1977年普通高等学校招生考试(福建省)理科数学试题及答案
- 格式:doc
- 大小:220.00 KB
- 文档页数:8
1977年普通高等学校招生考试数学试题1.解答下列各题:(每题5分) (1)解方程.443=+x 解(2)解不等式|x|<5. 解:(3)已知正三角形的外接圆半径为36cm ,求它的边长解:2.计算下列各题:(每题5分) (1).222a ma m +- 解:(2)︒⋅︒+︒⋅︒3sin 12cos 3cos 78cos (不查表求值) 解:(3))6arcsin(cos π解:3.解下列各题:(每题5分) (1)解方程.189321=-+xx解:(2)求数列2,4,8,16,……前十项的和解:4.解下列各题:(每题10分)(1)圆锥的高为6cm ,母线和底面半径成300角,求它的侧面积解:(2)求过点(1,4)且与直线0352=+-y x 垂直的直线方程解:5.如果△ABC 的∠A 的平分线交BC 于D ,交它的外接圆于E ,那么 AB ·AC=AD ·AE (本题10分)证:连结BE (如图)6.前进大队响应毛主席关于“绿化祖国”的伟大号召,1975年造林200亩, 又知1975年至1977年这三年内共造林728亩,求后两年造林面积的年平均增 长率是多少? (本题10分)解:7.解方程).5lg 1()1622lg(-=-+x x x (本题15分)解:8.已知三角形的三边成等差数列,周长为36cm ,面积为54cm 2,求三边的长(本题15分)解:9.(参考题)如图,AP 表示发动机的连杆,OA 表示它的曲柄当A 在圆上作圆周运动时,P 在x 轴上作直线运动,求P 点的横坐标α是直角时,P ∠是最大?(本题附加10分)解:10.(加试题)求曲线x y sin =在],0[π上的曲边梯形绕x 轴旋转一周所形成的旋转体的体积(本题附加10分)解:B。
1977年全国各省市高考数学试题及解答北京市(理科)1.解方程.31x x -=-解:将两边平方,得 x 2-1=9-6x+x,即x 2-7x+10=0,(x-2)(x-5)=0, ∴x=2,x=5。
经检验x=5是增根,故原方程的解是x=2。
2.计算121222021-++-.122:+=原式解3.已知lg2=0.3010,lg3=0.4771,求lg 45。
解:lg 45=21lg 21032⨯=0.8266。
4.证明αα+=α+22cos 2sin 1)1(tg 原式成立证∴αα+=αα+αα+α=⎪⎭⎫ ⎝⎛αα+α=α+222222cos 2sin 1cos sin cos sin 2cos cos sin cos )1(:tg 5.求过两直线x+y-7=0和3x-y-1=0的交点且过(1,1)点的直线方程。
解:由x+y-7=03x-y-1=0, 解得x=2,y=5。
过点(2,5)和(1,1)的直线方程为y=4x-3。
6.某工厂今年七月份的产值为100万元,以后每月产值比上月增加20%,问今年七月份到十月份总产值是多少?解:七月份到十月份总产值为 100+(1+20%)·100+(1+20%)2·100+(1+20%)3·100=)(8.5362.00736.110012.1]1)2.1[(1004万元=⨯=--⨯ 7.已知二次函数y=x 2-6x+5(1)求出它的图象的顶点坐标和对称轴方程; (2)画出它的图象;(3)分别求出它的图象和x 轴、y 轴的交点坐标。
解:如图(列表,描点)略。
8.一只船以20海里/小时的速度向正东航行,起初船在A 处看见一灯塔B 在船的北450东方向,一小时后船在C 处看见这个灯塔在船的北150东方向,求这时船和灯塔的距离CB 。
解:由已知条件及图可得AC=20海里,∠BAC=450,∠ABC=300。
由正弦定理可得9.有一个圆内接三角形ABC ,∠A 的平分线交BC 于D ,交外接圆于E ,求证:AD ·AE=AC ·AB 。
1977年全国各省市高考数学试题及解答北京市(理科)1.解方程.31x x -=-解:将两边平方,得 x 2-1=9-6x+x,即x 2-7x+10=0,(x-2)(x-5)=0, ∴x=2,x=5。
经检验x=5是增根,故原方程的解是x=2。
2.计算121222021-++-.122:+=原式解3.已知lg2=0.3010,lg3=0.4771,求lg 45。
解:lg 45=21lg 21032⨯=0.8266。
4.证明αα+=α+22cos 2sin 1)1(tg 原式成立证∴αα+=αα+αα+α=⎪⎭⎫ ⎝⎛αα+α=α+222222cos 2sin 1cos sin cos sin 2cos cos sin cos )1(:tg 5.求过两直线x+y-7=0和3x-y-1=0的交点且过(1,1)点的直线方程。
解:由x+y-7=03x-y-1=0, 解得x=2,y=5。
过点(2,5)和(1,1)的直线方程为y=4x-3。
6.某工厂今年七月份的产值为100万元,以后每月产值比上月增加20%,问今年七月份到十月份总产值是多少?解:七月份到十月份总产值为 100+(1+20%)·100+(1+20%)2·100+(1+20%)3·100=)(8.5362.00736.110012.1]1)2.1[(1004万元=⨯=--⨯ 7.已知二次函数y=x 2-6x+5(1)求出它的图象的顶点坐标和对称轴方程; (2)画出它的图象;(3)分别求出它的图象和x 轴、y 轴的交点坐标。
解:如图(列表,描点)略。
8.一只船以20海里/小时的速度向正东航行,起初船在A 处看见一灯塔B 在船的北450东方向,一小时后船在C 处看见这个灯塔在船的北150东方向,求这时船和灯塔的距离CB 。
解:由已知条件及图可得AC=20海里,∠BAC=450,∠ABC=300。
由正弦定理可得9.有一个圆内接三角形ABC ,∠A 的平分线交BC 于D ,交外接圆于E ,求证:AD ·AE=AC ·AB 。
【高考数学试题】1977年全国各省市高考数学试题及解答(共34页)【高考数学试题】1977年全国各省市高考数学试题及解答 ...................................................... 1 北京市(理科) ............................................................................................................................... 1 北京市(文科) ............................................................................................................................... 3 上海市(理科) ............................................................................................................................... 5 上海市(文科) ............................................................................................................................... 8 天津市 ............................................................................................................................................ 10 河北省 ............................................................................................................................................ 13 福建省(理科) ............................................................................................................................. 17 福建省(文科) ............................................................................................................................. 23 黑龙江省......................................................................................................................................... 26 江苏省 .. (29)北京市(理科)1.解方程.31x x -=-解:将两边平方,得 x 2-1=9-6x+x,即x 2-7x+10=0,(x-2)(x-5)=0, ∴x=2,x=5。
参考答案一、选择题:本题考查基本知识和基本运算.第(1)-(10)题每小题4分,第(11)-(15)题每小题5分,满分65分.(1)B (2)B (3)A (4)C (5)B (6)D (7)D(8)C(9)B (10)B (11)A (12)D (13)C (14)C (15)D二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分.注:第(19)题多填、漏填和错填均给0分.三、解答题(20)本小题主要考查复数的基本概念、复数的运算以及复数的几何意义等基础知识,考查运算能力和逻辑推理能力.满分10分.解法一:-------2分于是,.-------5分由此知△OPQ有两边相等且其夹角为直角,故△OPQ为等腰直角三解形. -------------7分解法二:由此得OP⊥OQ,│OP│=│OQ│.由此知△OPQ有两边相等且其夹角为直角,故△OPQ为等腰直角三角形.-------------10分(21)本小题主要考查等比数列的概念、数列极限的运算等基础知识,考查逻辑推理能力和运算能力.满分11分.解:,. -------------3分分两种情况讨论.(Ⅰ)p>1.=p. -------------7分(Ⅱ)p<1.∵ 0<q<p<1,-------11分(22)本小题主要考查建立函数关系、不等式性质、最大值、最小值等基础知识,考查综合应用所学数学知识、思想和方法解决实际问题的能力,满分12分.-------------4分故所求函数及其定义域为.-------------5分(Ⅱ)依题意知S,a,b,v都为正数,故有.因为c-v≥0,且a>bc2,故有a-bcv≥a-bc2>0,也即当v=c时,全程运输成本y最小.(23)本小题主要考查直线与直线、直线与平面、平面与平面的位置关系,考查逻辑推理能力和空间想象能力,满分12分.解:(Ⅰ)∵AC1是正方体,∴AD⊥面DC1.又D 1F 面DC1,∴AD⊥D1F. -------------2分(Ⅱ)取AB中点G,连结A1G,FG.因为F是CD的中点,所以GF、AD平行且相等,又A1D1、AD平行且相等,所以GF、A1D1平行且相等,故GFD1A1是平行四边形,A1G∥D1F.设A1G与AE相交于点H,则∠AHA1是AE与D1F所成的角,因为E是BB1的中点,所以Rt△A1AG≌Rt△ABE,∠GA1A=∠GAH,从而∠AHA1=90°,即直线AE与D1F所成角为直角. -------------5分(Ⅲ)由(Ⅰ)知AD⊥D1F,由(Ⅱ)知AE⊥D1F,又AD∩AE=A,所以D1F⊥面AED.又因为D1F 面A1FD1,所以面AED⊥面A1FD1. -------------7分(Ⅳ)连结GE,GD1.∵FG∥A1D1,∴FG∥面A1ED1,∵AA1=2,(24)本小题主要考查一元二次方程、二次函数和不等式的基础知识,考查综合运用数学知识分析问题和解决问题的能力.满分12分.证明:(Ⅰ)令F(x)=f(x)-x.因为x1,x2是方程f(x)-x=0的根,所以F(x)=a(x-x1)(x-x2).------------2分当x∈(0,x1)时,由于x1<x2,得(x-x1)(x-x2)>0,又a>0,得F(x)=a(x-x1)(x-x2)>0,即x<f(x). ------------4分,所以x1-x>0,1+a(x-x2)=1+ax-ax2>1-ax2>0.得 x1-f(x)>0.由此得f(x)<x1.------------7分(Ⅱ)依题意知因为x1,x2是方程f(x)-x=0的根,即x1,x2是方程ax2+(b-1)x+c=0的根.,------------9分.因为ax2<1,所以.------------12分(25)本小题主要考查轨迹的思想,求最小值的方法,考查综合运用知识建立曲线方程的能力.满分12分.解法一:设圆的圆心为P(a,b),半径为r,则点P到x轴,y轴的距离分别为│b│,│a│.r2=2b2------------2分又圆P截y轴所得的弦长为2,所以有r2=a2+1.从而得2b2-a2=1. -------------5分又点P(a,b)到直线x-2y=0的距离为,-------------7分所以 5d2=│a-2b│2=a2+4b2-4ab≥a2+4b2-2(a2+b2)=2b2-a2=1,当且仅当a=b时上式等号成立,此时5d2=1,从而d取得最小值.-------------10分由此有解此方程组得由于r2=2b2知于是,所求圆的方程是(x-1)2+(y-1)2=2,或(x+1)2+(y+1)2=2. -------------12分解法二:同解法一得∴得①将a2=2b2-1代入①式,整理得②把它看作b的二次方程,由于方程有实根,故判别式非负,即△=8(5d2-1)≥0,得 5d2≥1..将其代入②式得2b2±4b+2=0.解得b=±1.将b=±1代入r2=2b2,得r2=2.由r2=a2+1得a=±1.综上a=±1,b=±1,r2=2.由│a-2b│=1知a,b同号.于是,所求圆的方程是(x-1)2+(y-1)2=2,或(x+1)2+(y+1)2=2. -------------12分。
普通高等学校招生全国统一考试数学理试题(福建卷,解析版)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷第3至6页。
第Ⅱ卷第21题为选考题,其他题为必考题。
满分150分。
注意事项: 1. 答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名。
考生要认真核对答题卡上粘贴的条形码的“准考证号,姓名”与考生本人准考证号,姓名是否一致。
2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,第Ⅱ卷用0.5毫米黑色签字笔在答题卡上书写作答,在试题卷上作答,答案无效。
3. 考试结束,考生必须将试题卷和答题卡一并交回。
参考公式:样本数据x 1,x 2,…,x a 的标准差 锥体体积公式222121--...-n s x x x x x x n ⎡⎤=++⎣⎦()()() 13V Sh = 其中x 为样本平均数 其中S 为底面面积,h 为高 柱体体积公式 球的表面积,体积公式 V=Sh 2344,3S R V R ππ==其中S 为底面面积,h 为高 其中R 为球的半径 第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1. i 虚数单位,若集合S=}{1.0.1-,则A.i S ∈B.2i S ∈ C. 3i S ∈ D.2S i∈2.若a ∈R ,则a=2是(a-1)(a-2)=0的A.充分而不必要条件 B 必要而不充分条件C.充要条件 C.既不充分又不必要条件 【答案】A【解析】:a=2⇒(a-1)(a-2)=0 充分 反之(a-1)(a-2)=0 ⇒a=2不必要,故选A 3.若tan α=3,则2sin 2cos aα的值等于A.2B.3C.4D.6 【答案】D 【解析】:22sin 22sin cos 2sin 2tan 6cos cos cos a a αααααα====。
1997年全国统一高考数学试卷(理科)参考答案与试题解析一、选择题(共15小题,1-10每小题4分,11-15每小题5分,满分65分)1.(4分)设集合M={x|0≤x<2},集合N={x|x2﹣2x﹣3<0},集合M∩N=()A .{x|0≤x<1}B.{x|0≤x<2}C.{x|0≤x≤1}D.{x|0≤x≤2}考点:交集及其运算.分析:解出集合N中二次不等式,再求交集.解答:解:N={x|x2﹣2x﹣3<0}={x|﹣1<x<3},∴M∩N={x|0≤x<2},故选B点评:本题考查二次不等式的解集和集合的交集问题,注意等号,较简单.2.(4分)如果直线ax+2y+2=0与直线3x﹣y﹣2=0平行,那么实数a等于()A .﹣6 B.﹣3 C.D.考点:直线的一般式方程与直线的平行关系.专题:计算题.分析:根据它们的斜率相等,可得=3,解方程求a的值.解答:解:∵直线ax+2y+2=0与直线3x﹣y﹣2=0平行,∴它们的斜率相等,∴=3,∴a=﹣6.故选A.点评:本题考查两直线平行的性质,两直线平行,斜率相等.3.(4分)函数y=tan()在一个周期内的图象是()A .B.C.D.考点:正切函数的图象.专题:综合题.分析:先令tan()=0求得函数的图象的中心,排除C,D;再根据函数y=tan()的最小正周期为2π,排除B.解答:解:令tan()=0,解得x=kπ+,可知函数y=tan()与x轴的一个交点不是,排除C,D∵y=tan()的周期T==2π,故排除B故选A点评:本题主要考查了正切函数的图象.要熟练掌握正切函数的周期,单调性,对称中心等性质.4.(4分)已知三棱锥P﹣ABC的三个侧面与底面全等,且AB=AC=,BC=2.则二面角P﹣BC﹣A的大小为()A .B.C.D.考点:平面与平面之间的位置关系;与二面角有关的立体几何综合题.专题:计算题.分析:要求二面角P﹣BC﹣A的大小,我们关键是要找出二面角P﹣BC﹣A的大小的平面角,将空间问题转化为平面问题,然后再分析二面角P﹣BC﹣A的大小的平面角所在的三角形的其它边与角的关系,解三角形进行求解.解答:解:如图所示,由三棱锥的三个侧面与底面全等,且AB=AC=,得PB=PC=,PA=BC=2,取BC的中点E,连接AE,PE,则∠AEP即为所求二面角的平面角.且AE=EP=,∵AP2=AE2+PE2,∴∠AEP=,故选C.点评:求二面角的大小,一般先作出二面角的平面角.此题是利用二面角的平面角的定义作出∠AEP为二面角P﹣BC﹣A的平面角,通过解∠AEP所在的三角形求得∠AEP.其解题过程为:作∠AEP→证∠AEP是二面角的平面角→计算∠AEP,简记为“作、证、算”.5.(4分)函数y=sin()+cos2x的最小正周期是()A .B.πC.2πD.4π考点:三角函数的周期性及其求法.分析:先将函数化简为:y=sin(2x+θ),即可得到答案.解答:解:∵f(x)=sin()+cos2x=cos2x﹣sin2x+cos2x=(+1)cos2x﹣sin2x=sin(2x+θ)∴T==π故选B.点评:本题主要考查三角函数的最小正周期的求法.属基础题.6.(4分)满足arccos(1﹣x)≥arccosx的x的取值范围是()A .[﹣1,﹣]B.[﹣,0]C.[0,]D.[,1]考点:反三角函数的运用.专题:计算题.分析:应用反函数的运算法则,反函数的定义及性质,求解即可.解答:解:arccos(1﹣x)≥arccosx 化为cos[arccos(1﹣x)]≤cos[arccosx]所以1﹣x≤x,即:x,又x∈[﹣1,1],所以x的取值范围是[,1]故选D.点评:本题考查反余弦函数的运算法则,反函数的定义域,考查学生计算能力,是中档题.7.(4分)将y=2x的图象____________再作关于直线y=x对称的图象,可得到函数y=log2(x+1)的图象()A .先向左平行移动1个单位B.先向右平行移动1个单位C .先向上平行移动1个单位D.先向下平行移动1个单位考点:反函数;函数的图象与图象变化.分析:本题考查函数图象的平移和互为反函数的函数图象之间的关系两个知识点,作为本题,可以用逐一验证的方法排除不合题意的选项,验证的个数在1到3个,对于本题,这不是最佳选择,建议逆推得到平移后的解析式,这样就可以方便的观察到平移的方向及单位数.解答:解:利用指数式和对数式的互化,由函数y=log2(x+1)解得:x=2y﹣1则函数y=log2(x+1)(x>﹣1)的反函数为y=2x﹣1(x∈R)即函数y=2x平移后的函数为y=2x﹣1,易见,只需将其向下平移1个单位即可.故选D点评:本题采用先逆推获取平移后的解析式的方法,得到解析式后平移的方向和单位便一目了然,简便易行,值得尝试.8.(4分)长方体的一个顶点上三条棱长为3、4、5,且它的八个顶点都在一个球面上,这个球的表面积是()A .20πB.25πC.50πD.200π考点:球的体积和表面积.专题:计算题.分析:设出球的半径,由于直径即是长方体的体对角线,由此关系求出球的半径,即可求出球的表面积.解答:解:设球的半径为R,由题意,球的直径即为长方体的体对角线,则(2R)2=32+42+52=50,∴R=.∴S球=4π×R2=50π.故选C点评:本题考查球的表面积,球的内接体,考查计算能力,是基础题.9.(4分)曲线的参数方程是(t是参数,t≠0),它的普通方程是()A .(x﹣1)2(y﹣1)=1B.y=C.D.考点:参数方程的概念.专题:计算题.分析:由题意知x=1﹣,可得x﹣1=﹣,将方程两边平方,然后与y﹣1=﹣t2,相乘消去t即可求解.解答:解:∵曲线的参数方程是(t是参数,t≠0),∴,∴将两个方程相乘可得,(x﹣1)2(1﹣y)=1,∴y=,故选B.点评:此题考查参数方程与普通方程的区别和联系,两者要会互相转化,根据实际情况选择不同的方程进行求解,这也是每年高考必考的热点问题.10.(4分)函数y=cos2x﹣3cosx+2的最小值为()A .2 B.0 C.D.6考点:函数的值域;余弦函数的定义域和值域.专题:计算题.分析:先进行配方找出对称轴,而﹣1≤cosx≤1,利用对称轴与区间的位置关系求出最小值.解答:解:y=cos2x﹣3cosx+2=(cosx﹣)2﹣∵﹣1≤cosx≤1∴当cosx=1时y min=0,故选B点评:本题以三角函数为载体考查二次函数的值域,属于求二次函数的最值问题,属于基本题.11.(5分)椭圆C与椭圆关于直线x+y=0对称,椭圆C的方程是()A .B.C.D.考点:直线与圆锥曲线的综合问题.专题:计算题.分析:依题意可知椭圆C关于直线x+y=0对称,长轴和短轴不变,主要椭圆的中心即可.根据原椭圆方程可求得其中心坐标,进而求得其关于直线x+y=0对称点,则椭圆方程可得.解答:解:依题意可知椭圆C关于直线x+y=0对称,长轴和短轴不变,主要椭圆的中心即可.∵椭圆的中心为(3,2)关于直线x+y=0对称的点为(﹣2,﹣3)故椭圆C的方程为故选A.点评:本题主要考查了直线与椭圆的关系及点关于直线对称的问题.属基础题.12.(5分)圆台上、下底面面积分别是π、4π,侧面积是6π,这个圆台的体积是()A .πB.2πC.πD.π考点:旋转体(圆柱、圆锥、圆台).专题:计算题.分析:通过圆台的底面面积,求出上下底面半径,利用侧面积公式求出母线长,然后求出圆台的高,即可求得圆台的体积.解答:解:S1=π,S2=4π,∴r=1,R=2,S=6π=π(r+R)l,∴l=2,∴h=.∴V=π(1+4+2)×=π.故选D点评:本题是基础题,通过底面面积求出半径,转化为求圆台的高,是本题的难点,考查计算能力,常考题.13.(5分)(2014•碑林区一模)定义在区间(﹣∞,+∞)的奇函数f(x)为增函数;偶函数g(x)在区间[0,+∞)的图象与f(x)的图象重合,设a>b>0,给出下列不等式:①f(b)﹣f(﹣a)>g(a)﹣g(﹣b);②f(b)﹣f(﹣a)<g(a)﹣g(﹣b);③f(a)﹣f(﹣b)>g(b)﹣g(﹣a);④f(a)﹣f(﹣b)<g(b)﹣g(﹣a),其中成立的是()A .①与④B.②与③C.①与③D.②与④考点:函数奇偶性的性质.分析:根据f(﹣a)=﹣f(a),f(﹣b)=﹣f(b),g(﹣a)=g(a)=f(a),g(﹣b)=g(b)=f (b),对①②③④进行逐一验证即可得答案.解答:解:由题意知,f(a)>f(b)>0又∵f(﹣a)=﹣f(a),f(﹣b)=﹣f(b),g(﹣a)=g(a)=f(a),g(﹣b)=g(b)=f(b);∴①f(b)﹣f(﹣a)>g(a)﹣g(﹣b)⇔f(b)+f(a)>f(a)﹣f(b)⇔f(b)>﹣f(b),故①对②不对.③f(a)﹣f(﹣b)>g(b)﹣g(﹣a)⇔f(b)+f(a)>f(b)﹣f(a)⇔f(a)>﹣f(a),故③对④不对.故选C.点评:本题主要考查函数奇偶性的应用.14.(5分)不等式组的解集是()A .{x|0<x<2}B.{x|0<x<2.5}C.D.{x|0<x<3}考点:其他不等式的解法.专题:压轴题.分析:可以直接去绝对值解不等式,比较复杂;可结合答案用特值法解决.解答:解:取x=2满足不等式,排除A;再取x=2.5,不满足,排除B、D故选C点评:本题考查解绝对值不等式和分式不等式问题,要注意选择题的特点,选择特殊做法解决.15.(5分)四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,则不同的取法共有()A .150种B.147种C.144种D.141种考点:排列、组合的实际应用;计数原理的应用.专题:计算题;压轴题.分析:由题意知从10个点中任取4个点有C104种取法,减去不合题意的结果,4点共面的情况有三类,取出的4个点位于四面体的同一个面上;取任一条棱上的3个点及该棱对棱的中点;由中位线构成的平行四边形,用所有的结果减去不合题意的结果即可得答案.解答:解:从10个点中任取4个点有C104种取法,其中4点共面的情况有三类.第一类,取出的4个点位于四面体的同一个面上,有4C64种;第二类,取任一条棱上的3个点及该棱对棱的中点,这4点共面,有6种;第三类,由中位线构成的平行四边形(其两组对边分别平行于四面体相对的两条棱),它的4顶点共面,有3种.以上三类情况不合要求应减掉,∴不同的取法共有C104﹣4C64﹣6﹣3=141种.故选D.点评:本题考查分类计数原理,考查排列组合的实际应用,是一个排列组合同立体几何结合的题目,解题时注意做到不重不漏.二、填空题(共4小题,每小题4分,满分16分)16.(4分)已知的展开式中x3的系数为,常数a的值为4.考点:二项式定理;二项式系数的性质.专题:计算题.分析:利用二项展开式的通项公式求出第r+1项,令x的指数为3求出展开式中x3的系数,列出方程解得.解答:解:的展开式的通项为=令解得r=8∴展开式中x3的系数为∵展开式中x3的系数为∴解得a=4故答案为4点评:本题考查二项展开式的通项公式是解决二项展开式的特定项问题的工具.17.(4分)(2014•陕西模拟)已知直线的极坐标方程为,则极点到该直线的距离是.考点:简单曲线的极坐标方程;与圆有关的比例线段;不等式的基本性质.专题:计算题;压轴题.分析:先将原极坐标方程中的三角函数式展开后两边同乘以ρ后化成直角坐标方程,再利用直角坐标方程进行求解即得.解答:解:将原极坐标方程,化为:ρsinθ+ρcosθ=1,化成直角坐标方程为:x+y﹣1=0,则极点到该直线的距离是=.故填;.点评:本题考查点的极坐标和直角坐标的互化,利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得.18.(4分)的值为.考点:角的变换、收缩变换.专题:计算题;压轴题.分析:先将分式中的15°化为7°+8°,利用两角和的余弦、正弦展开,分子、分母分组提取sin7°,cos7°,再用同角三角函数的基本关系式,化简,然后,就会求出tan15°,利用两角差的正切,求解即可.解答:解:=======tan15°=tan(45°﹣30°)===,故答案为:点评:本题考查角的变换,两角和的正弦、余弦,同角三角函数的基本关系式,考查学生运算能力,是中档题.19.(4分)已知m、l是直线,α、β是平面,给出下列命题:①若l垂直于α内两条相交直线,则l⊥α;②若l平行于α,则l平行于α内所有的直线;③若m⊊α,l⊊β且l⊥m,则α⊥β;④若l⊊β且l⊥α,则α⊥β;⑤若m⊊α,l⊊β且α∥β,则l∥m.其中正确命题的序号是①④.考点:空间中直线与直线之间的位置关系;空间中直线与平面之间的位置关系.专题:压轴题.分析:对于①,考虑直线与平面垂直的判定定理,符合定理的条件故正确;对于②,考虑直线与平面平行的性质定理以及直线与平面的位置关系,故错误;对于③考虑α⊥β的判定方法,而条件不满足,故错误;对于④符合面面垂直的判定定理,故正确;对于⑤不符合线线平行的判定,故错误.正确命题的序号是①④解答:解:①,符合定理的条件故正确;②,若l平行于α,则l与α内的直线有两种:平行或异面,故错误;③m⊊α,l⊊β且l⊥m,则α与β可以相交但不垂直;④符合面面垂直的判定定理,故正确;⑤若m⊊α,l⊊β且α∥β,则l∥m或者异面,错误,故正确命题的序号是①④.点评:本题考查立体几何中线线关系中的平行、线面关系中的垂直、面面关系中的垂直的判定方法,要注意对比判定定理的条件和结论,同时要注意性质定理、空间直线与直线、直线与平面、平面与平面的位置关系的应用.三、解答题(共6小题,满分69分)20.(10分)已知复数,.复数,z2ω3在复数平面上所对应的点分别为P,Q.证明△OPQ是等腰直角三角形(其中O为原点).考点:复数代数形式的混合运算.分析:利用复数三角形式,化简复数,.然后计算复数,z2ω3,计算二者的夹角和模,即可证得结论.解答:解法一:,于是,,=因为OP与OQ的夹角为,所以OP⊥OQ.因为,所以|OP|=|OQ|由此知△OPQ有两边相等且其夹角为直角,故△OPQ为等腰直角三角形.解法二:因为,所以z3=﹣i.因为,所以ω4=﹣1于是由此得OP⊥OQ,|OP|=|OQ|.由此知△OPQ有两边相等且其夹角为直角,故△OPQ为等腰直角三角形.点评:本小题主要考查复数的基本概念、复数的运算以及复数的几何意义等基础知识,考查运算能力和逻辑推理能力,是中档题.21.(11分)已知数列{a n},{b n}都是由正数组成的等比数列,公比分别为p、q,其中p>q,且p≠1,q≠1.设c n=a n+b n,S n为数列{c n}的前n项和.求.考点:等比数列的通项公式;极限及其运算;数列的求和.专题:计算题.分析:先根据等比数列的通项公式分别求出a n和b n,再根据等比数列的求和公式,分别求得S n和S n﹣1的表达式,进而可得的表达式,分p>1和p<1对其进行求极限.解答:解:,.分两种情况讨论.(Ⅰ)p>1.∵,====p.(Ⅱ)p<1.∵0<q<p<1,==点评:本小题主要考查等比数列的概念、数列极限的运算等基础知识,考查逻辑推理能力和运算能力.22.(12分)甲、乙两地相距S千米,汽车从甲地匀速行驶到乙地,速度不得超过c千米/时.已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v(千米/时)的平方成正比,比例系数为b;固定部分为a元.(1)把全程运输成本y(元)表示为速度v(千米/时)的函数,并指出这个函数的定义域;(2)为了使全程运输成本最小,汽车应以多大速度行驶?考点:根据实际问题选择函数类型;基本不等式在最值问题中的应用.专题:应用题.分析:(1)全程运输成本有两部分组成,将其分别分别表示出来依题意建立起程运输成本y(元)表示为速度v(千米/时)的函数,由题设条件速度不得超过c千米/时.故定义域为v∈(0,c].(2)由(1)知,全程运输成本关于速度的函数表达式中出现了积为定值的情形,由于等号成立的条件有可能不成立,故求最值的方法不确定,对对速度的范围进行分类讨论,如等号成立时速度值不超过c,则可以用基本不等式求求出全程运输成本的最小值,若等号成立时速度值大于最高限速v,可以判断出函数在(0,c]上的单调性,用单调性求出全程运输成本的最小值.解答:解:(1)依题意知汽车从甲地匀速行驶到乙地所用时间为,全程运输成本为故所求函数及其定义域为(2)依题意知S,a,b,v都为正数,故有当且仅当,.即时上式中等号成立若,则当时,全程运输成本y最小,若,即a>bc2,则当v∈(0,c]时,有==因为c﹣v≥0,且a>bc2,故有a﹣bcv≥a﹣bc2>0,所以,且仅当v=c时等号成立,也即当v=c时,全程运输成本y最小.综上知,为使全程运输成本y最小,当时行驶速度应为;当时行驶速度应为v=c.点评:本小题主要考查建立函数关系、不等式性质、最大值、最小值等基础知识,考查综合应用所学数学知识、思想和方法解决实际问题的能力.23.(12分)如图,在正方体ABCD﹣A1B1C1D1中,E、F分别是BB1、CD的中点.(1)证明AD⊥D1F;(2)求AE与D1F所成的角.考点:异面直线及其所成的角.专题:计算题;证明题.分析:(1)证明线线垂直可先证线面垂直,欲证AD⊥D1F,可先证AD⊥面DC1,即可证得;(2)先通过平移将两条异面直线平移到同一个起点,取AB的中点G,将D1F平移到A1G,AB与A1G构成的锐角或直角就是异面直线所成的角,利用三角形全等求出此角即可.解答:解:(Ⅰ)∵AC1是正方体,∴AD⊥面DC1.又D1F⊂面DC1,∴AD⊥D1F.(Ⅱ)取AB中点G,连接A1G,FG.因为F是CD的中点,所以GF、AD平行且相等,又A1D1、AD平行且相等,所以GF、A1D1平行且相等,故GFD1A1是平行四边形,A1G∥D1F.设A1G与AE相交于点H,则∠AHA1是AE与D1F所成的角,因为E是BB1的中点,所以Rt△A1AG≌Rt△ABE,∠GA1A=∠GAH,从而∠AHA1=90°,即直线AE与D1F所成角为直角.点评:本小题主要考查异面直线及其所成的角,考查逻辑推理能力和空间想象能力,属于基础题.24.(12分)设二次函数f(x)=ax2+bx+c(a>0),方程f(x)﹣x=0的两个根x1,x2满足0<x1<x2<.(1)当x∈(0,x1)时,证明x<f (x)<x1;(2)设函数f(x)的图象关于直线x=x0对称,证明x0<.考点:一元二次方程的根的分布与系数的关系;不等式的证明.专题:证明题;压轴题;函数思想;方程思想;作差法.分析:(1)方程f(x)﹣x=0的两个根x1,x2,所以构造函数,当x∈(0,x1)时,利用函数的性质推出x<f (x),然后作差x1﹣f(x),化简分析出f(x)<x1,即可.(2).方程f(x)﹣x=0的两个根x1,x2,函数f(x)的图象,关于直线x=x0对称,利用放缩法推出x0<;解答:证明:(1)令F(x)=f(x)﹣x.因为x1,x2是方程f(x)﹣x=0的根,所以F(x)=a(x﹣x1)(x﹣x2).当x∈(0,x1)时,由于x1<x2,得(x﹣x1)(x﹣x2)>0,又a>0,得F(x)=a(x﹣x1)(x﹣x2)>0,即x<f(x).x1﹣f(x)=x1﹣[x+F(x)]=x1﹣x+a(x1﹣x)(x﹣x2)=(x1﹣x)[1+a(x﹣x2)]因为所以x1﹣x>0,1+a(x﹣x2)=1+ax﹣ax2>1﹣ax2>0.得x1﹣f(x)>0.由此得f(x)<x1.(2)依题意知因为x1,x2是方程f(x)﹣x=0的根,即x1,x2是方程ax2+(b﹣1)x+c=0的根.∴,因为ax2<1,所以.点评:本小题主要考查一元二次方程、二次函数和不等式的基础知识,考查综合运用数学知识分析问题和解决问题的能力.25.(12分)(2012•北京模拟)设圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3:1,在满足条件①、②的所有圆中,求圆心到直线l:x﹣2y=0的距离最小的圆的方程.考点:直线与圆的位置关系.专题:压轴题.分析:圆被x轴分成两段圆弧,其弧长的比为3:1,劣弧所对的圆心角为90°,设圆的圆心为P(a,b),圆P截X轴所得的弦长为,截y轴所得弦长为2;可得圆心轨迹方程,圆心到直线l:x﹣2y=0的距离最小,利用基本不等式,求得圆的方程.解答:解法一:设圆的圆心为P(a,b),半径为r,则点P到x轴,y轴的距离分别为|b|,|a|.由题设知圆P截x轴所得劣弧对的圆心角为90°,知圆P截X轴所得的弦长为,故r2=2b2,又圆P截y轴所得的弦长为2,所以有r2=a2+1.从而得2b2﹣a2=1.又点P(a,b)到直线x﹣2y=0的距离为,所以5d2=|a﹣2b|2=a2+4b2﹣4ab≥a2+4b2﹣2(a2+b2)=2b2﹣a2=1,当且仅当a=b时上式等号成立,此时5d2=1,从而d取得最小值.由此有解此方程组得或由于r2=2b2知.于是,所求圆的方程是(x﹣1)2+(y﹣1)2=2,或(x+1)2+(y+1)2=2.解法二:同解法一,得∴得①将a2=2b2﹣1代入①式,整理得②把它看作b的二次方程,由于方程有实根,故判别式非负,即△=8(5d2﹣1)≥0,得5d2≥1.∴5d2有最小值1,从而d有最小值.将其代入②式得2b2±4b+2=0.解得b=±1.将b=±1代入r2=2b2,得r2=2.由r2=a2+1得a=±1.综上a=±1,b=±1,r2=2.由|a﹣2b|=1知a,b同号.于是,所求圆的方程是(x﹣1)2+(y﹣1)2=2,或(x+1)2+(y+1)2=2.点评:本小题主要考查轨迹的思想,求最小值的方法,考查综合运用知识建立曲线方程的能力.易错的地方,P到x轴,y轴的距离,不能正确利用基本不等式.。
1997年普通高等学校招生全国统一考试数学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分.考试时间120分钟.第Ⅰ卷(选择题共65分)一.选择题:本大题共15小题;第(1)—(10)题每小题4分,第(11)—(15)题每小题5分,共65分.在每小题给出的四个选项中,只有一项是符合题目要求的1.设集合{}02M x x =≤<|,集合{}2230N x x x =--<|,集合MN =A .{}10<≤x xB .{}20<≤x xC .{}10≤≤x xD .{}20≤≤x x 【答案】B【解析】方法一:∵{}13N x x =<<|,则M N ⊂,∴M N M =.方法二:∵{}13N x x =<<|,∴{}{}{}021302M N x x x x x x =≤<<<=≤<||.2.如果直线220ax y ++=与直线320x y --=平行,那么系数a = A .3- B .6- C .23- D .32 【答案】B【解析】由平行关系条件得231a =-,解得6a =.3.函数11tan()23y x π=-在一个周期内的图像是【答案】A 【解析】由于112232x πππ-<-<,所以533x ππ-<<,又正切函数在定义域内为增函数,A 正确.4.已知三棱锥D ABC -的三个侧面与底面全等,且2AB AC BC ===,则以BC 为棱,以面BCD与面BCA 为面的二面角的大小是 A. B .1arccos 3C .2πD .32π由题设可知AB AC BD DC ====,2BC AD ==.取BC 中点M .连结,AM DM .则,AM BC DM BC ⊥⊥.所以AMD ∠就是所求的二面角.在AMD ∆中,222AM DM AM DM AD ==+=.易知这个三角形是一个等腰直角三角形,即2AMD π∠=,所以这个二面角是2π.5.函数sin(2)cos 23y x x π=-+的最小正周期是A .2πB .πC .π2D .π4 【答案】B【解析】2(2)32sin(2)cos 2sin(2)sin(2)2sin 3322x x y x x x x πππππ-+-=-+=-+-= 2(2)5532cos 2sin(2)cos()2sin(2)cos 212121212x x x x ππππππ---⋅=-⋅-=--⋅,所以函数的最小正周期是π.6.满足arccos(1)arccos x x -≥的x 的取值范围是 A .1[1,]2-- B .1[,0]2- C .1[0,]2 D .1[,1]2【答案】D【解析】由于arccos [0,]y x π=∈,且为减函数,所以11,1x x x -≤≤-≤,解得1[,1]2x ∈.7.将2xy =的图像A .先向左平行移动1个单位B .先向右平行移动1个单位C .先向上平行移动1个单位D .先向下平行移动1个单位再作关于直线y x =对称的图像,可得到函数2log (1)y x =+的图像. 【答案】D【解析】函数2log (1)y x =+的反函数为21xy =-,D 正确.8.长方体一个顶点上三条棱的长分别是3,4,5,且它的八个顶点都在同一个球面上,这个球的表面积是 A. B. C .50π D .200π 【答案】C【解析】由题设可得球的半径为22R ==,则表面积是2450R ππ=.9.曲线的参数方程是⎪⎩⎪⎨⎧-=-=2111t y t x (t 是参数,0t ≠),它的普通方程是 A .2(1)(1)1x y --= B .()()221x x y x -=-C .()1112--=x y D .112+-=x xy 【答案】B【解析】由11x t =-得11t x =-,所以211()1y x =--,即21()11y x=--,所以 ()()221x x y x -=-.10.函数2cos 3cos 2y x x =-+的最小值为 A .2 B .0 C .41- D .6 【答案】B【解析】2231cos 3cos 2(cos )24y x x x =-+=--,由1cos 1x -≤≤,所以当1cos 2x =时,函数取得最小值为231(1)024--=.11.椭圆C 与椭圆()()1429322=-+-y x 关于直线0x y +=对称,椭圆C 的方程是A .()()1934222=+++y x B .()()1439222=-+-y xC .()()1439222=+++y x D .()()1934222=-+-y x【答案】A【解析】设椭圆C 上一点(,)x y ,其关于直线0x y +=对称的对称点为(,)y x --,代入方程()()1429322=-+-y x 并整理得()()1934222=+++y x .12.圆台上、下底面积分别为,4ππ,侧面积为π6,这个圆台的体积是A .332π B .π32 C .637π D .337π【答案】D【解析】圆台上、下底半径分别为1,2,由侧面积公式(12)6S l ππ=+=得母线长2l =,所以高h =1(24)33V πππ=++=.13.定义在区间()+∞∞-,的奇函数()f x 为增函数;偶函数()g x 在区间[0,)+∞的图像与()f x 的图像重合,设0a b >>,给出下列不等式:①()()()()f b f a g a g b -->-- ②()()()()f b f a g a g b --<-- ③()()()()f a f b g b g a -->-- ④()()()()f a f b g b g a --<-- 其中成立的是A .①与④B .②与③C .①与③D .②与④ 【答案】C【解析】本小题考查函数的奇偶性与不等式,由条件知数()g x 在区间(),0-∞上是减函数,()f x 在区间(),0-∞上为增函数,作图并结合对称性可知①与③正确.14.不等式组⎪⎩⎪⎨⎧+->+->x x x x x 22330 的解集是A .{}02x x << B .{}5.20<<x x C .{}60<<x x D .{}30<<x x【答案】C【解析】当02x <≤时得3232x x x x -->++,解得02x <≤;当2x >时得3232x xx x-->-++,解得2x <<故答案为C .15.四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,不同的取法共有 A .150种 B .147种 C .144种 D .141种 【答案】D【解析】间接法:每个面内的6个点中任意4个点都共面有464C 种,每条棱与相对棱中点共面的有6种,各棱中点中四点共面的有3种,故满足条件的取法有44106463141C C ---=.【本题难度】较难.第Ⅱ卷 (非选择题共85分)二.填空题:本大题共4小题;每小题4分,共16分.把答案填在题中横线上.16.已知9a x ⎛- ⎝的展开式中3x 的系数为49,常数a 的值为 . 【答案】4【解析】通项为3999221991()((1)()2r rr r r r r r r a T C C a x x ---+==-,由3932r -=得8r =,则884919(1)()24C a -=,所以4a =.17.已知直线的极坐标方程为sin()4πρθ+=,则极点到该直线的距离是 . 【答案】22 【解析】化为直角坐标方程为10x y +-=,原点到直线的距离为22. 18.︒︒-︒︒︒+︒8sin 15sin 7cos 8sin 15cos 7sin 的值为 .【答案】32- 【解析】sin 7cos15sin8sin(158)cos15sin8sin15cos8sin15cos 7sin15sin8cos(158)sin15sin8cos15cos8cos15︒+︒︒︒-︒+︒︒︒︒︒===︒-︒︒︒-︒-︒︒︒︒︒tan 60tan 45tan15tan(6045)21tan 60tan 45︒-︒=︒=︒-︒===+︒︒19.已知,m l 是直线,,αβ是平面,给出下列命题: ①若l 垂直于α内的两条相交直线,则l α⊥; ②若l 平行于α,则l 平行于α内的所有直线; ③若,m l αβ⊂⊂,且l m ⊥,则βα⊥; ④若β⊂l ,且α⊥l ,则βα⊥; ⑤若,m l αβ⊂⊂,且//αβ,则//m l .其中正确的命题是序号是 .(注:把你认为正确的序号都.填上) 【答案】①④.注:第(19)题多填、漏填和错填均给0分.【解析】略.三.解答题:本大题共6小题;共69分.解答应写出文字说明、证明过程或演算步骤.20.(本小题满分10分)已知复数1,2z i ω=-=+.复数23,z z ωω在复数平面上所对应的点分别为,P Q .证明OPQ ∆是等腰直角三角形(其中O 为原点). 【解】本小题主要考查复数的基本概念、复数的运算以及复数的几何意义等基础知识,考查运算能力和逻辑推理能力.解法一:1cos()sin()2266z i i ππ=-=-+-, 4sin 4cos 2222ππωi i +=+=, 于是cossin1212z i ππω=+,cos()sin()1212z i ππω=-+-,2333[cos()sin()](cos sin )3344z i i ππππω=-+-⨯+125sin125cos ππi += 因为OP 与OQ 的夹角为2)12(125πππ=--,所以OP OQ ⊥.因为1.132====ϖϖz OQ z OP ,所以OQ OP =.由此知△OPQ 有两边相等且其夹角为直角,故△OPQ 为等腰直角三角形. 解法二:因为)6sin()6cos(2123ππ-+-=-=i i z ,所以i z -=3. 因为4sin 4cos 2222ππωi i +=+=,所以14-=ω 于是i z z z z z z z z ==⋅=22433232ωωωωωωωω,由此得,OP OQ OP OQ ⊥=. 由此知OPQ ∆有两边相等且其夹角为直角,故OPQ ∆为等腰直角三角形.21.(本小题满分11分)已知数列{}{},n n a b 都是由正数组成的等比数列,公比分别为,p q ,其中p q >,且1,1p q ≠≠.设n n n b a c +=,n S 为数列{}n c 的前n 项和.求1lim-∞→n nn S S .【解】本小题主要考查等比数列的概念、数列极限的运算等基础知识,考查逻辑推理能力和运算能力.满分11分.11(1)(1)11n n n a p b q S p q --=+--,)1)(1()1)(1()1)(1()1)(1(1111111--+----+--=---n n n n n n q p b p q a q p b p q a S S . 分两种情况讨论.(ⅰ)1p >.∵0,01qp q p>><<, 111111111111[(1)(1)(1)()]limlim 11[(1)(1)(1)()]n nn n n nn x n n n n n n q p a q b p S p p pq S p a q b p p p p-→∞→∞-------+--=--+-- 11111111111(1)(1)(1)[()](1)lim 11(1)(1)(1)(1)[()]n nn n n n n q a q b p a q p p pp p p q a q a q b p p p p→∞-----+---=⋅=⋅=---+--.(ⅱ)1p <.∵01q p <<<,11111111111(1)(1)(1)(1)(1)(1)lim lim 1(1)(1)(1)(1)(1)(1)n n n n n n n n S a q p b p q a q b p S a q p b p q a q b p --→∞→∞---+------===--+------22.(本小题满分12分)甲、乙两地相距S 千米,汽车从甲地匀速行驶到乙地,速度不得超过c 千米/时.已知汽车每小时的....运输成本....(以元为单位)由可变部分和固定部分组成:可变部分与速度v (千米/时)的平方成正比、比例系数为b ;固定部分为a 元.(I )把全程运输成本......y (元)表示为速度v (千米/时)的函数,并指出这个函数的定义域; (II )为了使全程运输成本......最小,汽车应以多大速度行驶? 【解】本小题主要考查建立函数关系、不等式性质、最大值、最小值等基础知识,考查综合应用所学数学知识、思想和方法解决实际问题的能力,满分12分. (Ⅰ)依题意知汽车从甲地匀速行驶到乙地所用时间为vs,全程运输成本为)(2bv vaS v S bv v S a y +=⋅+⋅= 故所求函数及其定义域为],0(),(c v bv vaS y ∈+=(Ⅱ)依题意知,,,S a b v 都为正数,故有ab S bv vaS 2)(≥+当且仅当,bv v a=.即bav =时上式中等号成立 若c b a≤,则当bav =时,全程运输成本y 最小, 若c ba>,则当],0(c v ∈时,有 )()(bc c a S bv v a S +-+)]()[(bc bv c a v a S -+-==))((bcv a v c vcS-- 因为0c v -≥,且2a bc >,故有20a bcv a bc >≥->,所以)()(bc caS bv v a S +≥+,且仅当v c =时等号成立, 也即当v c =时,全程运输成本y 最小.综上知,为使全程运输成本y 最小,当c b ab ≤时行驶速度应为bab v =; 当c bab>时行驶速度应为v c =.23.(本小题满分12分)如图,在正方体1111ABCD A B C D -中,,E F 分别是1,BB CD 的中点. (I )证明1AD D F ⊥; (II )求AE 与1D F 所成的角; (III )证明面AED ⊥面11A FD ;(IV )设12AA =,求三棱锥11F A ED -的体积11F A ED V -.【解】本小题主要考查直线与直线、直线与平面、平面与平面的位置关系,考查逻辑推理能力和空间想象能力,满分12分.(Ⅰ)∵1AC 是正方体,∴AD ⊥面1DC .又1D F ⊂面1DC ,∴1AD D F ⊥.(Ⅱ)取AB 中点G ,连结1,A G FG .因为F 是CD 的中点,所以,GF AD 平行且相等,又11,A D AD平行且相等,所以11,GF A D 平行且相等, 故11GFD A 是平行四边形,11//A G D F .设1A G 与AE 相交于点H ,则1AHA ∠是AE 与1D F 所成的角, 因为E 是1BB 的中点,所以11,Rt A AG Rt ABE GA A GAH ∆≅∆∠=∠, 从而190AHA ∠=︒,即直线AE 与1D F 所成角为直角. (Ⅲ)由(Ⅰ)知1AD D F ⊥,由(Ⅱ)知1AE D F ⊥,又ADAE A =,所以1D F ⊥面AED .又因为1D F ⊂面11A FD ,所以面AED ⊥面11A FD . (Ⅳ)连结1,GE GD .∵11//FG A D ,∴//FG 面11A ED ,∴GE A D ED A G ED A F V V V 111111---==. ∵12AA =,∴S S GE A =∆1正方形ABB 1A 12321=--∆∆GBE AG A S S . 123231311111111=⨯⨯=⨯⨯==∆--GE A GE A D ED A F S D A V V .24.(本小题满分12分)设二次函数2()(0)f x ax bx c a =++>,方程()0f x x -=的两个根12,x x 满足10x <21x a<<. (I )当1(0,)x x ∈时,证明1()x f x x <<;(II )设函数()f x 的图像关于直线0x x =对称,证明102x x <.【解】本小题主要考查一元二次方程、二次函数和不等式的基础知识,考查综合运用数学知识分析问题和解决问题的能力.满分12分.证明:(Ⅰ)令()()F x f x x =-.因为12,x x 是方程()0f x x -=的根,所以12()()()F x a x x x x =--.当1(0,)x x ∈时,由于12x x <,得12()()0x x x x -->,又0a >,得12()()()0F x a x x x x =-->,即()x f x <.1111212()[()]()()()[1()]x f x x x F x x x a x x x x x x a x x -=-+=-+--=-+- 因为a x x x 1021<<<<,所以12220,1()110x x a x x ax ax ax ->+-=+->->. 得1()0x f x ->.由此得1()f x x <. (Ⅱ)依题意知ab x 20-=, 因为12,x x 是方程()0f x x -=的根,即12,x x 是方程2(1)0ax b xc +-+=的根. ∴1212120()111,222a x x ax ax b b x x x a a a a+-+--+=-=-==, 因为21ax <,所以22110x a ax x =<.25.(本小题满分12分) 设圆满足:①截y 轴所得弦长为2;②被x 轴分成两段圆弧,其弧长的比为3:1,在满足条件①、②的所有圆中,求圆心到直线:20l x y -=的距离最小的圆的方程.【解】本小题主要考查轨迹的思想,求最小值的方法,考查综合运用知识建立曲线方程的能力.满分12分.解法一:设圆的圆心为(,)P a b ,半径为r ,则点P 到x 轴,y 轴的距离分别为,b a由题设知圆P 截x 轴所得劣弧对的圆心角为90°,知圆P 截x 轴所得的弦长为r 2,故222r b =,又圆P 截y 轴所得的弦长为2,所以有221r a =+.从而得2221b a -=. 又点(,)P a b 到直线20x y -=的距离为52b a d -=, 所以2222222222524442()21d a b a b ab a b a b b a =-=+-≥+-+=-=,当且仅当a b =时上式等号成立,此时251d =,从而d 取得最小值.由此有⎩⎨⎧=-=12,22a b b a 解此方程组得⎩⎨⎧==;1,1b a 或⎩⎨⎧-=-=.1,1b a 由于222r b =知2=r .于是,所求圆的方程是22(1)(1)2x y -+-=,或22(1)(1)2x y +++=.解法二:同解法一,得52b a d -=,∴d b a 52±=-, 得2225544d bd b a +±=,①将2221a b =-代入①式,整理得 01554222=++±d db b ②把它看作b 的二次方程,由于方程有实根,故判别式非负,即28(51)0d ∆=-≥,得251d ≥.∴25d 有最小值1,从而d 有最小值55. 将其代入②式得22420b b ±+=.解得1b =±.将1b =±代入222r b =,得22r =.由221r a =+得1a =±.综上21,1,2a b r =±=±=. 由21a b -=知,a b 同号.于是,所求圆的方程是22(1)(1)2x y -+-=,或22(1)(1)2x y +++=.。
1977年全国各省市高考数学试题及解答北京市(理科)1.解方程.31x x -=-解:将两边平方,得 x 2-1=9-6x+x,即x 2-7x+10=0,(x-2)(x-5)=0, ∴x=2,x=5。
经检验x=5是增根,故原方程的解是x=2。
2.计算121222021-++-.122:+=原式解3.已知lg2=0.3010,lg3=0.4771,求lg 45。
解:lg 45=21lg 21032⨯=0.8266。
4.证明αα+=α+22cos 2sin 1)1(tg 原式成立证∴αα+=αα+αα+α=⎪⎭⎫ ⎝⎛αα+α=α+222222cos 2sin 1cos sin cos sin 2cos cos sin cos )1(:tg 5.求过两直线x+y-7=0和3x-y-1=0的交点且过(1,1)点的直线方程。
解:由x+y-7=03x-y-1=0, 解得x=2,y=5。
过点(2,5)和(1,1)的直线方程为y=4x-3。
6.某工厂今年七月份的产值为100万元,以后每月产值比上月增加20%,问今年七月份到十月份总产值是多少?解:七月份到十月份总产值为 100+(1+20%)·100+(1+20%)2·100+(1+20%)3·100=)(8.5362.00736.110012.1]1)2.1[(1004万元=⨯=--⨯ 7.已知二次函数y=x 2-6x+5(1)求出它的图象的顶点坐标和对称轴方程; (2)画出它的图象;(3)分别求出它的图象和x 轴、y 轴的交点坐标。
解:如图(列表,描点)略。
8.一只船以20海里/小时的速度向正东航行,起初船在A 处看见一灯塔B 在船的北450东方向,一小时后船在C 处看见这个灯塔在船的北150东方向,求这时船和灯塔的距离CB 。
解:由已知条件及图可得AC=20海里,∠BAC=450,∠ABC=300。
由正弦定理可得9.有一个圆内接三角形ABC ,∠A 的平分线交BC 于D ,交外接圆于E ,求证:AD ·AE=AC ·AB 。
1977年普通高等学校招生考试理科数学(福建省)试题及答案1.(1)计算02319)]225.0(1031)833[(35÷-⨯+-⨯---解:原式=7(2)︒︒-︒=155170cos 160cos tg y 的值是正的还是负的?为什么?解:y 的值为负的因为tg1550<0,又第二象限角的余弦函数值随着角的增大而减小,所以,cos1600-cos1700>0,故y<0. (3)求函数1x )x 2lg(y --=的定义域解:略1<x<2(4)如图,在梯形ABCD 中,DM=MP=PA ,MN ∥PQ ∥AB ,DC=2cm,AB=3.5cm 求MN 和PQ 的长解:根据梯形中位线性质可得:⎩⎨⎧=+=+PQ25.3MN MN2PQ 2解之,可得PQ=3(cm),MN=2.5(cm) (5)已知lg3=0.4771,lgx=-3.5229,求x.解:lgx=-3.5229=,4771.4∴x=0.0003. (6)求.2x 3x 1x lim21x +--→ 解:)2)(1(1lim 231lim121---=+--→→x x x x x x x x121lim1-=-=→x x (7)解方程.01x 21x 4=+-+D 2 CA 3.5 B解:移项得1x 21x 4-=+两边平方,得0x ,2x ,0)2x (x ,1x 4x 41x 42==∴=-+-=+(增根) 故原方程的解为x=2(8).a3a 4a a 9a 6a 1n n 1n 1n 2n 21n 2-+-++-+- 解:原式=.1a )3a (a )3a )(1a ()3a (a )3a 4a (a )9a 6a (a n 2n 21n 21n 2--=---=+-+--+(9)求函数2x 3x 52y --=的极值解:略y 的极大值为1249. (10)画出下面V 形铁块的三视图(只要画草图)2.(1)解不等式02x 2x 6x x 22<++-- 解略: -2<x<3. (2)证明:).290(tg 2sin cos 22sin cos 22θ-︒=θ+θθ-θ.)290(tg )90cos(1)90cos(1sin 1sin 1)sin 1(cos 2)sin 1(cos 2:2右边左边证=θ-︒=θ-︒+θ-︒-=θ+θ-=θ+θθ-θ=(3)某中学革命师生自己动手油漆一个直径为1.2米的地球仪,如果每平方米面积需要油漆150克,问共需油漆多少克?(答案保留整数)解:设地球仪的表面积为S ,则.)(44.136.0422.1(4S 22米π=⨯π=⋅π=所以,共需油漆 ).(67821644.1150克≈π=π⨯(4)某农机厂开展“工业学大庆”运动,在十月份生产拖拉机1000台这样,一月至十月的产量恰好完成全年生产任务工人同志为了加速农业机械化,计划在年底前再生产2310台,求十一月、十二月份平均每月增长率解:设十一、十二月份平均每月增长率为x ,则根据题意可得:1000(1+x)+1000(1+x)2=2310,100x 2+300x-31=0,x=0.1,x=-3.1(舍去) 故十一月,十二月份平均每月增长率为10%3.在半径为R 的圆内接正六边形内,依次连结各边的中点,得一正六边形,又在这一正六边形内,再依次连结各边的中点,又得一正六边形,这样无限地继续下去,求: (1)前n 个正六边形的周长之和S n; (2)所有这些正六边形的周长之和S.解:如图,半径为R 的圆内接正六边形的周长为6R ,设C 为AB 的中点,连结OC ,OB ,则OC ⊥AB∴OC=CD=.2360sin R R =︒⋅ .236⋅=R 第二个正六边形的周长同理可得第三个正六边形的周长,)23(62⋅=R第四个正六边形的周长,)23(63⋅=R …………于是可以得到一个表示正六边形周长的数列: 6R ,.236⋅R ,)23(62⋅R ,)23(63⋅R …,)23(61-⋅n R … ①前n 个正六边形周长的和12)23(6)23(62366-⋅++⋅+⋅+=n n R R R R S ])23()23(231[612-++++=n R .])23(1)[32(12231)23(16R R n n-+=--⋅= ②所有这些正六边形周长的和.)32(1232122316R R R S +=-=-=4.动点P (x,y)到两定点A (-3,0)和B (3,0)的距离的比等于2(即2||||=PB PA ),求动点P 的轨迹方程,并说明这轨迹是什么图形解:根据两点间的距离公式可得.16)5(,0910,],)3[(4)3(,,)3(2)3(2)3()3(2222222222222222=+-=++-+-=+++-=++=+-++y x y x x y x y x y x y x yx y x 化简得得两边平方故动点P 的轨迹是以点(5,0)为圆心,以4为半径的圆5.某大队在农田基本建设的规划中,要测定被障碍物隔开的两点A 和P 之间的距离,他们土法上马,在障碍物的两侧,选取两点B 和C (如图),测得AB=AC=50 m ,∠BAC=600,∠ABP=1200, ∠ACP=1350,求A 和P 之间的距离(答案可用最简根式表示)解:连CB ,AP∵∠CAB=600, AC=AB=50m ,∴△ABC于是,∠BCP=1350-600=750, ∠CBP=1200-600,∠BPC=1800-(750+600)=450 由正弦定理,得)(62522235045sin 60sin 50sin sin ,sin sin m BPC CBP CB CP BPC CBCBP CP =⋅=︒︒⋅=∠∠⋅=∠=∠ 由余弦定理,可得)(341025)3410(625))(3410(625)22(625502)625(50135cos 2222222m AP m CP AC CP AC AP +=+=+=-⋅⋅⋅-+=︒⋅⋅⋅-+=故A 、P 两点间的距离是341025+米CB6.已知双曲线)(1162422为锐角α=α-αctg y x 和圆222)(r y m x =+-相切于点A (4,34),求r m ,,α的值解:∵点A (4,34)在双曲线上,∴,116424)34(22=α-αctg),,(2,1,0)2)(1(,02,122舍去不是锐角α-=α=α=+α-α=-α+α=α-αtg tg tg tg tg tg tg tg故双曲线方程为)1(1162422 =-y x又圆的方程为)2()(222 r y m x =+- 从(1)得,163222-=x y代入(2)得,4)34(1632)(22222+-==-+-m r x m x.024*******=-+-m mx x因为交点A 是切点,故方程有等根,即其判别式为.3320,040034032==+-m m m由此可得,圆的圆心为(0,3320), 半径.21344)332034(22=+-=r 7.设数列1,2,4,…前n 项和是,32dn cn bn a S n +++=求这数列的通项n a 的公式,并确定d c b a ,,,的值解:依题意得S 1=1,即1=+++d c b a ……………………① S 2=3,即3842=+++d c b a ………………② S 3=7,即72793=+++d c b a ………………③ 上面三式虽然成不定方程组,但可如下解: ②-①得 273=++d c b ………………④ ③-②得 4195=++d c b ………………⑤ ⑤-④得 ,2122=+d c.61d c -=……………………⑥将⑥代入④得,27)61(3=+-+d d b111-=d b ……………………⑦将⑥⑦代入①,得,)61()111(=+-+-+d d d ad a 61-=……………………⑧当n>1时,.)65()1(2)133()12)(61()111()133()12(])1()1()1([)(22232321d n n n d n n n d d dn n c n b n d n c n b a dn cn bn a S S a n n n +-+-=+-+--+-=+-+-+=-+-+-+-+++=-=-上式在n=1时,成为,16,1)6151(3)11(221==+⋅-⋅+-⋅=d d a∴.61=d将61=d 分别代入⑥、⑦、⑧中得:.0,65,0===a b c).2(2161)65(3)1(222+-=⋅+-+-=∴n n n n n a n参考题1.求函数)45sin(2π+=-x e y x 的导数解:)45cos(5)2()45sin(22π+⋅+⋅-⋅π+='--x e e x y x x)]45sin(2)45cos(5[2π+-π+=-x x e x2.求定积分⎰+1022.)(2dx e x xe x解:⎰⎰⎰+=+1010221022.)(22dx e x dx xe dx e x xe x x其中)1(2101212122210210-===⎰⎰e e dx e dx xe x x x2)1(22012201101010221022-=-+-=⎥⎦⎤⎢⎣⎡-⋅-=-==⎰⎰⎰⎰e e e e dx e e x e dx xe e x de x dx e x xx x x x⎰-=-+-=+122.25232)1(21)(2e e e dx e x xe x 古今中外有学问的人,有成就的人,总是十分注意积累的。
1977年全国各省市高考数学试题及解答北京市(理科)1.解方程.31x x -=-解:将两边平方,得 x 2-1=9-6x+x,即x 2-7x+10=0,(x-2)(x-5)=0, ∴x=2,x=5。
经检验x=5是增根,故原方程的解是x=2。
2.计算121222021-++-.122:+=原式解3.已知lg2=0.3010,lg3=0.4771,求lg 45。
解:lg 45=21lg 21032⨯=0.8266。
4.证明αα+=α+22cos 2sin 1)1(tg原式成立证∴αα+=αα+αα+α=⎪⎭⎫ ⎝⎛αα+α=α+222222cos 2sin 1cos sin cos sin 2cos cos sin cos )1(:tg 5.求过两直线x+y-7=0和3x-y-1=0的交点且过(1,1)点的直线方程。
解:由x+y-7=03x-y-1=0, 解得x=2,y=5。
过点(2,5)和(1,1)的直线方程为y=4x-3。
6.某工厂今年七月份的产值为100万元,以后每月产值比上月增加20%,问今年七月份到十月份总产值是多少?解:七月份到十月份总产值为 100+(1+20%)·100+(1+20%)2·100+(1+20%)3·100=)(8.5362.00736.110012.1]1)2.1[(1004万元=⨯=--⨯ 7.已知二次函数y=x 2-6x+5(1)求出它的图象的顶点坐标和对称轴方程; (2)画出它的图象;(3)分别求出它的图象和x 轴、y 轴的交点坐标。
解:如图(列表,描点)略。
8.一只船以20海里/小时的速度向正东航行,起初船在A 处看见一灯塔B 在船的北450东方向,一小时后船在C 处看见这个灯塔在船的北150东方向,求这时船和灯塔的距离CB 。
解:由已知条件及图可得AC=20海里,∠BAC=450,∠ABC=300。
由正弦定理可得9.有一个圆内接三角形ABC ,∠A 的平分线交BC 于D ,交外接圆于E ,求证:AD ·AE=AC ·AB 。
高考理科数学考试真题(福建卷)参考答案1.C 【解析】∵(32)z i i =-=23i +,∴23z i =-. 2.A 【解析】圆柱的正视图是矩形,∴选A .3.C 【解析】设等差数列{}n a 的公差为d ,则3133S a d =+,所以12323d =⨯+,解得2d =,所以612a =.4.B 【解析】由题意有1log 3a =,则3a =,∴13()3xx y -==,排除A ;33y ()x x =-=- 递减,排除C ;3log ()y x =-过(3,1)-而不是(3,1)--,排除D ;选B . 5.B 【解析】10,1,0213,2S n S n ===++==;因为315≥不成立,执行循环:23229S =++=,3n =,因为915≥不成立,执行循环:392320,4S n =++==,因为2015≥成立,停止循环:所以输出的S 得值为20.6.A 【解析】若1k =,则直线:1l y x =+与圆相交于(0,1),(1,0)-两点,所以OAB ∆的面积111122OAB S ∆=⨯⨯=,所以"1"k =⇒“OAB ∆的面积为12”;若“OAB ∆的面积为12”,则1k =±,所以“OAB ∆的面积为12”⇒ "1"k =,所以选A .7.D 【解析】2()1,()1f f πππ=+-=-,所以函数()x f 不是偶函数,排除A ;因为函数()x f 在(2,)ππ--上单调递减,排除B ;函数()x f 在(0,)+∞上单调递增,所以函数()f x 不是周期函数,选D .8.B 【解析】对于A ,C ,D ,都有1e ∥2e ,所以只有B 成立.9.D 【解析】由题意可设,sin )Q αα,圆的圆心坐标为(0,6)C ,圆心到Q 的距离为||CQ ===,当且仅当2sin 3α=-时取等号,所以max max ||||PQ CQ r +==≤,所以Q P ,两点间的最大距离是.10.A 【解析】分三步:第一步,5个无区别的红球可能取出0个,1个,…,5个,则有2345(1)a a a a a +++++种不同的取法;第二步,5个无区别的篮球都取出或都不取出,则有5(1)b +种不同的取法;第三步,5个有区别的黑球看作5个不同色,从5个不同色的黑球任取0个,1个,…,5个,有5(1)c +种不同的取法,所以所求的取法种数为2345(1)a a a a a +++++5(1)b +5(1)c +.11.1【解析】可行域的三个交点分别为(0,1),(2,3),(0,4),代入y x z +=3得,在(0,1)处取得最小值112.在ABC ∆中,根据正弦定理,得sin sin AC BCB A=,解得sin 1B =,∴90B =,所以30C =,所以1sin 2ABCSAC BC C =⋅⋅⋅= 13.160【解析】设该容器的总造价为y 元,长方体的底面矩形的长x m ,因为无盖长方体的容积为34m ,高为1m ,所以长方体的底面矩形的宽为4m x,依题意,得24420410(2)8020()8020160y x x x x ⨯=⨯++=+++⨯=≥ 14.22e【解析】根据对称性,两个阴影部分面积相等,∴1100=2()22|2x x S e e dx e e -=-=⎰阴,由几何概型的概率计算公式,得所求的概率为22=S S e阴正 15.6【解析】因为①正确,②也正确,所以只有①正确是不可能的;若只有②正确,①③④都不正确,则符合条件的有序数组为(2,3,1,4),(3,2,1,4);若只有③正确,①②④都不正确,则符合条件的有序数组为(3,1,2,4);若只有④正确,①②③都不正确,则符合条件的有序数组为(2,1,4,3),(3,1,4,2),(4,1,3,2).综上符合条件的有序数组的个数是6.16.【解析】解法一:(Ⅰ)因为0,2πα<<sin 2α=所以cos 2α=.所以11()()22222f α=+-= (Ⅱ)因为2111cos 21()sin cos cos sin 22222x f x x x x x +=+-=+-11sin 2cos 2)2224x x x π=+=+, 所以22T ππ==.由222,,242k x k k Z πππππ-≤+≤+∈得3,88k x k k Z ππππ-≤≤+∈. 所以()f x 的单调递增区间为3[,],88k k k Z ππππ-+∈. 解法二:2111cos 21()sin cos cos sin 22222x f x x x x x +=+-=+-11sin 2cos 2)2224x x x π=+=+(Ⅰ)因为0,2πα<<sin α=所以4πα=从而31())24242f ππαα=+== (Ⅱ)22T ππ== 由222,,242k x k k Z πππππ-≤+≤+∈得3,88k x k k Z ππππ-≤≤+∈. 所以()f x 的单调递增区间为3[,],88k k k Z ππππ-+∈.17.【解析】:(Ⅰ)因为ABD ⊥平面BCD ,平面ABD平面,BCD BD AB =⊂平面,,ABD AB BD ⊥所以AB ⊥平面.BCD 又CD ⊂平面,BCD 所以AB CD ⊥.(Ⅱ)过点B 在平面BCD 内作BE BD ⊥,如图.由(1)知AB ⊥平面,BCD BE ⊂平面,BCD BD ⊂平面,BCD 所以,AB BE AB BD ⊥⊥.以B 为坐标原点,分别以,,BE BD BA 的方向为x 轴, y 轴, z 轴的正方向建立空间直角坐标系.依题意,得11(0,0,0),(1,1,0),(0,1,0),(0,0,1),(0,,)22B C D A M . 则11(1,1,0),(0,,),(0,1,1)22BC BM AD ===-. 设平面MBC 的法向量000(,,)n x y z =.则00n BC n BM ⎧⋅=⎪⎨⋅=⎪⎩即00000102x y y z +=⎧⎪⎨+=⎪⎩.取01,z =得平面MBC 的一个法向量(1,1,1)n =-. 设直线AD 与平面MBC 所成角为θ, 则6sin cos ,3n AD n AD n ADθ⋅=<>==即直线AD 与平面MBC 18.【解析】:(1)设顾客所获的奖励为X.①依题意,得1113241(60)2C C P X C ===.即顾客所获得的奖励额为60元的概率为12. ②依题意,得X 的所有可能取值为20,60. 232411(60),(20)22C P X P X C =====.即X 的分布列为所以顾客所获得的奖励额的期望为()200.5600.540E X =⨯+⨯=(元).(2)根据商场的预算,每个顾客的平均奖励为60元.所以先寻找期望为60元的可能方案.对于面值由10元和50元组成的情况,如果选择(10,10,10,50)的方案,因为60元是面值之和的最大值,所以期望不可能为60元;如果选择(50,50,50,10)的方案,因为60元是面值之和的最小值,所以数学期望也不可能为60元,因此可能的方案是(10,10,50,50),记为方案1.对于面值由20元和40元组成的情况,同理可排除(20,20,20,40)和(40,40,40,20)的方案,所以可能的方案是(20,20,40,40),记为方案2. 以下是对两个方案的分析:对于方案1,即方案(10,10,50,50),设顾客所获的奖励为1X ,则1X 的分布列为1X 的期望为1()206010060636E X =⨯+⨯+⨯=,1X 的方差为22211211600()(2060)(6060)(10060)6363D X =-⨯+-⨯+-⨯=.对于方案2,即方案(20,20,40,40),设顾客所获的奖励为2X ,则2X 的分布列为2X 的期望为2()40608060636E X =⨯+⨯+⨯=,2X 的方差为2222121400()(4060)(6060)(8060)6363D X =-⨯+-⨯+-⨯=.由于两种方案的奖励额都符合要求,但方案2奖励的方差比方案1的小, 所以应该选择方案2.19.【解析】解法一:(Ⅰ)因为双曲线E 的渐近线分别为和2,2y x y x ==-.所以2,2,b c a ==∴=,从而双曲线E 的离心率e =(Ⅱ)由(1)知,双曲线E 的方程为222214x y a a-=.设直线l 与x 轴相交于点C.当l x ⊥轴时,若直线l 与双曲线E 有且只有一个公共点, 则,4OC a AB a ==, 又因为OAB ∆的面积为8,所以118,48,222OC AB a a a =∴⋅=∴=. 此时双曲线E 的方程为221416x y -=. 若存在满足条件的双曲线E,则E 的方程只能为221416x y -=. 以下证明:当直线l 不与x 轴垂直时,双曲线E :221416x y -=也满足条件. 设直线l 的方程为y kx m =+,依题意,得k>2或k<-2. 则(,0)mC k-,记1122(,),(,)A x y B x y . 由2y x y kx m=⎧⎨=+⎩,得122m y k =-,同理得222m y k =+.由1212OAB S OC y y ∆=-得,1228222m m mk k k-⋅-=-+即222444(4)m k k =-=-. 由221416y kx m x y =+⎧⎪⎨-=⎪⎩得, 222(4)2160k x kmx m ----=.因为240k -<,所以22222244(4)(16)16(416)k m k m k m ∆=+-+=---,又因为224(4)m k =-.所以0∆=,即l 与双曲线E 有且只有一个公共点.因此,存在总与l 有且只有一个公共点的双曲线E,且E 的方程为221416x y -=. 20.【解析】解法一:(Ⅰ)由()xf x e ax =-,得'()xf x e a =-.又'(0)11f a =-=-,得2a =.所以()2,'()2xxf x e x f x e =-=-.令'()0f x =,得ln 2x =. 当ln 2x <时, '()0,()f x f x <单调递减; 当ln 2x >时, '()0,()f x f x >单调递增. 所以当ln 2x =时, ()f x 取得极小值,且极小值为ln 2(ln 2)2ln 22ln 4,()f e f x =-=-无极大值.(Ⅱ)令2()x g x e x =-,则'()2xg x e x =-.由(I )得'()()(ln 2)0g x f x f =≥>,故()g x 在R 上单调递增,又(0)10g =>, 因此,当0x >时, ()(0)0g x g >>,即2xx e <.(Ⅲ)①若1c ≥,则xxe ce ≤.又由(Ⅱ)知,当0x >时, 2xx e <.所以当0x >时, 2xx ce <.取00x =,当0(,)x x ∈+∞时,恒有22x cx <.②若01c <<,令11k c=>,要使不等式2x x ce <成立,只要2x e kx >成立. 而要使2x e kx >成立,则只要2ln()x kx >,只要2ln ln x x k >+成立.令()2ln ln h x x x k =--,则22'()1x h x x x-=-=. 所以当2x >时, '()0,()h x h x >在(2,)+∞内单调递增. 取01616x k =>,所以()h x 在0(,)x +∞内单调递增.又0()162ln(16)ln 8(ln 2)3(ln )5h x k k k k k k k =--=-+-+. 易知ln ,ln 2,50k k k k >>>.所以0()0h x >. 即存在016x c=,当0(,)x x ∈+∞时,恒有2xx ce <. 综上,对任意给定的正数c ,总存在0x ,当0(,)x x ∈+∞时,恒有2xx ce <. 解法二:(Ⅰ)同解法一 (Ⅱ)同解法一(Ⅲ)对任意给定的正数c ,取o x =由(Ⅱ)知,当x>0时,2xe x >,所以2222,()()22x x xx x e e e =>当o x x >时, 222241()()()222xx x x e x c c>>=因此,对任意给定的正数c ,总存在0x ,当0(,)x x ∈+∞时,恒有2xx ce <. 21.(1)【解析】(Ⅰ)因为矩阵A 是矩阵1A -的逆矩阵,且1221130A-=⨯-⨯=≠,所以2321132121333A ⎛⎫- ⎪-⎛⎫== ⎪ ⎪- ⎪⎝⎭-⎪ ⎭⎝.(Ⅱ)矩阵1A -的特征多项式为221() 43(1)(3)12f λλλλλλλ--==-+=----,令()0f λ=,得矩阵1A -的特征值为11λ=或23λ=,所以111ξ⎛⎫= ⎪-⎝⎭是矩阵1A -的属于特征值11λ=的一个特征向量. 211ξ⎛⎫= ⎪⎝⎭是矩阵1A -的属于特征值23λ=的一个特征向量.(2)【解析】(Ⅰ)直线l 的普通方程为220x y a --=.圆C 的普通方程为2216x y +=.(Ⅱ)因为直线l 与圆有公共点,故圆C 的圆心到直线l的距离4d =≤,解得a -≤≤23.【解析】(Ⅰ)因为12(1)(2)3x x x x ++-≥+--=,当且仅当12x -≤≤时,等号成立,所以()f x 的最小值等于3,即3a =. (Ⅱ)由(I )知3p q r ++=,又因为,,p q r 是正数,所以22222222()(111)(111)()9p q r p q r p q r ++++≥⨯+⨯+⨯=++=, 即2223p q r ++≥.。
1977年普通高等学校招生考试理科数学(福建省)试题及答案1.(1)计算02319)]225.0(1031)833[(35÷-⨯+-⨯---解:原式=7(2)︒︒-︒=155170cos 160cos tg y 的值是正的还是负的?为什么?解:y 的值为负的因为tg1550<0,又第二象限角的余弦函数值随着角的增大而减小,所以,cos1600-cos1700>0,故y<0. (3)求函数1x )x 2lg(y --=的定义域解:略1<x<2(4)如图,在梯形ABCD 中,DM=MP=PA ,MN ∥PQ ∥AB ,DC=2cm,AB=3.5cm 求MN 和PQ 的长解:根据梯形中位线性质可得:⎩⎨⎧=+=+PQ25.3MN MN2PQ 2解之,可得PQ=3(cm),MN=2.5(cm) (5)已知lg3=0.4771,lgx=-3.5229,求x.解:lgx=-3.5229=,4771.4∴x=0.0003. (6)求.2x 3x 1x lim21x +--→ 解:)2)(1(1lim 231lim121---=+--→→x x x x x x x x121lim1-=-=→x x (7)解方程.01x 21x 4=+-+D 2 CA 3.5 B解:移项得1x 21x 4-=+两边平方,得0x ,2x ,0)2x (x ,1x 4x 41x 42==∴=-+-=+(增根) 故原方程的解为x=2(8).a3a 4a a 9a 6a 1n n 1n 1n 2n 21n 2-+-++-+- 解:原式=.1a )3a (a )3a )(1a ()3a (a )3a 4a (a )9a 6a (a n 2n 21n 21n 2--=---=+-+--+(9)求函数2x 3x 52y --=的极值解:略y 的极大值为1249. (10)画出下面V 形铁块的三视图(只要画草图)2.(1)解不等式02x 2x 6x x 22<++-- 解略: -2<x<3. (2)证明:).290(tg 2sin cos 22sin cos 22θ-︒=θ+θθ-θ.)290(tg )90cos(1)90cos(1sin 1sin 1)sin 1(cos 2)sin 1(cos 2:2右边左边证=θ-︒=θ-︒+θ-︒-=θ+θ-=θ+θθ-θ=(3)某中学革命师生自己动手油漆一个直径为1.2米的地球仪,如果每平方米面积需要油漆150克,问共需油漆多少克?(答案保留整数)解:设地球仪的表面积为S ,则.)(44.136.0422.1(4S 22米π=⨯π=⋅π=所以,共需油漆 ).(67821644.1150克≈π=π⨯(4)某农机厂开展“工业学大庆”运动,在十月份生产拖拉机1000台这样,一月至十月的产量恰好完成全年生产任务工人同志为了加速农业机械化,计划在年底前再生产2310台,求十一月、十二月份平均每月增长率解:设十一、十二月份平均每月增长率为x ,则根据题意可得:1000(1+x)+1000(1+x)2=2310,100x 2+300x-31=0,x=0.1,x=-3.1(舍去) 故十一月,十二月份平均每月增长率为10%3.在半径为R 的圆内接正六边形内,依次连结各边的中点,得一正六边形,又在这一正六边形内,再依次连结各边的中点,又得一正六边形,这样无限地继续下去,求: (1)前n 个正六边形的周长之和S n; (2)所有这些正六边形的周长之和S.解:如图,半径为R 的圆内接正六边形的周长为6R ,设C 为AB 的中点,连结OC ,OB ,则OC ⊥AB∴OC=CD=.2360sin R R =︒⋅ .236⋅=R 第二个正六边形的周长同理可得第三个正六边形的周长,)23(62⋅=R第四个正六边形的周长,)23(63⋅=R …………于是可以得到一个表示正六边形周长的数列: 6R ,.236⋅R ,)23(62⋅R ,)23(63⋅R …,)23(61-⋅n R …①前n 个正六边形周长的和12)23(6)23(62366-⋅++⋅+⋅+=n n R R R R S ])23()23(231[612-++++=n R .])23(1)[32(12231)23(16R R n n-+=--⋅= ②所有这些正六边形周长的和.)32(1232122316R R R S +=-=-=4.动点P (x,y)到两定点A (-3,0)和B (3,0)的距离的比等于2(即2||||=PB PA ),求动点P 的轨迹方程,并说明这轨迹是什么图形解:根据两点间的距离公式可得.16)5(,0910,],)3[(4)3(,,)3(2)3(2)3()3(2222222222222222=+-=++-+-=+++-=++=+-++y x y x x y x y x y x y x yx y x 化简得得两边平方故动点P 的轨迹是以点(5,0)为圆心,以4为半径的圆5.某大队在农田基本建设的规划中,要测定被障碍物隔开的两点A 和P 之间的距离,他们土法上马,在障碍物的两侧,选取两点B 和C (如图),测得AB=AC=50 m ,∠BAC=600,∠ABP=1200, ∠ACP=1350,求A 和P 之间的距离(答案可用最简根式表示)解:连CB ,AP∵∠CAB=600, AC=AB=50m ,∴△ABC于是,∠BCP=1350-600=750, ∠CBP=1200-600,∠BPC=1800-(750+600)=450 由正弦定理,得)(62522235045sin 60sin 50sin sin ,sin sin m BPC CBP CB CP BPC CBCBP CP =⋅=︒︒⋅=∠∠⋅=∠=∠ 由余弦定理,可得)(341025)3410(625))(3410(625)22(625502)625(50135cos 2222222m AP m CP AC CP AC AP +=+=+=-⋅⋅⋅-+=︒⋅⋅⋅-+=故A 、P 两点间的距离是341025+米CB6.已知双曲线)(1162422为锐角α=α-αctg y x 和圆222)(r y m x =+-相切于点A(4,34),求r m ,,α的值解:∵点A (4,34)在双曲线上,∴,116424)34(22=α-αctg),,(2,1,0)2)(1(,02,122舍去不是锐角α-=α=α=+α-α=-α+α=α-αtg tg tg tg tg tg tg tg故双曲线方程为)1(1162422 =-y x又圆的方程为)2()(222 r y m x =+- 从(1)得,163222-=x y代入(2)得,4)34(1632)(22222+-==-+-m r x m x.024*******=-+-m mx x因为交点A 是切点,故方程有等根,即其判别式为.3320,040034032==+-m m m由此可得,圆的圆心为(0,3320), 半径.21344)332034(22=+-=r 7.设数列1,2,4,…前n 项和是,32dn cn bn a S n +++=求这数列的通项n a 的公式,并确定d c b a ,,,的值解:依题意得S 1=1,即1=+++d c b a ……………………① S 2=3,即3842=+++d c b a ………………② S 3=7,即72793=+++d c b a ………………③ 上面三式虽然成不定方程组,但可如下解: ②-①得 273=++d c b ………………④ ③-②得 4195=++d c b ………………⑤ ⑤-④得 ,2122=+d c.61d c -=……………………⑥将⑥代入④得,27)61(3=+-+d d b111-=d b ……………………⑦将⑥⑦代入①,得,)61()111(=+-+-+d d d ad a 61-=……………………⑧当n>1时,.)65()1(2)133()12)(61()111()133()12(])1()1()1([)(22232321d n n n d n n n d d dn n c n b n d n c n b a dn cn bn a S S a n n n +-+-=+-+--+-=+-+-+=-+-+-+-+++=-=-上式在n=1时,成为,16,1)6151(3)11(221==+⋅-⋅+-⋅=d d a∴.61=d将61=d 分别代入⑥、⑦、⑧中得:.0,65,0===a b c).2(2161)65(3)1(222+-=⋅+-+-=∴n n n n n a n参考题1.求函数)45sin(2π+=-x e y x 的导数解:)45cos(5)2()45sin(22π+⋅+⋅-⋅π+='--x e e x y x x)]45sin(2)45cos(5[2π+-π+=-x x e x2.求定积分⎰+1022.)(2dx e x xe x解:⎰⎰⎰+=+1010221022.)(22dx e x dx xe dx e x xe x x其中)1(2101212122210210-===⎰⎰e e dx e dx xe x x x2)1(22012201101010221022-=-+-=⎥⎦⎤⎢⎣⎡-⋅-=-==⎰⎰⎰⎰e e e e dx e e x e dx xe e x de x dx e x x x x x x⎰-=-+-=+122.25232)1(21)(2e e e dx e x xex。