八年级下:第17章《勾股定理》学案
- 格式:doc
- 大小:417.39 KB
- 文档页数:17
- 1 -18.1 勾股定理(一) (一)课前预习 1.直角△ABC 的主要性质是:∠C=90°(用几何语言表示) (1)两锐角之间的关系: (2)若∠B=30°,则∠B 的对边和斜边:命题1:如果直角三角形的两直角边分别为a 、b ,斜边为c ,那么 。
(二)、勾股定理的证明勾股定理的证明方法很多,你能否利用右图:赵爽弦图证明呢?1.已知:在△ABC 中,∠C=90°,∠A、∠B、∠C的对边为a 、b 、c 。
求证: 222a b c +=勾股定理的内容是: 。
(三)学以致用 在Rt△ABC 中,已知两边求第三边-------简称“知二求一” 1.在Rt△ABC 中,90C ∠=︒ , ⑴如果a =6,b =8,求c 的值; ⑵如果a =5,b =12,求c 的值; ⑶如果a =9,c =41,求b 的值; 练习 1.若一个直角三角形的两直角边分别为9和12,则第三边的长为( ) A.13 B. 13 C. 5 D.15 2.若一个直角三角形的斜边长为26,一条直角边长为24,则另一直角边长为( ) A.8 B.10 C.50 D.36 3.在Rt △ABC 中,∠C=90°,若a ︰b =3︰4,c=10,求a ,b 的值。
注意:⑴只有在直角三角形中,才能用勾股定理;⑵在用勾股定理求第三边时,要分清直角三角形的斜边和直角边; (四)当堂检测:1.如图,三个正方形中的两个的面积S 1=25,S 2=144,则另一个的面积S 3为________.2.在Rt△ABC,∠C=90°;⑴ 已知a =b =5,求c ;⑵已知c =17,b =8,求a ;⑶ 已知a ∶b =1∶2,c=5,求a ; ⑷已知b=15,∠A=30°,求a ,c 。
3.一直角三角形的一直角边长为6,斜边长比另一直角边长大2,求斜边的长?4.一个直角三角形的两边长分别为3cm 和4cm ,求第三边的长?5.已知,如图在正ΔABC 中,AB=BC=CA=2cm .求ΔABC 的面积.BDbaD C C A- 2 -EFDCBA18.1 勾股定理(二)(一)回顾复习:1.勾股定理:如果直角三角形的两直角边分别为a 、b ,斜边为c ,那么 。
八年级数学下册第十七章勾股定理导学案(新版)新人教版班别姓名课题17、1勾股定理(一)课型:预习+展示课学习目标掌握勾股定理,会用面积法证明勾股定理。
学习重点:勾股定理的内容及证明。
学习难点:勾股定理的证明。
导学过程一、知识链接1、直角△ABC的主要性质是:∠C=90(用几何语言表示)(1)两锐角之间的关系:(2)若∠B=30,则∠B的对边和斜边的关系是:二、自主学习1、阅读课本22页到24页。
2、(1)、一个直角三角形两直角边分别为3cm和4cm的,斜边长为5cm。
(2)一个直角三角形两直角边分别为5cm和12cm 的直角△ABC,斜边长为13cm、问题:你是否发现+与,+和的关系,即+ ,+ ,任意的直角三角形也有这个性质。
即勾股定理文字表述:几何表述:三、合作探究:阅读证明勾股定理的方法看哪个组给同学讲的清楚明白方法1、已知:在△ABC中,∠C=90,∠A、∠B、∠C的对边为a、b、c。
求证:证明:4S△+S小正=S大正=根据的等量关系:由此我们得出方法2、已知:在△ABC中,∠C=90,∠A、∠B、∠C的对边为a、b、c。
求证:a2+b2=c2。
分析:左右两边的正方形边长相等,则两个正方形的面积相等。
左边S=______________右边S=_______________左边和右边面积相等,即化简可得:四、课后反思:我今天学会了五、达标测试:1、课本24页练习第1题★2、同步学习xxxx学年度八年级数学科导学案主备人:邓冰复备人:审批人:编号班别姓名课题17、1勾股定理(三)课型:预习+展示课学习目标:会用勾股定理解决简单的实际问题。
学习重点:勾股定理的应用。
学习难点:实际问题向数学问题的转化。
导学过程:一、知识链接填空: 在Rt△ABC,∠C=90,⑴如果a=7,c=25,则b= 。
⑵如果∠A=30,a=4,则b= 。
⑶如果∠A=45,a=3,则c= 。
⑷如果c=10,a-b=2,则b= 。
新人教版八年级数学下册第十七章《勾股定理的逆定理的应用》学案流程具体内容方法指导一、目标导学【学习目标】1.进一步理解勾股定理的逆定理。
2.能灵活运用勾股定理及逆定理解决实际问题。
3.进一步加深性质定理与判定定理之间的关系的认识。
二、自主学习复习旧知:1.叙述勾股定理及逆定理。
[来源:Z,xx,]2.在Rt△ABC中,∠C=90°。
(1)已知a=6, c=10, 求b.(2)已知a=40, b=9, 求c.3.判断下列三角形是否是直角三角形:(1)a=3, b=5, c=6;(2)a=3/5, b=4/5, c=1;(3)a=3, b=2√2, c=√17学习新知:自主学习教材P75例2,方法指导温馨提示:(用时分钟)三、问题探究合作交流后完成下列问题:(1)如何画出示意图,建立数学模型?(2)“海天”号轮船的航行方向会有几种可能?方法指导温馨提示:(用时分钟)四、反馈提升1.教材P76练习第3题。
2.如下图所示:三个村庄A、B、C之间的距离分别是AB=5km,BC=12km,AC=13km,要从B修一条公路BD直达AC,已知公路的造价2600万元/km,求修这条公路的最低造价是多少?方法指导[来源:Z&xx&]温馨提示:(用时分钟)五、达标运用1、《基础训练》P52课堂训练1--52、已知,如图四边形ABCD中,∠B=90°,AB=4,BC=3,AD=13,CD=12,求:四边形ABCD的面积。
[来源:]方法指导温馨提示:限时分钟总结与反思【知识梳理】谈谈你本节课的收获。
【收获与反思】。
第十七章勾股定理课题:17.1勾股定理(1)学习目标:1 •了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理2 •培养在实际生活中发现问题总结规律的意识和能力。
3.介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习学习重点:勾股定理的内容及证明。
学习难点:勾股定理的证明学习过程:、自主学习画一个直角边为3cm和4cm的直角△ ABC用刻度尺量出AB的长。
(勾3,股4,弦5)以上这个事实是我国古代3000多年前有一个叫商高的人发现的,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。
”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5。
再画一个两直角边为5和12的直角△ ABC用刻度尺量AB的长。
你是否发现3 +4与5的关系,5 +12和13的关系,即3 +4 ___________ 5,5 +12 ____ 13,那么就有______ 2+ ____ 2= ___ 。
(用勾、股、弦填空)对于任意的直角三角形也有这个性质吗?勾股定理内容文字表述:几何表述:二、交流展示例1、已知:在厶ABC中, Z C=90°,/ A、/ B、/ C的对边为a 、b、c。
求证:a2+ b2=c2。
分析:⑴准备多个三角形模型,利用面积相等进行证明。
⑵拼成如图所示,其等量关系为:4S"S小正=S大正即4X 1X +〔〕2= c2,化简可证2⑶发挥学生的想象能力拼出不同的图形,进行证明。
⑷勾股定理的证明方法,达300余种。
这个古老而精彩的证法,出自我国古代无名数学家之手。
激发学生的民族自豪感,和爱国情怀。
例2已知:在厶ABC 中,/ C=90°,/ A 、/ B 、/ C 的对边为a 、b 、c 。
求证:a 2 + b 2=c 2。
分析:左右两边的正方形边长相等,则两个正方形的面积相等。
第十七章勾股定理教案课题:17.1勾股定理(1) 课型:新授课【学习目标】:1•了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。
2 •培养在实际生活中发现问题总结规律的意识和能力。
【学习重点】:勾股定理的内容及证明。
【学习难点】:勾股定理的证明。
【学习过程】一、课前预习1、直角△ ABC的主要性质是:/C=90°(用几何语言表示)(1)两锐角之间的关系: ____________________________________(2)若D为斜边中点,则斜边中线____________________________(3)若/ B=30°,则/ B的对边和斜边:________________________2、( 1)、同学们画一个直角边为3cm和4cm的直角△ ABC用刻度尺量出AB的长。
(2) 、再画一个两直角边为5和12的直角△ ABC用刻度尺量AB的长问题:你是否发现3 +4与5, 5 +12和13的关系,即3 +4 5, 5 +12 13, 二、自主学习(1)观察图1- 1。
A的面积是____________ 单位面积;B的面积是___________ 单位面积;C的面积是___________ 单位面积。
思考:(图中每个小方格代表一个单位面积)(2)你能发现图1- 1中三个正方形A, B, C的面积之间有什么关系吗?图 1 —2中的呢?(3)你能发现图1 —1中三个正方形A, B, C围成的直角三角形三边的关系吗?(4)你能发现课本图1 —3中三个正方形A, B, C围成的直角三角形三边的关系吗?(5)如果直角三角形的两直角边分别为 1.6个单位长度和2.4个长度单位,上面所猜想的数量关系还成立吗?说明你的理由。
由此我们可以得出什么结论?可猜想:命题1 :如果直角三角形的两直角边分别为a、b,斜边为c,那么________________________三、合作探究 勾股定理证明: 方法一;如图,让学生剪4个全等的直角三角形, 拼成如图图形,利用面积证明。
新人教版八年级数学下册第十七章《勾股定理的逆定理(三)》学案1.⑴在Rt △ABC ,∠C=90°,a =8,b=15,则c= . ⑵在Rt △ABC ,∠B=90°,a =3,b=4,则c= . ⑶在Rt △ABC ,∠C=90°,c=10,a :b=3:4,则a= ,b= .(4)已知直角三角形的两边长分别为3cm 和5cm ,,则第三边长为 (把这题的解题过程展示到黑板上)2.(1)已知01086=-+-+-z y x ,则由此z y x ,,为三边的三角形是 三角形.(2)三角形的三边长为3、4、5,则其面积为 .(3)△ABC 中,AB=13cm, BC=10cm, BC 边上的中线AD=12cm,求AC (画出图形,把这题解题过程展示在黑板上)活动二 加深勾股定理与逆定理之间的关系例:1在正方形ABCD 中,F 为DC 的中点,E 为BC 上一点,且EC=14BC ,求证:AF ⊥EF .例2:已知:如图,四边形ABCD ,AD ∥BC ,AB=4,BC=6,CD=5,AD=3。
求:四边形ABCD 的面积。
例3:已知:如图,在△ABC 中,CD 是AB 边上的高,且CD 2=AD ·BD 。
A B C D ECD练习:1、如图,在四边形ABCD中,∠B=90°,AB=1, BC=1, DC=3, AD=5, 试求∠DCB 的大小.(自主完成后小组交流,把过程展示在黑板上)小结:谈谈你的学习收获课堂练习:1.在Rt△ABC,∠C=90°,⑴如果a =7,c=25,则b= .⑵如果∠A=30°,a =4,则b= .⑶如果∠A=45°,a =3,则c= .(4)如果b=8,a:c=3:5,则c=2.若△ABC的三边a、b、c,满足a:b:c=1:1:2,试判断△ABC的形状.3.若△ABC的三边a、b、c满足a 2+b2+c2+50=6 a +8b+10c,求△ABC的面积.【此题选做】反思小结,观点提炼:本节学习检测一、填空题1.如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2,那么这个三角形是______三角形,我们把这个定理叫做勾股定理的______.2.在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论是第二个命题的题设,那么这两个命题叫做____________;如果把其中一个命题叫做原命题,那么另一个命题叫做它的____________.3.分别以下列四组数为一个三角形的边长:(1)6、8、10,(2)5、12、13,(3)8、15、17,(4)4、5、6,其中能构成直角三角形的有____________.(填序号)4.在△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,①若a 2+b 2>c 2,则∠c 为____________;②若a 2+b 2=c 2,则∠c 为____________;③若a 2+b 2<c 2,则∠c 为____________.5.若△ABC 中,(b -a )(b +a )=c 2,则∠B =____________;6.如图,正方形网格中,每个小正方形的边长为1,则网格上的△ABC 是______三角形.7.若一个三角形的三边长分别为1、a 、8(其中a 为正整数),则以a -2、a 、a +2为边的三角形的面积为______.8.△ABC 的两边a ,b 分别为5,12,另一边c 为奇数,且a +b +c 是3的倍数,则c 应为______,此三角形为______.二、选择题9.下列线段不能组成直角三角形的是( ).(A)a =6,b =8,c =10 (B)3,2,1===c b a (C)43,1,45===c b a (D)6,3,2===c b a 10.下面各选项给出的是三角形中各边的长度的平方比,其中不是直角三角形的是( ).(A)1∶1∶2 (B)1∶3∶4(C)9∶25∶26 (D)25∶144∶16911.已知三角形的三边长为n 、n +1、m (其中m 2=2n +1),则此三角形( ).(A)一定是等边三角形 (B)一定是等腰三角形(C)一定是直角三角形 (D)形状无法确定三、解答题12.如图,在△ABC 中,D 为BC 边上的一点,已知AB =13,AD =12,AC =15,BD =5,求CD 的长.13.已知:如图,四边形ABCD 中,AB ⊥BC ,AB =1,BC =2,CD =2,AD =3,求四边形ABCD 的面积.14.已知:如图,在正方形AB CD 中,F 为DC 的中点,E 为CB 的四等分点且CE =CB 41,求证:AF ⊥FE .15.在B 港有甲、乙两艘渔船,若甲船沿北偏东60°方向以每小时8海里的速度前进,乙船沿南偏东某个角度以每小时15海里的速度前进,2小时后,甲船到M 岛,乙船到P 岛,两岛相距34海里,你知道乙船是沿哪个方向航行的吗?拓展、探究、思考16.已知△ABC中,a2+b2+c2=10a+24b+26c-338,试判定△ABC的形状,并说明你的理由.17.已知a、b、c是△ABC的三边,且a2c2-b2c2=a4-b4,试判断三角形的形状.18.观察下列各式:32+42=52,82+62=102,152+82=172,242+102=262,…,你有没有发现其中的规律?请用含n的代数式表示此规律并证明,再根据规律写出接下来的式子.教师的职务是‘千教万教,教人求真’;学生的职务是‘千学万学,学做真人’。
人教版八年级下册数学第17章勾股定理17.1 勾股定理课时1 勾股定理教案【教学目标】1.经历探索及验证勾股定理的过程,体会数形结合的思想;2.掌握勾股定理,并运用它解决简单的计算题;3.了解利用拼图验证勾股定理的方法..【教学重点】1.经历探索及验证勾股定理的过程,体会数形结合的思想;2.掌握勾股定理,并运用它解决简单的计算题.【教学难点】了解利用拼图验证勾股定理的方法.【教学过程设计】一、情境导入如图所示的图形像一棵枝叶茂盛、姿态优美的树,这就是著名的毕达哥拉斯树,它由若干个图形组成,而每个图形的基本元素是三个正方形和一个直角三角形.各组图形大小不一,但形状一致,结构奇巧.你能说说其中的奥秘吗?二、合作探究知识点一:勾股定理【类型一】直接运用勾股定理例1如图,在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,CD⊥AB于D,求:(1)AC的长;(2)S△ABC;(3)CD的长.解析:(1)由于在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,根据勾股定理即可求出AC的长;(2)直接利用三角形的面积公式即可求出S△ABC;(3)根据面积公式得到CD·AB=BC·AC即可求出CD.解:(1)∵在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,∴AC=AB2-BC2=12cm;(2)S△ABC=12CB·AC=12×5×12=30(cm2);(3)∵S△ABC=12AC·BC=12CD·AB,∴CD=AC·BCAB=6013cm.方法总结:解答此类问题,一般是先利用勾股定理求出第三边,然后利用两种方法表示出同一个直角三角形的面积,然后根据面积相等得出一个方程,再解这个方程即可.【类型二】分类讨论思想在勾股定理中的应用例2在△ABC中,AB=15,AC=13,BC边上的高AD=12,试求△ABC 的周长.解析:本题应分△ABC为锐角三角形和钝角三角形两种情况进行讨论.解:此题应分两种情况说明:(1)当△ABC为锐角三角形时,如图①所示.在Rt△ABD中,BD=AB2-AD2=152-122=9.在Rt△ACD中,CD=AC2-AD2=132-122=5,∴BC=5+9=14,∴△ABC的周长为15+13+14=42;(2)当△ABC为钝角三角形时,如图②所示.在Rt△ABD中,BD=AB2-AD2=152-122=9.在Rt△ACD中,CD=AC2-AD2=132-122=5,∴BC=9-5=4,∴△ABC的周长为15+13+4=32.∴当△ABC为锐角三角形时,△ABC 的周长为42;当△ABC为钝角三角形时,△ABC的周长为32.方法总结:解题时要考虑全面,对于存在的可能情况,可作出相应的图形,判断是否符合题意.【类型三】勾股定理的证明例3探索与研究:方法1:如图:对任意的符合条件的直角三角形ABC 绕其顶点A 旋转90°得直角三角形AED ,所以∠BAE =90°,且四边形ACFD 是一个正方形,它的面积和四边形ABFE的面积相等,而四边形ABFE 的面积等于Rt △BAE 和Rt △BFE 的面积之和.根据图示写出证明勾股定理的过程;方法2:如图:该图形是由任意的符合条件的两个全等的Rt △BEA 和Rt △ACD 拼成的,你能根据图示再写出一种证明勾股定理的方法吗?解析:方法1:根据四边形ABFE 面积等于Rt △BAE 和Rt △BFE 的面积之和进行解答;方法2:根据△ABC 和Rt △ACD 的面积之和等于Rt △ABD 和△BCD的面积之和解答.解:方法1:S 正方形ACFD =S 四边形ABFE =S △BAE +S △BFE ,即b 2=12c 2+12(b +a )(b -a ),整理得2b 2=c 2+b 2-a 2,∴a 2+b 2=c 2;方法2:此图也可以看成Rt △BEA 绕其直角顶点E 顺时针旋转90°,再向下平移得到.∵S 四边形ABCD =S △ABC +S △ACD ,S 四边形ABCD =S △ABD +S △BCD ,∴S △ABC +S △ACD=S △ABD +S △BCD ,即12b 2+12ab =12c 2+12a (b -a ),整理得b 2+ab =c 2+a (b -a ),b 2+ab =c 2+ab -a 2,∴a 2+b 2=c 2.方法总结:证明勾股定理时,用几个全等的直角三角形拼成一个规则的图形,然后利用大图形的面积等于几个小图形的面积和化简整理证明勾股定理.知识点二:勾股定理与图形的面积例4 如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A 、B 、C 、D 的面积分别为2,5,1,2.则最大的正方形E 的面积是________.解析:根据勾股定理的几何意义,可得正方形A、B的面积和为S1,正方形C、D的面积和为S2,S1+S2=S3,即S3=2+5+1+2=10.故答案为10.方法总结:能够发现正方形A、B、C、D的边长正好是两个直角三角形的四条直角边,根据勾股定理最终能够证明正方形A、B、C、D的面积和即是最大正方形的面积.【板书设计】17.1 勾股定理课时1 勾股定理1.勾股定理如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a2+b2=c2.2.勾股定理的证明“赵爽弦图”、“刘徽青朱出入图”、“詹姆斯·加菲尔德拼图”、“毕达哥拉斯图”.【教学反思】在课堂教学中应注意调动学生学习数学的积极性.让学生满怀激情地投入到数学学习中,提高数学课堂教学效率.勾股定理的验证既是本节课的重点,也是本节课的难点,为了突破这一难点,设计一些拼图活动,并自制精巧的课件让学生从形上感知,再层层设问,从面积(数)入手,师生共同探究突破本节课的难点.人教版八年级下册数学第17章勾股定理17.1 勾股定理课时1 勾股定理学案【学习目标】1.经历勾股定理的探究过程,了解关于勾股定理的一些文化历史背景,会用面积法来证明勾股定理,体会数形结合的思想;2.会用勾股定理进行简单的计算.【学习重点】掌握用面积法来证明勾股定理,体会数形结合的思想.【学习难点】能够运用勾股定理进行有关的运算.【自主学习】一、知识回顾网格中每个小正方形的面积为单位1,你能数出图中的正方形A、B 的面积吗?你又能想到什么方法算出正方形C的面积呢?AB CCBA方法1:补形法(把以斜边为边长的正方形补成各边都在网格线上的正方形):左图:S c=__________________________;右图:S c=__________________________.方法2:分割法(把以斜边为边长的正方形分割成易求出面积的三角形和四边形):左图:S c=__________________________;右图:S c=__________________________.二、合作探究考点1:勾股定理的认识及验证想一想 1.2500年前,毕达哥拉斯去老朋友家做客,看到他朋友家用等腰三角形砖铺成的地面,联想到了正方形A,B和C面积之间的关系,你能想到是什么关系吗?2.右图中正方形A、B、C所围成的等腰直角三角形三边之间有什么特殊关系?3.在网格中一般的直角三角形,以它的三边为边长的三个正方形A、B、C 是否也有类似的面积关系?(每个小正方形的面积为单位1)4.正方形A、B、C 所围成的直角三角形三条边之间有怎样的特殊关系?思考你发现了直角三角形三条边之间的什么规律?你能结合字母表示出来吗?猜测:如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么________.活动2 接下来让我们跟着以前的数学家们用拼图法来证明活动1的猜想.证法利用我国汉代数学家赵爽的“赵爽弦图”=________,证明:∵S大正方形S小正方形=________,S大正方形=___·S三角形+S小正方形,∴________=________+__________.要点归纳:勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2. 公式变形:222222, ,=+--.a cb bc a c a b知识点2:利用勾股定理进行计算【典例探究】例1如图,在Rt△ABC中,∠C=90°.(1)若a=b=5,求c;(2)若a=1,c=2,求b.变式题1 在Rt△ABC中,∠C=90°.(1)若a:b=1:2 ,c=5,求a;(2)若b=15,∠A=30°,求a,c.方法总结:已知直角三角形两边关系和第三边的长求未知两边时,要运用方程思想设未知数,根据勾股定理列方程求解.变式题2在Rt△ABC中,AB=4,AC=3,求BC的长.方法总结:当直角三角形中所给的两条边没有指明是斜边或直角边时,其中一较长边可能是直角边,也可能是斜边,这种情况下一定要进行分类讨论,否则容易丢解.例2已知∠ACB=90°,CD⊥AB,AC=3,BC=4.求CD的长.方法总结:由直角三角形的面积求法可知直角三角形两直角边的积等于斜边与斜边上高的积,它常与勾股定理联合使用.【跟踪训练】求下列图中未知数x、y的值:三、知识梳理内容勾股定理如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2.注意1.在直角三角形中2.看清哪个角是直角3.已知两边没有指明是直角边还是斜边时一定要分类讨论四、学习中我产生的疑惑【学习检测】1.下列说法中,正确的是()A.已知a,b,c是三角形的三边,则a2+b2=c2B.在直角三角形中两边和的平方等于第三边的平方C.在Rt△ABC中,∠C=90°,所以a2+b2=c2D.在Rt△ABC中,∠B=90°,所以a2+b2=c22. 如图,Rt△ABC(∠C=90°)的主要性质:(用几何语言表示)(1)两锐角之间的关系:____________________.(2)若∠B=30°,则∠B的对边和斜边:_________.3.如果直角三角形的两直角边分别为a、b,斜边为c,那么_________.4. 右图中阴影部分是一个正方形,则此正方形的面积为_____________.5.在△ABC中,∠C=90°.(1)若a=15,b=8,则c=_______.(2)若c=13,b=12,则a=_______.6.若直角三角形中,有两边长是5和7,则第三边长的平方为_________.7.如图所示,所有的四边形都是正方形,三角形是直角三角形,其中最大的正方形的边长为6,则正方形A,B的面积的和为_______.8.求斜边长17cm、一条直角边长15cm的直角三角形的面积.9.如图,在△ABC中,AD⊥BC,∠B=45°,∠C=30°,AD=1,求△ABC的周长.10.如图,将长为10米的梯子AC斜靠在墙上,BC长为6米,求梯子上端A到墙的底端B的距离AB。
新人教版八年级数学下册第十七章《勾股定理(1)》学案 学习目标1.了解勾股定理的文化背景,体验勾股定理的探索过程 .2.通过观察、 归纳、 猜想和验证勾股定理,体验由特殊到一般的探索数学问题的方法和数形结合的思想.3..通过对勾股定理历史的了解,感受数学文化,激发学习热情.教学重点:探索和证明勾股定理.教学难点:用拼图的方法证明勾股定理.学习过程一、复习提问 1.三角形的三边关系是什么? 2.直角三角形的三边有什么关系?① ;② ;③ .3.介绍直角三角形各边的古代名:勾:较短的直角边;股:较长的直角边;弦:斜边二、自主学习1.相传2500年前,古希腊的数学家毕达哥拉斯在朋友家做客时,发现朋友家用地砖铺成的地面中反映了直角三角形三边的某种数量关系. 请同学们也观察一下,看看能发现什么?(1)(2) 引导学生把面积的关系转化为边的关系.结论:等腰直角三角形三边的特殊关系:斜边的平方等于两直角边的平方和. 2.等腰直角三角形有上述性质,其它直角三角形也有这个性质吗?(书P23探究) 勾股定理:(P23)如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么222c b a =+. 几何语言:∵Rt △ABC 中,∠C =90°∴222a b c +=(勾股定理)(或222a c b =-,c =a =.)二、应用举例例、(1) 已知Rt△ABC 中,∠C =90°,BC =6,AC =8,求AB .(2) 已知Rt△ABC 中,∠A =90°,AB =5,BC =6,求AC .(3) 已知Rt△ABC 中,∠B =90°,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,c ∶a =3∶4,b =15,求a ,c 及斜边高线h .C A B 弦股勾C A b c C A B A ha c b三、课堂练习:1.一个直角三角形的两条直角边分别为5cm、12cm,那么这个直角三角形斜边为.2.在Rt△ABC,∠C=90°⑴已知a=b=5,求c.⑵已知a=1,c=2,求b.⑶已知c=17,b=8,求a.⑷已知a:b=1:2,c=5,求a.四、课后作业:1.在Rt△ABC,∠B=90°,a=3,b=4,则c= .2.在Rt△ABC,∠C=90°,c=10,a:b=3:4,则a= ,b= .3.一个直角三角形的三边为三个连续偶数,则它的三边长分别为.4.已知直角三角形的两边长分别为3cm和5cm,,则第三边长为.5.已知等边三角形的边长为2cm,则它的高为,面积为.6.已知等腰三角形腰长是10,底边长是16,求这个等腰三角形的面积.。
17.1 勾股定理(第1课时)【教学任务分析】教学目标知识技能1.了解勾股定理的发现过程,掌握勾股定理的内容,会证明勾股定理.2.能运用勾股定理进行简单的运算.3.培养在实际生活中发现问题,总结规律的意识和能力.过程方法经历观察与发现勾股定理的过程,感受直角三角形三边关系,培养学生善于观察、发现、并学会验证.情感态度1.介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,勤奋学习。
2.培养学生严谨的数学学习态度,体会勾股定理在现实中的应用.重点勾股定理的内容及证明.难点勾股定理的证明.【教学环节安排】环节教学问题设计教学活动设计情境引入【问题1】相传2500年前,毕达哥拉斯有一次在朋友家里做客时,发现朋友家用砖铺成的地面中反映了直角三角形三边的某种数量关系.注意观察,你能有什么发现?分析:突出一下,换成下图你有什发现?说出你的观点.学生猜测得出结论:等腰直角三角形斜边的平方等于两直角边的平方和.教师:提出问题、引导学生观察,猜测、发现.学生:观察思考、尝试得出结论自主探究合作交【问题2】其它直角三角形是否也存在这种关系?观察下边两个图并填写下表:【问题3】命题1:如果直角三角形的两直角边长分别为a、b,斜边长为c,那么222a b c+=.命题证明:学生阅读课本65页,理解,提示:面积关系是214()2ab b a c⨯+-=.A的面积B的面积C的面积图1-2图1-3教师:变换图形,便于学生观察,得出:由面积和相等到斜边的平方等于两直角边的平方和.学生:观察图形,填表,并简要阐述理由.教师:引导学生得出结论.鼓励学生,敢于猜想、阐述自己观点.教师:引出问题3,怎样证明命题是否正确?流适当穿插我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情.总结:1.勾股定理:如果直角三角形的两直角边长分别为a 、b,斜边长为c ,那么222a b c +=.2.理解:反映了直角三角形三边之间存在的内在联系,可由已知两边求第三边学生:阅读课本理解证明过程. 教师:根据学生实际看能否理解,若不能理解可少作提示分析.也可多列举几种证法.教师:汇总总结,帮助学生理解,激励学生. 尝 试 应 用1.根据图18.1-1你能写出勾股定理的证明过程吗?【分析】总面积等于各面积之和221()42a b ab c +-⨯= 2. 一个门框尺寸如图18.1-2所示,一块长3m ,宽2.2m 的薄木板能否从门框内通过?为什么?【分析】木板横着进,竖着进,都不能从门框内通过,只能试试斜着能否通过,对角线AC 是斜着能通过的最大长度,求出AC ,再与木板的宽比较,就能知道木板能否通过.教师:提出问题.学生:思考独立完成后小组内阐述、分析、交流.教师:根据学生完成情况适当讲评.第2题注意过程书写规范,见教材67页成果 展示 引导学生对上面的问题进行展示交流——知识点,做题的方法,技巧,心得及困惑.学习小组互相讨论,交流,补充,展示补 偿 提 高 1. 求出下列各直角三角形中未知边x 的长度.2.已知:如图在Rt △ABC 中,∠C=90°,A B=15,AC=12,求BC 的长3. 已知:如图,等边△ABC 的边长是6cm , AD 为BC 边上的高,求AD 的长2.3.作业 设计必做题:教材69页习题18.1第1、2两题,做在作业本上.选做题:教材69页习题18.1第7题教师布置作业,并提出要求. 学生课下独立完成,延续课堂.17.1 勾股定理 (第2课时)【教学任务分析】图图18.1-2教学目标知识技能1.会用勾股定理进行简单的计算和解决实际问题.2.理解掌握实际问题转化成数学问题的解题思路和方法.过程方法经历探究勾股定理在实际问题中的应用过程,掌握勾股定理的应用方法.情感态度通过学生思维方式、意识的培养,感受数学方法理念,体会勾股定理的应用价值,热爱数学.重点运用勾股定理进行计算的方法难点勾股定理的灵活运用.【教学环节安排】环节教学问题设计教学活动设计情境引入复习什么是勾股定理?勾股定理的作用?教师:勾股定理是直角三角形中特有的三边关系定理,运用它能由已知两边求第三边.学生:回答、理解自主探究合作交流【问题3】如图18.1-7,一个3m长的梯子AB,斜靠在一竖直的墙AO上,这时AO的距离为2.5m,如果梯子的顶端A沿墙下滑0.5m,那么梯子底端B也外移0.5m吗?【分析】(1)由图根据勾股定理可求BD的长,看看是否是0.5m(2)已经知道那些线段的长?AB和CD是什么关系?(3)由图可知BD=OD-OB,分别求出OB、OD即可.解:(由学生填全教材67页的空后,尝试在练习本上写出过程)教师:出示题目并引导学生分析,学生:理解、写出过程,感受应用勾股定理进行计算的书写.建议:也可有学生独立分析完成教材填空,然后教师书写过程并强调写法及规范.尝试1. 1.教材68页,练习1、2题2.一个直角三角形的三边为三个连续偶数,则它的三边长分别为。
八年级数学(下)教学案 第1课时班级_______ 姓名______课题:17.1勾股定理 (1) 课型:新授【学习目标】:1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。
2.培养在实际生活中发现问题总结规律的意识和能力。
学习重点:勾股定理的内容及证明。
学习难点:勾股定理的证明。
学习过程一、自学导航(课前预习) 1、直角△ABC 的主要性质是:∠C=90°(用几何语言表示)(1)两锐角之间的关系:(2)若D 为斜边中点,则斜边中线(3)若∠B=30°,则∠B 的对边和斜边:2、勾股定理证明: 方法一;如图,让学生剪4个全等的直角三角形,拼成如图图形,利用面积证明。
S 正方形=_______________=____________________方法二; 已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c 。
求证:a 2+b 2=c 2。
分析:左右两边的正方形边长相等,则两个正方形的面积相等。
左边S=______________右边S=_______________ 左边和右边面积相等,即化简可得。
二、合作交流(小组互助)思考:A Bb b b(图中每个小方格代表一个单位面积) (2)你能发现图1-1中三个正方形A ,B ,C 的面积之间有什么关系吗?图1-2中的呢? 由此我们可以得出什么结论?可猜想:如果直角三角形的两直角边分别为a 、b ,斜边为c ,那么__________________ _____________________________________________________________________。
(三)展示提升(质疑点拨) 1.在Rt △ABC 中,90C ∠=︒ ,(1)如果a=3,b=4,则c=________; (2)如果a=6,b=8,则c=________; (3)如果a=5,b=12,则c=________; (4) 如果a=15,b=20,则c=________. 2、下列说法正确的是( )A.若a 、b 、c 是△ABC 的三边,则222a b c += B.若a 、b 、c 是Rt △ABC 的三边,则222a b c +=C.若a 、b 、c 是Rt △ABC 的三边,90A ∠=︒, 则22a b +D.若a 、b 、c 是Rt △ABC 的三边,90C ∠=︒ ,则222a b c +=3、一个直角三角形中,两直角边长分别为3和4,下列说法正确的是( )A .斜边长为25B .三角形周长为25C .斜边长为5D .三角形面积为20 4、如图,三个正方形中的两个的面积S1=25,S2=144,则另一个的面积S3为________. 5、一个直角三角形的两边长分别为5cm 和12cm,则第三边的长为 。
勾股定理【学习目标】1、经历用数格子的办法探索勾股定理的过程,进一步发展学生的合情推力意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。
2、探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单的推理的意识及能力。
3、【学习重点】了结勾股定理的由来,并能用它来解决一些简单的问题。
【学前准备】1、画一个直角三角形并测量三边的长。
2、准备一张坐标纸【自学探究】阅读课本回答下列问题1、直角三角形的两条直角边的长度分别为a=3㎝,b=4㎝和a=6㎝,b=8㎝。
① 你量出斜边c的长度。
3cm6cm(1)(2)②进行有关的计算:(1)a2+b2=c2= (2) a2+b2=c2=③得出结论:2、思考:(1)观察图1-1。
A的面积是__________个单位面积;B的面积是__________个单位面积;C的面积是__________个单位面积。
(2)你能发现图1-1中三个正方形A,B,C的面积之间有什么关系吗?图1-2中的呢?(3)你能发现图1-1中三个正方形A,B,C围成的直角三角形三边的关系吗?(4)你能发现课本图1-3中三个正方形A,B,C围成的直角三角形三边的关系吗?(5)如果直角三角形的两直角边分别为1.6个单位长度和2.4个长度单位,上面所猜想的数量关系还成立吗?说明你的理由。
预习后你还有什么问题?最想和大家讨论交流的问题是什么?【合作交流】勾股定理:例题:引例【随堂练习】1、练习【巩固练习】1.在△ABC中,∠C=90°,(l)若 a=5,b=12,则 c=(2)若c=41,a=9,则b=2.等腰△ABC的腰长AB=10cm,底BC为16cm,则底边上的高为,面积为。
3.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为()A.42 B.32 C.42或 32 D.37 或 334.一个长方体抽斗的长为24cm,宽为7cm,在抽斗里放铁条,铁条最长能是多少?【小结】你学到了什么:知识方面方法你还有什么问题:【今日作业】1. 求出下列直角三角形中未知边的长度。
八年级下:第17章《勾股定理》学案课题:17.1勾股定理(1)课型:新授课教师:黄燕,张洲宁,税代江组别: 数学组时间:2021.3.18 【学习目标】:1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。
2.培养在实际生活中发现问题总结规律的意识和能力。
【学习重点】:勾股定理的内容及证明。
【学习难点】:勾股定理的证明。
【学习过程】一、课前预习 A1、直角△ABC的主要性质是:∠C=90°(用几何语言表示)(1)两锐角之间的关系: D(2)若D为斜边中点,则斜边中线(3)若∠B=30°,则∠B的对边和斜边:2、(1)、同学们画一个直角边为3cm和4cm的直角△ABC,用 CB刻度尺量出AB的长。
(2)、再画一个两直角边为5和12的直角△ABC,用刻度尺量AB的长问题:你是否发现3+4与5,5+12和13的关系,即3+4 5,5+12 13,二、自主学习思考:222222222222 (1)观察图1-1。
A的面积是__________个单位面积;B的面积是__________个单位面积; C的面积是__________个单位面积。
(图中每个小方格代表一个单位面积)(2)你能发现图1-1中三个正方形A,B,C的面积之间有什么关系吗?图1-2中的呢?(3)你能发现图1-1中三个正方形A,B,C围成的直角三角形三边的关系吗?(4)你能发现课本图1-3中三个正方形A,B,C围成的直角三角形三边的关系吗?(5)如果直角三角形的两直角边分别为1.6个单位长度和2.4个长度单位,上面所猜想的数量关系还成立吗?说明你的理由。
由此我们可以得出什么结论?可猜想:命题1:如果直角三角形的两直角边分别为a、b,斜边为c,那么_______________________________________________________________________________________。
八年级数学(下)教学案 第1课时课题:17.1勾股定理 (1) 课型:新授【学习目标】:1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。
2.培养在实际生活中发现问题总结规律的意识和能力。
学习重点:勾股定理的内容及证明。
学习难点:勾股定理的证明。
学习过程一、自学导航(课前预习) 1、直角△ABC 的主要性质是:∠C=90°(用几何语言表示)(1)两锐角之间的关系:(2)若D 为斜边中点,则斜边中线(3)若∠B=30°,则∠B 的对边和斜边:2、勾股定理证明: 方法一;如图,让学生剪4个全等的直角三角形,拼成如图图形,利用面积证明。
S 正方形=_______________=____________________方法二; 已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c 。
求证:a 2+b 2=c 2。
分析:左右两边的正方形边长相等,则两个正方形的面积相等。
左边S=______________右边S=_______________ 左边和右边面积相等,即化简可得。
二、合作交流(小组互助)思考:(图中每个小方格代表一个单位面积)A Bbb b(2)你能发现图1-1中三个正方形A ,B ,C 的面积之间有什么关系吗?图1-2中的呢? 由此我们可以得出什么结论?可猜想:如果直角三角形的两直角边分别为a 、b ,斜边为c ,那么__________________ _____________________________________________________________________。
(三)展示提升(质疑点拨) 1.在Rt △ABC 中,90C ∠=︒ ,(1)如果a=3,b=4,则c=________; (2)如果a=6,b=8,则c=________; (3)如果a=5,b=12,则c=________; (4) 如果a=15,b=20,则c=________. 2、下列说法正确的是( )A.若a 、b 、c 是△ABC 的三边,则222a b c += B.若a 、b 、c 是Rt △ABC 的三边,则222a b c +=C.若a 、b 、c 是Rt △ABC 的三边,90A ∠=︒, 则22a b +D.若a 、b 、c 是Rt △ABC 的三边,90C ∠=︒ ,则222a b c +=3、一个直角三角形中,两直角边长分别为3和4,下列说法正确的是( )A .斜边长为25B .三角形周长为25C .斜边长为5D .三角形面积为20 4、如图,三个正方形中的两个的面积S1=25,S2=144,则另一个的面积S3为________. 5、一个直角三角形的两边长分别为5cm 和12cm,则第三边的长为 。
(四)达标检测1.在Rt △ABC 中,∠C=90°,①若a=5,b=12,则c=___________;②若a=15,c=25,则b=___________;③若c=61,b=60,则a=__________;④若a ∶b=3∶4,c=10则S Rt△ABC =________。
2、一直角三角形的一直角边长为6,斜边长比另一直角边长大2,则斜边的长为 。
3、一个直角三角形的两边长分别为3cm 和4cm,则第三边的为 。
4、已知,如图在ΔABC 中,AB=BC=CA=2cm ,AD 是边BC 上的高. 求 ①AD 的长;②ΔABC 的面积.八年级数学(下)教学案 第2课时课题:17.1勾股定理 (2) 课型:新授 学习目标:1.会用勾股定理进行简单的计算。
2.勾股定理的实际应用,树立数形结合的思想、分类讨论思想。
学习重点:勾股定理的简单计算。
学习难点:勾股定理的灵活运用。
学习过程一、自学导航(课前预习)1、直角三角形性质有:如图,直角△ABC 的主要性质是:∠C=90°,(用几何语言表示) (1)两锐角之间的关系: ;(2)若∠B=30°,则∠B 的对边和斜边: ;(3)直角三角形斜边上的 等于斜边的 。
(4)三边之间的关系: 。
(5)已知在Rt △ABC 中,∠B=90°,a 、b 、c 是△ABC 的三边,则c = 。
(已知a 、b ,求c ) a = 。
(已知b 、c ,求a ) b = 。
(已知a 、c ,求b ).2、(1)在Rt △ABC ,∠C=90°,a=3,b=4,则c= 。
(2)在Rt △ABC ,∠C=90°,a=6,c=8,则b= 。
(3)在Rt △ABC ,∠C=90°,b=12,c=13,则a= 。
二、合作交流(小组互助)例1:一个门框的尺寸如图所示. 若薄木板长3米,宽2.2米呢?例2、如图,一个3米长的梯子AB ,斜靠在一竖直的墙AO 上,这时AO 的距离为2.5米.如果梯子的顶端A 沿墙下滑 0.5米,那么梯子底端B 也外移0.5米吗?(计算结果保留两位小数)BBC1m 2mA 实际问题 数学模型分析:要求出梯子的底端B 是否也外移0.5米,实际就是求BD 的长,而BD =OD -OB(三)展示提升(质疑点拨)1、一个高1.5米、宽0.8米的长方形门框,需要在其相对的顶点间用一条木条加固,则需木条长为 。
2、从电杆离地面5m 处向地面拉一条长为7m 的钢缆,则地面 钢缆A 到电线杆底部B 的距离为。
3、有一个边长为50dm 的正方形洞口,想用一个圆盖盖住这个洞口, 圆的直径至少为 (结果保留根号)4、一旗杆离地面6m 处折断,其顶部落在离旗杆底部8m 处,则旗杆折断前高 。
如下图,池塘边有两点A ,B ,点C 是与BA 方向成直角的AC 方向上一点.测得CB =60m ,AC =20m , 你能求出A 、B 两点间的距离吗?5、如图,滑杆在机械槽内运动,∠ACB 为直角,已知滑杆AB 长100cm ,顶端A 在AC 上运动,量得滑杆下端B 距C 点的距离为60cm ,当端点B 向右移动20cm 时,滑杆顶端A 下滑多长?(四)达标检测OCA EB DC1、若等腰三角形中相等的两边长为10cm,第三边长为16 cm,那么第三边上的高为( )A、12 cmB、10 cmC、8 cmD、6 cm2、若等腰直角三角形的斜边长为2,则它的直角边的长为,斜边上的高的长为。
3、如图,在⊿ABC中,∠ACB=900,AB=5cm,BC=3cm,CD⊥AB与D。
求:(1)AC的长;(2)⊿ABC的面积;(3)CD的长。
八年级数学(下)教学案 第3课时课题:17.1勾股定理(3) 课型:新授 学习目标:1.能运用勾股定理在数轴上画出表示无理数的点,进一步领会数形结合的思想。
2.会用勾股定理解决简单的实际问题。
学习重点:运用勾股定理解决数学和实际问题 学习难点:勾股定理的综合应用。
学习过程一、自学导航(课前预习)1、(1)在Rt △ABC ,∠C=90°,a=3,b=4,则c= 。
(2)在Rt △ABC ,∠C=90°,a=5,c=13,则b= 。
2、如图,已知正方形ABCD 的边长为1,则它的对角线AC= 。
二、合作交流例:用圆规与尺子在数轴上作出表示13的点,并补充完整作图方法。
步骤如下:1.在数轴上找到点A ,使OA = ;2.作直线l 垂直于OA ,在l 上取一点B ,使AB = ;3.以原点O 为圆心,以OB 为半径作弧,弧与数轴交于点C ,则点C 即为表示13 的点.分析:利用尺规作图和勾股定理画出数轴上的无理数点,进一步体会数轴上的点与实数一一对应的理论。
如图,已知OA=OB , (1)说出数轴上点A 所表示的数(2)在数轴上作出8对应的点A BC D三、展示提升(质疑点拨)1、你能在数轴上找出表示2的点吗?请作图说明。
2、已知直角三角形的两边长分别为5和12,求第三边。
3、已知:如图,等边△ABC 的边长是6cm 。
(1)求等边△ABC 的高。
(2)求S △ABC 。
四、达标检测1、已知直角三角形的两边长分别为3cm 和5cm ,,则第三边长为 。
2、已知等边三角形的边长为2cm ,则它的高为 ,面积为 。
3、已知等腰三角形腰长是10,底边长是16,求这个等腰三角形的面积。
4、在数轴上作出表示17的点。
5、已知:在Rt △ABC 中,∠C=90°,CD ⊥AB 于D ,∠A=60°,CD=3, 求线段AB 的长。
DBAB八年级数学(下)教学案 第4课时课题:17.2勾股定理逆定理(1) 课型:新授学习目标:1、了解勾股定理的逆定理的证明方法和过程;2、理解互逆命题、互逆定理、勾股数的概念及互逆命题之间的关系;3、能利用勾股定理的逆定理判定一个三角形是直角三角形. 学习重点:勾股定理的逆定理及其应用。
学习难点:勾股定理的逆定理的证明。
学习过程一、自学导航1、勾股定理:直角三角形的两条_________的平方____等于______的_______,即___________.2、填空题(1)在Rt △ABC ,∠C=90°,=a 8,=b 15,则=c 。
(2)在Rt △ABC ,∠B=90°,=a 3,=b 4,则=c 。
(如图)3、直角三角形的性质(1)有一个角是 ;(2)两个锐角 , (3)两直角边的平方和等于斜边的平方: (4)在含30°角的直角三角形中,30°的角所对的 边是 边的一半.二、合作交流1、怎样判定一个三角形是直角三角形?2、下面的三组数分别是一个三角形的三边长a.b.c 5、12、13 7、24、25 8、15、17 (1)这三组数满足222c b a =+吗?(2)分别以每组数为三边长作出三角形,用量角器量一量,它们都是直角三角形吗? 猜想命题2:如果三角形的三边长a 、b 、c ,满足222c b a =+,那么这个三角形是 三角形问题二:命题1: 命题2:命题1和命题2的 和 正好相反,把像这样的两个命题叫做 命题,如果把其中一个叫做 ,那么另一个叫做A BCab c由此得到勾股定理逆定理:命题2:如果三角形的三边长a 、b 、c 满足222c b a =+,那么这个三角形是直角三角形.已知:在△ABC 中,AB =c ,BC =a ,CA =b ,且222c b a =+求证:∠C =90°思路:构造法——构造一个直角三角形,使它与原三角形全等, 利用对应角相等来证明. 证明:三、展示提升1、判断由线段a 、b 、c 组成的三角形是不是直角三角形:(1)17,8,15===c b a ; (2)15,14,13===c b a .2、说出下列命题的逆命题.这些命题的逆命题成立吗? (1)两条直线平行,内错角相等.(2)如果两个实数相等,那么它们的绝对值相等. (3)全等三角形的对应角相等.(4)在角的平分线上的点到角的两边的距离相等.B Aba c B'A'ab四、达标检测1、以下列各组线段为边长,能构成三角形的是____________,能构成直角三角形的是____________.(填序号)①3,4,5 ②1,3,4 ③4,4,6 ④6,8,10 ⑤5,7,2 ⑥13,5,12 ⑦7,25,242、在下列长度的各组线段中,能组成直角三角形的是()A.5,6,7 B.1,4,9 C.5,12,13 D.5,11,123、在下列以线段a、b、c的长为三边的三角形中,不能构成直角三角形的是()5 C 、a∶b∶c=3∶4∶5 D a=11,b=12,A、a=9,b=41,c=40B、a=b=5,c=2c=154、若一个三角形三边长的平方分别为:32,42,x2,则此三角形是直角三角形的x2的值是()A.42B.52C.7 D.52或75、命题“全等三角形的对应角相等”(1)它的逆命题是。