3[1].4 控制系统的结构分解 ppt课件
- 格式:ppt
- 大小:1.06 MB
- 文档页数:25
第三章线性控制系统的能控性与能观测性分析3.1 线性连续系统的能控性3.2 线性连续系统的能观测性3.3 对偶原理3.4 线性离散系统的能控性和能观测性3.5 线性系统的结构分解3.6 线性连续系统的实现3.7 传递函数与能控性及能观测性之间的关系系统n x x x ,,,21L 状态1u 2u n u 1y 1y ny M M M M为什么要讨论系统的能控性和能观测性?能控性(Controllability)和能观测性(Observability)深刻地揭示了系统内部结构关系,由R.E.Kalman于60年代初首先提出并研究的这两个重要概念。
在现代控制理论的研究与实践中,具有极其重要的意义。
事实上,能控性与能观测性通常决定了最优控制问题解的存在性。
在极点配置问题中,状态反馈存在性由系统能控性决定;在观测器设计和最优估计中,涉及系统能观测性条件。
在本章中,我们的讨论将限于线性系统。
将首先给出能控性与能观测性的定义,然后推导出判别系统能控和能观测性的若干判据。
3.1.1 概述3.1 线性连续系统的能控性能控性和能观测性就是研究系统这个“黑箱”内部状态是否可由输入影响和是否可由输出反映。
u x x x x ⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡−=⎥⎦⎤⎢⎣⎡2150042121&&[]⎥⎦⎤⎢⎣⎡−=2160x x y [例3.1]给定系统的描述为将其表为标量方程组形式,有:u x x+=114&u x x2522+−=&26x y −=分析:x 1、x 2受控于u y 与x 1无关y 与x 2有关[例3.2]:判断下列电路的能控和能观测性左上图:输入u(t),状态x(t),输出y(t)。
(t),x2(t)。
右上图:输入u(t),状态x1左图:输入u(t),状态x(t),x2(t),1输出y(t) 。
3.1.2 能控性的定义Ut B X t A X )()(+=&线性时变系统的状态空间描述:∑:),,,D C B A ()1.3)()()((U t D X t C t Y +=Jt ∈00)(X t X =其中:X 为n 维状态向量;U 为m 维输入向量;J 为时间t 的定义区间;A 为n*n 的元为t 的连续函数矩阵;B 为n*m 的元为t 的连续函数矩阵。