含硫气井防护措施
- 格式:docx
- 大小:19.39 KB
- 文档页数:8
解决方案编号:LX-FS-A11305 含硫气井防护措施标准范本In the daily work environment, plan the important work to be done in the future, and require the personnel to jointly abide by the corresponding procedures and code of conduct, so that the overall behavior oractivity reaches the specified standard编写:_________________________审批:_________________________时间:________年_____月_____日A4打印/ 新修订/ 完整/ 内容可编辑含硫气井防护措施标准范本使用说明:本解决方案资料适用于日常工作环境中对未来要做的重要工作进行具有统筹性,导向性的规划,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。
资料内容可按真实状况进行条款调整,套用时请仔细阅读。
从建井之初就必须考虑腐蚀的问题,对于腐蚀的防护与管理问题应贯穿钻井、测试、完井和采输的始终,尤其是对于含硫气井,因为H2S一旦泄漏将会造成非常严重的事故,这就要求我们必须加强腐蚀的检测、控制与油气井的安全管理,提高油气井有关设施的配备标准,增强生产的本质化安全水平。
含硫化氢地层的钻井、试油、修井,不仅涉及人员的生命安全,同时关系到保护环境、防止污染、减少设备和钻具的腐蚀问题。
因此,在含有硫化氢的设计和施工作业时应采取一定的安全措施做到防患于未然,将有着十分重要的意义。
1. 设计的特殊要求当所钻地层预测有硫化氢气体存在时,在进行钻井设计时就应该认真对待。
合理的钻井设计是安全、经济地钻穿含硫化氢地层的前提,所以在设计时除正常设计所应考虑的问题外还应注意以下几点:(1) 在设计中应注明含硫化氢地层及其深度和预测含量,以提醒施工人员注葸。
高含硫气田开采安全技术摘要高含硫气田开采是石油天然气开发中比较复杂和危险的一种,存在着一定的技术和安全难题。
本文主要介绍了高含硫气田开采过程中的危险因素和应对措施,包括高含硫气田的特点与危害、高含硫气田的开采技术、生产过程安全管理等方面。
总结了高含硫天然气田开采安全技术的实践经验,为高含硫气田开采提供了一定的参考。
高含硫气田的特点与危害高含硫气田的特点与危害有以下几点:1.破坏性强。
高含硫气田中含有大量的硫化氢、二硫化碳等有害气体,这些气体会严重破坏机械设备、建筑物等。
2.易燃爆炸。
硫化氢等有害气体在空气中可以自燃,同时硫化氢是一种剧毒气体,易燃易爆,一旦发生事故后果严重。
3.环境污染。
若在生产过程中未能完全回收处理废气和废水,会对环境造成不可逆转的影响。
4.操作难度大。
由于高含硫气田独特的化学特性,其开采过程中要求技术操作人员有较高的技术水平。
5.责任重大。
高含硫气田开采事故一旦发生,后果不堪设想,责任极大,对企业和国家产生不良影响。
高含硫气田的开采技术为了降低高含硫气田开采的风险,需要采用精细化管理和先进技术手段。
常见的高含硫气田开采技术有以下几种:合理选井和压裂技术在高含硫气田选井时,应从生产井区域、气层累计产气量、气层含硫量、井型、井网等多方面因素综合考虑,合理选井。
同时在压力表现弱的井区应采用压裂技术增加气层产能。
应用先进设备和化学品高含硫气田开采过程中,应尽可能地采用先进的机械设备来减少漏气风险。
预防和控制漏气,可采用化学物质来提高渗透和抑制采气井的泄漏。
联合开采技术因为高含硫气田存在很多危险因素,联合开采技术可以降低对环境的影响,较少漏气事故的发生,并且减少建设和开采的开销。
安全生产管理安全生产管理是保障高含硫气田开采安全的重要保障措施。
企业应采用质量标准严格、人员培训专业、安全意识先进的管理模式,实现信息化、智能化、绿色化生产管理。
生产过程安全管理高含硫气田开采过程中采用以下措施来保障安全生产:1.加强岗位安全教育。
C o n s t r u c t i o n S t a n d a r d i z a t i o n/建设标准化含硫化氢天然气安全防护措施分析化玥(长庆油田分公司第六采气厂,陕西榆林718599)摘要:有鉴于此,文中首先分析石油天然气生产过程中硫化氢的危害,探讨含硫化氢天然气储运面临的安全 问题,给出提高含硫化氢天然气储运安全管理质量的措施,含硫化氢天然气生产、运输、储存都需要采取相 应的措施,石油天然气开采过程中做好硫化氢预防工作具有现实意义,关键词:含硫化氣;安全问题;防护措施新经济常态环境下,石油天然气幵采工作有助于 保障经济稳定发展,生产运输过程中产生的硫化氢危 害性较大,危害到职工健康、腐蚀设备、污染环境,需要做好有效地控制工作,提高对硫化氢危害的重视 度,制定切实可行的防护措施与应急预案,减少及控制 硫化氢造成的损失,保证石油天然气生产运输的安全性。
1石油天然气生产运输中硫化氢的危害分析1.1危害人体健康硫化氢气体于人体而言不仅有毒,还会伤害人体 的神经系统,在日常工作中一旦硫化氢气体泄漏并且 达到100m g/m3的浓度时,就会弓丨发接触者出现中毒 现象,如恶心、头晕、呼吸不畅、四肢乏力等,当其 达到500m g/m3的浓度时,将会进一步刺激中毒者的 鼻粘膜,导致其呼中枢系统出现紊乱,短时间内若得 不到及时治疗,就可能引发室息死亡。
其次,硫化氢对于人体心脏的危害也非常大,硫 化氢中毒患者往往都伴有心脏功能的衰竭,而且随着 浓度增加,症状也会越来越明显。
另外,虽然硫化氢 伴有一种特殊气味,但是只在浓度很浅时才能闻道,随着时间的推移以及浓度的增加,其气味反而会越来 越不明显,如果泄露地方的地势较低,空气流通不畅,硫化氢则很难随空气流通而扩散转移甚至消失,加上中 毒者的不自知,一旦中毒,将会对人体造成持续性伤害。
1.2污染生态环境相比于空气整体密度,硫化氢气体的质量略微重 一些,因此硫化氢气体能在低处长时间存留且不会轻 易扩散,这对地面附近空气质量产生破坏。
含硫油气田硫化氢防护安全管理规定硫化氢(H2S)是一种无色、具有刺激性臭味的剧毒气体,广泛存在于含硫油气田及相关工艺中。
为了确保工作人员的安全和健康,硫化氢防护安全管理是油气田必须严格遵守的规定。
一、硫化氢防护安全管理目的硫化氢防护安全管理的主要目的是:1. 确保工作期间工作人员不会受到硫化氢的危害,保障其生命安全和身体健康;2. 预防硫化氢泄漏事故的发生,减少事故对环境的污染。
二、硫化氢防护安全管理措施为了达到硫化氢防护安全管理的目的,油气田应采取以下措施:1. 确定硫化氢危害等级:根据硫化氢浓度和可能导致的危害程度,分析评估不同工作场所的硫化氢危害等级,并采取相应的防护措施。
2. 防护设施建设:建立完善的硫化氢防护设施,包括硫化氢泄漏报警系统、进入危险区域的防护设备(包括呼吸器、防毒面具等)、危险区域的标识等。
3. 管理控制措施:制定硫化氢的安全操作规程,明确工作人员在高风险区域的操作要求和操作程序;严格控制硫化氢的泄漏源,对可能泄漏的设备进行定期检修和维护。
4. 人员培训:进行硫化氢防护培训,包括硫化氢的性质、防护装备使用方法和操作规程等内容,确保工作人员了解硫化氢的危害特性,并能正确使用防护设备。
5. 应急预案:制定硫化氢泄漏事故的应急预案,包括事故报警、人员疏散、应急避难设施的配置等,确保及时有效地应对硫化氢泄漏事故。
6. 监测和检测:建立硫化氢浓度的监测和检测系统,实时监测硫化氢浓度,并设立相应的警戒值和报警机制,确保工作人员及时采取措施以保护自身安全。
7. 硫化氢防护措施的维护:定期对硫化氢防护设施进行检修和维护,确保其正常运行。
8. 积极向工作人员宣传和普及硫化氢防护知识,提高工作人员的防护意识,增强其应对硫化氢危险的能力。
三、硫化氢防护安全管理的责任实施硫化氢防护安全管理的责任应由油气田的相关部门承担,包括管理部门、安全环保部门和人力资源部门:1. 管理部门负责制定硫化氢防护安全管理规定,并监督执行情况;2. 安全环保部门负责制定硫化氢防护设施建设、应急预案制定和人员培训计划,并组织实施;3. 人力资源部门负责为相关工作人员提供必要的硫化氢防护培训,并建立相关的绩效评估机制。
含硫气井防护措施从建井之初就必须考虑腐蚀的问题,对于腐蚀的防护与管理问题应贯穿钻井、测试、完井和采输的始终,尤其是对于含硫气井,因为H2S一旦泄漏将会造成非常严重的事故,这就要求我们必须加强腐蚀的检测、控制与油气井的安全管理,提高油气井有关设施的配备标准,增强生产的本质化安全水平。
含硫化氢地层的钻井、试油、修井,不仅涉及人员的生命安全,同时关系到保护环境、防止污染、减少设备和钻具的腐蚀问题。
因此,在含有硫化氢的设计和施工作业时应采取一定的安全措施做到防患于未然,将有着十分重要的意义。
1.设计的特殊要求当所钻地层预测有硫化氢气体存在时,在进行钻井设计时就应该认真对待。
合理的钻井设计是安全、经济地钻穿含硫化氢地层的前提,所以在设计时除正常设计所应考虑的问题外还应注意以下几点:(1)在设计中应注明含硫化氢地层及其深度和预测含量,以提醒施工人员注葸。
(2)若预计硫化氢分压大于0.021MPa时,必须使用抗硫套管、钻杆、油管及其他防硫管材,井下温度高于93℃的井段,可不考虑套管的抗硫性能。
(3)设计井身结构时,除正常钻井应考虑的因素外,还应考虑在较大的过平衡下钻进及溢流关井和压井施工时,裸眼地层能承受较大的井底压力。
(4)含硫地层测试管柱设计的抗拉安全系数应大于2.0,抗外挤安全系数应大于1.25,抗内压安全系数应大于1.25。
油管应采用气密性好的特殊丝扣油管,下井管柱丝扣油应涂耐高温高压丝扣密封脂,管柱下部应接高温高压伸缩补偿器、开关式循环阀和封隔器,压井液中应有缓蚀剂。
(5)钻开含硫化氢地层时,设计的钻井液密度应有较大的安全附加压力当量值。
含硫化氢地层是非主力产层时,在不压漏地层的情况下可考虑使用较大的钻井液密度将气层压稳,如果含硫化氢的地层是主力产层,可考虑使用允许附加钻井液密度的上限,以阻止硫化氢进入井筒0(6)必须设计有足量的重钻井液(密度超过正常钻井液0.2g/cm3以上)和加重材料储备及除硫剂。
编订:__________________单位:__________________时间:__________________含硫气井防护措施(正式)Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level.Word格式 / 完整 / 可编辑文件编号:KG-AO-8349-58 含硫气井防护措施(正式)使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。
下载后就可自由编辑。
从建井之初就必须考虑腐蚀的问题,对于腐蚀的防护与管理问题应贯穿钻井、测试、完井和采输的始终,尤其是对于含硫气井,因为H2S一旦泄漏将会造成非常严重的事故,这就要求我们必须加强腐蚀的检测、控制与油气井的安全管理,提高油气井有关设施的配备标准,增强生产的本质化安全水平。
含硫化氢地层的钻井、试油、修井,不仅涉及人员的生命安全,同时关系到保护环境、防止污染、减少设备和钻具的腐蚀问题。
因此,在含有硫化氢的设计和施工作业时应采取一定的安全措施做到防患于未然,将有着十分重要的意义。
1. 设计的特殊要求当所钻地层预测有硫化氢气体存在时,在进行钻井设计时就应该认真对待。
合理的钻井设计是安全、经济地钻穿含硫化氢地层的前提,所以在设计时除正常设计所应考虑的问题外还应注意以下几点:(1) 在设计中应注明含硫化氢地层及其深度和预测含量,以提醒施工人员注葸。
(2) 若预计硫化氢分压大于0.021MPa时,必须使用抗硫套管、钻杆、油管及其他防硫管材,井下温度高于93℃的井段,可不考虑套管的抗硫性能。
1791 马斜32井站基本情况马斜32井站位于扬州市邗江区黄珏兴湾村境内,由原油储油罐区,生活区等几部分组成。
目前马斜32井站的H 2S含量并不高,H 2S浓度一直在5ppm左右,该井2011年1月份到10月份每月H 2S浓度平均值如图1所示。
图1 2011年马斜32井站H 2S浓度曲线尽管现在马斜32井站的H 2S含量不是很高,浓度在5ppm左右波动,均在阈限值以下。
但由于产层深在地下,随着该井累计产量的增加,地层压力和油层性质都会发生一定程度的变化。
短时间内H 2S的含量可能不会发生大的变化,但长期H 2S的含量很有可能会发生变化。
2 马斜32井站H 2S防护存在的问题2.1 员工对H 2S的危害认识不足由于目前马斜32井站的H 2S含量并不高,H 2S的浓度一直在安全范围内,所以有些员工对H 2S的危害不以为然,没有理解H 2S的物性、毒性。
对H 2S的监测工作不以为然,上罐量油时虽然站在上风口,却没有先用H 2S检测仪检测H 2S浓度,这就成为生产中的一个安全隐患。
2.2 现场监测设施不健全 H 2S监测应采用固定式和便携式H 2S监测仪。
但由于马斜32井站的H 2S浓度不是很高,所以在井站只配备了便携式H 2S监测仪,并没有在重点监测点如油罐量油口、取样口等地方安装固定式H 2S监测仪,这也是生产中的一个安全隐患。
2.3 现场防护措施不到位 马斜32井站只在油罐下的护栏上挂有“含H 2S井站”标志,在井站取样区、排污放空区、井口等易泄漏H 2S区域并没有设置醒目的标志。
井站H 2S管理制度、应急预案、相关人员培训等材料还需完善。
由于马斜32井站地处偏僻的农村,井场周围的医疗设施并不是很发达,对于H 2S中毒不能及时医治也是安全隐患。
3 马斜32井站H 2S防护的下步建议 3.1 增强员工对H 2S的危害认识H 2S是可燃性无色气体、具有典型的臭鸡蛋味,是强烈的神经毒物,对粘膜亦有明显的刺激作用。
含硫气井防护措施含硫气井防护措施含硫化氢地层的钻井、试油、修井,不仅涉及人员的生命安全,同时关系到保护环境、防止污染、减少设备和钻具的腐蚀问题。
因此,在含有硫化氢的设计和施工作业时应采取一定的安全措施做到防患于未然,将有着十分重要的意义。
1、设计的特殊要求当所钻地层预测有硫化氢气体存在时,在进行钻井设计时就应该认真对待。
合理的钻井设计是安全、经济地钻穿含硫化氢地层的前提,所以在设计时除正常设计所应考虑的问题外还应注意以下几点:(1)在设计中应注明含硫化氢地层及其深度和预测含量,以提醒施工人员注意。
(2)若预计硫化氢分压大于0.021MPa时,必须使用抗硫套管、钻杆、油管及其他防硫管材,井下温度高于93℃的井段,可不考虑套管的抗硫性能。
(3)设计井身结构时,除正常钻井应考虑的因素外,还应考虑在较大的过平衡下钻进及溢流关井和压井施工时,裸眼地层能承受较大的井底压力。
(4)含硫地层测试管柱设计的抗拉安全系数应大于2.0,抗外挤安全系数应大于1.25,抗内压安全系数应大于1.25。
油管应采用气密性好的特殊丝扣油管,下井管柱丝扣油应涂耐高温高压丝扣密封脂,管柱下部应接高温高压伸缩补偿器、开关式循环阀和封隔器,压井液中应有缓蚀剂。
(5)钻开含硫化氢地层时,设计的钻井液密度应有较大的安全附加压力当量值。
含硫化氢地层是非主力产层时,在不压漏地层的情况下可考虑使用较大的钻井液密度将气层压稳,如果含硫化氢的地层是主力产层,可考虑使用允许附加钻井液密度的上限,以阻止硫化氢进入井筒。
(6)必须设计有足量的重钻井液(密度超过正常钻井液0.2g/cm3以上)和加重材料储备及除硫剂。
重钻井液的储存量一般是井筒容积的1.5~2倍。
在钻进含硫化氢地层前50m,应将钻井液的pH调整到9.5以上直至完井。
若采用铝制钻具时,pH控制在9.5~10.5之间。
(7)严格限制在含硫地层用常规中途测试工具进行地层测试工作,若必须进行时,必须控制管柱在硫化氢中的浸泡时间。
含硫地区钻井、试油、修井作业及含硫气井安全生产管理规定制度一、基本目的硫化氢是一种剧毒气体,对人、畜及设备具有严重危害性,其隐蔽性强,危害面大,预防工作必须全方位进行。
钻井、试油、修井和油气生产都是包含许多环节,需要多个部门协作的工程。
在含硫地区进行这些工程作业,每个部门、每个环节都必须采取严格的、科学的预防措施,才有可能防止或减轻硫化氢对人、畜和设备的危害。
为了确保把预防硫化氢的工作全面落到实处,按照《XXXXX分公司安全规定》,结合塔西南勘探开发公司生产实际,现将塔西南勘探开发公司含硫地区钻井、试油、修井和含硫气井生产安全管理规定明确如下:二、执行标准1、中华人民共和国石油天然气行业标准SY5087《含硫油气田安全钻井法》。
2、中华人民共和国石油天然气行业标准SY6137《含硫油气田安全生产技术规定》。
三、职责划分及工作要求(一)设计1、地质部门在进行地质设计时,应注明邻井含硫情况,将本井含硫情况尽可能详细地给以预测。
2、钻井部门在进行钻井设计时,要根据地质设计的预报,充分考虑硫化氢的危害性,严格按SY5087《含硫油气田安全钻井法》标准执行,确保所选的井控设备、管材、井下工具及泥浆体系等项目能满足防腐要求。
3、含硫油气井的试油、修井作业,在进行工程施工设计时,应根据实际情况,提出有针对性的防硫化氢措施和要求。
含硫气井的开采设计应执行SY6137《含硫气田安全生产技术规定》中有关规定。
(二)现场施工日费制井的现场防硫工作,由钻井、试油、修井主管部门分别对钻井、试油、修井各过程负责,具体措施由甲方委派的驻井监督组织落实;总承包井的现场防硫工作由承包该井的勘探公司负责,具体措施由平台经理组织落实;油气生产过程中的防硫工作由柯克亚作业区负责,具体措施由负责该井生产的作业区经理或副经理组织落实。
现场防硫应作到:(1)制定一套预防、应急措施;对岗位人员进行防硫教育和有关知识的培训,使员工正确、熟练操作和使用防护器具。
井下闭墙硫化氢管理制度为了保障井下作业人员的安全,防止因硫化氢中毒等意外事件发生,制定井下闭墙硫化氢管理制度,以规范井下工作环境,提高安全意识和应急处置能力。
一、适用范围:本管理制度适用于所有需要进入井下作业的人员,包括但不限于井下作业人员、巡检人员、维修人员等。
二、硫化氢危害及防护措施:1.硫化氢是一种无色有毒气体,具有极强的腐蚀性和毒性,对人体的呼吸系统、神经系统和心血管系统具有严重的危害。
2.井下作业人员在进行工作前,应做好相关安全防护措施,包括戴好防毒面具、穿戴防毒服等防护装备。
3.严格按照安全操作程序进行作业,避免产生可燃气体和导致硫化氢泄漏的操作。
三、井下硫化氢管理制度:1.井下作业前,需进行硫化氢检测,确保井下气体浓度在安全范围内。
2.设立井下气体监测点,进行实时监测,一旦发现硫化氢超标,立即采取紧急措施。
3.井下设立硫化氢报警系统,一旦检测到硫化氢浓度超标,及时发出警报并进行应急处置。
四、井下禁止行为:1.在未经批准的情况下进行任何可能导致硫化氢泄漏的操作。
2.未经许可私自进入封闭井下工作区域。
3.未经许可擅自拆除密闭设备或者对密闭设备进行非正常操作。
五、硫化氢泄漏应急处理:1.一旦发现硫化氢泄漏,井下作业人员应第一时间向井下监测人员报告,并采用呼吸防护装备撤离现场。
2.立即向上级主管报告,组织对泄漏所在区域进行封闭处理,并进行事故原因分析和整改。
3.确保井下作业人员安全撤离后,及时启动事故应急预案,进行相关处置工作。
六、井下闭墙硫化氢管理责任:1.井下作业负责人负责对井下硫化氢管理制度的宣传和落实,确保井下作业人员全面了解相关安全知识和应急处理程序。
2.井下监测人员负责对硫化氢进行实时监测,并及时发现异常情况进行处理。
3.井下作业人员应严格遵守井下闭墙硫化氢管理制度,如违反规定将受到相应的处罚。
七、井下闭墙硫化氢管理制度宣传教育:1.定期组织井下作业人员进行硫化氢危害知识和应急处理培训,并进行理论考核。
H2S预防和应急预案1.1 钻井过程中H2S的来源(1)某些钻井液处理剂在高温高热分解作用下,产生H2S。
(2)钻井液中细菌的作用。
(3)钻人含H2S地层,大量均S侵入井中。
H2S气田多存在于碳酸盐岩一蒸发岩地层中,尤其在与碳酸岩伴生的硫酸盐沉积环境中,H2S更为普遍。
一般地讲,H2S含量随地层埋深增加而增大。
1.2 含硫气田井场及钻机设备的布置(1)进行钻前工程前,应从气象资料中了解当地季节风的风向。
(2)井场及钻机设备的安放位置应考虑季节风风向。
井场周围要空旷,尽量在前后或左右方向能让季节风畅通。
钻机设备及井场布置见图6—27。
(3)测井车等辅助设备和机动车辆,应尽量远离井口,至少在25mm以外。
(4)井场值班室、工作室、钻井液室等应设置在井场季节风的上风方向。
(5)在季节风上风方向较远处专门设置消防器材室,配备足够的防毒面具和配套供氧呼吸设备。
供氧呼吸设备在空气中含任何浓度H2S下,能给钻井人员以保护,当氧气不足时还能发出警告信号。
所有防护器具应放在使用方便、清洁卫生的地方,并定期检查以保证这些器具处于良好的备用状态,同时作好记录。
(6)在井架上、井场季节风AH处、消防器材室等地应设置风向标。
一旦发生紧急情况(如H2S浓度超过安全临界浓度),钻井人员可向上风方向疏散。
(7)在钻台上、下和振动筛等H2S易聚积的地方,应安装排风扇,以驱散工作场所弥漫的硫化氢。
(8)进入气层前50m应将二层台设置的防风护套和其它类似围布拆除。
(9)井场所有用电线路、设备、照明器具和铺设和安装应符合SY 5225—87中2.2“井场及钻井设施”和3.2“井场装置”的规定。
(10)确保通讯系统畅通。
1.3 H2S的监测(1)在井场H2S容易积聚的地方,特别是方井、循环池、振动筛附近和钻台等常有井队人员的地方,应安装1lS监测仪及音响报警系统,且能同时开启使用。
(2)当空中H2S含量超过安全临界浓度时,监测仪能自动报警,其音响应使井场工作人员听到。
研究与探讨井场硫化氢气体检测方法及防护措施周金堂 * 杨伟彪 赵安军! 周宝义∀( 河南油田地质录井公司;!华北油田勘探部;∀大港油田勘探事业部)摘 要周金堂,杨伟彪.井场硫化氢气体检测方法及防护措施.录井技术,2004,15(2):1~5针对重庆川东北天然气矿钻井作业出现的硫化氢气体中毒故事,该文在介绍硫化氢性质、分布、形成及危害的基础上,具体阐述了井场检测硫化氢气体的几种方法标准碘量法、快速测定管法、醋酸铅试纸法、硫化氢气报警法和综合判断法;探讨了硫化氢地区钻、录井的安全防范与处理措施;介绍了硫化氢中毒途径、预防措施和现场急救方法。
对于指导含硫化氢地区钻井、录井安全作业具有重要作用。
关键词 硫化氢 录井 钻井 安全 检测方法 安全措施0 引言2003年12月23日,重庆川东北天然气矿发生井喷事故,迫使方圆十公里内的20余万人大逃亡,死亡二百四十余人,震惊世界。
类似川东北气矿井喷的事故在我国历史上曾发生过两次。
一是1998年四川温泉4井特大天然气意外窜漏事故,导致死亡11人,中毒13人,烧伤1人。
二是1992年华北石油管理局赵48井井喷事故,造成周围居民死亡6人,中毒24人,血的教训再次敲响了含硫气藏安全生产的警钟。
硫化氢是高压深井碳酸盐岩地层中常见的流体,目前我国已开发的油田中,以四川和华北含硫化氢气体最多,特别是四川石油管理局含硫化氢气田约占已开发气田的78.6%。
硫化氢是仅次于氰化物的剧毒物,是易致人死亡的有毒气体。
一旦超标含硫化氢油气井发生井喷失控,将导致类似上面灾难性的悲剧。
硫化氢不仅严重威胁着人们的生命安全,而且还造成严重的环境污染,对金属设备造成严重的腐蚀破坏。
同时,硫化氢是提炼硫磺的重要原料,是国防和化学工业的宝贵资源。
因此,为确保人员的绝对安全,杜绝硫化氢中毒事故的发生,了解硫化氢气体的来源和危害,掌握硫化氢气体的预防与处理知识和硫化氢检测方法非常重要。
1 硫化氢的性质、分布、形成及危害1.1硫化氢物理化学性质硫化氢是一种无色、剧毒、强酸性气体。
(3)温度。
温度越高,富胺液系统的腐蚀速度也会越快。
(4)酸性气的溶解度和酸气负荷。
胺液中如果酸性物质多的话,酸性气体溶解也会加快腐蚀的速度。
(5)胺液腐蚀速度会随着流速增加而增加。
流速越高,刚表面的硫化物保护层越容易遭到破坏,从而加快腐蚀的速度。
1.3 硫磺回收装置腐蚀的主要影响因素(1)温度越高,越容易导致高温硫蒸汽腐蚀。
(2)配风量。
配风量如果超过一定的量,会导致硫转化率下降,导致SO 2含量增多,加大了SO 2穿透的可能性。
(3)停工操作的影响。
硫磺回收单元的停工操作会加大对设备的影响,也就是说,硫磺回收装置主要会受到温度、配风量以及停工操作等因素的影响从而导致腐蚀。
1.4 尾气处理装置腐蚀的主要影响因素(1)加氢量。
尾气处理装置正常运行的时候,急冷水SO 2会有严格控制,但是如果尾气处理单元停工或者上游装置操作不平衡就会导致加氢不足,导致加氢的反应器出口产生数量较多的SO 2并使得其进入急冷塔,和水反应产生亚硫酸,在极短时间内对设备造成严重的腐蚀。
(2)急冷水循环量。
急冷水循环量越高,越容易对快捷量造成冲刷腐蚀。
(3)温度。
急冷水装置在60摄氏度以下会容易出现硫化物应力腐蚀开裂。
(4)加氢量。
加氢量的变少会使得加氢反应器出口产生数量比较多的SO 2进入急冷场,和水反应形成亚硫酸,对设备产生较强的腐蚀性。
1.5 酸水气体装置腐蚀的主要影响因素(1)温度,温度适量提高可以减少酸性气体在管壁中的冷凝,从而减少酸性水的腐蚀。
(2)流速。
高流速的区域会在局部范围内产生严重的腐蚀。
(3)急冷水pH 值也会对酸水气体装置腐蚀造成影响。
2 高含硫天然气装置设备防护措施2.1 结合腐蚀影响因素,优化现有工艺技术提高胺液净化装置净化能力,减少胺液的热稳定盐含量,稳定操作、合理控制富胺液的酸气负荷、再生温度等指标,在1 设备腐蚀的主要影响因素1.1 腐蚀类型石油化工生产过程中使用到的设备选材经常是以金属材料为主,以不锈钢材料最多。
高含硫气井井筒硫沉积预测与防治技术摘要在高含硫气藏开采过程中,地层、井筒和地面集输管线在生产过程中有可能出现硫沉积。
硫沉积会引起地层、井筒和集输管线严重堵塞,导致气井产能急剧下降,甚至停产,而一旦生产管线中形成“硫堵”,造成长输管线腐蚀、流程设备及场站管线憋压等因素。
如管线、流程设备造成爆炸等因素,硫化氢等有毒气体的泄露对周边环境污染及人员伤亡。
本文以高含硫气井为例主要完成如下工作:(1)硫和硫化氢的基本性质、相态特征,以及硫在高含硫气井井筒中的沉积机理,基于高含硫气井温度压力动态分布预测,建立高含硫气井井筒硫析出预测模型。
(2)高含硫气井井筒析出的硫存在不同的形态(固态或液态),对硫颗粒和硫液滴进行受力分析。
(3)高含硫气井井筒硫沉积预测程序,用于硫在井筒中析出和沉积位置的预测,硫颗粒和硫液滴被携带所需的临界流速和临界产量,为高含硫气田的高效开采提供了重要依据。
(4)对比分析了多种硫沉积防治方法,防治的关键在于溶硫剂的合理选择,通过溶硫剂优选室内评价实验研究筛选出三乙烯四胺、二乙烯三胺和乙醇胺等三种单剂,按照不同的比例与现场使用的防冻剂乙二醇进行复配,最终形成了适合川东地区高含硫气井的溶硫剂LJ-1 合理配方,性能评价实验表明溶硫剂LJ-1 溶硫速率快、溶解度高、腐蚀小。
溶硫剂LJ-1配方:(三烯四胺、乙醇胺、乙二醇,比例2:2:1)关键词:高含硫气井硫溶解度硫沉积预测防治引言高含硫气藏是一类特殊有毒气藏,硫沉积被认为是高含硫气藏开发的最大难题。
国内外研究表明,在地层、井筒和地面集输管线中均可能出现硫的沉积现象。
硫的大量沉积,不但会降低孔隙度和渗透率、严重污染和伤害气藏储层,而且会引起地层、井筒和集输管线堵塞,导致气井产量急剧下降,迫使气井减产、停产,更为重要的是一旦造成管线腐蚀、流程设备、管线憋压等因素。
如管线、流程设备造成爆炸等因素,造成硫化氢等有毒气体的泄露对周边环境污染,会对人民的生命财产安全构成严重的威胁。
含硫气井防护措施含硫化氢地层的钻井、试油、修井,不仅涉及人员的生命安全,同时关系到保护环境、防止污染、减少设备和钻具的腐蚀问题。
因此,在含有硫化氢的设计和施工作业时应采取一定的安全措施做到防患于未然,将有着十分重要的意义。
1、设计的特殊要求当所钻地层预测有硫化氢气体存在时,在进行钻井设计时就应该认真对待。
合理的钻井设计是安全、经济地钻穿含硫化氢地层的前提,所以在设计时除正常设计所应考虑的问题外还应注意以下几点:(1)在设计中应注明含硫化氢地层及其深度和预测含量,以提醒施工人员注意。
(2)若预计硫化氢分压大于0.021MPa时,必须使用抗硫套管、钻杆、油管及其他防硫管材,井下温度高于93℃的井段,可不考虑套管的抗硫性能。
(3)设计井身结构时,除正常钻井应考虑的因素外,还应考虑在较大的过平衡下钻进及溢流关井和压井施工时,裸眼地层能承受较大的井底压力。
(4)含硫地层测试管柱设计的抗拉安全系数应大于2.0,抗外挤安全系数应大于1.25,抗内压安全系数应大于1.25。
油管应采用气密性好的特殊丝扣油管,下井管柱丝扣油应涂耐高温高压丝扣密封脂,管柱下部应接高温高压伸缩补偿器、开关式循环阀和封隔器,压井液中应有缓蚀剂。
(5)钻开含硫化氢地层时,设计的钻井液密度应有较大的安全附加压力当量值。
含硫化氢地层是非主力产层时,在不压漏地层的情况下可考虑使用较大的钻井液密度将气层压稳,如果含硫化氢的地层是主力产层,可考虑使用允许附加钻井液密度的上限,以阻止硫化氢进入井筒。
(6)必须设计有足量的重钻井液(密度超过正常钻井液0.2g/cm3以上)和加重材料储备及除硫剂。
重钻井液的储存量一般是井筒容积的1.5~2倍。
在钻进含硫化氢地层前50m,应将钻井液的pH调整到9.5以上直至完井。
若采用铝制钻具时,pH控制在9.5~10.5之间。
(7)严格限制在含硫地层用常规中途测试工具进行地层测试工作,若必须进行时,必须控制管柱在硫化氢中的浸泡时间。
(8)设计时必须对井场周围(探井3km,生产井2km)以内的居民住宅、学校、厂矿等进行勘测,并在设计上标明位置。
在有硫化氢溢出井口的危险情况下,应通知上述单位人员迅速撤离。
在煤矿、金属矿等非油气矿藏开采区钻井,应标明地下矿井、矿道的分布、深度和走向及地面井位与矿井、矿道的关系。
在江河干堤附近钻井应标明干堤、河道位置。
(9)在钻井设计中不仅有钻井、完井设计,而且还要有弃井设计。
对于无工业开采价值而含硫化氢的井应采取永久性弃井,即试油气结束后,先将井压稳,从油气层底部至顶部(射孔井段)全段注水泥,水泥浆在套管内应返至气顶以上200~300m,其中先期完井的井应返至套管鞋以上200~300m。
在井口200~300m处打第二个水泥塞进一步封井,井VI焊井口帽,装放气阀,盖井口房。
对暂时无条件投产的有工业油气流的井应采取暂时性弃井方式,即试油气结束后,先将井压稳,在油气层以上50m打易钻桥塞(先期完井应在套管鞋以上50m打易钻桥塞),然后打100~200m的水泥塞。
井口要安装简易井口并装压力表,盖井口房,定时观察记录。
2、井控装置的配备及安装要求(1)井控装置的配备在含硫化氢油气田的开发中,使用的井控装置和管材及其配件必须具有良好的抗硫化氢性能,根据最高地层压力,选用高于该压力等级的井控装置,选择时应以地层流体中硫化氢的含量为依据,并充分考虑能满足进一步采取增产措施增高压力的要求。
主要应包括以下六个部分:①以液压防喷器为主体的钻井井VI装置(包括四通、套管头、过渡法兰等)和控制装置。
高温高压的含硫井应使用双四通,并配备剪切闸板。
②以节流管汇为主的井控管汇(包括放喷管线、压井管线和灭火管线)。
③管柱内防喷工具(包括钻具回压阀,方钻杆上、下旋塞阀,冲砂管柱旋塞阀等)。
④以监测和预报地层压力为主的井控仪器、仪表。
⑤钻井液净化、钻井液加重、起下钻灌钻井液设备,起钻灌钻井液计量罐也是必不可少的。
⑥适于特殊作业和井喷失控后处理事故的专用设备和工具(包括自封头、不压井起下钻装置、灭火设备等)。
(2)井控装置的安装要求根据地层的压力梯度,按有关标准配备相应等级的防喷器组合及井控管汇等设备,其安装、试压应符合有关井控规定的要求。
同时还应达到以下要求:①井口和套管的连接,每条防喷管线的高压区都不允许现场焊接,因为焊接时产生的内应力对硫化氢应力腐蚀尤为敏感。
②放喷管线至少应装2条,高压井应装4条,其夹角为90°,并接出井场100m以外,以保证风向改变时,至少有一条能安全使用。
③压井管线至少有一条在盛行风的上风方向。
④井控装置和管材在使用前应进行无损探伤,不允许有微小裂纹存在。
⑤双闸板组合应为上全封、下半封,半封应与所封管柱外径尺寸一致,双闸板与单闸板组合中为一半封、一全封、一半封。
同时对井口装置要进行等压气密性检验。
对于含硫井应装有钻具剪切闸板,当钻具内防喷器失灵、半封闸板失效、测井井内有电缆时,可用剪切闸板将钻具切断,关闭全封闸板。
3、管材的选择(1)钢材。
由于钢材的强度越大,对硫化物应力腐蚀开裂就越敏感,因而要求钢的屈服极限不得大于655MPa,硬度最大为HRC22,若钢材经调质处理,其屈服极限和硬度可以比上述规格略。
(2)非金属材料。
凡密封件选用的非金属材料,应具有在硫化氢环境中能长期使用而不失效的性能。
(3)硫化物应力腐蚀开裂主要是在钢材受拉力时产生的,并随拉应力的增大,硫化物应力腐蚀开裂的时间缩短,因而其使用的拉应力应尽量控制在钢材屈服极限的60%以下。
(4)由于厚壁钻杆或油管可以降低内应力,延长其使用寿命,因而,在高压含硫地区可采用厚壁钻杆或油管。
(5)几乎所有的金属与硫化氢反应都生成金属硫化物。
硫化氢腐蚀对于铁、钢、铅、镍、锌、铬、钴、钯和钽的腐蚀程度比银、铜、镉、汞、铅要小,在遇到铜和银或它们的合金时,暴露于硫化氢之中的这些金属部分会首先不断地潮解。
4、防硫化氢呼吸器及监测仪的配备在钻井、试油和修井过程中最好配备呼吸空气站和相应的面罩、管线、应急气瓶组成的供气系统,在没有条件的情况下应配备便携式空气呼吸器。
另外,在井场的周围和井口等处应配备一定数量的监测仪器,以便空气中硫化氢含量超过阈限值时,能自动报警。
并制定相应的硫化氢应急预案。
5、钻井中硫化氢的处理现场把钻遇酸性气层的几个主要显示概括为:钻井液密度下降,黏度升高,气泡增多;钻进时发生憋跳,钻速快或放空,泵压下降,钻井液池液面升高,有间隙井涌,有硫化氢气味,起钻时钻井液是满的,下钻时钻井液不断外流。
在钻井、修井、试油过程中对硫化氢污染的处理有以下几种方法:(1)合理的钻具结构合理的钻具结构对于控制井喷起着关键性的作用,在钻井或修井过程中的任何工况下钻具下部都应装有回压阀,在含硫浓度比较高的井甚至可以考虑装钻具回压凡尔和投入式止回阀、双止回阀。
(2)压差法钻井或修井过程中遇到硫化氢气体的最好处理措施就是有足够的静压头以防止硫化氢气体进入井内,这样处理最安全、最经济。
对于含硫产层,安全附加密度可增大0.15g/cm3,以较大的井底压差阻止硫化氢气体进入井内。
(3)油基钻井液增大井底压差虽然可以防止地层中的硫化氢气体侵入井内,但是不能阻止钻屑中重力置换和扩散等形式出现的硫化氢气体进入井内。
硫化氢气体与水混合时,腐蚀性极大,易在金属表面产生点蚀及硫化氢应力腐蚀破裂和氢脆。
所以碰到这些气体时,一般使用油基钻。
(4)清除钻井液或修井液中硫化氢的方法维持一定的pH,加缓蚀剂或海绵铁、碱式碳酸锌、铬酸盐、碱式碳酸铜、氢氧化铵、过氧化氢等。
6、试油(气)过程中硫化氢和处理在含硫化氢井试油测试时,一旦出现硫化氢,就必须采取相应的对策。
(1)对油管的要求依据前面介绍的防硫材质选择防硫油管,使用防硫油管的注意事项如下:①钢材的表面状况对应力腐蚀破裂有很大的影响,受损伤的表面如腐蚀、机械伤害等,受伤处容易造成应力集中,应力集中点通常就是断裂的根源。
因此,在下管柱过程中不能使用管钳、液压钳等,以防造成机械损伤,只能使用锚头绳紧扣。
②保护内涂层,限制在管内进行钢丝、电缆作业或其他方法投送工具,如必须进行作业时,要限制其速度小于30m/min。
③使用一段时间后需对油管进行探伤检查。
④由于防硫油管需考虑氢脆的危害,故材质较软,应特别注意防粘扣。
目前还不能很好地解决防粘扣问题。
建议采用双套油管,测试施工用防硫油管,通井、封堵、注灰等用普通油管。
一般普通油管螺纹为圆形螺纹,螺纹间配合内螺纹齿根和外螺纹齿尖不可能配合到底,每个接头处均留有一螺旋通道,为达到密封的目的靠充填密封脂密封。
这势必给含硫深井、高压井的试油工作带来不利影响。
因此,防硫油管、套管在考虑材质方面的同时,可选用连接较好的优质螺纹接头。
⑤在含硫地层要严格控制进行中途测试,应减少钻柱在硫化氢中的浸泡时间,当天然气产量低于2.8×104m3/d,硫化氢含量低于8mg/L时,浸泡时间最长为1d。
当天然气产量高于2.8×104m3/d,硫化氢含量高于8mg/L时,浸泡时间最长为15h。
(2)测试前应准备好压井液,压井液中要有缓蚀剂和抗硫剂。
提前接好高压水泥车,以满足正反循环压井的需要。
对于压力系数大于1.5的气井,现场应储备高于设计密度0.29/cm3的压井液,储备压井液量是井筒容积的1.5—2倍,对易漏失层,应储备一定量的暂堵剂。
(3)下钻中若发现测试阀打开,出现环空液面下降,应立即上提管柱,同时反灌钻井液。
如有气体排出,应立即点火燃烧。
气举或混气水诱喷应采用氮气或天然气,严禁用空气。
(4)根据钻开目的层压力监测和试油气过程中的资料确定测试压井液密度,其附加值为0.29/cm3。
压井结束时,压井液进出口性能应达到一致。
对于地层漏失量大的疏松砂岩、碳酸盐岩等油气层,应在射孔井段以上20~100m正替入暂堵剂后再压井。
对于气产量较高、压力系数大于1.5m的井,压井液易气侵,应采用前置清水大排量反循环除气,然后用压井液反循环压井。
(5)封层前,应循环1.5倍于井筒容积以上的压井液,彻底循环除气,并达到进出口性能一致。
采用桥塞或封隔器封层,其密封压力应大于封隔压差,桥塞或封隔器应具有良好的抗硫能力。
水泥塞封层,应根据封闭层温度、压力、含硫化氢情况,优化水泥浆体系,并做到:对低压漏失井,应采用先填砂埋油气层,然后打水泥塞封层;对高压井,若需打水泥塞,应采用先坐桥塞封闭油气层,然后打水泥塞进一步封层。
(6)高压、高产及含硫化氢气井,应采用下述完井方式:生产管柱下部串接伸缩补偿器、开关式循环阀封隔器,在油套环形空间的完井液中加入缓蚀剂,封隔器应选耐高温高压、抗硫化氢及二氧化碳腐蚀的永久式插管封隔器。