角形ABC 所扫过部分的面积=S 三角形ABC +S 长方形ABB'A'+S 三角形A″A'C″=3×2×12+3×5+12×2×2=3+15+2=20.拓展角度2利用平移与对称作图求面积12.如图,有8×8的正方形网格,按要求操作并计算.(1)在8×8的正方形网格中建立平面直角坐标系,使点A 的坐标为(2,4),点B 的坐标为(4,2);(2)将点A 向下平移5个单位长度,再关于y 轴对称得到点C,求点C 的坐标;(3)画出三角形ABC,并求其面积.12.解:(1)如图所示.(2)点A 向下平移5个单位长度得到点(2,-1),其关于y 轴对称的点C 的坐标为(-2,-1).(3)如图,S 三角形ABC =S 长方形CDEF -S 三角形BCD -S 三角形AFC -S 三角形ABE=5×6-12×6×3-12×4×5-12×2×2=9.。
7.2.2 用坐标表示平移一、选择题1.将点P(3,-2)先向左平移4个单位长度,再向上平移3个单位长度后得到点Q,则点Q的坐标是( )A.(-1,1)B.(7,1)C.(-1,-5)D.(-1,-2)2.线段AB是由线段PQ平移得到的,点P(-1,3)的对应点为A(4,7),则点Q(-3,1)的对应点B 的坐标是( )A.(2,5)B.(-6,-1)C.(-8,-3)D.(-2,-2)3.如图,A,B的坐标分别为(1,0),(0,2),若将线段AB平移至A1B1,则a-b的值为( )A.1B.-1C.0D.24.将线段AB在坐标系中进行平移,已知A(-1,2),B(1,1),将线段AB平移后,其两个端点的坐标变为A'(-2,1),B'(0,0),则它平移的情况是( )A.向上平移了1个单位长度,向左平移了1个单位长度B.向下平移了1个单位长度,向左平移了1个单位长度C.向下平移了1个单位长度,向右平移了1个单位长度D.向上平移了1个单位长度,向右平移了1个单位长度5.如图,已知△ABC在平面直角坐标系中的位置如图所示,将△ABC先向下平移5个单位,再向左平移2个单位,则平移后C点的坐标是( )A.(5,-2)B.(1,-2)C.(2,-1)D.(2,-2)6.如图,将“笑脸”图标向右平移4个单位,再向下平移2个单位,点P的对应点P'的坐标是( )A.(-1,6)B.(-9,6)C.(-1,2)D.(-9,2)7.将点P(m+2,2m+4)向右平移1个单位到P',且P'在y轴上,那么P'的坐标是( )A.(-2,0)B.(0,-2)C.(1,0)D.(0,1)二、填空题8.点M(4,3)向(填“上”“下”“左”或“右”)平移个单位后落在y轴上;向(填“上”“下”“左”或“右”)平移个单位后落在x轴上.9.(2016黑龙江哈尔滨双城期末)在同一坐标系中,图形a是由图形b向上平移3个单位长度得到的,如果图形a中点A的坐标为(4,-2),则图形b中与点A对应的点A'的坐标为.10.在平面直角坐标系中有一点A(-2,1),将点A先向右平移3个单位,再向下平移2个单位,则平移后点A的坐标为.11.若点A(a-1,a+2)在x轴上,将点A向上平移4个单位长度得点B,则点B的坐标是.12.如图,点A、B的坐标分别为(1,2)、(4,0),将△AOB沿x轴向右平移,得到△CDE,已知DB=1,则点C的坐标为.13.三角形ABC中任意一点P(x0,y0)经平移后的对应点为P1(x0+5,y0+3),将三角形ABC作同样的平移得到三角形A1B1C1,若A(-2,3),则A1的坐标为.14.在如图所示的直角坐标系中,△AOB经过平移后得到△A1O1B1(两个三角形的顶点都在格点上),已知在AO上一点P,平移后得到A1O1上一点P1(-3.5,-2),则P点的坐标为.三、解答题15.在平面直角坐标系xOy中,点A的坐标为(0,4),线段MN的位置如图所示,其中点M的坐标为(-3,-1),点N的坐标为(3,-2).(1)将线段MN平移得到线段AB,其中点M的对应点为A,点N的对称点为B.①点M平移到点A的过程可以是:先向平移个单位长度,再向平移个单位长度;②点B的坐标为;(2)在(1)的条件下,若点C的坐标为(4,0),连接AC,BC,求△ABC的面积.16.如图,直角坐标系中,△ABC的顶点都在格点上,其中,点C的坐标为(1,2).(1)填空:点A的坐标是,点B的坐标是;(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A'B'C'.请作出△A'B'C',并写出△A'B'C'的三个顶点坐标;(3)求△ABC的面积.答案1. A2. A3. C4. B5. B6. C7. B8.左;4;下;39.(4,1)10.(1,-1)11.(-3,4)12.(4,2)13.(3,6)14.(0.5,1)15.(1)如图,①点M平移到点A的过程可以是:先向右平移3个单位长度,再向上平移5个单位长度.②点B的坐标为(6,3).故为:右;3;上;5;(6,3).(2)如图,S △ABC =6×4-12×4×4-12×2×3-12×6×1=10.16. (1)点A 的坐标是(2,-1),点B 的坐标是(4,3).(2)如图,△A'B'C'为所求作的图形,A'(0,0),B'(2,4),C'(-1,3).(3)△ABC 的面积=3×4-12×2×4-12×3×1-12×3×1=5.。
7.2.2 用坐标表示平移1.在平面直角坐标系中,将点P(3,2)向下平移2个单位长度得到的点的坐标是( ) A.(3,0) B.(1,2)C.(5,2) D.(3,4)2.将点A(-2,-3)向左平移3个单位长度得到点B,则点B的坐标是( )A.(1,-3) B.(-2,0)C.(-5,-3) D.(-2,-6)3.在平面直角坐标系中,将点A(-2,3)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是.4.平面直角坐标系中,将三角形各点的纵坐标都减去-3,横坐标保持不变,所得图形与原图形相比( )A.向上平移了3个单位长度B.向下平移了3个单位长度C.向右平移了3个单位长度D.向左平移了3个单位长度5.如图,如果将三角形ABC向右平移2格得到三角形A′B′C′,则顶点A′的位置用数对表示为( )A.(5,1)B.(1,1)C.(7,1)D.(3,3)6.如图,将“笑脸”图标向右平移4个单位长度,再向下平移2个单位长度,点P的对应点P′的坐标是( )A.(-1,6)B.(-9,6)C.(-1,2)D.(-9,2)7.线段CD是由线段AB平移得到的,点A(-2,3)的对应点为C(3,-2),则点B(-1,-2)的对应点D的坐标为( )A.(4,-7) B.(-2,-7) C.(4,-2) D.(-7,4)8.如图所示:(1)请写出在直角坐标系中的房子的A,B,C,D,E,F,G的坐标;(2)小影想把房子向下平移3个单位长度,你能帮他办到吗?请作出相应图形,并写出平移后7个对应点的坐标.9.已知坐标平面内的点A(-2,5),若将平面直角坐标系先向右平移3个单位长度,再向上平移4个单位长度,则点A在平移后的坐标系中的坐标是.10.在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(-3,2)重合,则点A的坐标是( )A.(2,5) B.(-8,5)C.(-8,-1) D.(2,-1)11.如图,线段AB经过平移得到线段A′B′,其中点A,B的对应点分别为点A′,B′,这四个点都在格点上,若线段AB上有一个点P(a,b),则点P在A′B′上的对应点P′的坐标为( )A.(a-2,b+3)B.(a-2,b-3)C.(a+2,b+3)D.(a+2,b-3)12.点P(m+2,2m+1)向右平移1个单位长度后,正好落在y轴上,则m=.13.如图所示,三角形ABC三点坐标分别为A(-3,4),B(-4,1),C(-1,2).(1)说明三角形ABC平移到三角形A1B1C1的过程,并求出点A1,B1,C1的坐标;(2)由三角形ABC平移到三角形A2B2C2又是怎样平移的?并求出点A2,B2,C2的坐标.14.如图,把三角形ABC向上平移3个单位长度,再向右平移2个单位长度,得到三角形A′B′C′.(1)在图中画出三角形A′B′C′;(2)写出点A′,B′的坐标;(3)求三角形A′B′C′的面积;(4)在y轴上是否存在一点P,使得三角形BCP与三角形ABC面积相等?若存在,请直接写出点P的坐标;若不存在,说明理由.15.如图,在平面直角坐标系xOy中,对正方形ABCD及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一实数a,将得到的点先向右平移m个单位长度,再向上平移n个单位长度(m>0,n>0),得到正方形A′B′C′D′及其内部的点,其中点A,B的对应点分别为点A′,B′.已知正方形ABCD内部的一个点F经过上述操作后得到的对应点F′与点F重合,求点F的坐标.7.2.2 用坐标表示平移1.在平面直角坐标系中,将点P(3,2)向下平移2个单位长度得到的点的坐标是(A) A.(3,0) B.(1,2)C.(5,2) D.(3,4)2.将点A(-2,-3)向左平移3个单位长度得到点B,则点B的坐标是(C)A.(1,-3) B.(-2,0)C.(-5,-3) D.(-2,-6)3.在平面直角坐标系中,将点A(-2,3)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是(1,1).4.平面直角坐标系中,将三角形各点的纵坐标都减去-3,横坐标保持不变,所得图形与原图形相比(A)A.向上平移了3个单位长度B.向下平移了3个单位长度C.向右平移了3个单位长度D.向左平移了3个单位长度5.如图,如果将三角形ABC向右平移2格得到三角形A′B′C′,则顶点A′的位置用数对表示为(A)A.(5,1) B.(1,1)C.(7,1) D.(3,3)6.如图,将“笑脸”图标向右平移4个单位长度,再向下平移2个单位长度,点P的对应点P′的坐标是(C)A.(-1,6) B.(-9,6) C.(-1,2)7.线段CD是由线段AB平移得到的,点A(-2,3)的对应点为C(3,-2),则点B(-1,-2)的对应点D的坐标为(A)A.(4,-7) B.(-2,-7) C.(4,-2) D.(-7,4)8.如图所示:(1)请写出在直角坐标系中的房子的A,B,C,D,E,F,G的坐标;(2)小影想把房子向下平移3个单位长度,你能帮他办到吗?请作出相应图形,并写出平移后7个对应点的坐标.解:(1)A(2,3),B(6,5),C(10,3),D(3,3),E(9,3),F(3,0),G(9,0).(2)图略.向下平移3个单位长度,即所有点的纵坐标减去3,所以平移后7个对应点的坐标依次为(2,0),(6,2),(10,0),(3,0),(9,0),(3,-3),(9,-3).9.已知坐标平面内的点A(-2,5),若将平面直角坐标系先向右平移3个单位长度,再向上平移4个单位长度,则点A在平移后的坐标系中的坐标是(-5,1).10.在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(-3,2)重合,则点A的坐标是(D)A.(2,5) B.(-8,5)C.(-8,-1) D.(2,-1)11.如图,线段AB经过平移得到线段A′B′,其中点A,B的对应点分别为点A′,B′,这四个点都在格点上,若线段AB上有一个点P(a,b),则点P在A′B′上的对应点P′的坐标为(D)A.(a-2,b+3) B.(a-2,b-3) C.(a+2,b+3)D .(a +2,b -3)12.点P(m +2,2m +1)向右平移1个单位长度后,正好落在y 轴上,则m =-3. 13.如图所示,三角形ABC 三点坐标分别为A(-3,4),B(-4,1),C(-1,2).(1)说明三角形ABC 平移到三角形A 1B 1C 1的过程,并求出点A 1,B 1,C 1的坐标; (2)由三角形ABC 平移到三角形A 2B 2C 2又是怎样平移的?并求出点A 2,B 2,C 2的坐标. 解:(1)三角形ABC 向下平移7个单位长度得到三角形A 1B 1C 1. A 1(-3,-3),B 1(-4,-6),C 1(-1,-5).(2)三角形ABC 向右平移6个单位长度,再向下平移3个单位长度得到三角形A 2B 2C 2. A 2(3,1),B 2(2,-2),C 2(5,-1).14.如图,把三角形ABC 向上平移3个单位长度,再向右平移2个单位长度,得到三角形A ′B ′C ′.(1)在图中画出三角形A ′B ′C ′; (2)写出点A ′,B ′的坐标; (3)求三角形A ′B ′C ′的面积;(4)在y 轴上是否存在一点P ,使得三角形BCP 与三角形ABC 面积相等?若存在,请直接写出点P 的坐标;若不存在,说明理由.解:(1)如图所示.(2)A ′(0,4),B ′(-1,1). (3)S 三角形A ′B ′C ′=12×4×3=6.(4)存在.设三角形BCP 的边BC 上的高为h , ∵三角形ABC 的面积和三角形BCP 的面积相等, ∴12×4×h =6,解得h =3. ∵点P 在y 轴上,∴点P 的坐标是(0,1)或(0,-5).15.如图,在平面直角坐标系xOy 中,对正方形ABCD 及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一实数a ,将得到的点先向右平移m 个单位长度,再向上平移n 个单位长度(m>0,n>0),得到正方形A ′B ′C ′D ′及其内部的点,其中点A ,B 的对应点分别为点A ′,B ′.已知正方形ABCD 内部的一个点F 经过上述操作后得到的对应点F ′与点F 重合,求点F 的坐标.解:易知AB =6,A ′B ′=3, ∴a =12.由(-3)×12+m =-1,得m =12. 由0×12+n =2,得n =2.设F(x ,y),变换后F ′(ax +m ,ay +n). ∵F 与F ′重合, ∴ax +m =x ,ay +n =y. ∴12x +12=x ,12y +2=y. 解得x =1,y =4. ∴点F 的坐标为(1,4).。
介父从州今凶分市天水学校用坐标表示平移一.选择题〔共11小题〕1.在平面直角坐标系中,将点A〔x,y〕向左平移5个单位长度,再向上平移3个单位长度后与点B〔﹣3,2〕重合,那么点A的坐标是〔〕A.〔2,5〕B.〔﹣8,5〕C.〔﹣8,﹣1〕D.〔2,﹣1〕2.如图,在平面直角坐标系中,正三角形OAB的顶点B的坐标为〔2,0〕,点A在第一象限内,将△OAB 沿直线OA的方向平移至△O′A′B′的位置,此时点A′的横坐标为3,那么点B′的坐标为〔〕A.〔4,2〕B.〔3,3〕C.〔4,3〕D.〔3,2〕3.〔2021•阜宁县一模〕如图,把线段AB平移,使得点A到达点C〔4,2〕,点B到达点D,那么点D的坐标是〔〕A.〔7,3〕B.〔6,4〕C.〔7,4〕D.〔8,4〕4.〔2021春•期末〕在平面直角坐标系中,将三角形各点的横坐标都减去3,纵坐标保持不变,所得图形与原图形相比〔〕A.向右平移了3个单位B.向左平移了3个单位C.向上平移了3个单位D.向下平移了3个单位5线段EF是由线段PQ平移得到的,点P〔﹣1,3〕的对应点为E〔4,7〕,那么点Q〔﹣3,1〕的对应点F 的坐标是〔〕A.〔﹣8,﹣3〕B.〔﹣2,﹣2〕C.〔2,5〕D.〔﹣6,﹣1〕6.〔2021春•武昌区期末〕在△ABC内任意一点P〔a,b〕经过平移后对应点P1〔c,d〕, A〔3,2〕在经过此次平移后对应点A1的坐标为〔5,﹣1〕,那么a+b﹣c﹣d的值为〔〕A.﹣5 B.﹣1 C.1 D.57.〔2021春•咸丰县期末〕在平面直角坐标系中,有一个长方形ABCD,AB=4,BC=3且AB∥x轴,BC∥y轴,把这个长方形首先向左平移7个单位,再向上平移5个单位,然后沿着y轴翻折得长方形A1B1C1D1,在这个过程中A与A1,B与B1,C与C1,D与D1分别表示始末位置长方形中相同位置的顶点,A1坐标是〔5,1〕,那么A点坐标是〔〕A.〔2,﹣4〕B.〔6,﹣4〕C.〔6,﹣1〕D.〔2,﹣1〕二.填空题〔共10小题〕8.在平面直角坐标系中,将点P〔﹣2,3〕沿x轴方向向右平移3个单位得到点Q,那么点Q的坐标是.9.在平面直角坐标中,△ABC的三个顶点的坐标分别是A〔﹣2,3〕,B〔﹣4,﹣1〕,C〔2,0〕,将△ABC 平移至△A1B1C1的位置,点A,B,C的对应点分别是A1,B1,C1,假设点A1的坐标为〔3,1〕,那么点C1的坐标为.10.假设=0,那么点M〔a,b〕向上平移2个单位长度再向左平移5个单位长度的点坐标为.11.在平面直角坐标系xOy中,有一个边长为2个单位长度的等边△ABC,满足AC∥y轴.平移△ABC得到△A′B′C′,使点A′、B′分别在x轴、y轴上〔不包括原点〕,那么此时点C′的坐标是.12.把一个平行四边形沿x轴正方向平移2个单位,那么对应点的横坐标之差为个单位,纵坐标.13.如图,△OAB的顶点B的坐标为〔4,0〕,把△OAB沿x轴向右平移得到△CDE.如果CB=1,那么OE的长为.14.在平面直角坐标系中,A、B的坐标分别为〔2,0〕〔0,1〕,假设将线段AB平移至CD,且点A的对应点C的坐标为〔3,b〕,点B的对应点D的坐标为〔a,3〕,那么a+b= .15.在直角坐标系中,点P〔﹣3,2〕,点Q是点P关于x轴的对称点,将点Q向右平移4个单位得到点R,那么点R的坐标是.三.解答题〔共3小题〕1.:三点坐标为A〔5,﹣1〕,B〔﹣2,3〕,C〔3,1〕,△ABC内任意一点P〔x,y〕经过平移后,P点对应P′的坐标为〔x+2,y﹣4〕,那么平移后所得△A′B′C′的三个顶点坐标分别为多少?2.把△ABC经过平移后得到△A′B′C′,A〔4,3〕,B〔3,1〕,B′〔1,﹣1〕,C′〔2,0〕〔1〕求A′与C的坐标;〔2〕求△ABC的面积.3.如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为〔1,2〕.〔1〕写出点A、B的坐标:A〔,〕、B〔,〕〔2〕将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,那么A′B′C′的三个顶点坐标分别是A′〔,〕、B′〔,〕、C′〔,〕.〔3〕△ABC的面积为.。
用坐标表示平移知识要点:在平面直角坐标系中,(1)将点(x,y)向右平移a个单位长度,对应点的横坐标加上a,而纵坐标不变,即坐标变为(x+a,y).(2)将点(x,y)向左平移a个单位长度,对应点的横坐标减去a,而纵坐标不变,即坐标变为(x-a,y).(3)将点(x,y)向下平移a个单位长度,对应点的纵坐标减去a,而横坐标不变,即坐标变为(x,y-a).(4)将点(x,y)向上平移a个单位长度,对应点的纵坐标加上a,而横坐标不变,即坐标变为(x,y+a)一、单选题1.在平面直角坐标系中,将点A(﹣1,﹣2)向右平移3个单位长度得到点B,则点B关于x轴的对称点B′的坐标为()A.(﹣3,﹣2) B.(2,2) C.(﹣2,2) D.(2,﹣2)2.在平面直角坐标系中,将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是()A.(﹣1,1) B.(﹣1,﹣2) C.(﹣1,2) D.(1,2)3.已知点A的坐标为(1,3),点B的坐标为(2,1).将线段AB沿某一方向平移后,点A的对应点的坐标为(–2,1),则点B的对应点的坐标为A.(5,3)B.(–1,–2)C.(–1,–1)D.(0,–1)4.已知三角形的三个顶点坐标分别为(-2,1),(2,3),(-3,-1),把这个三角形运动到一个确定位置,在下列各点的坐标中,是经过平移得到的是( )A.(0,3),(0,1),(-1,-1) B.(-3,2),(3,2),(-4,0)C.(1,-2),(3,2),(-1,-3) D.(-1,3),(3,5),(-2,1)5.将某图形中所有点的横坐标都减去 2,纵坐标不变,则该图形()A.向上平移 2 个单位B.向下平移 2 个单位C.向右平移 2 个单位D.向左平移 2 个单位6.如图,已知点,的坐标分别为(3,0),(0,4),将线段平移到,若点的对应点的坐标为(4,2),则的对应点的坐标为().A.(1,6)B.(2,5)C.(6,1)D.(4,6)7.如图所示,在一个由4×4个小正方形组成的正方形网格中,把线段EF向右平移3个单位,向下平移1个单位得到线段GH,则阴影部分面积与正方形ABCD的面积比是( )A.3:4 B.5:8 C.9:16 D.1:28.在内的任意一点经过平移后的对应点为,已知在经过此次平移后对应点的坐标为,则的值为()A.B.C.D.二、填空题9.如图,A,B的坐标为(2,0),(0,1)若将线段AB平移至A1B1,则a+b的值为_____.A 向左平移2个单位再向上平移3个单位得到点10.在平面直角坐标系中,将点(2,3)B,则点B的坐标是__________.11.如图,将△ABC沿BC方向平移1cm得到△DEF,若△ABC的周长等于10cm,则四边形ABFD的周长等于________cm.12.如图,在△AOB中,AO=AB,在直角坐标系中,点A的坐标是(2,2),点O的坐标是(0,0),将△AOB平移得到△A′O′B′,使得点A′在y轴上.点O′、B′在x轴上.则点B'的坐标是______BC ,现将三角形ABC沿直线BC向右平13.如图,已知三角形ABC的面积为16,8移a个单位到三角形DEF的位置,当边AB所扫过的面积为32时,那么a的值为__________.三、解答题14.在如图所示的平面直角坐标系中描出下面各点:A(0,3);B(1,-3);C(3,-5);D(-3,-5);E(3,5);F(5,7);G(5,0).(1)将点C 向x 轴的负方向平移6个单位,它与点 重合.(2)连接CE ,则直线CE 与y 轴是什么关系?(3)顺次连接D 、E 、G 、C 、D 得到四边形DEGC ,求四边形DEGC 的面积.15.已知:△ABC 与△A'B'C 在平面直角坐标系中的位置如图.(1)分别写出B 、B'的坐标:B______;B′______;(2)若点P (a ,b )是△ABC 内部一点,则平移后△A'B'C 内的对应点P′的坐标为______;(3)求△ABC 的面积.16.如图,方格纸中每个小格子的边长均为1个单位长度,ABC ∆的三个顶点和点P 都在方格纸的格点上,(1)若将ABC ∆平移,使点P 恰好落在平移后得到的A B C '''∆的内部,则符合要求的三角形能画出_______个,请在方格纸中画出符合要求的一个三角形;(2)在(1)的条件下,若连接对应点BB '、CC ',则这两条线段的位置关系是______;(3)画一条直线l ,将ABC ∆分成两个面积相等的三角形.17.如图,长方形OABC 中,O 为平面直角坐标系的原点,A 点的坐标为(4,0),C 点的坐标为(0,6),点B 在第一象限内,点P 从原点O 出发,以每秒2个单位长度的速度沿着O ﹣A ﹣B ﹣C ﹣O 的路线移动(即沿长方形移动一周).(1)写出B点的坐标;(2)当点P移动3秒时,求三角形OAP的面积;(3)在移动过程中,当点P到x轴距离为4个单位长度时,求点P移动的时间答案1.B2.A3.C4.D5.D6.A7.B8.D9.210.(4,6)-11.1212.(2,0)13.814.(1)易知C向x负半轴移动6个单位,即往左边移动6个单位,与D重叠.(2)连接CE,因为两点坐标x值相等,故CE垂直于x轴交于H点,平行于y轴(3)四边形DEGC面积=S△EDC+S△GEC=1111DC610102 2222EC EC GH⋅+⋅=⨯⨯+⨯⨯=4015.解:(1)由图知点B′的坐标为(2,0)、点B坐标为(-2,-2),故答案为:(2,0)、(-2,-2);(2)由图知△ABC向左平移4个单位,再向下平移2个单位可得到△A'B'C′,则平移后△A'B'C内的对应点P′的坐标为(a-4,b-2),故答案为:(a-4,b-2);(3)△ABC的面积为2×3-12×1×3-12×1×1-12×2×2=2.16.解:(1)∵△ABC内部有10个格点,∴使点P恰好落在平移后得到的△A'B'C'的内部,则符合要求的格点三角形能画出10个,如图所示,△A'B'C'即为所求(答案不唯一);故答案为:10;(2)连接对应点BB'、CC',则这两条线段的位置关系是平行或在同一条直线上;故答案为:平行或在同一条直线上;(3)如图所示,直线l即为所求(答案不唯一).17.解:(1)根据长方形的性质,可得AB与y轴平行,BC与x轴平行;故B的坐标为(4,6);(2)∵A(4,0)、C(0,6),∴OA=4,OC=6.∵3×2=6>4,∴点P在线段AB上.∴PA=2.∴S△OAP=12OA×PA=12×4×2=4.(3)∵OC=AB=6>4,∴点P在AB上或OC上.当点P在AB上时,PA=4,此时点P移动路程为4+4=8,时间为12×8=4.当点P在OC上时,OP=4,此时点P移动路程为2(4+6)﹣4=16,时间为12×16=8.∴点P移动的时间为4秒或8秒第2课时平方差公式的应用【知识与技能】进一步体会平方差公式的意义,会利用公式进行计算,能够掌握平方差公式的一些应用。
7.2.2 用坐标表示平移班级:________ 姓名:________ 得分:________一、选择题(每题5分,共25分)1.在平面直角坐标系中,将点P(-2,3)沿x轴方向向右平移3个单位得到点Q,则点Q的坐标是()A.(-2,6)B.(-2,0)C.(-5,3)D.(1,3)2.将某图形的横坐标都减去2,纵坐标不变,则该图形()A. 向右平移2个单位B. 向左平移2个单位C. 向上平移2个单位D. 向下平移2个单位3.线段CD是由线段AB平移得到的,点A(﹣1.5)的对应点为C(4,8),则点B(﹣4,﹣2)的对应点D的坐标为()A.(﹣9,﹣5)B.(﹣9,1)C.(1,﹣5)D.(1,1)4.已知三角形ABC平移后得到三角形A1B1C1,且A(-2,3),B(-4,-1),C1(m,n),C(m+5,n+3),则A1,B1两点的坐标为()A.(3,6),(1,2)B.(-7,0),(-9,-4)C.(1,8),(-1,4)D.(-7,-2),(0,-9)5.如图,一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1) →(1,1) →(1,0)→…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是()A.(4,0) B. (5,0) C.(0,5) D.(5,5)第5题图第8题图第10题图二、填空题(每题5分,共25分)6.将点P(-3,4)向下平移3个单位,向左平移2个单位后得到点Q,则点Q的坐标为。
7.三角形ABC的三个顶点A(1,2),B(-1,-2),C(-2,3),将其平移到点A′(-1,-2)处,使A与A′重合,则B、C两点的坐标分别为__________,__________.8.如图,已知A(0,1),B(2,0),把线段AB平移后得到线段CD,其中C(1,a),D(b,1)则a+b = ;9.在平面直角坐标系中,若点M(1,3)与点N(x,3)之间的距离是5,则x的值是.10.如图,在直角坐标系中,右边的蝴蝶是由左边的蝴蝶飞过去以后得到的,左图案中左右翅尖的坐标分别是(-4,2)、(-2,2),右图案中左翅尖的坐标是(3,4),则右图案中右翅尖的坐标是.三、解答题(共50分)11.(10分)如图,在平面网格中每个小正方形的边长为1. (1)线段CD是线段AB经过怎样的平移后得到的?(2)线段AC是线段BD经过怎样的平移后得到的?12.(10分)如图,将△ABC向右平移5个单位长度,再向下平移2个单位长度,得到△A′B′C′,请画出平移后的图形,并写出△A′B′C′各顶点的坐标.13.(10分)如图,四边形ABCD各个顶点的坐标分别为(-2,8),(-11,6),(-14,0),(0,0).(1)确定这个四边形的面积,你是怎么做的?(2)如果四边形ABCD各个顶点的纵坐标保持不变,横坐标增加2,所得的新四边形的面积是多少?14.(10分)如图,方格纸中每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,△ABC 的顶点在格点上.且A (1,﹣4),B (5,﹣4),C (4,﹣1) (1)画出△ABC ; (2)求出△ABC 的面积;(3)若把△ABC 向上平移2个单位长度,再向左平移 4个单位长度得到△A ′B ′C ′,在图中画出△A ′B ′C ′,并写 出B ′的坐标.15.(10分)ABC ∆与C B A '''∆在平面直角坐标系中的位置如图.⑴分别写出下列各点的坐标:A ' ; B ' ;C ' ; ⑵说明C B A '''∆由ABC ∆经过怎样的平移得到: .⑶若点P (a ,b )是ABC ∆内部一点,则平移后C B A '''∆内的对应点P '的坐标为 ; ⑷求ABC ∆的面积.参考答案【解析】先根据点A和对应点C的坐标得到平移的规律为向右平移5个单位,再向上平移3个单位,然后根据此规律把点B进行平移,再写出平移后的对应点D的坐标.解:由于点A(﹣1,5)的对应点为C(4,8),即点A向右平移5个单位,再向上平移3个单位得到点C,因此点B(﹣4,﹣2)向右平移5个单位,再向上平移3个单位得到点D的坐标为(1,1).故选:D.4.B【解析】平面直角坐标系中点的坐标的平移规律:横坐标左减右加,纵坐标上加下减.5.B【解析】跳蚤运动的速度是每秒运动一个单位长度,(0,0)→(0,1)→(1,1)→(1,0)用的秒数分别是1秒,2秒,3秒,到(2,0)用4秒,到(2,2)用6秒,到(0,2)用8秒,到(0,3)用9秒,到(3,3)用12秒,到(4,0)用16秒,依此类推,到(5,0)用35秒.故第35秒时跳蚤所在位置的坐标是(5,0).故选:B.6.(-5,1)【解析】根据题意,点Q的横坐标为:-3-2=-5;纵坐标为4-3=-1;∴点Q的坐标是(-5,1).故答案填:(-5,1).7.(-3,-6),(-4,-1)【解析】平面直角坐标系中点的坐标的平移规律:横坐标左减右加,纵坐标上加下减..8.5【解析】∵两点A(0,1),B(2,0),把线段AB平移后A点对应点是C(1,a),B点对应点是D(b,1),∴线段是向右平移1个单位,再向上平移了1个单位,∴a=1+1=2,b=2+1=3,∴a+b=2+3=5,9.-4或6【解析】点M、N的纵坐标相等,则直线MN在平行于x轴的直线上,根据两点间的距离,可列出等式|x﹣1|=5,从而解得x的值.10.(5,4)【解析】根据左翅尖的坐标的变化规律可得所求坐标.解:∵左图案中左翅尖的坐标是(-4,2),右图案中左翅尖的坐标是(3,4),∴变化规律为横坐标加7,纵坐标加2,∵左图案中右翅尖的坐标是(-2,2),∴右图案中右翅尖的坐标是(5,4),故答案为:(5,4).11. 答案见解析.【解析】(1)将线段AB向右平移3个小格(向下平移4 个小格),再向下平移4个小格(向右平移3个小格),得线段CD.(2)将线段BD向左平移3个小格(向下平移1个小格),再向下平移1个小格(向左平移3个小格),得到线段AC.12. 答案见解析.【解析】解:如图所示:由图可知,A′(4,0),B′(1,3),C′(2,﹣2).13. 答案见解析.【解析】(1)可将这个四边形切割成三个三角形和一个长方形,S=12×3×6+12×9×2+12×2×8+9×6=9+9+8+54=80.(2)横坐标增加2,纵坐标不变,则四边形向右平移2个单位长度,形状和大小都不变,其面积仍是80.14. 答案见解析.【解析】解:(1)如图所示(2)过C作CD⊥AB于D,则S△ABC=AB?CD=×4×3=6;(3)如图所示:B′(1,﹣2).。