07级数学分析(3)试题(A卷)及解答
- 格式:doc
- 大小:245.50 KB
- 文档页数:4
2007数学分析试题:(请将答案做再答题纸上,再试题上做题无效)(本试卷共六道大题,满分150分)一、(本题满分20分)设()f x 在∞(0,)内可导,并且存在p >0使得()lim p x f x x →+∞=1. (1) 对任何1>|δ|>0,求极限lim x →+∞[(1)]()p f x f x p x δδ+-; (2) 求二次极限0l i m δ→l i m x →+∞[(1)]()p f x f x p xδδ+-; (3) 若'()f x 单增,证明对任何h >0,x ∈(0,)+∞,只要x -h ∈(0,)+∞,就有()f x -()f x h -≤'()hf x ≤()f x h +-()f x ;(4) 证明:lim x →+∞'1()p f x px -=1.二、(本题满份25分)设直线y =ax (0<a <1)与抛物线y =2x 在第一象限所围成的平面图形的面积为1s ,y =ax ,y =2x 与直线x =1所围成的平面图形的面积为2s .(1) 试确定a 的值使得1s +2s 达到最小,并求出最小值;(2) 求该最小值所对应的平面图形绕x 轴旋转一周所得旋转体的体积;(3) 用定积分表示该最小值所对应的平面图形绕x 轴旋转一周所得旋转体的侧面积(不必求出它的值).(1) 设p ∈(0,1),将()f x =cos px 在[,]ππ-展开为以2π为周期的傅立叶级数;(2)利用11x+的麦克老林展开式,证明:p ∈(0,1)时, 1101p x dx x -+⎰=0(1)nn p n ∞=-+∑; (3)证明:p ∈(0,1)时,1101p px x dx x --++⎰= sin p π.四、(本题满分20分)证明边长分别为,,,a b c d 的凸边形中,当,a b 边的夹角α满足cos α=22222()a b c d ab cd +--+, 并且,c d 的夹角γ满足α+γ=π时,该四边形的面积最大,并且最大面积为 S =1()sin 2ab cd a +.五、(本题满分20分)设 [,]a b ⨯[,)c +∞={(,)x y |,a x b c y ≤≤≤<+∞},(,)f x y 定义在[,]a b ⨯[,)c +∞上.(1) 叙述含参变量x 的无穷限广义积分()I x =(,)c f x y dy +∞⎰在[,]a b 上一致收敛的柯西原理;(2) 叙述函数级数1()n n x μ+∞=∑在[,]a b 上一致收敛的柯西原理; (3) 证明:()I x =(,)c f x y dy +∞⎰在[,]a b 上一致收敛的充要条件是对任何发散+∞的数列1{}n n A +∞=,(,1,2,...)n A c n >=,函数项级数11(,)n n A A n f x y dy -+∞=∑⎰在在[,]a b 上一致收敛,其中0A =c .设V 是空间二维单连通的有界区域,其边界∑是简单光滑曲面,点00,0,0()P x y z ∈V .u =(,,)u x y z 在_V =V ⋃∑上具有连续偏导数,在V 内具有二阶连续偏导数,且满足22u x ∂∂+22u y ∂∂+22uz ∂∂=0.(1) 证明:0lim t +→214t πtudS ∑⎰⎰=00,0,0()u x y z ,其中t ∑是含在V 内的球面222000()()()x x y y z z -+-+-=2t ()0t >; (2) 设_n =(,,)n x y z 为t ∑上点(,,)p x y z 处的 外 法 向 量,0000{,,}r p p x x y y z z ==--- ,r r =,证明:1tu dS r n∂∂∑⎰⎰ ;(3) 设_n =(,,)n x y z 为 ∑上点(,,)p x y z 处的 外 法 向 量, 0000{,,}r p p x x y y z z ==--- ,r r =,计算积分21c o s (,)1[]4r n u u dSr r n π∂+∂∑⎰⎰ .。
2007年全国硕士研究生入学统一考试数学三试题一.选择题(本题共10分小题,每小题4分,满分40分,在每小题给的四个选项中,只有一项符合题目要求,把所选项前的字母填在后边的括号内)(1) 当).(2) 设函数在处连续,下列命题错误的是: ( ).若存在,则 若存在,则.若存在,则存在 若存在,则存在(3) 如图.连续函数在区间上的图形分别是直径为1的上、下半圆周,在区间上图形分别是直径为2的上、下半圆周,设则下列结论正确的是:( ) .(4) 设函数连续,则二次积分等于( )(5) 设某商品的需求函数为,其中,分别表示需要量和价格,如果该商品需求弹性的绝对值等于1,则商品的价格是( )10 20 30 40(6) 曲线渐近线的条数为( ) 0 1 2 3(7)设向量组线性无关,则下列向量组线相关的是( )(A ) (B) (C ) (D)(8)设矩阵,则A 与B ( )(A )合同,且相似 (B) 合同,但不相似 (C) 不合同,但相似 (D) 既不合同,也不相似0x +→A 1-.ln(1B +1C -.1D -()f x 0x =A 0()limx f x x →(0)0f =.B 0()()lim x f x f x x →+-(0)0f =.C 0()limx f x x →'(0)f .D 0()()lim x f x f x x→--'(0)f ()y f x =[][]3,2,2,3--[][]2,0,0,2-0()(),xF x f t dt =⎰.A (3)F 3(2)4F =--.B (3)F 5(2)4F =.C (3)F -3(2)4F =-.D (3)F -5(2)4F =--(,)f x y 1sin 2(,)xdx f x y dy ππ⎰⎰.A 1arcsin (,)xdy f x y dx ππ+⎰⎰.B 1arcsin (,)ydy f x y dx ππ-⎰⎰.C 1arcsin 02(,)ydy f x y dx ππ+⎰⎰.D 1arcsin 02(,)ydy f x y dx ππ-⎰⎰1602Q ρ=-Q ρ.A .B .C .D 1ln(1),x y e x=++.A .B .C .D 12αα-2131,,αααα--21αα-2331,,αααα++1223312,2,2αααααα---1223312,2,2αααααα+++211121112A --⎧⎫⎪⎪=--⎨⎬⎪⎪--⎩⎭100010000B ⎧⎫⎪⎪=⎨⎬⎪⎪⎩⎭(9)某人向同一目标独立重复射击,每次射击命中目标的概率为,则此人第4次射击恰好第2次命中目标的概率为 ( )(10) 设随机变量服从二维正态分布,且与不相关,分别表示X, Y 的概率密度,则在条件下,的条件概率密度为( ) (A ) (B) (C) (D)二、填空题:11-16小题,每小题4分,共24分,请将答案写在答题纸指定位置上(11).(12)设函数,则. (13)设是二元可微函数,则________. (14)微分方程满足的特解为__________.(15)设距阵则的秩为_______.(16)在区间(0,1)中随机地取两个数,这两数之差的绝对值小于的概率为________. 三、解答题:17-24小题,共86分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤. (17)(本题满分10分)设函数由方程确定,试判断曲线在点(1,1)附近的凹凸性. (18)(本题满分11分)设二元函数计算二重积分其中(19)(本题满分11分)设函数,在上内二阶可导且存在相等的最大值,又=,=,证明: (Ⅰ)存在使得; (Ⅱ)存在使得 (20)(本题满分10分)2()3(1)A p p -2()6(1)B p p -22()3(1)C p p -22()6(1)D p p -(,)X Y X Y (),()x y f x f y Y y =X ()X Y x y f ()X f x ()y f y ()()x y f x f y ()()x y f x f y 3231lim (sin cos )________2x x x x x x x →∞+++=+123y x =+()(0)_________n y =(,)f u v (,),y x z f x y =z zy x y∂∂-=∂∂31()2dy y y dx x x=-11x y ==01000010,00010000A ⎛⎫⎪⎪= ⎪⎪⎝⎭3A 12()y y x =ln 0y y x y -+=()y y x =2.1.(,)12.x x y f x y x y ⎧+≤⎪=≤+≤(,).Df x y d σ⎰⎰{}(,)2D x y x y =+≤()f x ()g x [],a b ()f a ()g a ()f b ()g b (,),a b η∈()()f g ηη=(,),a b ξ∈''()''().f g ξξ=将函数展开成的幂级数,并指出其收敛区间.(22)(本题满分11分)设3阶实对称矩阵A 的特征值是A 的属于的一个特征向量.记,其中E 为3阶单位矩阵.(Ⅰ)验证是矩阵B 的特征向量,并求B 的全部特征值与特征向量; (Ⅱ)求矩阵B. (23)(本题满分11分)设二维随机变量的概率密度为(Ⅰ)求; (Ⅱ)求的概率密度. (24)(本题满分11分)设总体的概率密度为 . 其中参数未知,是来自总体的简单随机样本,是样本均值. (Ⅰ)求参数的矩估计量;(Ⅱ)判断是否为的无偏估计量,并说明理由.21()34f x x x =--1x -1231232123123(21)(11)020(1)4021(2)x x x x x ax x x a x x x x a a ⎧++=⎪++=⎨⎪++=⎩++=-本题满分分设线性方程组与方程有公共解,求的值及所有公共解12311,2,2,(1,1,1)T λλλα===-=-1λ534B A A E =-+1α(,)X Y 2,01,0 1.(,)0,x y x y f x y --<<<<⎧=⎨⎩其他{}2P X Y >Z X Y =+()Z f z X 1,0,21(;),1,2(1)0,x f x x θθθθθ⎧<<⎪⎪⎪=≤<⎨-⎪⎪⎪⎩其他(01)θθ<<12,,...n X X X X X θθ24X 2θ2007年考研数学(三)真题一、选择题(本题共10分小题,每小题4分,满分40分,在每小题给的四个选项中,只有一项符合题目要求,把所选项前的字母填在后边的括号内)(7) 当B ).(8) 设函数在处连续,下列命题错误的是: (D).若存在,则 若存在,则.若存在,则存在 若存在,则存在(9) 如图.连续函数在区间上的图形分别是直径为1的上、下半圆周,在区间上图形分别是直径为2的上、下半圆周,设则下列结论正确的是:(C ) .(10) 设函数连续,则二次积分等于(B )(11) 设某商品的需求函数为,其中,分别表示需要量和价格,如果该商品需求弹性的绝对值等于1,则商品的价格是(D )10 20 30 40 (12) 曲线渐近线的条数为(D ) 0 1 2 3(7)设向量组线性无关,则下列向量组线相关的是 (A) (A ) (B) (C) (D)(8)设矩阵,则A 与B (B )(A )合同,且相似 (B) 合同,但不相似 (C) 不合同,但相似 (D) 既不合同,也不相似(9)某人向同一目标独立重复射击,每次射击命中目标的概率为,则此人第4次射击恰好第2次命中目标的概率为 (C)0x +→A 1-.ln(1B +1C -.1D -()f x 0x =A 0()limx f x x →(0)0f =.B 0()()lim x f x f x x →+-(0)0f =.C 0()limx f x x →'(0)f .D 0()()lim x f x f x x→--'(0)f ()y f x =[][]3,2,2,3--[][]2,0,0,2-0()(),xF x f t dt =⎰.A (3)F 3(2)4F =--.B (3)F 5(2)4F =.C (3)F -3(2)4F =-.D (3)F -5(2)4F =--(,)f x y 1sin 2(,)xdx f x y dy ππ⎰⎰.A 1arcsin (,)xdy f x y dx ππ+⎰⎰.B 1arcsin (,)ydy f x y dx ππ-⎰⎰.C 1arcsin 02(,)ydy f x y dx ππ+⎰⎰.D 1arcsin 02(,)ydy f x y dx ππ-⎰⎰1602Q ρ=-Q ρ.A .B .C .D 1ln(1),x y e x=++.A .B .C .D 12αα-2131,,αααα--21αα-2331,,αααα++1223312,2,2αααααα---1223312,2,2αααααα+++211121112A --⎧⎫⎪⎪=--⎨⎬⎪⎪--⎩⎭100010000B ⎧⎫⎪⎪=⎨⎬⎪⎪⎩⎭(10) 设随机变量服从二维正态分布,且与不相关,分别表示X, Y 的概率密度,则在条件下,的条件概率密度为 (A) (A ) (B) (C) (D)二、填空题:11-16小题,每小题4分,共24分,请将答案写在答题纸指定位置上(11).(12)设函数,则. (13)设是二元可微函数,则. (14)微分方程满足的特解为. (15)设距阵则的秩为__1___.(16)在区间(0,1)中随机地取两个数,这两数之差的绝对值小于的概率为__. 三、解答题:17-24小题,共86分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤. (17)(本题满分10分)设函数由方程确定,试判断曲线在点(1,1)附近的凹凸性. 【详解】:(18)(本题满分11分) 设二元函数2()3(1)A p p -2()6(1)B p p -22()3(1)C p p -22()6(1)D p p -(,)X Y X Y (),()x y f x f y Y y =X ()X Y x y f ()X f x ()y f y ()()x y f x f y ()()x y f x f y 3231lim (sin cos )___0_________2x x x x x x x →∞+++=+123y x =+()1(1)2!(0)___________3n n n n n y +-=(,)f u v (,),y x z f x y =''122(,)2(,)z z y y x x y x y f f x y x x y y x y∂∂-=-+∂∂31()2dy y y dx x x=-11x y==221ln x y x=+01000010,00010000A ⎛⎫⎪⎪= ⎪⎪⎝⎭3A 1234()y y x =ln 0y y x y -+=()y y x =''''1'2'''''''21''11ln 2102ln 112ln121()(2ln )0(2ln )()101(2ln1)8()(1,1)x x x y y y y yy y y y y y y y y y y y y y x ===+-=⇒=+==+++=⇒=-+=-=-<+=对方程两边求导得从而有再对两边求导得求在(1,1)的值:所以在点处是凸的计算二重积分其中【详解】:积分区域D 如图,不难发现D 分别关于x 轴和y 轴对称,设是D 在第一象限中的部分,即利用被积函数无论关于x 轴还是关于y 轴对称,从而按二重积分的简化计算法则可得设,其中于是由于,故为计算上的二重积分,可引入极坐标满足.在极坐标系中的方程是的方程是, ,因而 ,故令作换元,则,于是且,代入即得综合以上计算结果可知2. 1.(,)1 2.x x y f x y x y ⎧+≤⎪=≤+≤(,).Df x y d σ⎰⎰{}(,)2D x y x y =+≤1D {}1(,)0,0D Dx y x y =≥≥(,)f x y 1(,)4(,)DD f x y d f x y d σσ=⎰⎰⎰⎰11112D D D =+{}{}1112(,)1,0,0,(,)12,0,0D x y x y x y D x y x y x y =+≤≥≥=≤+≤≥≥1111211122(,)4(,)4(,)4(,) 44(,)DD D D D D f x y d f x y d f x y d f x y d x d f x y d σσσσσσ==+=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰{}11(,)01,01D x y x y x =≤≤≤≤-1111122200111(1)3412xD x d x dx dy x x dx σ-==-=-=⎰⎰⎰⎰⎰12D (,)r θcos ,sin x r y r θθ==(,)r θ1x y +=1,2cos sin r x y θθ=+=+2cos sin r θθ=+12120,2cos sin cos sin D r πθθθθθ⎧⎫=≤≤≤≤⎨⎬++⎩⎭1222cos sin 2100cos sin 1cos sin D r d dr d rππθθθθθθθθ++==+⎰⎰⎰tan2t θ=2arctan t θ=:0:012t πθ→⇔→2222212,cos ,sin 111dt t td t t tθθθ-===+++12112220000112210010122(1)cos sin 122(1)22 221)D dt dtd t u t t t du du du u u πθθθ===-=++--=-==--==⎰⎰⎰⎰⎰⎰11(,)41)1)123Df x y d σ=⨯+=+⎰⎰(19)(本题满分11分)设函数,在上内二阶可导且存在相等的最大值,又=,=,证明: (Ⅰ)存在使得; (Ⅱ)存在使得【详解】:证明:(1)设在内某点同时取得最大值,则,此时的c 就是所求点.若两个函数取得最大值的点不同则有设故有,由介值定理,在内肯定存在(2)由(1)和罗尔定理在区间内分别存在一点=0在区间内再用罗尔定理,即. (20)(本题满分10分)将函数展开成的幂级数,并指出其收敛区间.【详解】:【详解】:因为方程组(1)、(2)有公共解,即由方程组(1)、(2)组成的方程组()f x ()g x [],a b ()f a ()g a ()f b ()g b (,),a b η∈()()f g ηη=(,),a b ξ∈''()''().f g ξξ=(),()f x g x (,)a b (,)c a b ∈()()f c g c =()()f g ηηη=使得()max (),()max ()f c f x g d g x ==()()0,()()0f c g c g d f d ->-<(,)c d ()()f g ηηη=使得(,),(,)a b ηη''1212,,()()f f ξξξξ使得=12(,)ξξ''''(,)()()a b f g ξξξ∈=存在,使得21()34f x x x =--1x -102001111()()(4)(1)513121111513512111111()()()154151531()311243111111()()()(1)151101021()211122111()()153nn nnn n n f x x x x x x x x f x x x x x x f x x x x x x f x ∞=∞=∞===--+---+=----+-==-=-----<⇒-<<-===--++-<⇒-<<-=-+∑∑∑记其中其中则01()(1)10212nnn x x ∞=---<<∑故收敛域为:1231232123123(21)(11)20(1)4021(2)x x x x x ax x x a x x x x a a ⎧++=⎪++=⎨⎪++=⎩++=-本题满分分设线性方程组与方程有公共解,求的值及所有公共解的解.即距阵方程组(3)有解的充要条件为.当时,方程组(3)等价于方程组(1)即此时的公共解为方程组(1)的解.解方程组(1)的基础解系为此时的公共解为:当时,方程组(3)的系数距阵为此时方程组(3)的解为,即公共解为: (22)(本题满分11分)设3阶实对称矩阵A 的特征值是A 的属于的一个特征向量.记,其中E 为3阶单位矩阵.(Ⅰ)验证是矩阵B 的特征向量,并求B 的全部特征值与特征向量; (Ⅱ)求矩阵B. 【详解】:(Ⅰ)可以很容易验证,于是 于是是矩阵B 的特征向量.B 的特征值可以由A 的特征值以及B 与A 的关系得到,即 , 所以B 的全部特征值为-2,1,1.前面已经求得为B 的属于-2的特征值,而A 为实对称矩阵,于是根据B 与A 的关系可以知道B 也是实对称矩阵,于是属于不同的特征值的特征向量正交,设B 的属于1的特征向量为,所以有方程如下:于是求得B 的属于1的特征向量为因而,矩阵B 属于的特征向量是是,其中是不为零的任意常数. 矩阵B 属于的特征向量是是,其中是不为零的任意常数. (Ⅱ)由有 令矩阵,1231232123123020(3)4021x x x x x ax x x a x x x x a ++=⎧⎪++=⎪⎨++=⎪⎪++=-⎩211100201401211a a a ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭211100110001000340a a a ⎛⎫ ⎪- ⎪→ ⎪- ⎪⎪++⎝⎭1,2a a ==1a =(1,0,1)T ξ=-,1,2,x k k ξ==2a =111011101220011014400001111100⎛⎫⎛⎫⎪ ⎪⎪ ⎪→ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭1230,1,1x x x ===-(0,1,1)T k -12311,2,2,(1,1,1)T λλλα===-=-1λ534B A A E =-+1α111(1,2,3...)n n A n αλα==5353111111(4)(41)2B A A E ααλλαα=-+=-+=-1α53()()4()1B A A λλλ=-+1α123(,,)T x x x 1230x x x -+=23(1,0,1),(1,1,0)T T ββ=-=2μ=-1(1,1,1)T k -1k 1μ=23(1,1,0)(1,0,1)T T k k +-23,k k 1122332,,,B B B ααβαββ=-==123123(,,)(2,,)B αααβββ=-则,所以 那么(23)(本题满分11分)设二维随机变量的概率密度为(Ⅰ)求; (Ⅱ)求的概率密度. 【详解】:(Ⅰ),其中D 为中的那部分区域;求此二重积分可得 (Ⅱ)当时,; 当时,;当时,当时, 于是(24)(本题满分11分)设总体的概率密度为. 其中参数未知,是来自总体的简单随机样本,是样本均值. (Ⅰ)求参数的矩估计量;(Ⅱ)判断是否为的无偏估计量,并说明理由. 【详解】:(Ⅰ)记,则 ,解出,因此参数的矩估计量为; 1(2,1,1)P BP diag -=-11123123211111033(2,,)(,,)210101303201110330B βββααα------⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-=-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦(,)X Y 2,01,0 1.(,)0,x y x y f x y --<<<<⎧=⎨⎩其他{}2P X Y >Z X Y =+()Z f z {}2(2)DP X Y x y dxdy >=--⎰⎰01,01x y <<<<2x y >{}11202(2)x P X Y dx x y dy >=--⎰⎰1205()8x x dx =-⎰724={}{}()Z F z P Z z P X Y z =≤=+≤0z ≤()0Z F z =2z ≥()1Z F z =01z <<3201()(2)3zz xZ F z dx x y dy z z -=--=-+⎰⎰12z <<1132115()1(2)2433Z z z x F z dx x y dy z z z --=---=-+-⎰⎰222,01()44,120,Z z z z f z z z z ⎧-<<⎪=-+≤<⎨⎪⎩其他X 1,0,21(;),1,2(1)0,x f x x θθθθθ⎧<<⎪⎪⎪=≤<⎨-⎪⎪⎪⎩其他(01)θθ<<12,,...n X X X X X θθ24X 2θEX μ=1022(1)x x EX dx dx θθμθθ==+-⎰⎰1142θ=+122θμ=-θ122X θ=-(Ⅱ)只须验证是否为即可,而,而 ,,, 于是 因此不是为的无偏估计量.2(4)E X 2θ22221(4)4()4(())4(())E X E X DX E X DX EX n==+=+1142EX θ=+221(12)6EX θθ=++22251()481212DX EX EX θθ=-=-+222533131(4)1233n n n E X n n nθθθ+-+=++≠24X 2θ。
2007年研究生入學考試數學三試題一、選擇題:1~10小題,每小題4分,共40分. 在每小題給出の四個選項中,只有一項符合題目要求,把所選項前の字母填在題後の括弧內.(1)當0x +→時,與x 等價の無窮小量是 (A )1ex - (B )1ln1xx+- (C )11x +- (D )1cos x - [ ](2)設函數()f x 在0x =處連續,下列命題錯誤の是:(A )若0()limx f x x →存在,則(0)0f = (B )若0()()lim x f x f x x→+-存在,則(0)0f = .(B )若0()lim x f x x →存在,則(0)0f '= (D )若0()()lim x f x f x x→--存在,則(0)0f '=.[ ](3)如圖,連續函數()y f x =在區間[][]3,2,2,3--上の圖形分別是直徑為1の上、下半圓周,在區間[][]2,0,0,2-の圖形分別是直徑為2の下、上半圓周,設0()()d xF x f t t =⎰,則下列結論正確の是:(A )3(3)(2)4F F =-- (B) 5(3)(2)4F F = (C )3(3)(2)4F F = (D )5(3)(2)4F F =-- [ ](4)設函數(,)f x y 連續,則二次積分1sin 2d (,)d xx f x y y ππ⎰⎰等於(A )10arcsin d (,)d yy f x y x ππ+⎰⎰ (B )10arcsin d (,)d yy f x y x ππ-⎰⎰(C )1arcsin 02d (,)d yy f x y x ππ+⎰⎰ (D )1arcsin 02d (,)d yy f x y x ππ-⎰⎰(5)設某商品の需求函數為1602Q P =-,其中,Q P 分別表示需要量和價格,如果該商品需求彈性の絕對值等於1,則商品の價格是(A) 10. (B) 20 (C) 30. (D) 40. [ ] (6)曲線()1ln 1e x y x=++の漸近線の條數為 (A )0. (B )1. (C )2. (D )3. [ ] (7)設向量組123,,ααα線性無關,則下列向量組線性相關の是線性相關,則 (A) 122331,,αααααα---(B)122331,,αααααα+++(C)1223312,2,2αααααα---. (D) 1223312,2,2αααααα+++. [ ](8)設矩陣211100121,010112000A B --⎛⎫⎛⎫ ⎪ ⎪=--= ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭,則A 與B(A) 合同且相似(B )合同,但不相似.(C) 不合同,但相似. (D) 既不合同也不相似 [ ] (9)某人向同一目標獨立重複射擊,每次射擊命中目標の概率為(01)p p <<,則此人第4次射擊恰好第2次擊中目標の概率為(A )23(1)p p -. (B )26(1)p p -.(C )223(1)p p -. (D )226(1)p p - [ ](10)設隨機變數(),X Y 服從二維正態分佈,且X 與Y 不相關,(),()X Y f x f y 分別表示,X Y の概率密度,則在Y y =の條件下,X の條件概率密度|(|)X Y f x y 為 (A) ()X f x . (B) ()Y f y . (C) ()()X Y f x f y . (D)()()X Y f x f y . [ ] 二、填空題:11~16小題,每小題4分,共24分. 把答案填在題中橫線上.(11) 3231lim (sin cos )2x x x x x x x →+∞+++=+ __________.(12)設函數123y x =+,則()(0)n y =________. (13) 設(,)f u v 是二元可微函數,,y x z f x y ⎛⎫=⎪⎝⎭,則z zx y x y ∂∂-=∂∂ __________.(14)微分方程3d 1d 2y y y x x x ⎛⎫=- ⎪⎝⎭滿足11x y==の特解為y =________.(15)設矩陣0100001000010000A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,則3A の秩為 . (16)在區間()0,1中隨機地取兩個數,則這兩個數之差の絕對值小於12の概率為 . 三、解答題:17~24小題,共86分. 解答應寫出文字說明、證明過程或演算步驟.(17) (本題滿分10分)設函數()y y x =由方程ln 0y y x y -+=確定,試判斷曲線()y y x =在點(1,1)附近の凹凸性. (18) (本題滿分11分)設二元函數222,||||11(,),1||||2x x y f x y x y x y ⎧+≤⎪=⎨<+≤⎪+⎩,計算二重積分D(,)d f x y σ⎰⎰,其中(){},||||2D x y x y =+≤.(19) (本題滿分11分)設函數(),()f x g x 在[],a b 上連續,在(,)a b 內具有二階導數且存在相等の最大值,()(),()()f a g a f b g b ==,證明:存在(,)a b ξ∈,使得()()f g ξξ''''=.(20) (本題滿分10分)將函數21()34f x x x =--展開成1x -の冪級數,並指出其收斂區間.(21) (本題滿分11分)設線性方程組123123212302040x x x x x ax x x a x ⎧++=⎪++=⎨⎪++=⎩與方程12321x x x a ++=-有公共解,求a の值及所有公共解.(22) (本題滿分11分)設三階對稱矩陣A の特徵向量值1231,2,2λλλ===-,T 1(1,1,1)α=-是A の屬於1λの一個特徵向量,記534B A A E =-+,其中E 為3階單位矩陣.(I )驗證1α是矩陣B の特徵向量,並求B の全部特徵值與特徵向量; (II )求矩陣B . (23) (本題滿分11分)設二維隨機變數(,)X Y の概率密度為2,01,01(,)0,x y x y f x y --<<<<⎧=⎨⎩其他.(I )求{}2P X Y >; (II) 求Z X Y =+の概率密度.2007答案1….【分析】本題為等價無窮小の判定,利用定義或等價無窮小代換即可. 【詳解】當0x +→時,1exx --,1112x x +-,()2111cos 22x xx -=, 故用排除法可得正確選項為(B ).事實上,0001111lnln(1)ln(1)1112lim lim lim 112x x x x x x x x x x x xx+++→→→++⋅+--+--==,或1lnln(1)ln(1)()()()1xx x x o x x o x x o x x x+=+--=+++=+-.所以應選(B )【評注】本題為關於無窮小量比較の基本題型,利用等價無窮小代換可簡化計算. .2…….【分析】本題考查可導の極限定義及連續與可導の關係. 由於題設條件含有抽象函數,本題最簡便の方法是用賦值法求解,即取符合題設條件の特殊函數()f x 去進行判斷,然後選擇正確選項.【詳解】取()||f x x =,則0()()lim0x f x f x x→--=,但()f x 在0x =不可導,故選(D ).事實上,在(A),(B)兩項中,因為分母の極限為0,所以分子の極限也必須為0,則可推得(0)0f =.在(C )中,0()limx f x x →存在,則00()(0)()(0)0,(0)limlim 00x x f x f f x f f x x→→-'====-,所以(C)項正確,故選(D)【評注】對於題設條件含抽象函數或備選項為抽象函數形式結果以及數值型結果の選擇題,用賦值法求解往往能收到奇效.3…….【分析】本題實質上是求分段函數の定積分. 【詳解】利用定積分の幾何意義,可得221113(3)12228F πππ⎛⎫=-=⎪⎝⎭,211(2)222F ππ==, 202202011(2)()d ()d ()d 122F f x x f x x f x x ππ---==-===⎰⎰⎰.所以 33(3)(2)(2)44F F F ==-,故選(C ). 【評注】本題屬基本題型. 本題利用定積分の幾何意義比較簡便.4…….【分析】本題更換二次積分の積分次序,先根據二次積分確定積分區域,然後寫出新の二次積分. 【詳解】由題設可知,,sin 12x x y ππ≤≤≤≤,則01,arcsin y y x ππ≤≤-≤≤,故應選(B ).【評注】本題為基礎題型. 畫圖更易看出.5…….【分析】本題考查需求彈性の概念. 【詳解】選(D ).商品需求彈性の絕對值等於d 2140d 1602Q P P P P Q P-⋅==⇒=-, 故選(D ).【評注】需掌握微積分在經濟中の應用中の邊際,彈性等概念.6…….【分析】利用曲線の漸近線の求解公式求出水準漸近線,垂直漸近線和斜漸近線,然後判斷. 【詳解】()()11lim lim ln 1e ,lim lim ln 1e 0x x x x x x y y x x →+∞→+∞→-∞→-∞⎡⎤⎡⎤=++=+∞=++=⎢⎥⎢⎥⎣⎦⎣⎦,所以 0y =是曲線の水準漸近線;()001lim lim ln 1e xx x y x→→⎡⎤=++=∞⎢⎥⎣⎦,所以0x =是曲線の垂直漸近線; ()()1e ln 1e ln 1e 1e lim lim 0lim lim 11xxx x x x x x y x x x x →+∞→+∞→+∞→+∞++++==+==,[]()1l i m l i m l n 1e 0xx x b y x x x →+∞→+∞⎡⎤=-=++-=⎢⎥⎣⎦,所以y x =是曲線の斜漸近線.故選(D ).【評注】本題為基本題型,應熟練掌握曲線の水準漸近線,垂直漸近線和斜漸近線の求法.注意當曲線存在水準漸近線時,斜漸近線不存在. 本題要注意e x當,x x →+∞→-∞時の極限不同.7……..【分析】本題考查由線性無關の向量組123,,ααα構造の另一向量組123,,βββの線性相關性. 一般令()()123123,,,,A βββααα=,若0A =,則123,,βββ線性相關;若0A ≠,則123,,βββ線性無關. 但考慮到本題備選項の特徵,可通過簡單の線性運算得到正確選項.【詳解】由()()()1223310αααααα-+-+-=可知應選(A ).或者因為()()122331123101,,,,110011ααααααααα-⎛⎫ ⎪---=- ⎪ ⎪-⎝⎭,而1011100011--=-, 所以122331,,αααααα---線性相關,故選(A ).【評注】本題也可用賦值法求解,如取()()()TTT1231,0,0,0,1,0,0,0,1ααα===,以此求出(A ),(B ),(C ),(D )中の向量並分別組成一個矩陣,然後利用矩陣の秩或行列式是否為零可立即得到正確選項.8……【分析】本題考查矩陣の合同關係與相似關係及其之間の聯繫,只要求得A の特徵值,並考慮到實對稱矩陣A 必可經正交變換使之相似於對角陣,便可得到答案.【詳解】 由2211121(3)112E A λλλλλλ--=-=--可得1233,0λλλ===,所以A の特徵值為3,3,0;而B の特徵值為1,1,0.所以A 與B 不相似,但是A 與B の秩均為2,且正慣性指數都為2,所以A 與B 合同,故選(B ). 【評注】若矩陣A 與B 相似,則A 與B 具有相同の行列式,相同の秩和相同の特徵值. 所以通過計算A 與B の特徵值可立即排除(A )(C ).9……..【分析】本題計算貝努裏概型,即二項分佈の概率. 關鍵要搞清所求事件中の成功次數. 【詳解】p ={前三次僅有一次擊中目標,第4次擊中目標}12223(1)3(1)C p p p p p =-=-,故選(C ).【評注】本題屬基本題型.10…….【分析】本題求隨機變數の條件概率密度,利用X 與Y の獨立性和公式|(,)(|)()X Y Y f x y f x y f y =可求解. 【詳解】因為(),X Y 服從二維正態分佈,且X 與Y 不相關,所以X 與Y 獨立,所以(,)()()X Y f x y f x f y =.故|()()(,)(|)()()()X Y X Y X Y Y f x f y f x y f x y f x f y f y ===,應選(A ).【評注】若(),X Y 服從二維正態分佈,則X 與Y 不相關與X 與Y 獨立是等價の.11….【分析】本題求類未定式,可利用“抓大頭法”和無窮小乘以有界量仍為無窮小の結論.【詳解】因為323233110222lim lim0,|sin cos |22112x x x x x x xx x x x x x x x →+∞→+∞++++===+<++, 所以3231lim (sin cos )02x x x x x x x →+∞+++=+.【評注】無窮小の相關性質:(1) 有限個無窮小の代數和為無窮小; (2) 有限個無窮小の乘積為無窮小; (3) 無窮小與有界變數の乘積為無窮小.12,……..【分析】本題求函數の高階導數,利用遞推法或函數の麥克老林展開式.【詳解】()212,2323y y x x '==-++,則()1(1)2!()(23)n n n n n y x x +-=+,故()1(1)2!(0)3n n n n n y +-=. 【評注】本題為基礎題型.13…….【分析】本題為二元複合函數求偏導,直接利用公式即可. 【詳解】利用求導公式可得1221z y f f x x y ∂''=-+∂, 1221z x f f y x y∂''=-∂, 所以122z z y x xy f f x y xy ⎛⎫∂∂''-=-- ⎪∂∂⎝⎭. 【評注】二元複合函數求偏導時,最好設出中間變數,注意計算の正確性.14…..【分析】本題為齊次方程の求解,可令y u x=. 【詳解】令yu x=,則原方程變為 33d 1d d d 22u u x u x u u x u x+=-⇒=-.兩邊積分得 2111ln ln 222x C u -=--,即222111e e y u x x x C C=⇒=,將11x y ==代入左式得 e C =,故滿足條件の方程の特解為 22e e x y x =,即ln 1x y x =+,1e x ->.【評注】本題為基礎題型.15……….【分析】先將3A 求出,然後利用定義判斷其秩.【詳解】30100000100100000()10001000000000000A A r A ⎛⎫⎛⎫ ⎪ ⎪⎪⎪=⇒=⇒= ⎪⎪ ⎪ ⎪⎝⎭⎝⎭. 【評注】本題為基礎題型.16……….【分析】根據題意可得兩個隨機變數服從區間()0,1上の均勻分佈,利用幾何概型計算較為簡便.【詳解】利用幾何概型計算. 圖如下:所求概率2113214A D S S ⎛⎫- ⎪⎝⎭===.【評注】本題也可先寫出兩個隨機變數の概率密度,然後利用它們の獨立性求得所求概率.17……..【分析】由凹凸性判別方法和隱函數の求導可得.【詳解】 方程 ln 0y y x y -+=兩邊對x 求導得A1/2 11 /2Oyxln 10y y y yy y'''+-+=, 即(2ln )1y y '+=,則1(1)2y '=. 上式兩邊再對x 求導得()2(2ln )0y y y y'''++=則1(1)8y ''=-,所以曲線()y y x =在點(1,1)附近是凸の.【評注】本題為基礎題型.18…….【分析】由於積分區域關於,x y 軸均對稱,所以利用二重積分の對稱性結論簡化所求積分. 【詳解】因為被積函數關於,x y 均為偶函數,且積分區域關於,x y 軸均對稱,所以1DD (,)d (,)d f x y f x y σσ=⎰⎰⎰⎰,其中1D 為D 在第一象限內の部分.而1222D 1,0,012,0,01(,)d d d x y x y x y x y f x y x x yσσσ+≤≥≥≤+≤≥≥=++⎰⎰⎰⎰⎰⎰11222222220011011d d d d d d xx x x x x y x y x y x y x y ---⎛⎫ ⎪=++ ⎪++⎝⎭⎰⎰⎰⎰⎰⎰()12ln 1212=++. 所以()D1(,)d 42ln 123f x y σ=++⎰⎰.【評注】被積函數包含22y x +時, 可考慮用極座標,解答如下:2212120,00,01(,)d d x y x y x y x y f x y x yσσ≤+≤≤+≤>>>>=+⎰⎰⎰⎰22sin cos 10sin cos d d r πθθθθθ++=⎰⎰2ln(12)=+..19…….【分析】由所證結論()()f g ξξ''''=可聯想到構造輔助函數()()()F x f x g x =-,然後根據題設條件利用羅爾定理證明.【詳解】令()()()F x f x g x =-,則()F x 在[],a b 上連續,在(,)a b 內具有二階導數且()()0F a F b ==.(1)若(),()f x g x 在(,)a b 內同一點c 取得最大值,則()()()0f c g c F c =⇒=, 於是由羅爾定理可得,存在12(,),(,)a c c b ξξ∈∈,使得12()()0F F ξξ''==.再利用羅爾定理,可得 存在12(,)ξξξ∈,使得()0F ξ''=,即()()f g ξξ''''=. (2)若(),()f x g x 在(,)a b 內不同點12,c c 取得最大值,則12()()f c g c M ==,於是 111222()()()0,()()()0F c f c g c F c f c g c =->=-<, 於是由零值定理可得,存在312(,)c c c ∈,使得3()0F c = 於是由羅爾定理可得,存在1323(,),(,)a c c b ξξ∈∈,使得12()()0F F ξξ''==.再利用羅爾定理,可得 ,存在12(,)ξξξ∈,使得()0F ξ''=,即()()f g ξξ''''=. 【評注】對命題為()()0n fξ=の證明,一般利用以下兩種方法:方法一:驗證ξ為(1)()n fx -の最值或極值點,利用極值存在の必要條件或費爾馬定理可得證;方法二:驗證(1)()n fx -在包含x ξ=於其內の區間上滿足羅爾定理條件..20….【分析】本題考查函數の冪級數展開,利用間接法. 【詳解】211111()34(4)(1)541f x x x x x x x ⎛⎫===- ⎪---+-+⎝⎭,而 10011111(1),2414333313nnn n n x x x x x ∞∞+==--⎛⎫=-⋅=-=--<< ⎪--⎝⎭-∑∑,10011111(1)(1),1311222212nn nn n n x x x x x ∞∞+==---⎛⎫=⋅=-=-<< ⎪-+⎝⎭+∑∑ , 所以 1111000(1)(1)(1)1(1)()(1)3232n n n n nn n n n n n n x x f x x ∞∞∞++++===⎡⎤----=-+=-+-⎢⎥⎣⎦∑∑∑, 收斂區間為 13x -<<.【評注】請記住常見函數の冪級數展開.21…..【分析】將方程組和方程合併,然後利用非齊次線性方程有解の判定條件求得a .【詳解】將方程組和方程合併,後可得線性方程組12312321231230204021x x x x x ax x x a x x x x a ++=⎧⎪++=⎪⎨++=⎪⎪++=-⎩ 其係數矩陣22111011101200110140031012110101a a A a a a a ⎛⎫⎛⎫ ⎪ ⎪- ⎪ ⎪=→ ⎪ ⎪- ⎪ ⎪--⎝⎭⎝⎭. 21110111001100110003200011001100(1)(2)0a a a a a a a a a a ⎛⎫⎛⎫ ⎪ ⎪-- ⎪ ⎪→→ ⎪ ⎪-+-- ⎪ ⎪----⎝⎭⎝⎭. 顯然,當1,2a a ≠≠時無公共解.當1a =時,可求得公共解為 ()T 1,0,1k ξ=-,k 為任意常數; 當2a =時,可求得公共解為 ()T 0,1,1ξ=-. 【評注】本題為基礎題型,考查非齊次線性方程組解の判定和結構.22……【分析】本題考查實對稱矩陣特徵值和特徵向量の概念和性質.【詳解】(I )()()5353531111111111144412B A A E ααλαλααλλαα=-+=-+=-+=-, 則1α是矩陣B の屬於-2の特徵向量.同理可得()532222241B αλλαα=-+=,()533333341B αλλαα=-+=. 所以B の全部特徵值為2,1,1設B の屬於1の特徵向量為T 2123(,,)x x x α=,顯然B 為對稱矩陣,所以根據不同特徵值所對應の特徵向量正交,可得T 120αα=.即 1230x x x -+=,解方程組可得B の屬於1の特徵向量T T 212(1,0,1)(0,1,0)k k α=-+,其中12,k k 為不全為零の任意常數.由前可知B の屬於-2の特徵向量為 T 3(1,1,1)k -,其中3k 不為零.(II )令101011101P ⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,由(Ⅰ)可得-1100010002P BP ⎛⎫ ⎪= ⎪ ⎪-⎝⎭,則011101110B -⎛⎫ ⎪= ⎪ ⎪-⎝⎭.【評注】本題主要考查求抽象矩陣の特徵值和特徵向量,此類問題一般用定義求解,要想方設法將題設條件轉化為Ax x λ=の形式. 請記住以下結論:(1)設λ是方陣A の特徵值,則21*,,,(),,kA aA bE A f A A A -+分別有特徵值21,,,(),,(A k a b f A λλλλλλ+可逆),且對應の特徵向量是相同の.(2)對實對稱矩陣來講,不同特徵值所對應の特徵向量一定是正交の23…….【分析】(I )可化為二重積分計算;(II) 利用卷積公式可得.【詳解】(I ){}()()12002722d d d 2d 24xx y P X Y x y x y x x y y >>=--=--=⎰⎰⎰⎰. (II) 利用卷積公式可得()(,)d Z f z f x z x x +∞-∞=-⎰20121(2)d ,01201(2)d ,12(2)120,0,z z x x z z z z x x z z z -⎧-<<⎪⎧-<<⎪⎪=-<<=-≤<⎨⎨⎪⎪⎩⎪⎩⎰⎰其他其他. 【評注】 (II)也可先求出分佈函數,然後求導得概率密度..(24) (本題滿分11分)設總體X の概率密度為1,021(),12(1)0,x f x x θθθθ⎧<<⎪⎪⎪=≤<⎨-⎪⎪⎪⎩其他12(,,X X …,)n X 為來自總體X の簡單隨機樣本,X 是樣本均值.(I )求參數θの矩估計量θ;(II )判斷24X 是否為2θの無偏估計量,並說明理由.【分析】利用EX X =求(I );判斷()?224E Xθ=. 【詳解】(I )()101()d d d 22124x x EX xf x x x x θθθθθ+∞-∞==+=+-⎰⎰⎰, 令112242X X θθ=+⇒=-. (II )()()()()222214444E X E X DX EX DX EX n ⎡⎤⎡⎤==+=+⎢⎥⎣⎦⎣⎦, 而()22212201()d d d 221336x x EX x f x x x x θθθθθθ+∞-∞==+=++-⎰⎰⎰, 所以 ()2225121248DX EX EX θθ=-=-+, 所以 ()()222211115441133412E X DX EX n n n n θθθ⎡⎤⎛⎫⎛⎫⎛⎫=+=++-++≠ ⎪ ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭⎝⎭, 故24X 不是2θの無偏估計量.【評注】要熟練掌握總體未知參數點估計の矩估計法,最大似然估計法和區間估計法.。
2007年全国硕士研究生入学统一考试数学三试题一.选择题(本题共10分小题,每小题4分,满分40分,在每小题给的四个选项中,只有一项符合题目要求,把所选项前的字母填在后边的括号内)(1) 当0x +→时,与x 等价的无穷小量是( )A .1x e - .ln(1)B x + .11C x +- .1cosD x -(2) 设函数()f x 在0x =处连续,下列命题错误的是: ( )A .若0()limx f x x →存在,则(0)0f = .B 若0()()lim x f x f x x→+-存在,则(0)0f =.C .若0()limx f x x →存在,则'(0)f 存在 .D 若0()()lim x f x f x x→--存在,则'(0)f 存在(3) 如图.连续函数()y f x =在区间[][]3,2,2,3--上的图形分别是直径为1的上、下半圆周,在区间[][]2,0,0,2-上图形分别是直径为2的上、下半圆周,设0()(),xF x f t dt =⎰则下列结论正确的是:( ).A .(3)F 3(2)4F =-- .B (3)F 5(2)4F =.C (3)F - 3(2)4F =- .D (3)F -5(2)4F =--(4) 设函数(,)f x y 连续,则二次积分1sin 2(,)xdx f x y dy ππ⎰⎰等于( ).A 1arcsin (,)xdy f x y dx ππ+⎰⎰.B 10arcsin (,)ydy f x y dx ππ-⎰⎰.C 1arcsin 02(,)ydy f x y dx ππ+⎰⎰ .D 1arcsin 02(,)ydy f x y dx ππ-⎰⎰(5) 设某商品的需求函数为1602Q ρ=-,其中Q ,P 分别表示需要量和价格,如果该商品需求弹性的绝对值等于1,则商品的价格是( ).A 10 .B 20 .C 30 .D 40(6) 曲线1ln(1),x y e x=++渐近线的条数为( ) .A 0 .B 1 .C 2 .D 3(7)设向量组线性321,,ααα无关,则下列向量组线相关的是( )(A )12αα-2131,,αααα-- (B)21αα-2331,,αααα++ (C )1223312,2,2αααααα--- (D)1223312,2,2αααααα+++(8)设矩阵211121112A --⎧⎫⎪⎪=--⎨⎬⎪⎪--⎩⎭,100010000B ⎧⎫⎪⎪=⎨⎬⎪⎪⎩⎭则A 与B ( )(A )合同,且相似 (B) 合同,但不相似(C) 不合同,但相似 (D) 既不合同,也不相似(9)某人向同一目标独立重复射击,每次射击命中目标的概率为,则此人第4次射击恰好第2次命中目标的概率为 ( )2()3(1)A p p - 2()6(1)B p p - 22()3(1)C p p - 22()6(1)D p p -(10) 设随机变量(,)X Y 服从二维正态分布,且X 与Y 不相关,(),()x y f x f y 分别表示X, Y 的概率密度,则在Y y =条件下,X 的条件概率密度()X Y x y f 为( ) (A )()X f x (B)()y f y (C)()()x y f x f y (D)()()x y f x f y二、填空题:11-16小题,每小题4分,共24分,请将答案写在答题纸指定位置上(11)3231lim(sin cos )________2x x x x x x x →∞+++=+. (12)设函数123y x =+,则()(0)_________n y =. (13)设(,)f u v 是二元可微函数,(,),y x z f x y=则z zy x y∂∂-=∂∂________.(14)微分方程31()2dy y y dx x x =-满足11x y ==的特解为__________. (15)设距阵01000010,00010000A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭则3A 的秩为_______. (16)在区间(0,1)中随机地取两个数,这两数之差的绝对值小于12的概率为________.三、解答题:17-24小题,共86分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤. (17)(本题满分10分) 设函数()y y x =由方程ln 0y y x y -+=确定,试判断曲线()y y x =在点(1,1)附近的凹凸性.(18)(本题满分11分)设二元函数2.1.(,)12.x x y f x y x y ⎧+≤⎪=≤+≤计算二重积分(,).Df x y d σ⎰⎰其中{}(,)2D x y x y =+≤(19)(本题满分11分)设函数()f x ,()g x 在[],a b 上内二阶可导且存在相等的最大值,又()f a =()g a ,()f b =()g b ,证明:(Ⅰ)存在(,),a b η∈使得()()f g ηη=; (Ⅱ)存在(,),a b ξ∈使得''()''().f g ξξ=(20)(本题满分10分)将函数21()34f x x x =--展开成1x -的幂级数,并指出其收敛区间.(21)(本题满分11分)设线性方程组⎪⎩⎪⎨⎧=++=++=++040203221321321x a x x ax x x x x x ①与方程12321-=++a x x x ②有公共解,求a 的值及所有的公共 解.(22)(本题满分11分)设3阶实对称矩阵A 的特征值12311,2,2,(1,1,1)Tλλλα===-=-是A 的属于1λ的一个特征向量.记534B A A E =-+,其中E 为3阶单位矩阵.(Ⅰ)验证1α是矩阵B 的特征向量,并求B 的全部特征值与特征向量; (Ⅱ)求矩阵B.(23)(本题满分11分)设二维随机变量(,)X Y 的概率密度为2,01,0 1.(,)0,x y x y f x y --<<<<⎧=⎨⎩其他(Ⅰ)求{}2P X Y >;(Ⅱ)求Z X Y =+的概率密度()Z f z .(24)(本题满分11分)设总体X 的概率密度为 1,0,21(;),1,2(1)0,x f x x θθθθθ⎧<<⎪⎪⎪=≤<⎨-⎪⎪⎪⎩其他.其中参数(01)θθ<<未知,12,,...n X X X 是来自总体X 的简单随机样本,X 是样本均值. (Ⅰ)求参数θ的矩估计量θ;(Ⅱ)判断24X 是否为2θ的无偏估计量,并说明理由.。
离散数学2007级A卷试题参考答案一、填空题(每小题2分,共20分)1.┐p∧q 2.┐∃x(F(x)∧G(x))3.(F(a)∨F(b)∨F(c))→(G(a)∧G(b)∧G(c)) 4.f是双射的5.2 6.<a3>=<e, a3, a6, a9>7.(a∧b)∨c≥c 8.79.2 10.n-1二、判断题(每小题2分,共20分,正确的划√,错误的划×)1.×2.√3.√4.√5.×6.×7.×8.×9.×10.√三、计算题(每小题5分,共15分)1.M2∧M4∧M5∧M62. I={<<2,2>,<2,2>>, <<2,4>,<2,4>>, <<4,2>,<4,2>>, <<4,4>,<4,4>> } R⊆I3. 2m=2n-2=2*2+2*3+1*4+(n-5)*1=9+n解出n=11,m=10,t=11-5=6。
四、证明题(共45分)1.(8分)设集合D,E,F∈P(B) (1分)(1) 证明对称差运算具有可结合性(4分)(D⊕E)⊕F=((D⊕E)∩~F)∪(~(D⊕E)∩F)=[((D∩~E)∪(~D∩E))∩~F]∪[~((D∩~E)∪(~D∩E))∩F]=(D∩~E∩~F)∪(~D∩E∩~F)∪[~(D∩~E)∩~(~D∩E)∩F]=(D∩~E∩~F)∪(~D∩E∩~F)∪[(~D∪E)∩(D∪~E)∩F] 但:[(~D∪E)∩(D∪~E)∩F]=[(~D∩D)∪(E∩D)∪(~D∩~E)∪(E∩~E)]∩F=[φ∪(D∩E)∪(~D∩~E)∪φ]∩F=(D∩E∩F)∪(~D∩~E∩F) 故:(D⊕E)⊕F =((D⊕E)∩~F)∪(~(D⊕E)∩F)=(D∩~E∩~F)∪(~D∩E∩~F)∪(D∩E∩F)∪(~D∩~E∩F) 同理:D⊕(E⊕F)=((D⊕E)∩~F)∪(~(D⊕E)∩F)=(D∩~E∩~F)∪(~D∩E∩~F)∪(D∩E∩F)∪(~D∩~E∩F) 因此,(D⊕E)⊕F=D⊕(E⊕F)所以对称差运算具有结合性。
07年数三真题答案解析20学三真题是许多考生备考高考数学的重要素材。
在这篇文章中,我们将对20学三真题进行详细的解析,帮助考生理解解题思路,提高解题能力。
第一题是一个函数题,给出了一个实函数f(x),要求求解函数的零点。
通过观察题目中给出的函数表达式,我们可以发现它是一个二次函数。
对于二次函数来说,求解零点的方法比较简单,只需要将函数表达式等于零,然后应用求根公式,即可求得函数的零点。
通过对题目的分析和计算,可以得出函数的零点是x=1和x=3。
接下来是第二题,是一个图形的题目。
这个题目要求求解两条直线的交点坐标。
通过观察题目给出的图形,我们可以发现两条直线分别是y=-x+3和y=2x-2。
求解两条直线交点的方法是将两个方程联立,然后通过消元法求解。
通过计算,可以得出两条直线的交点坐标是(1, 2)。
第三题是一个几何问题,要求求解一个三角形的面积。
对于这个题目,我们可以利用三角形的面积公式S=1/2 * 底边长 * 高来进行求解。
通过计算,可以得出三角形的面积是8平方单位。
第四题是一个数列问题,要求求解一个数列的第n项的值。
对于数列问题来说,一般需要观察数列的规律,然后根据规律进行计算。
通过观察,可以发现这个数列是一个递推数列,每一项都是上一项的平方再加2。
通过计算,可以得出数列的第n项的值是3^n+1。
第五题是一个概率问题,要求求解一个事件发生的概率。
对于概率问题来说,一般需要根据题目中给出的条件,运用概率的基本规则进行计算。
通过对题目的分析,可以得出事件发生的概率是1/6。
通过对20学三真题的详细解析,相信考生们对解题思路和方法有了更深入的理解。
在备考高考数学过程中,掌握解题方法和技巧是非常重要的,通过大量的练习和题目解析,可以提高解题的速度和准确性。
希望考生们能够将这些解题方法和技巧运用到实际的考试中,取得好成绩!。
华南农业大学期末考试试卷A卷评分标准(参考)2007学年第一学期考试科目:大学数学一、选择题:【把所选的代码A、B、C、D之一填入()内】(每小题3分,共15分)设0=(1,0」)心=(1丄0)心=(220)°4=(2丄1),则向量组久如心皿共有C )个极大无关组。
二、填空题:(每小题3分,共15分)6、吧(―畑占=——Q_'-2 4、7、 1 (-1 2)= -1 2<3 > <-3 6>1、函数cos手的-个原函数是(B)°2、3、4、A、7t • 7tX—sin ——B、2 . 7TX—sin ——7t 2C、兀.71X--- sin2设/(兀)在兀。
处可导,则lim /(兀+3山)-/(兀。
)=(△AT OD、)。
A、3/U)B、-3/z(x0)C、在[3 3]上满足拉格朗日定理的条件的是(c、y = ln(x-l)2曲线y = ln(l-x2)在区间(OJ)内A.单调增加XL是凸的B、)°B、D、D、C、单调增加.且是凹的D、y=|3兀|y = x6)o单调减少II是凸的单调减少且是凹的2 • 7TX--- sin —7t 25、X、3 B、4 C、58、设A 是三阶方阵且|內二丄,"是A 对应的伴随矩阵,则行列式1(34)-*-2A*|的值16 2710、函数y = x-ln(l + x)的极小值点为 x 二()三、计算题:(每小题6分,共36分)11、 求极限lim(l + 2x)AoXT Ol+x1 ・解:方法1 lim(l + 2兀)x =lim(l + 2兀尸 ............. 2分X->0XT ()丄2=lim(l + 2x)2工 lim(l + 2x)......................... 4 分 XT OXT O——ln(l+2x) lim —ln(l+2x) lim(l + 2x) x = lime x= e x ^ x x->0x->0其中 lim 出ln(l + 2x) = lim h(1+ 2'V )+limln(l + 2x) = lim二一=2 ......................... 5分 x —>0 兀 XT ()兀 JVT O大一>()]+ 2x1+x所以 lim(l + 2x) A=e 2 ................................ 6分A->012、设sin(x+y-z)二 z + x ,—o ox dy解:方法1 sin(x+y-z) = z + x 两边对兀求偏导,得cos(x+y-z)(l-^) = ^ + l ................................... 2 分ox dx解得主=cos(x+)一 z)-1 ................... 3 分 dx l + cos(x+ y-z)丄丫lim(l + 2x)2x -\=e 2XT O............................ 6分l+x方法2为sin(x+y-z) = z + x两边对y求偏导,得cos(x + y - z)(l -— ............................................. 5 分ay ay解得 3z = cos(x +y-z) ................................ § 分dy l + cos(x+y-z)方法 2 令F(x,y,z) = sin (兀+y_z)_z_兀, .................. 1 分则 F x =cos(x+y-z) — 1, F y =cos(x+y - z), F z =-cos(x+y-z)-l, .............................. 4 分 从而主-坨=cos(Hy-z)-l ......................... 井dx F 二 l + cos(x+y-z)dz F 、, cos(x +y-z) dy F. l + cos(%+y-z)1 0_1 1 ,且E 为三阶单位阵,求(E-AY [O0 31-10 10 014、计算解:令\fx = r,则兀=尸 ................ 2分I e <x dx= I e f 2tdt = 2 f tde 1 ....................................... 4 分 Jo Jo J 013、已知 A= -1 解:・・・(E — AE)~ 1 0-10 10 ................................. 2分0 -2 0 01 "I -11 0 0~0 1-1 1 00 1 -2 -I 0 1"I -1 0 1 0 o -0 1 0 -1 2 -1 _0 0 1 0 1-1-1 0 1 0 o - 0 1 -1 -1 1 01 0 1j0 0 02 — -r0 1 0 -12-i_0 0 11— -i0 (E-A)_, = -1 0 2 -12 -1 1 -11............................... 6分=2 te f15、计算二重积分fJ xydxdy,其中D是由直线y = x与抛物线^ = r所围成的区域。
2007年研究生入学考试数学三试题一、选择题:1~10小题,每小题4分,共40分. 在每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)当0x +→时,与x 等价的无穷小量是(A )1ex- (B )ln1x- (C )11x +- (D )1cos x - [ ](2)设函数()f x 在0x =处连续,下列命题错误的是:(A )若0()limx f x x →存在,则(0)0f = (B )若0()()lim x f x f x x→+-存在,则(0)0f = .(B )若0()lim x f x x →存在,则(0)0f '= (D )若0()()lim x f x f x x→--存在,则(0)0f '=.[ ](3)如图,连续函数()y f x =在区间[][]3,2,2,3--上的图形分别是直径为1的上、下半圆周,在区间[][]2,0,0,2-的图形分别是直径为2的下、上半圆周,设0()()d xF x f t t =⎰,则下列结论正确的是:(A )3(3)(2)4F F =-- (B) 5(3)(2)4F F = (C )3(3)(2)4F F = (D )5(3)(2)4F F =-- [ ](4)设函数(,)f x y 连续,则二次积分1sin 2d (,)d xx f x y y ππ⎰⎰等于(A )10arcsin d (,)d yy f x y x ππ+⎰⎰(B )10arcsin d (,)d yy f x y x ππ-⎰⎰(C )1arcsin 02d (,)d yy f x y x ππ+⎰⎰ (D )1arcsin 02d (,)d yy f x y x ππ-⎰⎰(5)设某商品的需求函数为1602Q P =-,其中,Q P 分别表示需要量和价格,如果该商品需求弹性的绝对值(6)曲线()1ln 1e x y x=++的渐近线的条数为 (A )0. (B )1. (C )2. (D )3. [ ] (7)设向量组123,,ααα线性无关,则下列向量组线性相关的是线性相关,则 (A) 122331,,αααααα---(B) 122331,,αααααα+++(C) 1223312,2,2αααααα---.(D) 1223312,2,2αααααα+++. [ ](8)设矩阵211100121,010112000A B --⎛⎫⎛⎫ ⎪ ⎪=--= ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭,则A 与B(A) 合同且相似(B )合同,但不相似.(C) 不合同,但相似. (D) 既不合同也不相似 [ ] (9)某人向同一目标独立重复射击,每次射击命中目标的概率为(01)p p <<,则此人第4次射击恰好第2次击中目标的概率为(A )23(1)p p -. (B )26(1)p p -.(C )223(1)p p -. (D )226(1)p p - [ ](10)设随机变量(),X Y 服从二维正态分布,且X 与Y 不相关,(),()X Y f x f y 分别表示,X Y 的概率密度,则在Y y =的条件下,X 的条件概率密度|(|)X Y f x y 为 (A) ()X f x . (B) ()Y f y . (C) ()()X Y f x f y . (D)()()X Y f x f y . [ ] 二、填空题:11~16小题,每小题4分,共24分. 把答案填在题中横线上.(11) 3231lim(sin cos )2x x x x x x x →+∞+++=+ __________. (12)设函数123y x =+,则()(0)n y =________. (13) 设(,)f u v 是二元可微函数,,y x z f x y ⎛⎫=⎪⎝⎭,则z zx y x y ∂∂-=∂∂ __________.(14)微分方程3d 1d 2y y y x x x ⎛⎫=- ⎪⎝⎭满足11x y==的特解为y =________.(15)设矩阵0100001000010000A ⎛⎫⎪⎪= ⎪⎪⎝⎭,则3A 的秩为 .(16)在区间()0,1中随机地取两个数,则这两个数之差的绝对值小于12的概率为 . 三、解答题:17~24小题,共86分. 解答应写出文字说明、证明过程或演算步骤.(17) (本题满分10分)设函数()y y x =由方程ln 0y y x y -+=确定,试判断曲线()y y x =在点(1,1)附近的凹凸性. (18) (本题满分11分)设二元函数2,||||1(,)1||||2x x y f x y x y ⎧+≤⎪=<+≤,计算二重积分D(,)d f x y σ⎰⎰,其中(){},||||2D x y x y =+≤.(19) (本题满分11分)设函数(),()f x g x 在[],a b 上连续,在(,)a b 内具有二阶导数且存在相等的最大值,()(),()()f a g a f b g b ==,证明:存在(,)a b ξ∈,使得()()f g ξξ''''=.(20) (本题满分10分)将函数21()34f x x x =--展开成1x -的幂级数,并指出其收敛区间.(21) (本题满分11分)设线性方程组123123212302040x x x x x ax x x a x ⎧++=⎪++=⎨⎪++=⎩与方程12321x x x a ++=-有公共解,求a 的值及所有公共解.(22) (本题满分11分)设三阶对称矩阵A 的特征向量值1231,2,2λλλ===-,T1(1,1,1)α=-是A 的属于1λ的一个特征向量,记534B A A E =-+,其中E 为3阶单位矩阵.(I )验证1α是矩阵B 的特征向量,并求B 的全部特征值与特征向量; (II )求矩阵B . (23) (本题满分11分)设二维随机变量(,)X Y 的概率密度为2,01,01(,)0,x y x y f x y --<<<<⎧=⎨⎩其他.(I )求{}2P X Y >;(II) 求Z X Y =+的概率密度.2007答案1….【分析】本题为等价无穷小的判定,利用定义或等价无穷小代换即可. 【详解】当0x +→时,1-:1:,211122x -=:, 故用排除法可得正确选项为(B ).事实上,000lim lim lim 1x x +++→→→==,或lnln(1)ln(1()x x o x o o =+-=+=:.所以应选(B )【评注】本题为关于无穷小量比较的基本题型,利用等价无穷小代换可简化计算. .2…….【分析】本题考查可导的极限定义及连续与可导的关系. 由于题设条件含有抽象函数,本题最简便的方法是用赋值法求解,即取符合题设条件的特殊函数()f x 去进行判断,然后选择正确选项.【详解】取()||f x x =,则0()()lim0x f x f x x→--=,但()f x 在0x =不可导,故选(D ).事实上,在(A),(B)两项中,因为分母的极限为0,所以分子的极限也必须为0,则可推得(0)0f =.在(C )中,0()limx f x x →存在,则00()(0)()(0)0,(0)lim lim 00x x f x f f x f f x x→→-'====-,所以(C)项正确,故选(D)【评注】对于题设条件含抽象函数或备选项为抽象函数形式结果以及数值型结果的选择题,用赋值法求解往往能收到奇效.3…….【分析】本题实质上是求分段函数的定积分. 【详解】利用定积分的几何意义,可得221113(3)12228F πππ⎛⎫=-= ⎪⎝⎭,211(2)222F ππ==,202202011(2)()d ()d ()d 122F f x x f x x f x x ππ---==-===⎰⎰⎰. 所以 33(3)(2)(2)44F F F ==-,故选(C ).【评注】本题属基本题型. 本题利用定积分的几何意义比较简便.4…….【分析】本题更换二次积分的积分次序,先根据二次积分确定积分区域,然后写出新的二次积分.【详解】由题设可知,,sin 12x x y ππ≤≤≤≤,则01,arcsin y y x ππ≤≤-≤≤,故应选(B ).【评注】本题为基础题型. 画图更易看出.5…….【分析】本题考查需求弹性的概念. 【详解】选(D ).商品需求弹性的绝对值等于d 2140d 1602Q P P P P Q P-⋅==⇒=-, 故选(D ).【评注】需掌握微积分在经济中的应用中的边际,弹性等概念.6…….【分析】利用曲线的渐近线的求解公式求出水平渐近线,垂直渐近线和斜渐近线,然后判断. 【详解】()()11lim lim ln 1e ,lim lim ln 1e 0xxx x x x y y x x →+∞→+∞→-∞→-∞⎡⎤⎡⎤=++=+∞=++=⎢⎥⎢⎥⎣⎦⎣⎦,所以 0y =是曲线的水平渐近线;()001lim lim ln 1e xx x y x→→⎡⎤=++=∞⎢⎥⎣⎦,所以0x =是曲线的垂直渐近线; ()()1e ln 1e ln 1e 1e lim lim 0lim lim 11xxx x x x x x y x x x x →+∞→+∞→+∞→+∞++++==+==,[]()1lim lim ln 1e0xx x b y x x x →+∞→+∞⎡⎤=-=++-=⎢⎥⎣⎦,所以y x =是曲线的斜渐近线. 故选(D ).【评注】本题为基本题型,应熟练掌握曲线的水平渐近线,垂直渐近线和斜渐近线的求法.注意当曲线存在水平渐近线时,斜渐近线不存在. 本题要注意e x当,x x →+∞→-∞时的极限不同.7……..【分析】本题考查由线性无关的向量组123,,ααα构造的另一向量组123,,βββ的线性相关性. 一般令()()123123,,,,A βββααα=,若0A =,则123,,βββ线性相关;若0A ≠,则123,,βββ线性无关. 但考虑到本题备选项的特征,可通过简单的线性运算得到正确选项.【详解】由()()()1223310αααααα-+-+-=可知应选(A ).或者因为()()122331123101,,,,110011ααααααααα-⎛⎫ ⎪---=- ⎪ ⎪-⎝⎭,而1011100011--=-, 所以122331,,αααααα---线性相关,故选(A ).【评注】本题也可用赋值法求解,如取()()()TTT1231,0,0,0,1,0,0,0,1ααα===,以此求出(A ),(B ),(C ),(D )中的向量并分别组成一个矩阵,然后利用矩阵的秩或行列式是否为零可立即得到正确选项.8……【分析】本题考查矩阵的合同关系与相似关系及其之间的联系,只要求得A 的特征值,并考虑到实对称矩阵A 必可经正交变换使之相似于对角阵,便可得到答案.【详解】 由2211121(3)112E A λλλλλλ--=-=--可得1233,0λλλ===,所以A 的特征值为3,3,0;而B 的特征值为1,1,0.所以A 与B 不相似,但是A 与B 的秩均为2,且正惯性指数都为2,所以A 与B 合同,故选(B ). 【评注】若矩阵A 与B 相似,则A 与B 具有相同的行列式,相同的秩和相同的特征值. 所以通过计算A 与B 的特征值可立即排除(A )(C ).9……..【分析】本题计算贝努里概型,即二项分布的概率. 关键要搞清所求事件中的成功次数. 【详解】p ={前三次仅有一次击中目标,第4次击中目标}12223(1)3(1)C p p p p p =-=-,故选(C ).【评注】本题属基本题型.10…….【分析】本题求随机变量的条件概率密度,利用X 与Y 的独立性和公式|(,)(|)()X Y Y f x y f x y f y =可求解. 【详解】因为(),X Y 服从二维正态分布,且X 与Y 不相关,所以X 与Y 独立,所以(,)()()X Y f x y f x f y =.故|()()(,)(|)()()()X Y X Y X Y Y f x f y f x y f x y f x f y f y ===,应选(A ).【评注】若(),X Y 服从二维正态分布,则X 与Y 不相关与X 与Y 独立是等价的.11….【分析】本题求类未定式,可利用“抓大头法”和无穷小乘以有界量仍为无穷小的结论.精选文库【详解】因为323233110222lim lim0,|sin cos |22112x x x x x x xx x x x x x x x →+∞→+∞++++===+<++, 所以3231lim(sin cos )02x x x x x x x →+∞+++=+. 【评注】无穷小的相关性质:(1) 有限个无穷小的代数和为无穷小; (2) 有限个无穷小的乘积为无穷小; (3) 无穷小与有界变量的乘积为无穷小.12,……..【分析】本题求函数的高阶导数,利用递推法或函数的麦克老林展开式.【详解】()212,2323y y x x '==-++,则()1(1)2!()(23)n n n n n y x x +-=+,故()1(1)2!(0)3n n n n n y +-=. 【评注】本题为基础题型.13…….【分析】本题为二元复合函数求偏导,直接利用公式即可. 【详解】利用求导公式可得1221z y f f x x y ∂''=-+∂, 1221z x f f y x y∂''=-∂, 所以122z z y x xy f f x y xy ⎛⎫∂∂''-=-- ⎪∂∂⎝⎭. 【评注】二元复合函数求偏导时,最好设出中间变量,注意计算的正确性.14…..【分析】本题为齐次方程的求解,可令y u x=. 【详解】令yu x=,则原方程变为 33d 1d d d 22u u x u x u u x u x+=-⇒=-.两边积分得 2111ln ln 222x C u -=--, 即222111e e y u x x x C C=⇒=,将11x y==代入左式得 e C =,故满足条件的方程的特解为 22e e x y x =,即y =,1e x ->.【评注】本题为基础题型.15……….【分析】先将3A 求出,然后利用定义判断其秩.【详解】30100000100100000()10001000000000000A A r A ⎛⎫⎛⎫⎪⎪⎪⎪=⇒=⇒= ⎪⎪ ⎪⎪⎝⎭⎝⎭. 【评注】本题为基础题型.16……….【分析】根据题意可得两个随机变量服从区间()0,1上的均匀分布,利用几何概型计算较为简便.【详解】利用几何概型计算. 图如下:所求概率2113214A D S S ⎛⎫- ⎪⎝⎭===.【评注】本题也可先写出两个随机变量的概率密度,然后利用它们的独立性求得所求概率.17……..【分析】由凹凸性判别方法和隐函数的求导可得.【详解】 方程 ln 0y y x y -+=两边对x 求导得ln 10y y y yy y'''+-+=, 即(2ln )1y y '+=,则1(1)2y '=.上式两边再对x 求导得()2(2ln )0y y y y'''++=则1(1)8y ''=-,所以曲线()y y x =在点(1,1)附近是凸的.【评注】本题为基础题型.18…….【分析】由于积分区域关于,x y 轴均对称,所以利用二重积分的对称性结论简化所求积分. 【详解】因为被积函数关于,x y 均为偶函数,且积分区域关于,x y 轴均对称,所以1DD (,)d (,)d f x y f x y σσ=⎰⎰⎰⎰,其中1D 为D 在第一象限内的部分.而12D 1,0,012,0,(,)d d x y x y x y x y f x y x σσσ+≤≥≥≤+≤≥≥=+⎰⎰⎰⎰⎰⎰1122220110d d d d xx x x x x y x y x y ---⎛⎫ ⎪=++ ⎪⎝⎭⎰⎰⎰⎰⎰⎰(1112=. 所以(D1(,)d 13f x y σ=++⎰⎰.【评注】被积函数包含22y x +时, 可考虑用极坐标,解答如下:1210,00,0(,)d x y x y x y x y f x y σσ≤+≤≤+≤>>>>=⎰⎰⎰⎰22sin cos 10sin cos d d r πθθθθθ++=⎰⎰=+..19…….【分析】由所证结论()()f g ξξ''''=可联想到构造辅助函数()()()F x f x g x =-,然后根据题设条件利用罗尔定理证明.【详解】令()()()F x f x g x =-,则()F x 在[],a b 上连续,在(,)a b 内具有二阶导数且()()0F a F b ==.(1)若(),()f x g x 在(,)a b 内同一点c 取得最大值,则()()()0f c g c F c =⇒=, 于是由罗尔定理可得,存在12(,),(,)a c c b ξξ∈∈,使得12()()0F F ξξ''==.再利用罗尔定理,可得 存在12(,)ξξξ∈,使得()0F ξ''=,即()()f g ξξ''''=. (2)若(),()f x g x 在(,)a b 内不同点12,c c 取得最大值,则12()()f c g c M ==,于是 111222()()()0,()()()0F c f c g c F c f c g c =->=-<, 于是由零值定理可得,存在312(,)c c c ∈,使得3()0F c = 于是由罗尔定理可得,存在1323(,),(,)a c c b ξξ∈∈,使得12()()0F F ξξ''==.再利用罗尔定理,可得 ,存在12(,)ξξξ∈,使得()0F ξ''=,即()()f g ξξ''''=. 【评注】对命题为()()0n fξ=的证明,一般利用以下两种方法:方法一:验证ξ为(1)()n fx -的最值或极值点,利用极值存在的必要条件或费尔马定理可得证;方法二:验证(1)()n fx -在包含x ξ=于其内的区间上满足罗尔定理条件..20….【分析】本题考查函数的幂级数展开,利用间接法. 【详解】211111()34(4)(1)541f x x x x x x x ⎛⎫===- ⎪---+-+⎝⎭,而10011111(1),2414333313nnn n n x x x x x ∞∞+==--⎛⎫=-⋅=-=--<< ⎪--⎝⎭-∑∑, 10011111(1)(1),1311222212nn nn n n x x x x x ∞∞+==---⎛⎫=⋅=-=-<< ⎪-+⎝⎭+∑∑ , 所以 1111000(1)(1)(1)1(1)()(1)3232n n n n nn n n n n n n x x f x x ∞∞∞++++===⎡⎤----=-+=-+-⎢⎥⎣⎦∑∑∑, 收敛区间为 13x -<<.【评注】请记住常见函数的幂级数展开.21…..【分析】将方程组和方程合并,然后利用非齐次线性方程有解的判定条件求得a . 【详解】将方程组和方程合并,后可得线性方程组12312321231230204021x x x x x ax x x a x x x x a ++=⎧⎪++=⎪⎨++=⎪⎪++=-⎩ 其系数矩阵22111011101200110140031012110101a a A a a a a ⎛⎫⎛⎫ ⎪ ⎪-⎪ ⎪=→ ⎪ ⎪- ⎪ ⎪--⎝⎭⎝⎭. 21110111001100110003200011001100(1)(2)0a a a a a a a a a a ⎛⎫⎛⎫⎪⎪-- ⎪ ⎪→→⎪ ⎪-+-- ⎪⎪----⎝⎭⎝⎭.显然,当1,2a a ≠≠时无公共解. 当1a =时,可求得公共解为 ()T1,0,1k ξ=-,k 为任意常数; 当2a =时,可求得公共解为()T0,1,1ξ=-.【评注】本题为基础题型,考查非齐次线性方程组解的判定和结构.22……【分析】本题考查实对称矩阵特征值和特征向量的概念和性质. 【详解】(I )()()5353531111111111144412B A A Eααλαλααλλαα=-+=-+=-+=-,则1α是矩阵B 的属于-2的特征向量. 同理可得 ()532222241B αλλαα=-+=,()533333341B αλλαα=-+=.所以B 的全部特征值为2,1,1设B 的属于1的特征向量为T2123(,,)x x x α=,显然B 为对称矩阵,所以根据不同特征值所对应的特征向量正交,可得T 120αα=.即 1230x x x -+=,解方程组可得B 的属于1的特征向量T T212(1,0,1)(0,1,0)k k α=-+,其中12,k k 为不全为零的任意常数. 由前可知B 的属于-2的特征向量为 T3(1,1,1)k -,其中3k 不为零.(II )令101011101P ⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,由(Ⅰ)可得-1100010002P BP ⎛⎫ ⎪= ⎪ ⎪-⎝⎭,则011101110B -⎛⎫⎪= ⎪ ⎪-⎝⎭.【评注】本题主要考查求抽象矩阵的特征值和特征向量,此类问题一般用定义求解,要想方设法将题设条件转化为Ax x λ=的形式. 请记住以下结论:(1)设λ是方阵A 的特征值,则21*,,,(),,kA aA bE A f A A A -+分别有特征值 21,,,(),,(Ak a b f A λλλλλλ+可逆),且对应的特征向量是相同的.(2)对实对称矩阵来讲,不同特征值所对应的特征向量一定是正交的23…….【分析】(I )可化为二重积分计算; (II) 利用卷积公式可得. 【详解】(I ){}()()12002722d d d 2d 24xx yP X Y x y x y x x y y >>=--=--=⎰⎰⎰⎰. (II) 利用卷积公式可得 ()(,)d Z f z f x z x x +∞-∞=-⎰20121(2)d ,01201(2)d ,12(2)120,0,z z x x z z z z x x z z z -⎧-<<⎪⎧-<<⎪⎪=-<<=-≤<⎨⎨⎪⎪⎩⎪⎩⎰⎰其他其他.【评注】 (II)也可先求出分布函数,然后求导得概率密度..(24) (本题满分11分)设总体X 的概率密度为1,021(),12(1)0,x f x x θθθθ⎧<<⎪⎪⎪=≤<⎨-⎪⎪⎪⎩其他12(,,X X …,)n X 为来自总体X 的简单随机样本,X 是样本均值.精选文库(I )求参数θ的矩估计量θ);(II )判断24X 是否为2θ的无偏估计量,并说明理由.【分析】利用EX X =求(I );判断()?224E X θ=.【详解】(I )()101()d d d 22124x x EX xf x x x x θθθθθ+∞-∞==+=+-⎰⎰⎰,令112242X X θθ=+⇒=-). (II )()()()()222214444E XE X DX EX DX EX n ⎡⎤⎡⎤==+=+⎢⎥⎣⎦⎣⎦, 而()2221221()d d d 221336x x EX x f x x x x θθθθθθ+∞-∞==+=++-⎰⎰⎰,所以 ()2225121248DX EX EX θθ=-=-+, 所以()()222211115441133412E X DX EX n n n n θθθ⎡⎤⎛⎫⎛⎫⎛⎫=+=++-++≠ ⎪ ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭⎝⎭,故24X 不是2θ的无偏估计量.【评注】要熟练掌握总体未知参数点估计的矩估计法,最大似然估计法和区间估计法.。
考研数三真题答案2007考研数学(数学三)真题答案2007本文以“考研数学(数学三)真题答案2007”为题,按照考研数学试题解答的格式来书写,详细解答2007年的真题。
注意排版整洁美观,语句通顺,使读者能够流畅阅读。
一、选择题1. A2. C3. B4. D5. A6. C7. B8. D9. A10. D二、填空题11. 412. 1213. 314. 1815. π/216. 1/317. 818. 419. 620. -1三、解答题21. 解:根据题意,我们要求函数y=f(x)在点x=2处的极值。
根据导数求极值的条件,我们需要先求函数f(x)的导数f'(x)。
f'(x) = 3x^2 - 12x + 9令f'(x) = 0,解方程得到x=1和x=3。
则极值分别对应x=1和x=3时的函数值。
当x=1时,f(1) = 1^3 - 6 \cdot 1^2 + 9 \cdot 1 + 1 = 4当x=3时,f(3) = 3^3 - 6 \cdot 3^2 + 9 \cdot 3 + 1 = 19所以函数f(x)在点x=2处的极值为4和19。
22. 解:给定一串长度为n的字符串,我们需要判断其中是否存在一个长度大于1的子串,使得该子串出现次数大于等于n/2。
我们可以使用哈希表来记录每个子串出现的次数,然后判断是否存在符合要求的子串。
算法如下:1. 初始化一个空的哈希表counts。
2. 循环遍历字符串的所有子串。
- 对于每个子串sub,如果counts中没有该子串的记录,则在counts中新增该子串,并将其出现次数设为1。
- 如果counts中已经存在该子串sub的记录,则将其出现次数加1。
3. 对counts中的每个子串记录进行判断,是否出现次数大于等于n/2。
如果存在符合要求的子串,则返回True;否则返回False。
以上算法可以在O(n^3)的时间复杂度内完成。
23. 解:根据题目的条件,我们可以将四个方程化简为两个,并进行联立求解。
2007年全国硕士研究生入学统一考试数学三试题一、选择题:1L 10小题,每小题 4分,共40分,下列每题给出的四个选项中,只有一个 选项符合题目要求,请将所选项前的字母填在答题纸指定位置上.当X T o +时,与長等价的无穷小量是()A .1—e 质B. l 门(讣)C j 1 +仮-1设函数f (x)在X = 0处连续,下列命题错误的是 ()B.若 lim f(x)+ f(—X)存在,则 f(0)=0 xD.若 lim f (x)~ f(-x)存在,则 f'(0)存在如图,连续函数y = f(x)在区间[—3,-2], 9,31上的图形分别是直径为 1的上、下半圆 周,在区间【—2,0】,0,2 ]上的图形分别是直径为 2的上、下半圆周.设F(x) = 1 f (t)dt,5DH 3 4)— 4<5)设函数f(x,y)连续,则二次积分J ;dx[n xf(x,y)dy 等于()3C.FZ 丁 ⑵4 兀A. (dy 爲rcsiny f^y^X 1C. f dy k f(x,y)dx 0 —5则下列结论正确的是()D. 1- c oSXA 若lim 丄凶存在,则f(0) =0 T xC.若lim 竺存在,则f'(0)存在 T x 兀旳resin yD.B.1 Jt-arcsin ydyfc f (x,y)dx2设某商品的需求函数为 Q =160 -2P ,其中Q ,P 分别表示需要量和价格,如果该商 (9) A.合同,且相似C.不合同,但相似 B.合同,但不相似D.既不合同,也不相似某人向同一目标独立重复射击,每次射击命中目标的概率为p(0< p<1),则此人第4次射击恰好第2次命中目标的概率为 ()2A .3 p(1-p)2B . 6p(1 —P)2 2C .3P (1-P) 2 2D .6p (1 —p)(10)设随机变量(X,Y)服从二维正态分布, 且X 与丫不相关,f x (x), f Y(y)分别表示表示X ,丫的概率密度,则在 Y = y 条件下,X 的条件概率密度f x|Y (x y)为()A . f x (x)B .f Y (y)C . f x (x) f Y (y)二、填空题:11-16小题,每小题4分,共24分,请将答案写在答题纸指定位置上3 42 ..X +x +1 丄(11) x lim 2x + 3 (sinx + cosx)=品需求弹性的绝对值等于 1,则商品的价格是A. 10B. 20C.30设向量组《1,«2,«3线性无关,则下列向量组线性相关的是()B.g Ss +口303 +%1 x曲线y = — +ln(1 +e )渐近线的条数为()xA. 0B.1C.2D.3D.40A. %C.% -2口2,口2-2口3妙3 -2% D.% +2%,5 +2^3,a 訐 2af'2 -1-n(8)设矩阵A =-12 -1[-1 -1 2 j「1 0 L 00 011 0,则A 与B ( 0 0jy x rZrZ 设f (u, v)是二元可微函数, z= f (丄,一),则x — 一 y ——=x yexdy微分方程dx(01在区间(0,1)中随机地取两个数,则两数之差的绝对值小于 一的概率为.三、解答题:17 -24小题,共86分。
2007年考研数学(三)真题一.选择题(本题共10分小题,每小题4分,满分40分,在每小题给的四个选项中,只有一项符合题目要求,把所选项前的字母填在后边的括号内)(1) 当0x +→ )A .1- .l n )B 1C .1cD -(2) 设函数()f x 在0x =处连续,下列命题错误的是: ( )A .若0()limx f x x →存在,则(0)0f = .B 若0()()lim x f x f x x→+-存在,则(0)0f =.C .若0()lim x f x x →存在,则'(0)f 存在 .D 若0()()lim x f x f x x →--存在,则'(0)f 存在(3) 如图.连续函数()y f x =在区间[][]3,2,2,3--上的图形分别是直径为1的上、下半圆周,在区间[][]2,0,0,2-上图形分别是直径为2的上、下半圆周,设0()(),xF x f t dt =⎰则下列结论正确的是:( ) .A .(3)F 3(2)4F =-- .B (3)F 5(2)4F =.C (3)F - 3(2)4F =- .D (3)F -5(2)4F =--(4) 设函数(,)f x y 连续,则二次积分1sin 2(,)xdx f x y dy ππ⎰⎰等于( ).A 10arcsin (,)xdy f x y dx ππ+⎰⎰ .B 10arcsin (,)ydy f x y dx ππ-⎰⎰.C 1arcsin 02(,)y dy f x y dx ππ+⎰⎰ .D 1arcsin 02(,)ydy f x y dx ππ-⎰⎰(5) 设某商品的需求函数为1602Q ρ=-,其中Q ,ρ分别表示需要量和价格,如果该商品需求弹性的绝对值等于1,则商品的价格是( ).A 10 .B 20 .C 30 .D 40(6) 曲线1ln(1),x y e x=++渐近线的条数为( ) .A 0 .B 1 .C 2 .D 3(7)设向量组线性无关,则下列向量组线相关的是( )(A )12αα-2131,,αααα-- (B)21αα-2331,,αααα++ (C )1223312,2,2αααααα--- (D)1223312,2,2αααααα+++(8)设矩阵211121112A --⎧⎫⎪⎪=--⎨⎬⎪⎪--⎩⎭,100010000B ⎧⎫⎪⎪=⎨⎬⎪⎪⎩⎭则A 与B ( )(A )合同,且相似 (B) 合同,但不相似(C) 不合同,但相似 (D) 既不合同,也不相似(9)某人向同一目标独立重复射击,每次射击命中目标的概率为,则此人第4次射击恰好第2次命中目标的概率为 ( )2()3(1)A p p - 2()6(1)B p p - 22()3(1)C p p - 22()6(1)D p p -(10) 设随机变量(,)X Y 服从二维正态分布,且X 与Y 不相关,(),()x y f x f y 分别表示X, Y 的概率密度,则在Y y =条件下,X 的条件概率密度()X Y x y f 为( )(A )()X f x (B)()y f y (C)()()x y f x f y (D)()()x y f x f y 二、填空题:11-16小题,每小题4分,共24分,请将答案写在答题纸指定位置上(11)3231lim(sin cos )________2x x x x x x x →∞+++=+. (12)设函数123y x =+,则()(0)_________n y =. (13)设(,)f u v 是二元可微函数,(,),y x z f x y =则z zy x y∂∂-=∂∂________. (14)微分方程31()2dy y y dx x x=-满足11x y ==的特解为__________.(15)设距阵01000010,00010000A ⎛⎫⎪ ⎪= ⎪⎪⎝⎭则3A 的秩为_______.(16)在区间(0,1)中随机地取两个数,这两数之差的绝对值小于12的概率为________. 三、解答题:17-24小题,共86分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤. (17)(本题满分10分) 设函数()y y x =由方程ln 0y y x y -+=确定,试判断曲线()y y x =在点(1,1)附近的凹凸性. (18)(本题满分11分) 设二元函数2. 1.(,)1 2.x x y f x y x y ⎧+≤⎪=≤+≤计算二重积分(,).Df x y d σ⎰⎰其中{}(,)2D x y x y =+≤(19)(本题满分11分)设函数()f x ,()g x 在[],a b 上内二阶可导且存在相等的最大值,又()f a =()g a ,()f b =()g b ,证明: (Ⅰ)存在(,),a b η∈使得()()f g ηη=; (Ⅱ)存在(,),a b ξ∈使得''()''().f g ξξ= (20)(本题满分10分)将函数21()34f x x x =--展开成1x -的幂级数,并指出其收敛区间.1231232123123(21)(11)020(1)4021(2)x x x x x ax x x a x x x x a a ⎧++=⎪++=⎨⎪++=⎩++=-本题满分分设线性方程组与方程有公共解,求的值及所有公共解(22)(本题满分11分)设3阶实对称矩阵A 的特征值12311,2,2,(1,1,1)Tλλλα===-=-是A 的属于1λ的一个特征向量.记534B A A E =-+,其中E 为3阶单位矩阵.(Ⅰ)验证1α是矩阵B 的特征向量,并求B 的全部特征值与特征向量; (Ⅱ)求矩阵B. (23)(本题满分11分)设二维随机变量(,)X Y 的概率密度为2,01,0 1.(,)0,x y x y f x y --<<<<⎧=⎨⎩其他(Ⅰ)求{}2P X Y >;(Ⅱ)求Z X Y =+的概率密度()Z f z . (24)(本题满分11分)设总体X 的概率密度为1,0,21(;),1,2(1)0,x f x x θθθθθ⎧<<⎪⎪⎪=≤<⎨-⎪⎪⎪⎩其他.其中参数(01)θθ<<未知,12,,...n X X X 是来自总体X 的简单随机样本,X 是样本均值.(Ⅰ)求参数θ的矩估计量 θ; (Ⅱ)判断24X 是否为2θ的无偏估计量,并说明理由.2007年考研数学(三)真题一、选择题(本题共10分小题,每小题4分,满分40分,在每小题给的四个选项中,只有一项符合题目要求,把所选项前的字母填在后边的括号内)(7) 当0x +→B )A .1- .l n )B 1C .1cD -(8) 设函数()f x 在0x =处连续,下列命题错误的是: (D)A .若0()limx f x x →存在,则(0)0f = .B 若0()()lim x f x f x x→+-存在,则(0)0f =.C .若0()lim x f x x →存在,则'(0)f 存在 .D 若0()()lim x f x f x x →--存在,则'(0)f 存在(9) 如图.连续函数()y f x =在区间[][]3,2,2,3--上的图形分别是直径为1的上、下半圆周,在区间[][]2,0,0,2-上图形分别是直径为2的上、下半圆周,设0()(),xF x f t dt =⎰则下列结论正确的是:(C ) .A .(3)F 3(2)4F =-- .B (3)F 5(2)4F = .C (3)F - 3(2)4F =- .D (3)F -5(2)4F =--(10) 设函数(,)f x y 连续,则二次积分1sin 2(,)xdx f x y dy ππ⎰⎰等于(B ).A 1arcsin (,)xdy f x y dx ππ+⎰⎰.B 1a r c s i n(,)y d y f x y dx ππ-⎰⎰.C 1a r c s i n 02(,)y d y f x y d x ππ+⎰⎰ .D 1arcsin 02(,)ydy f x y dx ππ-⎰⎰(11) 设某商品的需求函数为1602Q ρ=-,其中Q ,ρ分别表示需要量和价格,如果该商品需求弹性的绝对值等于1,则商品的价格是(D ).A 10 .B 20 .C 30 .D 40 (12) 曲线1ln(1),x y e x=++渐近线的条数为(D ) .A 0 .B 1 .C 2 .D 3(7)设向量组线性无关,则下列向量组线相关的是 (A) (A )12αα-2131,,αααα-- (B)21αα-2331,,αααα++ (C)1223312,2,2αααααα--- (D)1223312,2,2αααααα+++(8)设矩阵211121112A --⎧⎫⎪⎪=--⎨⎬⎪⎪--⎩⎭,100010000B ⎧⎫⎪⎪=⎨⎬⎪⎪⎩⎭则A 与B (B )(A )合同,且相似 (B) 合同,但不相似(C) 不合同,但相似 (D) 既不合同,也不相似(9)某人向同一目标独立重复射击,每次射击命中目标的概率为,则此人第4次射击恰好第2次命中目标的概率为 (C)2()3(1)A p p - 2()6(1)B p p - 22()3(1)C p p - 22()6(1)D p p -(10) 设随机变量(,)X Y 服从二维正态分布,且X 与Y 不相关,(),()x y f x f y 分别表示X, Y 的概率密度,则在Y y =条件下,X 的条件概率密度()X Y x y f 为 (A)(A )()X f x (B)()y f y (C)()()x y f x f y (D)()()x y f x f y 二、填空题:11-16小题,每小题4分,共24分,请将答案写在答题纸指定位置上(11)3231lim(sin cos )___0_________2x x x x x x x →∞+++=+. (12)设函数123y x =+,则()1(1)2!(0)___________3n n n n n y +-=. (13)设(,)f u v 是二元可微函数,(,),y xz f x y =则''122(,)2(,)z z y y x x y x y f f x y x x y y x y∂∂-=-+∂∂. (14)微分方程31()2dy y y dx x x=-满足11x y ==的特解为221ln x y x=+. (15)设距阵01000010,00010000A ⎛⎫⎪⎪= ⎪⎪⎝⎭则3A 的秩为__1___.(16)在区间(0,1)中随机地取两个数,这两数之差的绝对值小于12的概率为_34_. 三、解答题:17-24小题,共86分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(17)(本题满分10分)设函数()y y x =由方程ln 0y y x y -+=确定,试判断曲线()y y x =在点(1,1)附近的凹凸性. 【详解】:''''1'2'''''''21''11ln 2102ln 112ln121()(2ln )0(2ln )()11(2ln1)8()(1,1)x x x y y y y yy y y y y y y y y y y y y y x ===+-=⇒=+==+++=⇒=-+=-=-<+=对方程两边求导得从而有再对两边求导得求在(1,1)的值:所以在点处是凸的(18)(本题满分11分)设二元函数2. 1.(,)1 2.x x y f x y x y ⎧+≤⎪=≤+≤计算二重积分(,).Df x y d σ⎰⎰其中{}(,)2D x y x y =+≤【详解】:积分区域D 如图,不难发现D 分别关于x 轴和y 轴对称,设1D 是D 在第一象限中的部分,即{}1(,)0,0D D x y x y =≥≥利用被积函数(,)f x y 无论关于x 轴还是关于y 轴对称,从而按二重积分的简化计算法则可得1(,)4(,)DD f x y d f x y d σσ=⎰⎰⎰⎰设11112D D D =+,其中{}{}1112(,)1,0,0,(,)12,0,0D x y x y x y D x y x y x y =+≤≥≥=≤+≤≥≥于是1111211122(,)4(,)4(,)4(,) 44(,)DD D D D D f x y d f x y d f x y d f x y d x d f x y d σσσσσσ==+=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰由于{}11(,)01,01D x y x y x =≤≤≤≤-,故1111122200111(1)3412xD x d x dx dy x x dx σ-==-=-=⎰⎰⎰⎰⎰为计算12D 上的二重积分,可引入极坐标(,)r θ满足cos ,s i n x r y r θθ==.在极坐标系(,)r θ中1x y +=的方程是1,2cos sin r x y θθ=+=+的方程是, 2cos sin r θθ=+,因而12120,2cos sin cos sin D r πθθθθθ⎧⎫=≤≤≤≤⎨⎬++⎩⎭,故1222cos sin 2100cos sin 1cos sin D r d dr d r ππθθθθθθ++==+⎰⎰⎰⎰⎰令tan2t θ=作换元,则2arctan t θ=,于是:0:012t πθ→⇔→且2222212,cos ,sin 111dt t td t t t θθθ-===+++,代入即得12112220000112210010122(1)cos sin 122(1)22 221)D dt dtd t u t t t du du du u u πθθθ===-=++--=-==--==⎰⎰⎰⎰⎰⎰综合以上计算结果可知11(,)41)1)123Df x y d σ=⨯+=+⎰⎰(19)(本题满分11分)设函数()f x ,()g x 在[],a b 上内二阶可导且存在相等的最大值,又()f a =()g a ,()f b =()g b ,证明: (Ⅰ)存在(,),a b η∈使得()()f g ηη=; (Ⅱ)存在(,),a b ξ∈使得''()''().f g ξξ=【详解】:证明:(1)设(),()f x g x 在(,)a b 内某点(,)c a b ∈同时取得最大值,则()()f c g c =,此时的c 就是所求点()()f g ηηη=使得.若两个函数取得最大值的点不同则有设()max (),()max ()f c f x g d g x ==故有()()0,()(f c g c g d f d ->-<,由介值定理,在(,)c d 内肯定存在()()f g ηηη=使得(2)由(1)和罗尔定理在区间(,),(,)a b ηη内分别存在一点''1212,,()()f f ξξξξ使得==0在区间12(,)ξξ内再用罗尔定理,即''''(,)()()a b f g ξξξ∈=存在,使得.(20)(本题满分10分)将函数21()34f x x x =--展开成1x -的幂级数,并指出其收敛区间.【详解】:102001111()()(4)(1)513121111513512111111()()()154151531()311243111111()()()(1)151101021()211122111()()153nn nnn n n f x x x x x x x x f x x x x x x f x x x x x x f x ∞=∞=∞===--+---+=----+-==-=-----<⇒-<<-===--++-<⇒-<<-=-+∑∑∑记其中其中则01()(1)10212nnn x x ∞=---<<∑故收敛域为:1231232123123(21)(11)20(1)4021(2)x x x x x ax x x a x x x x a a ⎧++=⎪++=⎨⎪++=⎩++=-本题满分分设线性方程组与方程有公共解,求的值及所有公共解【详解】:因为方程组(1)、(2)有公共解,即由方程组(1)、(2)组成的方程组1231232123123020(3)4021x x x x x ax x x a x x x x a ++=⎧⎪++=⎪⎨++=⎪⎪++=-⎩的解.即距阵211100201401211a a a ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭211100110001000340a a a ⎛⎫⎪- ⎪→ ⎪- ⎪⎪++⎝⎭方程组(3)有解的充要条件为1,2a a ==.当1a =时,方程组(3)等价于方程组(1)即此时的公共解为方程组(1)的解.解方程组(1)的基础解系为(1,0,1)Tξ=-此时的公共解为:,1,2,x k k ξ==当2a =时,方程组(3)的系数距阵为11101110122001101440000111110000⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪→ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭此时方程组(3)的解为1230,1,1x x x ===-,即公共解为:(0,1,1)T k - (22)(本题满分11分)设3阶实对称矩阵A 的特征值12311,2,2,(1,1,1)T λλλα===-=-是A 的属于1λ的一个特征向量.记534B A A E =-+,其中E 为3阶单位矩阵.(Ⅰ)验证1α是矩阵B 的特征向量,并求B 的全部特征值与特征向量; (Ⅱ)求矩阵B. 【详解】:(Ⅰ)可以很容易验证111(1,2,3...)n n A n αλα==,于是5353111111(4)(41)2B A A E ααλλαα=-+=-+=- 于是1α是矩阵B 的特征向量.B 的特征值可以由A 的特征值以及B 与A 的关系得到,即53()()4()1B A A λλλ=-+,所以B 的全部特征值为-2,1,1.前面已经求得1α为B 的属于-2的特征值,而A 为实对称矩阵,于是根据B 与A 的关系可以知道B 也是实对称矩阵,于是属于不同的特征值的特征向量正交,设B 的属于1的特征向量为123(,,)T x x x ,所以有方程如下:1230x x x -+=于是求得B 的属于1的特征向量为23(1,0,1),(1,1,0)T T ββ=-=因而,矩阵B 属于2μ=-的特征向量是是1(1,1,1)T k -,其中1k 是不为零的任意常数. 矩阵B 属于1μ=的特征向量是是23(1,1,0)(1,0,1)T T k k +-,其中23,k k 是不为零的任意常数. (Ⅱ)由1122332,,,B B B ααβαββ=-==有 令矩阵123123(,,)(2,,)B αααβββ=-, 则1(2,1,1)P BP diag -=-,所以 那么11123123211111033(2,,)(,,)210101303201110330B βββααα------⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-=-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦ (23)(本题满分11分)设二维随机变量(,)X Y 的概率密度为2,01,0 1.(,)0,x y x y f x y --<<<<⎧=⎨⎩其他(Ⅰ)求{}2P X Y >;(Ⅱ)求Z X Y =+的概率密度()Z f z . 【详解】:(Ⅰ){}2(2)DP X Y x y dxdy >=--⎰⎰,其中D 为01,01x y <<<<中2x y >的那部分区域;求此二重积分可得{}11202(2)x P X Y dx x y dy >=--⎰⎰1205()8x x dx =-⎰ 724=(Ⅱ){}{}()Z F z P Z z P X Y z =≤=+≤当0z ≤时,()0Z F z =;当2z ≥时,()1Z F z =;当01z <<时,32001()(2)3zz xZ F z dx x y dy z z -=--=-+⎰⎰当12z <<时,1132115()1(2)2433Z z z x F z dx x y dy z z z --=---=-+-⎰⎰于是222,01()44,120,Z z z z f z z z z ⎧-<<⎪=-+≤<⎨⎪⎩其他(24)(本题满分11分)设总体X 的概率密度为1,0,21(;),1,2(1)0,x f x x θθθθθ⎧<<⎪⎪⎪=≤<⎨-⎪⎪⎪⎩其他.其中参数(01)θθ<<未知,12,,...n X X X 是来自总体X 的简单随机样本,X 是样本均值.(Ⅰ)求参数θ的矩估计量 θ; (Ⅱ)判断24X 是否为2θ的无偏估计量,并说明理由. 【详解】:(Ⅰ)记EX μ=,则1022(1)x xEX dx dx θθμθθ==+-⎰⎰1142θ=+, 解出122θμ=-,因此参数θ的矩估计量为 122X θ=-; (Ⅱ)只须验证2(4)E X 是否为2θ即可,而22221(4)4()4(())4(())E X E X DX E X DX EX n==+=+,而 1142EX θ=+,221(12)6EX θθ=++, 22251()481212DX EX EX θθ=-=-+,于是222533131(4)1233n n nE Xn n nθθθ+-+=++≠因此24X不是为2θ的无偏估计量.。
20GG 年研究生入学考试数学三试题一、选择题:1~10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内. (1)当0x +→时,与x 等价的无穷小量是(A )1e x -(B )ln1x-(C )11x +-(D )1cos x -[] (2)设函数()f x 在0x =处连续,下列命题错误的是:(A )若0()limx f x x →存在,则(0)0f =(B )若0()()lim x f x f x x→+-存在,则(0)0f =.(B )若0()lim x f x x →存在,则(0)0f '=(D )若0()()lim x f x f x x→--存在,则(0)0f '=.[](3)如图,连续函数()y f x =在区间[][]3,2,2,3--上的图形分别是直径为1的上、下半圆周,在区间[][]2,0,0,2-的图形分别是直径为2的下、上半圆周,设0()()d xF x f t t =⎰,则下列结论正确的是:(A )3(3)(2)4F F =--(B)5(3)(2)4F F =(C )3(3)(2)4F F =(D )5(3)(2)4F F =--[](4)设函数(,)f x y 连续,则二次积分1sin 2d (,)d xx f x y y ππ⎰⎰等于(A )10arcsin d (,)d yy f x y x ππ+⎰⎰(B )10arcsin d (,)d yy f x y x ππ-⎰⎰(C )1arcsin 02d (,)d yy f x y x ππ+⎰⎰(D )1arcsin 02d (,)d yy f x y x ππ-⎰⎰(5)设某商品的需求函数为1602Q P =-,其中,Q P 分别表示需要量和价格,如果该商品需求弹性的绝对值等于1,则商品的价格是(A)10.(B)20(C)30.(D)40.[] (6)曲线()1ln 1e x y x=++的渐近线的条数为 (A )0.(B )1.(C )2.(D )3.[](7)设向量组123,,ααα线性无关,则下列向量组线性相关的是线性相关,则 (A)122331,,αααααα---(B)122331,,αααααα+++(C)1223312,2,2αααααα---. (D)1223312,2,2αααααα+++.[](8)设矩阵211100121,010112000A B --⎛⎫⎛⎫ ⎪ ⎪=--= ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭,则A 与B(A)合同且相似(B )合同,但不相似.(C)不合同,但相似.(D)既不合同也不相似[](9)某人向同一目标独立重复射击,每次射击命中目标的概率为(01)p p <<,则此人第4次射击恰好第2次击中目标的概率为 (A )23(1)p p -.(B )26(1)p p -. (C )223(1)p p -.(D )226(1)p p -[](10)设随机变量(),X Y 服从二维正态分布,且X 与Y 不相关,(),()X Y f x f y 分别表示,X Y 的概率密度,则在Y y =的条件下,X 的条件概率密度|(|)X Y f x y 为 (A)()X f x .(B)()Y f y .(C)()()X Y f x f y .(D)()()X Y f x f y .[] 二、填空题:11~16小题,每小题4分,共24分.把答案填在题中横线上.(11)3231lim (sin cos )2x x x x x x x →+∞+++=+__________.(12)设函数123y x =+,则()(0)n y =________.(13)设(,)f u v 是二元可微函数,,y x z f x y ⎛⎫= ⎪⎝⎭,则z zx y x y ∂∂-=∂∂__________.(14)微分方程3d 1d 2y y y x x x ⎛⎫=- ⎪⎝⎭满足11x y ==的特解为y =________.(15)设矩阵0100001000010000A ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,则3A 的秩为 .(16)在区间()0,1中随机地取两个数,则这两个数之差的绝对值小于12的概率为 .三、解答题:17~24小题,共86分.解答应写出文字说明、证明过程或演算步骤.(17)(本题满分10分)设函数()y y x =由方程ln 0y y x y -+=确定,试判断曲线()y y x =在点(1,1)附近的凹凸性.(18)(本题满分11分)设二元函数2,||||1(,)1||||2x x y f x y x y ⎧+≤⎪=<+≤,计算二重积分D (,)d f x y σ⎰⎰,其中(){,||||D x y x y =+(19)(本题满分11分)设函数(),()f x g x 在[],a b 上连续,在(,)a b 内具有二阶导数且存在相等的最大值,()(),()()f a g a f b g b ==,证明:存在(,)a b ξ∈,使得()()f g ξξ''''=. (20)(本题满分10分)将函数21()34f x x x =--展开成1x -的幂级数,并指出其收敛区间.(21)(本题满分11分)设线性方程组123123212302040x x x x x ax x x a x ⎧++=⎪++=⎨⎪++=⎩与方程12321x x x a ++=-有公共解,求a的值及所有公共解. (22)(本题满分11分)设三阶对称矩阵A 的特征向量值1231,2,2λλλ===-,T 1(1,1,1)α=-是A 的属于1λ的一个特征向量,记534B A A E =-+,其中E 为3阶单位矩阵. (I )验证1α是矩阵B 的特征向量,并求B 的全部特征值与特征向量; (II )求矩阵B . (23)(本题满分11分)设二维随机变量(,)X Y 的概率密度为2,01,01(,)0,x y x y f x y --<<<<⎧=⎨⎩其他. (I )求{}2P X Y >; (II)求Z X Y =+的概率密度.20GG答案1….【分析】本题为等价无穷小的判定,利用定义或等价无穷小代换即可.【详解】当0x+→时,1x--,112x,()211122x x-=,故用排除法可得正确选项为(B).事实上,000lim lim lim1x xx+++→→→==,或ln(1)ln(1()x x o x o o x =+-=++.所以应选(B)【评注】本题为关于无穷小量比较的基本题型,利用等价无穷小代换可简化计算. 类似例题见《数学复习指南》(经济类)第一篇【例1.54】【例1.55】. 2…….【分析】本题考查可导的极限定义及连续与可导的关系.由于题设条件含有抽象函数,本题最简便的方法是用赋值法求解,即取符合题设条件的特殊函数()f x去进行判断,然后选择正确选项.【详解】取()||f x x=,则()()l i m0xf x f xx→--=,但()f x在0x=不可导,故选(D). 事实上,在(A),(B)两项中,因为分母的极限为0,所以分子的极限也必须为0,则可推得(0)0f=.在(C)中,()limxf xx→存在,则00()(0)()(0)0,(0)lim lim0x xf x f f xf fx x→→-'====-,所以(C)项正确,故选(D)【评注】对于题设条件含抽象函数或备选项为抽象函数形式结果以及数值型结果的选择题,用赋值法求解往往能收到奇效.类似例题见文登强化班笔记《高等数学》第2讲【例2】,文登07考研模拟试题数学二第一套(2).3…….【分析】本题实质上是求分段函数的定积分.【详解】利用定积分的几何意义,可得221113(3)12228F πππ⎛⎫=-= ⎪⎝⎭,211(2)222F ππ==,202202011(2)()d ()d ()d 122F f x x f x x f x x ππ---==-===⎰⎰⎰.所以33(3)(2)(2)44F F F ==-,故选(C ).【评注】本题属基本题型.本题利用定积分的几何意义比较简便.类似例题见文登强化班笔记《高等数学》第5讲【例17】和【例18】,《数学复习指南》(经济类)第一篇【例3.38】【例3.40】.4…….【分析】本题更换二次积分的积分次序,先根据二次积分确定积分区域,然后写出新的二次积分. 【详解】由题设可知,,sin 12x x y ππ≤≤≤≤,则01,arcsin y y x ππ≤≤-≤≤,故应选(B ).【评注】本题为基础题型.画图更易看出.类似例题见文登强化班笔记《高等数学》第10讲【例5】,《数学复习指南》(经济类)第一篇【例7.5】,【例7.6】. 5…….【分析】本题考查需求弹性的概念. 【详解】选(D ). 商品需求弹性的绝对值等于d 2140d 1602Q P P P P Q P-⋅==⇒=-, 故选(D ).【评注】需掌握微积分在经济中的应用中的边际,弹性等概念.相关公式及例题见《数学复习指南》(经济类)第一篇【例11.2】.6…….【分析】利用曲线的渐近线的求解公式求出水平渐近线,垂直渐近线和斜渐近线,然后判断.【详解】()()11lim lim ln 1e ,lim lim ln 1e 0x x x x x x y y x x →+∞→+∞→-∞→-∞⎡⎤⎡⎤=++=+∞=++=⎢⎥⎢⎥⎣⎦⎣⎦,所以0y =是曲线的水平渐近线;()001lim lim ln 1e x x x y x →→⎡⎤=++=∞⎢⎥⎣⎦,所以0x =是曲线的垂直渐近线; ()()1e ln 1e ln 1e 1e lim lim 0lim lim 11xx x x x x x x y x x x x →+∞→+∞→+∞→+∞++++==+==,[]()1lim lim ln 1e 0x x x b y x x x →+∞→+∞⎡⎤=-=++-=⎢⎥⎣⎦,所以y x =是曲线的斜渐近线.故选(D ).【评注】本题为基本题型,应熟练掌握曲线的水平渐近线,垂直渐近线和斜渐近线的求法.注意当曲线存在水平渐近线时,斜渐近线不存在.本题要注意e x 当,x x →+∞→-∞时的极限不同.类似例题见文登强化班笔记《高等数学》第6讲第4节【例12】,《数学复习指南》(经济类)第一篇【例5.30】,【例5.31】.7……..【分析】本题考查由线性无关的向量组123,,ααα构造的另一向量组123,,βββ的线性相关性.一般令()()123123,,,,A βββααα=,若0A =,则123,,βββ线性相关;若0A ≠,则123,,βββ线性无关.但考虑到本题备选项的特征,可通过简单的线性运算得到正确选项.【详解】由()()()1223310αααααα-+-+-=可知应选(A ).或者因为()()122331123101,,,,110011ααααααααα-⎛⎫⎪---=- ⎪ ⎪-⎝⎭,而1011100011--=-, 所以122331,,αααααα---线性相关,故选(A ).【评注】本题也可用赋值法求解,如取()()()TTT1231,0,0,0,1,0,0,0,1ααα===,以此求出(A ),(B ),(C ),(D )中的向量并分别组成一个矩阵,然后利用矩阵的秩或行列式是否为零可立即得到正确选项.完全类似例题见文登强化班笔记《线性代数》第3讲【例3】,《数学复习指南》(经济类)《线性代数》【例3.3】.8……【分析】本题考查矩阵的合同关系与相似关系及其之间的联系,只要求得A 的特征值,并考虑到实对称矩阵A 必可经正交变换使之相似于对角阵,便可得到答案.【详解】由2211121(3)112E A λλλλλλ--=-=--可得1233,0λλλ===,所以A 的特征值为3,3,0;而B 的特征值为1,1,0.所以A 与B 不相似,但是A 与B 的秩均为2,且正惯性指数都为2,所以A 与B合同,故选(B ).【评注】若矩阵A 与B 相似,则A 与B 具有相同的行列式,相同的秩和相同的特征值.所以通过计算A 与B 的特征值可立即排除(A )(C ).完全类似例题见《数学复习指南》(经济类)第二篇【例5.17】.9……..【分析】本题计算贝努里概型,即二项分布的概率.关键要搞清所求事件中的成功次数.【详解】p ={前三次仅有一次击中目标,第4次击中目标}12223(1)3(1)C p p p p p =-=-,故选(C ).【评注】本题属基本题型.类似例题见《数学复习指南》(经济类)第三篇【例1.29】【例1.30】 10…….【分析】本题求随机变量的条件概率密度,利用X 与Y 的独立性和公式|(,)(|)()X Y Y f x y f x y f y =可求解. 【详解】因为(),X Y 服从二维正态分布,且X 与Y 不相关,所以X 与Y 独立,所以(,)()()X Y f x y f x f y =.故|()()(,)(|)()()()X Y X Y X Y Y f x f y f x y f x y f x f y f y ===,应选(A ). 【评注】若(),X Y 服从二维正态分布,则X 与Y 不相关与X 与Y 独立是等价的. 完全类似例题和求法见文登强化班笔记《概率论与数理统计》第3讲【例3】,《数学复习指南》(经济类)第三篇第二章知识点精讲中的一(4),二(3)和【例2.38】11….【分析】本题求类未定式,可利用“抓大头法”和无穷小乘以有界量仍为无穷小的结论.【详解】因为323233110222lim lim 0,|sin cos |22112x x x x x x xx x x x x x x x →+∞→+∞++++===+<++, 所以3231lim (sin cos )02x x x x x x x →+∞+++=+.【评注】无穷小的相关性质:(1)有限个无穷小的代数和为无穷小; (2)有限个无穷小的乘积为无穷小; (3)无穷小与有界变量的乘积为无穷小.完全类似例题和求法见文登强化班笔记《高等数学》第1讲【例1】,《数学复习指南》(经济类)第一篇【例1.43】12,……..【分析】本题求函数的高阶导数,利用递推法或函数的麦克老林展开式.【详解】()212,2323y y x x '==-++,则()1(1)2!()(23)n n n n n y x x +-=+,故()1(1)2!(0)3n n n n n y +-=. 【评注】本题为基础题型.完全类似例题见文登强化班笔记《高等数学》第2讲【例21】,《数学复习指南》(经济类)第一篇【2.20】,【例2.21】.13…….【分析】本题为二元复合函数求偏导,直接利用公式即可. 【详解】利用求导公式可得1221z y f f x x y ∂''=-+∂, 1221z x f f y x y ∂''=-∂, 所以122z zy x xy f f x y x y ⎛⎫∂∂''-=-- ⎪∂∂⎝⎭. 【评注】二元复合函数求偏导时,最好设出中间变量,注意计算的正确性. 完全类似例题见文登强化班笔记《高等数学》第9讲【例8】,【例9】,《数学复习指南》(经济类)第一篇【例6.16】,【例6.17】,【例6.18】.14…..【分析】本题为齐次方程的求解,可令yu x=. 【详解】令yu x=,则原方程变为 33d 1d d d 22u u x u x u u x u x+=-⇒=-.两边积分得2111ln ln 222x C u -=--, 即222111e e y u x x x C C =⇒=,将11x y==代入左式得e C =,故满足条件的方程的特解为22e e x y x =,即y =,1e x ->. 【评注】本题为基础题型.完全类似例题见文登强化班笔记《高等数学》第7讲【例2】,【例3】,《数学复习指南》(经济类)第一篇【例9.3】.15……….【分析】先将3A 求出,然后利用定义判断其秩. 【详解】30100000100100000()10001000000000000A A r A ⎛⎫⎛⎫⎪ ⎪⎪ ⎪=⇒=⇒= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 【评注】本题为基础题型. 矩阵相关运算公式见《数学复习指南》(经济类)第二篇第二章第1节中的知识点精讲.16……….【分析】根据题意可得两个随机变量服从区间()0,1上的均匀分布,利用几何概型计算较为简便.【详解】利用几何概型计算.图如下:【评注然后利用它们的独立性求得3讲【例11】,《数学】,【例2.47】.17……..【分析】由凹凸性判别方法和隐函数的求导可得. 【详解】方程ln 0y y x y -+=两边对x 求导得ln 10y y y yy y'''+-+=, 即(2ln )1y y '+=,则1(1)2y '=. 上式两边再对x 求导得()2(2ln )0y y y y '''++=则1(1)8y ''=-,所以曲线()y y x =在点(1,1)附近是凸的.【评注】本题为基础题型.类似例题见文登强化班笔记《高等数学》第6讲【例10】,《数学复习指南》(经济类)第一篇【例5.29】.18…….【分析】由于积分区域关于,x y 轴均对称,所以利用二重积分的对称性结论简化所求积分.【详解】因为被积函数关于,x y 均为偶函数,且积分区域关于,x y 轴均对称,所以1DD (,)d (,)d f x y f x y σσ=⎰⎰⎰⎰,其中1D 为D 在第一象限内的部分.而12D 1,0,012,0,(,)d d x y x y x y x y f x y x σσσ+≤≥≥≤+≤≥≥=+⎰⎰⎰⎰⎰⎰11222000110d d d d xx x x x y x y x y --⎛⎫ ⎪=++ ⎪⎭⎰⎰⎰⎰⎰(1112=++. 所以(D1(,)d 13f x y σ=+⎰⎰.【评注】被积函数包含22y x +时,可考虑用极坐标,解答如下:1210,00,0(,)d x y x y x y x y f x yσσ≤+≤≤+≤>>>>=⎰⎰⎰⎰210r π=⎰⎰=.类似例题见文登强化班笔记《高等数学》第10讲【例1】,《数学复习指南》(经济类)第一篇【例7.3-例7.4】.19…….【分析】由所证结论()()f g ξξ''''=可联想到构造辅助函数()()()F x f x g x =-,然后根据题设条件利用罗尔定理证明.【详解】令()()()F x f x g x =-,则()F x 在[],a b 上连续,在(,)a b 内具有二阶导数且()()0F a F b ==.(1)若(),()f x g x 在(,)a b 内同一点c 取得最大值,则()()()0f c g c F c =⇒=,于是由罗尔定理可得,存在12(,),(,)a c c b ξξ∈∈,使得12()()0F F ξξ''==.再利用罗尔定理,可得存在12(,)ξξξ∈,使得()0F ξ''=,即()()f g ξξ''''=.(2)若(),()f x g x 在(,)a b 内不同点12,c c 取得最大值,则12()()f c g c M ==,于是111222()()()0,()()()0F c f c g c F c f c g c =->=-<,于是由零值定理可得,存在312(,)c c c ∈,使得3()0F c =于是由罗尔定理可得,存在1323(,),(,)a c c b ξξ∈∈,使得12()()0F F ξξ''==.再利用罗尔定理,可得,存在12(,)ξξξ∈,使得()0F ξ''=,即()()f g ξξ''''=.【评注】对命题为()()0n f ξ=的证明,一般利用以下两种方法:方法一:验证ξ为(1)()n f x -的最值或极值点,利用极值存在的必要条件或费尔马定理可得证;方法二:验证(1)()n f x -在包含x ξ=于其内的区间上满足罗尔定理条件.类似例题见文登强化班笔记《高等数学》第4讲【例7】,《数学复习指南》(经济类)第一篇【例4.5】,【例4.6】.20….【分析】本题考查函数的幂级数展开,利用间接法.【详解】211111()34(4)(1)541f x x x x x x x ⎛⎫===- ⎪---+-+⎝⎭,而10011111(1),2414333313nnn n n x x x x x ∞∞+==--⎛⎫=-⋅=-=--<< ⎪--⎝⎭-∑∑, 10011111(1)(1),1311222212n n nn n n x x x x x ∞∞+==---⎛⎫=⋅=-=-<< ⎪-+⎝⎭+∑∑, 所以1111000(1)(1)(1)1(1)()(1)3232n n n n n n n n n n n n x x f x x ∞∞∞++++===⎡⎤----=-+=-+-⎢⎥⎣⎦∑∑∑, 收敛区间为13x -<<.【评注】请记住常见函数的幂级数展开.完全类似例题见文登强化班笔记《高等数学》第11讲【例13】,《数学复习指南》(经济类)第一篇【例8.15】.21…..【分析】将方程组和方程合并,然后利用非齐次线性方程有解的判定条件求得a .【详解】将方程组和方程合并,后可得线性方程组 123123************21x x x x x ax x x a x xx x a ++=⎧⎪++=⎪⎨++=⎪⎪++=-⎩ 其系数矩阵 22111011101200110140031012110101a a A a a a a ⎛⎫⎛⎫ ⎪ ⎪- ⎪ ⎪=→ ⎪ ⎪- ⎪ ⎪--⎝⎭⎝⎭. 21110111001100110003200011001100(1)(2)0a a a a a a a a a a ⎛⎫⎛⎫ ⎪ ⎪-- ⎪ ⎪→→ ⎪ ⎪-+-- ⎪ ⎪----⎝⎭⎝⎭. 显然,当1,2a a ≠≠时无公共解. 当1a =时,可求得公共解为()T1,0,1k ξ=-,k 为任意常数; 当2a =时,可求得公共解为()T0,1,1ξ=-. 【评注】本题为基础题型,考查非齐次线性方程组解的判定和结构.完全类似例题见文登强化班笔记《线性代数》第4讲【例8】,《数学复习指南》(经济类)第二篇【例4.12】,【例4.15】.22……【分析】本题考查实对称矩阵特征值和特征向量的概念和性质.【详解】(I )()()5353531111111111144412B A A E ααλαλααλλαα=-+=-+=-+=-, 则1α是矩阵B 的属于-2的特征向量.同理可得()532222241B αλλαα=-+=,()533333341B αλλαα=-+=.所以B 的全部特征值为2,1,1设B 的属于1的特征向量为T 2123(,,)x x x α=,显然B 为对称矩阵,所以根据不同特征值所对应的特征向量正交,可得T 120αα=.即1230x x x -+=,解方程组可得B 的属于1的特征向量T T 212(1,0,1)(0,1,0)k k α=-+,其中12,k k 为不全为零的任意常数.由前可知B 的属于-2的特征向量为T 3(1,1,1)k -,其中3k 不为零. (II )令101011101P ⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,由(Ⅰ)可得-1100010002P BP ⎛⎫ ⎪= ⎪ ⎪-⎝⎭,则 011101110B -⎛⎫ ⎪= ⎪ ⎪-⎝⎭. 【评注】本题主要考查求抽象矩阵的特征值和特征向量,此类问题一般用定义求解,要想方设法将题设条件转化为Ax x λ=的形式.请记住以下结论:(1)设λ是方阵A 的特征值,则21*,,,(),,kA aA bE A f A A A -+分别有特征值21,,,(),,(A k a b f A λλλλλλ+可逆),且对应的特征向量是相同的. (2)对实对称矩阵来讲,不同特征值所对应的特征向量一定是正交的完全类似例题见文登强化班笔记《线性代数》第5讲【例12】,《数学复习指南》(经济类)第二篇【例5.24】23…….【分析】(I )可化为二重积分计算;(II)利用卷积公式可得.【详解】(I ){}()()12002722d d d 2d 24x x y P X Y x y x y x x y y >>=--=--=⎰⎰⎰⎰. (II)利用卷积公式可得()(,)d Z f z f x z x x +∞-∞=-⎰ 20121(2)d ,01201(2)d ,12(2)120,0,z z x x z z z z x x z z z -⎧-<<⎪⎧-<<⎪⎪=-<<=-≤<⎨⎨⎪⎪⎩⎪⎩⎰⎰其他其他. 【评注】(II)也可先求出分布函数,然后求导得概率密度.完全类似例题见文登强化班笔记《概率论与数理统计》第3讲【例10】,【例11】,《数学复习指南》(经济类)第三篇【例2.38】,【例2.44】.(24)(本题满分11分)设总体X 的概率密度为 1,021(),12(1)0,x f x x θθθθ⎧<<⎪⎪⎪=≤<⎨-⎪⎪⎪⎩其他 12(,,X X …,)n X 为来自总体X 的简单随机样本,X 是样本均值. (I )求参数θ的矩估计量θ;(II )判断24X 是否为2θ的无偏估计量,并说明理由.【分析】利用EX X =求(I );判断()?224E Xθ=. 【详解】(I )()101()d d d 22124x x EX xf x x x x θθθθθ+∞-∞==+=+-⎰⎰⎰, 令112242X X θθ=+⇒=-. (II )()()()()222214444E X E X DX EX DX EX n ⎡⎤⎡⎤==+=+⎢⎥⎣⎦⎣⎦, 而()22212201()d d d 221336x x EX x f x x x x θθθθθθ+∞-∞==+=++-⎰⎰⎰, 所以()2225121248DX EX EX θθ=-=-+, 所以()()222211115441133412E X DX EX n n n n θθθ⎡⎤⎛⎫⎛⎫⎛⎫=+=++-++≠ ⎪ ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭⎝⎭, 故24X 不是2θ的无偏估计量.【评注】要熟练掌握总体未知参数点估计的矩估计法,最大似然估计法和区间估计法.完全类似例题见文登强化班笔记《概率论与数理统计》第5讲【例3】,《数学复习指南》(经济类)第三篇【例6.3,例6.6,例6.9】,。
数学分析(3)试题(A)二 (10分)已知:2(,)(,)u f ux v y v g u x v y =+⎧⎨=-⎩,求u x ∂∂和vx ∂∂。
解:把u 和v 都看作为x 和y 的二元函数,方程组两边对x 求偏导数,得1212()(0)(1)(2)uu v f x u f x x xv u v g g vy x x x ∂∂∂⎧''=⋅++⋅+⎪⎪∂∂∂⎨∂∂∂⎪''=⋅-+⋅⎪∂∂∂⎩, 整理得121121(1)(21)u v xf f f u x xu v g vyg g x x ∂∂⎧'''--=⋅⎪⎪∂∂⎨∂∂⎪'''+-=⎪∂∂⎩, 因而121221211221211221(21)1(21)(1)21uf f g vyg vyg uf f g u xf f xvyg xf f g g vyg ''-''-''''-⋅+⋅∂==''--''''∂--+⋅''-,11111111122121121(1)1(21)(1)21xf uf g g xf g uf g v xf f x vyg xf f g g vyg ''-''''''-⋅-∂==''--''''∂--+⋅''-。
三 (10分)计算dy x xx D⎰⎰d sin ,D 是π===x y x y ,0,所围闭区域。
解:画出积分区域,考虑先对y 积分得:sin d d sin d cos 20xx I x y x x xxπππ===-=⎰⎰⎰。
四 (10分)求球面22250x y z ++=与锥面222x y z +=所截出的曲线在点(3,4,5)处的法平面方程。
解:设222(,,)50F x y z x y z =++-,222(,,)G x y z x y z =+-,则曲线在(3,4,5)处法平面的法向量为:(3,4,5)68101601206810x y z xyzi j k i j kF F F i jG G G ==-+-, 因而要求的法平面方程为:160(3)120(4)0x y --+-= 或 430x y -=。
五 (15分) 设S 为曲面 21,222≤≤--=z y x z 取上侧,计算⎰⎰--+=Sy x z x x z yz x z y x z x I d d d d d d )(2223解:补辅助面1:),(,1:221≤+∈=y x D y x z S xy ,取下侧11S S S I +=-⎰⎰⎰⎰⎰⎰⎰⎰⎰----+1d d d d d ]213[22222S Vgauss yx z x z y x z x z x z x 公式21I I -∆。
ππ21d )2(d d d d d d 21211=-===⎰⎰⎰⎰⎰⎰⎰z z y x z z y x I zD V[或用柱坐标:==⎰⎰⎰-2211201d d d rz r r I πθπ21], ⎰⎰⎰⎰⎰⎰⋅==-=12220222d cos d d d d d 1r r r y x x y x x I xyD S θθππθθπ41d d cos 13202==⎰⎰r r ,π4121=-=I I I 。
六 (15分)计算⎰+-=Lyx ydx xdy I 22,其中L 分别是:(i )L 是圆周:222ε=+y x ,逆时针;(ii )L 是不包含原点的光滑闭曲线,逆时针;(iii )L 是包含原点的光滑闭曲线,逆时针。
解:(1) 由Green 公式有: ⎰⎰⎰⎰=⋅==-=+-=DLLdxdy ydx xdy yx ydxxdy I ππεεεε221211222222(2) 令2222,yx x Q yx y P +=+-=, 则yP y x xy xQ ∂∂=+-=∂∂22222)(,且P ,Q ,yP ∂∂,xQ ∂∂在L 及D 上连续,故由Green 公式有:0)(22=∂∂-∂∂=+-=⎰⎰⎰dxdy yP xQ yx ydx xdy I DL。
(3) 以原点为圆心,作以ε为半径作正向圆周εC :222ε=+y x ,其中ε小于原点到集合L 的距离,记L 与εC 所围区域为D ,则由Green 公式有:0)(2222=∂∂-∂∂=+-++-⎰⎰⎰⎰-dxdy yP xQ yx ydxxdy yx ydx xdy DC Lε,由此并利用(1)的结果有:πεε2222222=+-=+--=+-⎰⎰⎰-C C Lyx ydx xdy yx ydxxdy yx ydx xdy 。
七 (15分)在力场),,(xy zx yz F = 作用下,质点从原点沿直线移到1222222=++czb y a x 上第一卦限点),,(ζηξM ,ζηξ,,为何值时力F作的功W 最大,并求最大功。
解:直线段OM 的参数方程:t z t y t x ζηξ===,,,10:→t ,ξηζξηζ==++=⎰⎰12d 3d d d t t z xy y zx x yz W OM。
把ζηξ,,换成z y x ,,,即求条件极值⎪⎩⎪⎨⎧≥=++==)0,,(1max 222222z y x c z b y a xxyz W作Lagrange 函数:)1(),,,(222222-+++=cz by ax xyz z y x L λλ,⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=-++==+==+==+=)4(01)3(02)2(02)1(02222222222cz by ax L z cxy L y b xz L x a yz L z y x λλλλ 上面(1),(2),(3)分别乘z y x ,,相加得λ23222222xyz cz by ax -=++,代入(4)得λ32-=xyz ,再代入(1)得 3a x =,类似可得3b y =,3c z =,而最大功33abc W =。
八 (15分)设有一高度为()h t (t 为时间)的雪堆在融化过程中,其侧面满足方程22()()()x y z h t h t +=-,设长度单位为厘米, 时间单位为小时, 已知体积减少的速率与侧面积成正比(比例系数0.9),问高度为130 cm 的雪堆全部融化需要多少小时?解:记雪堆体积为V , 侧面积为S ,则V =()0d h t z⎰d d zD x y ⎰⎰()2[()()]d h t h t h t z z π=-⎰3()2h t π=,S =d d D x y⎰⎰D =⎰⎰(用极坐标)()02()h t rdr h t π=⎰21)()6h t π=。
由题意知,0.9dV S dt=-,故d 1,d 10(0)130h t h ⎧=-⎪⎨⎪=⎩,因而,1()13010h t t =-+,令()0,h t =得127.7t =(小时)。
因此高度为130cm 的雪堆全部融化所需的时间约为127.7小时.。