测量放样后方交会法
- 格式:doc
- 大小:113.00 KB
- 文档页数:4
全站仪后方交会法的具体操作步骤
开机后先按S.O 键,输入文件名(也可跳过),确定,再按S.O 键下翻,F2 键选择新点,再按F2 选择后方交会法,再选择一个文件,确定,自定义点名(可跳过),再F1 距离后方交会,输入仪高,确定,在No1#界面里面选择坐标,输入第一个已知点的坐标,在已知点上架好凌镜,测量,再用同样的方法进行第二个点的操作。
然后再看残差大不大,不大可以进行计算,后面的就进行定位放线。
以南方全站仪为例: 放样---新点----后方交会法----输入点号---回车----输入仪高---回车---输入A 点已知坐标-----输入棱镜高---测量距离---自动保存-----输入B 点坐标---输入棱高----测量距离----自动保存----计算----记录---(完成) 说的挺多,其实挺简单的,你可以上网下一本说明书,说明书里说的很祥细.网上有很多的.希望对你有帮助. 全站仪后方交会的操作方法请告诉我全站仪后方交会法跟极坐标法的原理是一样的,都要有两个已知条件。
极坐标法有两个已知坐标或者一个坐标一个方向就可以了,后方交汇要有两个坐标。
步骤:在仪器里面找到后方交汇,有的叫交会测量,有的叫新点。
每个仪器不同都不一样。
有的一起要输入两个坐标后在测距,有的是输一个测一个。
反正就是输入坐标,然后测距,然后按计算,定向就可以了,后交有条件限制的。
交会角度不能小于15 度和大于165 度、
更不能再一条直线上。
要不然仪器就不能计算出结果。
无法交会。
对交会距离也有一定限制,得慢慢摸索,总之比极坐标法好用但是精度差点,可以交会2 个坐标,也可以交会很多坐标。
坐标都精度高。
全站仪后方交会法步骤和高程测量步骤Revised final draft November 26, 20201、角度测量(angleobservation)(1)功能:可进行水平角、竖直角的测量。
(2)方法:与经纬仪相同,若要测出水平角∠AOB,则:1)当精度要求不高时:瞄准A点——置零(0SET)——瞄准B点,记下水平度盘HR的大小。
2)当精度要求高时:——可用测回法(methodofobservationset)。
操作步骤同用经纬仪操作一样,只是配置度盘时,按“置盘”(HSET)。
2、距离测量(distancemeasurement)PSM、PPM的设置——测距、测坐标、放样前。
1)棱镜常数(PSM)的设置。
一般:PRISM=0(原配棱镜),-30mm(国产棱镜)2)大气改正数(PPM)(乘常数)的设置。
输入测量时的气温(TEMP)、气压(PRESS),或经计算后,输入PPM的值。
(1)功能:可测量平距HD、高差VD和斜距SD(全站仪镜点至棱镜镜点间高差及斜距)(2)方法:照准棱镜点,按“测量”(MEAS)。
3、坐标测量(coordinatemeasurement)(1)功能:可测量目标点的三维坐标(X,Y,H)。
(2)测量原理任意架仪器,先设置仪器高为0,棱镜高是多少就是多少,棱镜拿去直接放在已知点上测高差,测得的高差为棱镜头到仪器视线的高差,当然,有正有负了,然后拿出计算器用已知点加上棱镜高,再加上或减去(因为有正有负)测得的高差就是仪器的视线高啊,因为仪器高为0,所以这个数字就是你的测站点高程,进测站点把它改成这个数字就行了,改完测站点了一般情况下都要打一下已知点复核一下。
若输入:方位角,测站坐标(,);测得:水平角和平距。
则有:方位角:坐标:若输入:测站S高程,测得:仪器高i,棱镜高v,平距,竖直角,则有:高程:(3)方法:输入测站S(X,Y,H),仪器高i,棱镜高v——瞄准后视点B,将水平度盘读数设置为——瞄准目标棱镜点T,按“测量”,即可显示点T的三维坐标。
后方交会法计算推导公式后方交会法是一种用于计算物体在空间中的坐标和距离的方法。
它基于两个观测者在不同位置观测同一个物体的现象。
假设有两个观测者A和B,在空间中观测同一个物体P。
观测者A 和B的位置分别为A(xA, yA, zA)和B(xB, yB, zB)。
物体P在观测者A和B的朝向上的投影分别为a和b,它们的长度分别为dA和dB。
根据几何关系,可以推导出以下公式:dA = sqrt((xA - xP)^2 + (yA - yP)^2 + (zA - zP)^2)dB = sqrt((xB - xP)^2 + (yB - yP)^2 + (zB - zP)^2)其中,(xP, yP, zP)是物体P的坐标。
如果已知dA、dB和相关观测者位置的坐标,可以使用这些公式来计算物体P的坐标(xP, yP, zP)。
同时,如果已知物体P在两个观测者朝向上的投影长度a和b,也可以利用这些公式计算物体P到观测者A和B的距离。
需要注意的是,后方交会法在实际应用中可能会受到观测误差的影响,因此在计算时需要考虑这些误差,并采取合适的数据处理和精度控制方法。
拓展:后方交会法是测量和定位的重要方法之一,广泛应用于地理测量、摄影测量、建筑工程等领域。
它可以通过精确的测量和计算,确定物体在三维空间中的准确位置和形状,对于工程设计、地理信息系统等具有重要的实际应用价值。
除了后方交会法,还有其他一些方法可以用于测量和定位物体的坐标和距离,比如三角测量法、三角高程测量法、全站仪测量法等。
每种方法都有其适用的场景和局限性,根据具体的测量需求和条件选择合适的方法是非常重要的。
此外,随着科技的进步和发展,新的测量和定位技术不断涌现,为实现更精确和高效的测量和定位提供了更多的选择。
后方交会-解释是工程测量中一种比较常用的一种测量方法.主要是通过两个或多已知点测量一个未知点.测角定位-正文利用测角仪器观测角度,以确定被测点位置的一种方法。
一般观测两个角,则有两条位置线,两线交点即为被测点位置。
在海洋测量中,测角定位通常使用的方法有:后方交会法,一般使用三标两角法,有时使用四标三角法,即在被测点上使用测角仪器观测3个或4个已知目标之间的夹角来确定点位;前方交会法,在两个或两个以上已知点上用测角仪器同时观测各已知点到某一被测点的夹角来确定点位;侧方交会法,综合使用后方交会法和前方交会法来实现定位的方法。
另外,还有一距离一方位法,也是通过测角测定方位和距离实现定位的。
因为测角仪器大部分是目视光学仪器,所以作用距离近,只适于近岸测量使用。
控制测量-正文在一定的区域内为地形测图或工程测量建立控制网(区域控制网)所进行的测量工作。
分为平面控制测量和高程控制测量。
平面控制网与高程控制网一般分别单独布设,也可以布设成三维控制网。
控制网具有控制全局,限制测量误差累积的作用,是各项测量工作的依据。
对于地形测图,等级控制是扩展图根控制的基础,以保证所测地形图能互相拼接成为一个整体。
对于工程测量,常需布设专用控制网,作为施工放样和变形观测的依据。
平面控制网常用三角测量、导线测量、三边测量和边角测量等方法建立。
三角测量是建立平面控制网的基本方法之一。
但三角网(锁)要求每点与较多的邻点相互通视,在隐蔽地区常需建造较高的觇标。
导线测量布设简单,每点仅需与前后两点通视,选点方便,特别是在隐蔽地区和建筑物多而通视困难的城市,应用起来方便灵活。
随着电磁波测距仪的发展,导线测量的应用日益广泛。
三边测量要求丈量网中所有的边长。
应用电磁波测距仪测定边长后即可进行解算。
此法检核条件少,推算方位角的精度较低。
边角测量法既观测控制网的角度,又测量边长。
测角有利于控制方向误差,测边有利于控制长度误差。
边角共测可充分发挥两者的优点,提高点位精度。
全站仪后方交会标准差算法-回复全站仪后方交会标准差算法是一种用于测量和校正地形和地形图数据中错误的算法。
本文将详细介绍后方交会的概念、全站仪的基本原理、后方交会标准差算法的步骤和计算方法。
一、后方交会的概念后方交会是一种测量方法,通过在地面上放置全站仪进行观测,然后根据观测数据和相关的地理位置信息,计算出地面上各个点的坐标位置。
后方交会在土地测量、工程测量、地形图绘制等领域都有广泛的应用。
二、全站仪的基本原理全站仪是一种精密的测量仪器,通过自动和手动调整观测仪器的参数,利用角度和距离观测测量点的水平和垂直角度以及与仪器的距离。
观测数据经过处理后,可以确定测量点的坐标位置。
全站仪具有快速、精确、全面和高效的特点,广泛应用于各种测量任务中。
三、后方交会标准差算法的步骤后方交会标准差算法包括以下几个步骤:1.观测数据采集:使用全站仪对目标点进行观测,记录水平角、垂直角和斜距数据。
观测过程中需要注意仪器的稳定和准确对准。
2.观测数据处理:按照测量次序和观测数据的特点,对观测数据进行处理和整理。
这包括数据的去除、筛选和修正等。
3.观测数据校正:根据已知和控制点的坐标,使用观测数据进行校正。
这个过程中需要使用后方交会标准差算法对数据进行处理。
4.测量点坐标计算:利用已校正的观测数据,结合先前测量的控制点坐标,使用三角法或其他测量计算方法,计算出待测点的坐标位置。
5.检查和调整:对计算得到的测量点坐标进行检查和调整,保证测量结果的准确性和可靠性。
如果发现误差较大或不符合预期要求,需要进行进一步的观测和调整。
四、后方交会标准差算法的计算方法后方交会标准差算法用于对观测数据进行处理和校正,以提高测量结果的精度。
其计算方法如下:1.计算观测数据的平均值:对每次观测数据的水平角、垂直角和斜距进行平均,得到平均值。
2.计算观测数据的中误差:对每次观测数据与平均值之差的平方进行求和,并除以总观测次数减1,得到中误差。
3.计算观测数据的方差:观测数据的方差等于中误差的平方。
全站仪极坐标法和后方交会法说到全站仪,可能很多人会想到一堆晦涩的专业术语,甚至有点头疼。
但是别急,今天我就带你们走一趟,既能懂又能玩得开心的全站仪测量之旅。
咱们这次要聊的,是全站仪极坐标法和后方交会法——虽然听起来有点高大上,但其实一点都不复杂,甚至可以说简单得很。
咱们就像坐过山车一样,轻松又刺激,保证你看了之后能“茅塞顿开”,还不失风趣。
要知道,搞测量也是可以有趣的,不一定要一脸严肃。
极坐标法,大家可以想象成给一个点画个大圆,圆心就是你所在的位置。
你站在这个圆心上,给个方向,给个距离,然后通过这两个参数,把别的地方的点给“定位”出来。
说白了,就像你从家里出发,知道前方100米有个小摊子,顺着这条路走就能找到它。
极坐标法有个好处就是不需要知道其它点的位置,只要你知道自己的位置和朝哪个方向走就行了,听起来是不是很简单?极坐标法适合在开阔地、没有太多障碍物的地方用。
你站在这儿一看,远远的就能找到目标了。
要是遇到复杂的地形,障碍物特别多,或者周围建筑物林立,极坐标法就可能不太适用了。
这时候,咱们就得转而使用后方交会法。
大家想象一下,后方交会法其实是从两个已知的点出发,朝着目标看过去,然后通过交点来推算出目标的位置。
就像两个朋友站在不同的位置,分别用眼睛瞄准某个远处的物体,再告诉你他们的角度,接着你根据这两个角度交点来算出物体在哪。
好比你站在两座山的山顶上,望着远方的灯塔。
你和你的朋友通过各自的视角算出灯塔的位置,最后就能精准定位。
这个方法特别适用于有复杂地形或高楼大厦挡住视线的地方,毕竟你站得高,看得远。
用后方交会法,简单来说就是两个点出发,彼此之间互相配合,最终得出准确的位置。
它比极坐标法多了一个优势,那就是不需要你站在目标点上,只要在别的地方也能搞定,听起来是不是很“牛逼”?这方法的前提是你必须能准确测量角度,别光看得见目标,结果算出来的数字偏差大得离谱,做出来的图纸就全乱套了。
这两种方法的共同点,就是它们都强调“测量精度”。
全站仪后方交会法步骤和高程测量步骤1、角度测量(angle observation)(1)功能:可进行水平角、竖直角的测量。
(2)方法:与经纬仪相同,若要测出水平角∠ AOB ,则:1)当精度要求不高时:瞄准 A 点——置零( 0 SET )——瞄准 B 点,记下水平度盘 HR 的大小。
2)当精度要求高时:——可用测回法( method of observation set )。
操作步骤同用经纬仪操作一样,只是配置度盘时,按“置盘”( H SET )。
2、距离测量( distance measurement )PSM 、PPM 的设置——测距、测坐标、放样前。
1)棱镜常数(PSM )的设置。
一般: PRISM=0 (原配棱镜),-30mm (国产棱镜)2)大气改正数( PPM )(乘常数)的设置。
输入测量时的气温( TEMP )、气压( PRESS ),或经计算后,输入 PPM 的值。
(1)功能:可测量平距 HD 、高差 VD 和斜距 SD (全站仪镜点至棱镜镜点间高差及斜距)(2)方法:照准棱镜点,按“测量”( MEAS )。
3、坐标测量( coordinate measurement )(1)功能:可测量目标点的三维坐标( X , Y , H )。
(2)测量原理任意架仪器,先设置仪器高为0,棱镜高是多少就是多少,棱镜拿去直接放在已知点上测高差,测得的高差为棱镜头到仪器视线的高差,当然,有正有负了,然后拿出计算器用已知点加上棱镜高,再加上或减去(因为有正有负)测得的高差就是仪器的视线高啊,因为仪器高为0,所以这个数字就是你的测站点高程,进测站点把它改成这个数字就行了,改完测站点了一般情况下都要打一下已知点复核一下。
若输入:方位角,测站坐标(,);测得:水平角和平距。
则有:方位角:坐标:若输入:测站 S 高程,测得:仪器高 i ,棱镜高 v ,平距,竖直角,则有:高程:(3)方法:输入测站 S ( X , Y ,H ),仪器高 i ,棱镜高 v ——瞄准后视点 B ,将水平度盘读数设置为——瞄准目标棱镜点 T ,按“测量”,即可显示点 T 的三维坐标。
全站仪后方交会法原理全站仪后方交会法是一种常用的测量方法,被广泛应用于各种建筑、地质勘探、铁路、公路工程等领域。
它是利用自然射线和人工瞄准目标的方式进行的,通过测量各个测站之间的距离、角度和高差,从而确定目标点的坐标。
本文将对全站仪后方交会法的原理进行详细介绍,以期对相关科研工作者提供指导意义。
一、什么是后方交会法全站仪后方交会法是一种基于角度与距离测量的三角测量方法,通过测量两个已知点和一个未知点的夹角和距离,推断出未知点的位置坐标。
这种测量方法具有精度高、精度稳定、操作简便等优点,因此被广泛地应用于各种建筑、地质勘探、铁路、公路工程等领域。
二、后方交会法原理后方交会法的原理是利用三角形余弦定理,确定目标点的坐标。
在测量中,需要先建立一个三角形,其中包含了目标点、两个测站以及三个角度和对应的三条边长。
接着,通过测量这些角度和边长,就可以利用三角形余弦定理求出目标点的坐标。
具体步骤如下:1.选择两个已知点作为起点和终点,并测量它们之间的角度和距离。
2.使用全站仪测量目标点和起点、终点的夹角,并记录下这些角度。
3.使用全站仪测量目标点到起点、终点的距离,并记录下这些距离。
4.根据三角形余弦定理,计算出目标点的坐标。
具体地,设起点和终点的坐标分别为(Ax,Ay,Az)和(Bx,By,Bz),目标点与起点、终点的距离分别为d1、d2、d3,目标点到起点和终点的夹角分别为角度α、β,则目标点的坐标为X = Ax + d1 × cosαY = Ay + d1 × sinαZ = Az + h其中,h为目标点的高程。
三、后方交会法的应用范围后方交会法具有很广泛的应用范围,包括建筑、地质勘探、路桥工程、管线工程、矿山开采等各个领域。
在建筑工程中,可以利用后方交会法对建筑物的位置、高度等进行精确的测量,保证建筑物的结构稳定和使用安全。
在地质勘探中,可以利用后方交会法对地质构造进行研究,提高勘探效率。
全站仪后方交会放样使用方法全站仪放样,作为施工过程中一项重要环节,对技术员已上升为必须擅长的仪器操作内容。
全站仪建站一般有两种方法,即极坐标法建站和后方交会法建站,后方交会是比较高级和常用的方法。
现以本尼康全站仪为例,讲述全站仪后方交会法建站、放样全过程。
一、建站1.将仪器架于两已知点均可通视,且可完全看到放样目标点位置的高处。
尽量保证视线夹角在60度左右,仪器架设高度适中,三脚架腿踩实,不可出现放样过程中架腿松动现象。
(注意:整个放样过程中仪器附近不应有人来回走动,且放样人员应尽量站在一点不动,减少因人员走动导致仪器震动偏移。
)2.固定仪器,上下松动架腿大致调整圆水准器气泡基本居中,按下电源键开机,上下左右转动一下,按下“0”键,进入精平模式。
将水准管放于平行于两螺旋连线方向,关注屏幕上数值,“”过大,便同时向内或向外转动平行方向两螺旋至数值符合要求(一般数值处于5"以内即可);“”过大,便左转或右转垂直方向螺旋至数值符合要求。
旋转60度,检查,若仍有些许偏差,再按上述调整。
再旋转60度继续检查至完成。
3.按下“确定”键记录,按“建站”键进入建站模式,选择“后方交会法”按“确定”。
①若全站仪内已有建站点坐标,可在“PT”栏输入点名(“MODE”键可切换数字与字母),按“确定”键自动跳出坐标,再输入棱镜高(本项目为1.35m和1.2m两种);②若全站仪内无建站点坐标,于“PT”处按“确定”键进入坐标输入界面,XYZ输完后,按“确定”回到界面,再输入仪器高。
CD数值暂时不输,按“确定”跳过进而记录,进入瞄准后视点1界面,视线内横竖丝卡住棱镜头“横竖尖头”(一般要求:竖向从镜杆底部瞄起,再翻转上去;横向以卡住两边尖为准),瞄准后,点击“测量1”(一般仪器内部设置“测量1”为棱镜模式且双频,“测量2”为免棱镜模式且单频,具体设置可内部调节变动)测量,待响两声后,在不转动仪器前按“确定”键记录,重复“PT”输入点坐标和棱镜高进行后视点2的瞄准,按“测量1”测量(若发现测量时后视瞄准有移动,再瞄准再按“测量1”测量)。
1、角度测量angleobservation1功能:可进行水平角、竖直角的测量;2方法:与经纬仪相同,若要测出水平角∠AOB,则:1当精度要求不高时:瞄准A点——置零0SET——瞄准B点,记下水平度盘HR的大小;2当精度要求高时:——可用测回法methodofobservationset;操作步骤同用经纬仪操作一样,只是配置度盘时,按“置盘”HSET;2、距离测量distancemeasurementPSM、PPM的设置——测距、测坐标、放样前;1棱镜常数PSM的设置;一般:PRISM=0原配棱镜,-30mm国产棱镜2大气改正数PPM乘常数的设置;输入测量时的气温TEMP、气压PRESS,或经计算后,输入PPM的值;1功能:可测量平距HD、高差VD和斜距SD全站仪镜点至棱镜镜点间高差及斜距2方法:照准棱镜点,按“测量”MEAS;3、坐标测量coordinatemeasurement1功能:可测量目标点的三维坐标X,Y,H;2测量原理任意架仪器,先设置仪器高为0,棱镜高是多少就是多少,棱镜拿去直接放在已知点上测高差,测得的高差为棱镜头到仪器视线的高差,当然,有正有负了,然后拿出计算器用已知点加上棱镜高,再加上或减去因为有正有负测得的高差就是仪器的视线高啊,因为仪器高为0,所以这个数字就是你的测站点高程,进测站点把它改成这个数字就行了,改完测站点了一般情况下都要打一下已知点复核一下;;;若输入:方位角,测站坐标,;测得:水平角和平距;则有:方位角:坐标:若输入:测站S高程,测得:仪器高i,棱镜高v,平距,竖直角,则有:高程:3方法:输入测站SX,Y,H,仪器高i,棱镜高v——瞄准后视点B,将水平度盘读数设置为——瞄准目标棱镜点T,按“测量”,即可显示点T的三维坐标;4、点位放样Layout1功能:根据设计的待放样点P的坐标,在实地标出P点的平面位置及填挖高度; 2放样原理1在大致位置立棱镜,测出当前位置的坐标;2将当前坐标与待放样点的坐标相比较,得距离差值dD和角度差dHR或纵向差值ΔX 和横向差值ΔY;3根据显示的dD、dHR或ΔX、ΔY,逐渐找到放样点的位置;5、程序测量programs1数据采集datacollecting2坐标放样layout3对边测量MLM、悬高测量REM、面积测量AREA、后方交会RESECTION等;4数据存储管理;包括数据的传输、数据文件的操作改名、删除、查阅;§7.2TOPCONGTS-312全站仪使用简介一、仪器面板外观和功能说明面板上按键功能如下:——进入坐标测量模式键;◢——进入距离测量模式键;ANG——进入角度测量模式键;MENU——进入主菜单测量模式键;ESC——用于中断正在进行的操作,退回到上一级菜单;POWER——电源开关键◢◣——光标左右移动键▲▼——光标上下移动、翻屏键F1、F2、F3、F4——软功能键,其功能分别对应显示屏上相应位置显示的命令;显示屏上显示符号的含义:V——竖盘读数;HR——水平读盘读数右向计数;HL——水平读盘读数左向计数;HD——水平距离;VD——仪器望远镜至棱镜间高差;SD——斜距;——正在测距;N——北坐标,x;E——东坐标,y;Z——天顶方向坐标,高程H;二、全站仪几种测量模式介绍1、角度测量模式功能:按ANG进入,可进行水平角、竖直角测量,倾斜改正开关设置;第1页F1 OSET:设置水平读数为:0°00ˊ00";F2 HOLD:锁定水平读数;F3 HSET:设置任意大小的水平读数;F4 P1↓:进入第2页;第2页F1 TILT:设置倾斜改正开关;F2 REP:复测法;F3 V%:竖直角用百分数显示;F4 P2↓:进入第3页;第3页F1 H-BZ:仪器每转动水平角90°时,是否要蜂鸣声;F2 R/L:右向水平读数HR/左向水平读数HL切换,一般用HR; F3 CMPS:天顶距V/竖直角CMPS的切换,一般取V;F4 P3↓:进入第1页;2、距离测量模式功能:按◢进入,可进行水平角、竖直角、斜距、平距、高差测量及PSM、PPM、距离单位等设置;第1页F1 MEAS:进行测量;F2 MODE:设置测量模式,Fine/coarse/tragcking精测/粗测/跟踪;F3 S/A:设置棱镜常数改正值PSM、大气改正值PPM;F4 P1↓:进入第2页;第2页F1 OFSET:偏心测量方式;F2 SO:距离放样测量方式;F3 m/f/i:距离单位米/英尺/英寸的切换;F4 P2↓:进入第1页;3、坐标测量模式功能:按进入,可进行坐标N,E,H、水平角、竖直角、斜距测量及PSM、PPM、距离单位等设置;第1页F1 MEAS:进行测量;F2 MODE:设置测量模式,Fine/Coarse/Tracking;F3 S/A:设置棱镜改正值PSM,大气改正值PPM常数;F4 P1↓:进入第2页;第2页F1 R.HT:输入棱镜高;F2 INS.HT:输入仪器高;F3 OCC:输入测站坐标;F4 P2↓:进入第3页;第3页F1 OFSET:偏心测量方式;F2 ———F3 m/f/i:距离单位米/英尺/英寸切换;F4 P3↓:进入第1页;4、主菜单模式功能:按MENU进入,可进行数据采集、坐标放样、程序执行、内存管理数据文件编辑、传输及查询、参数设置等;三、全站仪功能简介测量前,要进行如下设置——按◢或,进入距离测量或坐标测量模式,再按第1页的S/AF3;1、棱镜常数PRISM的设置——进口棱镜多为0,国产棱镜多为-30mm;具体见说明书2、大气改正值PPM的设置——按“T-P”,分别在“TEMP.”和“PRES.”栏,输入测量时的气温、气压;或者按照说明书中的公式计算出PPM值后,按“PPM”直接输入; 说明:PRISM、PPM设置后,在没有新设置前,仪器将保存现有设置;一角度测量按ANG键,进入测角模式开机后默认的模式,其水平角、竖直角的测量方法与经纬仪操作方法基本相同;照准目标后,记录下仪器显示的水平度盘读数HR和竖直度盘读数V;二距离测量先按◢键,进入测距模式,瞄准棱镜后,按F1MEAS,记录下仪器测站点至棱镜点间的平距HD、镜头与镜头间的斜距SD和镜头与镜头间的高差VD;三坐标测量1、按ANG键,进入测角模式,瞄准后视点A;2、按HSET,输入测站O至后视点A的坐标方位角;如:输入65.4839,即输入了;3、按键,进入坐标测量模式;按P↓,进入第2页;4、按OCC,分别在N、E、Z输入测站坐标X0,Y0,H0;5、按P↓,进入第2页,在INS.HT栏,输入仪器高;6、按P↓,进入第2页,在R.HT栏,输入B点处的棱镜高;7、瞄准待测量点B,按MEAS,得B点的XB,YB,HB;四零星点的坐标放样不使用文件1、按MENU,进入主菜单测量模式;2、按LAYOUT,进入放样程序,再按SKP,略过使用文件;3、按OOC.PTF1,再按NEZ,输入测站O点的坐标X0,Y0,H0;并在INS.HT一栏,输入仪器高;4、按BACKSIGHTF2,再按NE/AZ,输入后视点A的坐标xA,yA;若不知A点坐标而已知坐标方位角,则可再按AZ,在HR项输入的值;瞄准A点,按YES;5、按LAYOUTF3,再按NEZ,输入待放样点B的坐标xB,yB,HB及测杆单棱镜的镜高后,按ANGLEF1;使用水平制动和水平微动螺旋,使显示的dHR=0°00ˊ00",即找到了OB 方向,指挥持测杆单棱镜者移动位置,使棱镜位于OB方向上;6、按DIST,进行测量,根据显示的dHD来指挥持棱镜者沿OB方向移动,若dHD为正,则向O点方向移动;反之若dHD为负,则向远处移动,直至dHD=0时,立棱镜点即为B 点的平面位置;7、其所显示的dZ值即为立棱镜点处的填挖高度,正为挖,负为填;8、按NEXT——反复5、6两步,放样下一个点C;后方交会法通常用在高精度测量设站中,因其具备足够检核条件而被广泛应用;这种方法对仪器本身精度要求、稳定性非常高;。
全站仪后方交会法步骤和高程测量步骤全站仪是一种常用于测量地面高程和水平角度的仪器。
在工程测量中,经常会使用全站仪后方交会法进行高程测量。
下面将详细介绍全站仪后方交会法的步骤和高程测量的步骤。
1.设置仪器:首先,需要选择一个适合的测量点作为基准点,并将全站仪放置在基准点上。
将全站仪水平放置,并通过调整三个螺丝调整水平仪气泡位于中心位置。
然后,使用全站仪的目标板对准基准点。
2.测量目标点:使用全站仪的望远镜和交会杆,在目标点上设置目标板。
目标板上的标识点应与全站仪的十字线对齐。
准确平稳地在目标点上设置目标板。
3.观测目标点:通过调整全站仪的望远镜,使其对准目标板上的标识点。
在读数之前,要确保全站仪已经稳定下来。
然后,记录望远镜的水平角和垂直角的读数。
4.移动到下一个目标点:移动全站仪到下一个目标点,并重复步骤2和步骤3、在每次观测之间,全站仪应保持在基准点上,并使用目标板进行校准。
5.数据处理:利用观测到的水平角和垂直角的读数,可以计算出各个目标点之间的坐标和高程差。
这种计算可以使用后方交会法进行,根据目标点在水平方向和垂直方向上的角度差,以及目标点之间的距离差,推导出目标点的空间坐标。
高程测量步骤如下:1.设置起始点:选择一个起始点作为基准点。
全站仪被放置在基准点上,并确保仪器水平放置。
2.目标点设置:将目标板设置在需要测量高程的点上。
目标板上的标识点应与全站仪的十字线对齐。
3.观测目标点:调整全站仪的望远镜,使其对准目标板上的标识点。
在记录读数之前,要确保全站仪稳定下来。
然后,记录望远镜的垂直角的读数。
4.移动到下一个目标点:移动全站仪到下一个需要测量高程的点,并重复步骤2和步骤35.高程差计算:根据每个目标点的垂直角的读数,可以计算出不同目标点之间的高程差。
通过将起始点的高程与每个目标点的高程差相加,可以得到每个目标点的实际高程。
6.数据处理:将所有测量得到的目标点的实际高程整理并记录。
进行必要的校正和调整,以获得更准确的高程数据。
全站仪后方交会法的具体操作步骤
开机后先按S.0键,输入文件名(也可跳过),确定,再按S.0键下翻,F2键选择新点,再按F2选择后方交会法,再选择一个文件,确定,自定义点名(可跳过),再F1距离后方交会,输入仪高,确定,在No1#界面里面选择坐标,输入第一个已知点的坐标,在已知点上架好凌镜,测量,再用同样的方法进行第二个点的操作。
然后再看残差大不大,不大可以进行计算,后面的就进行定位放线。
以南方全站仪为例:
放样--新点-后方交会法--- -输入点---回车---输入仪高--回车---输入A点已知坐标----输入棱镜高--测量距离---自动保----输入B点坐标---输入棱高----测量距离---自动保存---计算----记录---(完成)。
后方交会法计算步骤
后方交会法是一种用来计算地图上两个已知点之间的距离和方位角的方法。
以下是后方交会法的计算步骤:
1. 获取已知点的坐标:首先需要测量或获取两个已知点的地理坐标(经纬度或平面坐标)。
2. 根据已知点坐标计算坐标增量:使用已知点的坐标和观测量来计算各观测线(与已知点相连的直线)的坐标增量。
坐标增量是指从已知点到点的差值。
3. 根据坐标增量计算未知点坐标:根据各观测线的坐标增量,可以计算出未知点的坐标。
这可以通过简单的几何计算或通过矩阵运算来实现。
4. 计算未知点到已知点的距离:使用已知点和计算出的未知点的坐标,可以计算未知点到已知点的距离。
这通常使用欧几里得距离公式进行计算。
5. 计算未知点与正北方向之间的方位角:使用已知点和计算出的未知点的坐标,可以计算未知点与正北方向之间的方位角。
这可以通过三角函数计算或使用方位角公式来实现。
通过以上步骤,可以使用后方交会法计算出地图上两个已知点之间的距离和方位角。
请注意,在实际应用中,还需要考虑误差和其他因素,并进行适当的精度控制和数据处理。
摘要:本次测量学后方交会实训报告旨在通过对实际测量数据的处理与分析,验证后方交会法在工程测量中的应用效果。
通过实训,加深了对测量学基本原理的理解,提高了实际操作能力,并培养了团队协作精神。
以下是对实训过程、结果及心得体会的详细总结。
一、实训目的1. 理解后方交会法的原理及适用范围;2. 掌握后方交会法的数据处理方法;3. 提高实际操作能力,培养团队协作精神;4. 验证后方交会法在工程测量中的应用效果。
二、实训内容1. 后方交会法原理讲解;2. 实际测量数据的采集;3. 后方交会法数据处理;4. 实际应用案例分析。
三、实训过程1. 后方交会法原理讲解:由指导教师对后方交会法的基本原理、计算公式及适用范围进行讲解,使学员对后方交会法有一个初步的认识。
2. 实际测量数据的采集:在实训场地,学员分组进行实际测量,采集测量数据。
测量内容包括:角度观测、距离测量、高程测量等。
3. 后方交会法数据处理:根据采集到的测量数据,运用后方交会法计算各观测点的坐标和高程。
4. 实际应用案例分析:结合实际工程案例,分析后方交会法在工程测量中的应用效果,探讨其优缺点。
四、实训结果1. 通过实际测量数据的处理,验证了后方交会法在工程测量中的有效性;2. 学员掌握了后方交会法的数据处理方法,提高了实际操作能力;3. 团队协作精神得到提升,学员之间相互学习、共同进步。
五、心得体会1. 后方交会法在实际工程测量中具有重要作用,能够提高测量精度和效率;2. 实训过程中,掌握了后方交会法的数据处理方法,提高了自己的实际操作能力;3. 团队协作精神在实训过程中得到提升,学员之间相互学习、共同进步;4. 通过本次实训,对测量学基本原理有了更深入的理解,为今后的学习和工作打下了坚实基础。
六、总结本次测量学后方交会实训取得了圆满成功。
通过实训,学员们不仅掌握了后方交会法的基本原理和数据处理方法,还提高了实际操作能力和团队协作精神。
在今后的学习和工作中,我们将继续努力,不断提高自己的专业技能,为我国工程建设事业贡献力量。
教你精确测准后方交会——详解后方交会具体操作步骤带图相信做过工程测量的测量员朋友,一定深有体会,后方交会是测量定位、控制网加密和自由设站法施工放样的重要方法。
因为传统的后方交会往往是以测角为主,但伴随着电子测距仪在生产中的普遍应用,距离后方交会定位法日益得到应用,你比如隧道工程控制网往往由于隧道开工前测设完成,而洞口土石方施工完毕后,需补设洞口投点,以便控制隧道轴线,测设投点就要用到后方交会法;深水桥墩放样测量中的墩心定位也可以应用此法,还可用来测定施工控制导线的始终点等。
目前,全站仪已逐渐普及,利用全站仪可以方便地同时测角和边,因此在实际工作中,就存在测边、测角、边角同测后方交会坐标计算问题以及它们的精度评定问题。
下面就要为广大测工朋友具体介绍下后方交会具体操作步骤:一、全站仪后方交会的原理:如图所示,P点为后方交会点,ABC是控制网中的已知点,通过测量边长L1、L2、L3,角度α、β、γ,应用解析公式,即可计算出P 点的坐标。
二、前方交会法和后方交会法前方交会:在己知的两个(或两个以上)己知点(A,B)上架站通过测量α角和β角,计算待测点(P)坐标的方法。
如下图所示,红色字母代表的站点为架站点(A,B):后方交会法:在待测点(P)上架站,通过使用三个己知点(A,B,C)及α角和β角计算待测点(P)坐标的方法。
如下图所示,红色字母代表的站点为架站点(P):二、后方交会操作步骤:1、架设仪器2、打开后方交会功能,按照提示,分别测量距离,角度数据3、计算结果三、如何得到的坐标更准?1、角、边的关系,距离要大致相等且最好不要太近,角度最好是在30°至120°之间;2、适当增加观测数量,不管是距离交会还是角度交会都是条件越充分精度就越高,推荐8个点的自由建站;3、校核仪器的精度能不能满足标称的精度,经常保养仪器;4、格网因子改为1;。
后方交会
后方交会是指仅在待定点上设站,向三个已知控制点观测两个水平夹角a、b,从而计算待定点的坐标,称为后方交会。
交会测量是加密控制点常用的方法,它可以在数个已知控制点上设站,分别向待定点观测方向或距离,也可以在待定点上设站向数个已知控制点观测方向或距离,而后计算待定点的坐标。
常用的交会测量方法有前方交会、后方交会、侧边交会和自由设站法。
如下图所示,已知 A、B、C 三点的坐标,通过测量三个角度 α、β、γ 即可求出这三个角度顶点 P 的坐标。
此即为后方交会。
计算公式一
后方交会有如下计算公式:
实际测量时一般是使用全站仪测量三个方向角 PA、PB、PC。
根据这三个方向角计算如下六个变量,然后再代入上面的公式计算点P的坐标。
计算公式二
全站仪测量三个方向角 PA、PB、PC。
根据这三个方向角计算点P坐标的公式如下:
危险圆
点 P 在三角形 ABC 的外接圆上时,α、β、γ 将保持不变。
如此一来,点 P 的坐标将有无穷个——外接圆上的任意一点均可以是点P。
此时,使用计算公式计算点 P 坐标时,可能会因为除以零而得到无效解。
点 P 靠近外接圆时,很小的观测误差都会引起点 P 位置的较大偏差。
因此,称三角形 ABC 的外接圆为危险圆。
后方交会时,应避免点P 离危险圆很近。
精度假定水平方位角的观测中误差为
,则有:
点P的定位精度为:
定向精度为:
上面两个公式中的
按下面的公式计算
注意:当点P在危险圆上时
将等于零,于是定位精度与定向精度将为无穷大。
前方交会法:在己知的两个(或两个以上)己知点(A,B)上架站通过测量α角和β角,计算待测点(P)坐标的方法。
如下图所示,红色字母代表的站点为架站点(A,B):后方交会法:在待测点(P)上架站,通过使用三个己知点(A,B,C)及α角和β角计算待测点(P)坐标的方法。
如下图所示,红色字母代表的站点为架站点(P):一、引言在工程测量中,内业资料计算占有很重要的比重,内业资料计算的准确无误与速度直接决定了测量工作是否能够快速、顺利地完成。
而内业资料的计算方法及其所需达到的精度,则又直接取决于外业所用仪器及具体的放样目标和内业计算所用到的办公软件和计算方法。
计算机辅助设计(Computer Aid Design 简写CAD,常称AutoCAD)是20世纪80年代初发展起来的一门新兴技术型应用软件。
如今在各个领域均得到了普遍的应用。
它大大提高了工程技术人员的工作效率。
AutoCAD配合AutoLisp语言,还可以编制一些常用的计算程序,得到计算结果。
AutoCAD的特性提供了测量内业资料计算的另外一种全新直观明了的图形计算方法。
结合我们现正使用的徕卡全站仪的情况,其可以很方便地进行三维坐标的测量,通过AutoCAD的内业计算,①、在放样的过程中,可以用编程计算器结合全站仪,非常方便地、快速地进行作业;②、运用AutoCAD进行计算结果的验证;③、随着全站仪的推广和普及,极坐标的放样越来越成为众多放样方法中备受测量人员青睐的一种,而坐标计算又是极坐标放样中的重点和难点,由于一般的红线放样,工程放样中的元素多为点、直线(段)、圆(弧)等,故可以充分利用AutoCAD的设定坐标系、绘图和取点的功能,以及结合我们外业所用计算器的功能,从而大大减轻我们外业的工作强度及内业的工作量。
以下以冶勒电站厂区枢纽工程的一些实例来说明三者在工程测量中的应用。
二、测区概况冶勒电站厂址位于石棉县李子坪乡南桠村,距坝址11KM,距石棉县城40KM。
后方交会
后方交会是指仅在待定点上设站,向三个已知控制点观测两个水平夹角a、b,从而计算待定点的坐标,称为后方交会。
交会测量是加密控制点常用的方法,它可以在数个已知控制点上设站,分别向待定点观测方向或距离,也可以在待定点上设站向数个已知控制点观测方向或距离,而后计算待定点的坐标。
常用的交会测量方法有前方交会、后方交会、侧边交会和自由设站法。
如下图所示,已知 A、B、C 三点的坐标,通过测量三个角度α、β、γ 即可求出这三个角度顶点 P 的坐标。
此即为后方交会。
计算公式一
后方交会有如下计算公式:
实际测量时一般是使用全站仪测量三个方向角 PA、PB、PC。
根据这三个方向角计算如下六个变量,然后再代入上面的公式计算点P 的坐标。
计算公式二
全站仪测量三个方向角 PA、PB、PC。
根据这三个方向角计算点P坐标的公式如下:
危险圆
点 P 在三角形 ABC 的外接圆上时,α、β、γ 将保持不变。
如此一来,点 P 的坐标将有无穷个——外接圆上的任意一点均可以是点 P。
此时,使用计算公式计算点 P 坐标时,可能会因为除以零而得到无效解。
点 P 靠近外接圆时,很小的观测误差都会引起点 P 位置的较大偏差。
因此,称三角形 ABC 的外接圆为危险圆。
后方交会时,应避免点 P 离危险圆很近。
精度假定水平方位角的观测中误差为
,则有:
点P的定位精度为:
定向精度为:
上面两个公式中的
按下面的公式计算
注意:当点P在危险圆上时
将等于零,于是定位精度与定向精度将为无穷大。