5.2 平面向量基本定理及向量的坐标表示 2021年高考数学复习优化一轮用书文数
- 格式:pdf
- 大小:1.75 MB
- 文档页数:28
专题5.2 平面向量的基本定理及坐标表示1.了解平面向量的基本定理及其意义;2.掌握平面向量的正交分解及其坐标表示;3.会用坐标表示平面向量的加法、减法与数乘运算;4.理解用坐标表示的平面向量共线的条件.知识点一 平面向量基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. 知识点二 平面向量的坐标运算知识点三 平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b≠0,则a ∥b ⇔x 1y 2-x 2y 1=0.,(1)基底e 1,e 2必须是同一平面内的两个不共线向量,零向量不能作为基底; (2)基底给定,同一向量的分解形式唯一;(3)如果对于一组基底e 1,e 2,有a =λ1e 1+λ2e 2=μ1e 1+μ2e 2,则可以得到⎩⎪⎨⎪⎧λ1=μ1,λ2=μ2.知识点四 必备结论1.若a 与b 不共线,且λa +μb =0,则λ=μ=0.2.已知P 为线段AB 的中点,若A (x 1,y 1),B (x 2,y 2),则P 点坐标为⎝⎛⎭⎫x 1+x 22,y 1+y 22.3.已知△ABC 的顶点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),则△ABC 的重心G 的坐标为⎝⎛⎭⎫x 1+x 2+x 33,y 1+y 2+y 33.4.A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)三点共线的充要条件为(x 2-x 1)(y 3-y 1)-(x 3-x 1)(y 2-y 1)=0,或(x 2-x 1)(y 3-y 2)=(x 3-x 2)(y 2-y 1),或(x 3-x 1)(y 3-y 2)=(x 3-x 2)·(y 3-y 1).考点一 平面向量基本定理及其应用【典例1】 (2019·河北衡水中学调研)一直线l 与平行四边形ABCD 中的两边AB ,AD 分别交于点E ,F ,且交其对角线AC 于点M ,若AB →=2AE →,AD →=3AF →,AM →=λAB →-μAC →(λ,μ∈R),则52μ-λ=( )A.-12B.1C.32D.-3【答案】A【解析】 (1)AM →=λAB →-μAC →=λAB →-μ(AB →+AD →) =(λ-μ)AB →-μAD →=2(λ-μ)AE →-3μAF →.因为E ,M ,F 三点共线,所以2(λ-μ)+(-3μ)=1, 即2λ-5μ=1,∴52μ-λ=-12.【方法技巧】平面向量基本定理的实质及应用思路(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用平面向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.【变式1】(2019·安徽安庆一中质检)如图,已知平行四边形ABCD 的边BC ,CD 的中点分别是K ,L ,且AK ―→=e 1,AL ―→=e 2,试用e 1,e 2表示BC ―→,CD ―→。
2021年高考数学一轮复习专题5.2平面向量基本定理及坐标表示讲【考纲解读】【知识清单】1.平面向量基本定理及其应用平面向量基本定理如果是一平面内的两个不共线向量,那么对于这个平面内任意向量,有且只有一对实数,使.其中,不共线的向量叫做表示这一平面内所有向量的一组基底.对点练习:向量a,b,c在正方形网格中的位置如图所示,若c=λa+μb(λ,μ∈R),则=________.【答案】2.平面向量的坐标运算1. 平面向量的正交分解把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.2.平面向量的坐标表示(1)在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量作为基底,对于平面内的一个向量,由平面向量基本定理知,有且只有一对实数x、y,使得,这样,平面内的任一向量都可由x、y唯一确定,因此把叫做向量的坐标,记作,其中x叫做在x轴上的坐标,y叫做在y轴上的坐标.(2)若,则.3.平面向量的坐标运算(1)若,则;(2)若,则.(3)设,则,221221|()A x x yB y=-(-|).对点练习:【xx湖南郴州一测】中,,,则()A. B. C. D.【答案】D【解析】试题分析:,故选D.3.平面向量共线的坐标表示向量共线的充要条件的坐标表示若,则⇔.对点练习:【xx 广西名校摸底】已知函数的图象是由函数的图象按向量平移而得到的,又,则 ( )A .B .C .D . 【答案】A【考点深度剖析】平面向量基本定理及坐标表示,往往以选择题或填空题的形式出现.常常以平面图形为载体,借助于向量的坐标形式等考查共线、垂直等问题;也易同三角函数、解析几何等知识相结合,以工具的形式出现.【重点难点突破】考点1 平面向量基本定理及其应用【xx·杭州测试】 如图,以向量OA →=a ,OB →=b 为邻边作▱OADB ,BM →=13BC →,CN →=13CD →,用a ,b表示OM →,ON →,MN →.【答案】OM →=16a +56b ,ON →=23a +23b ,MN →=12a -16b.【解析】∵BA →=OA →-OB →=a -b ,BM →=16BA →=16a -16b ,∴OM →=OB →+BM →=16a +56b.【领悟技法】1.用平面向量基本定理解决问题的一般思路是:先选择一组基底,再用该基底表示向量,其实质就是利用平行四边形法则或三角形法则进行向量的加减运算和数乘运算.2.特别注意基底的不唯一性:只要两个向量不共线,就可以作为平面的一组基底,对基底的选取不唯一,平面内任意向量都可被这个平面的一组基底线性表示,且在基底确定后,这样的表示是唯一的. 【触类旁通】【变式一】如图,已知=,用,表示,则等于( )A.-B.+C.-+D.-- 【答案】C【解析】=+=+=+ (-)=-+,选C. 考点2 平面向量的坐标运算【2-1】已知向量()()()1,3,1,2,2,4AB BC AD =-=--=,则( ) A . B . C . D . 【答案】D【2-2】已知向量,且,则等于( )A .1B .3C .4D .5 【答案】D 【解析】因,,故,所以,故,故应选D. 【领悟技法】注意向量坐标与点的坐标的区别:要区分点的坐标与向量坐标的不同,尽管在形式上它们完全一样,但意义完全不同,向量坐标中既有方向的信息也有大小的信息. 【触类旁通】【变式一】已知向量,,则( )A. B. C. D. 【答案】A【解析】因为,所以=,故选A.【变式二】【xx 河北武邑三调】在矩形中,()()1,3,,2AB AC k =-=-,则实数( ) A . B . C. D . 【答案】D【解析】(1,1)1304CB AB AC k AB CB k k =-=--⇒•=-+=⇒=,故选D. 考点3 平面向量共线的坐标表示 【3-1】向量且,则( )A .B .C .D . 【答案】A【3-2】设向量=,=,则“”是“//”的( ).A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件 【答案】A【解析】当时,,,此时;当时,,解得.所以“”是“”的充分而不必要条件. 【领悟技法】1.向量共线的充要条件有两种: (1)⇔. (2)若,则⇔.当涉及到向量或点的坐标问题时,应用(2)解题较为方便. 2.两向量相等的充要条件,它们的对应坐标相等. 【触类旁通】【变式一】已知向量()()2,3,cos ,sin a b θθ==,且,则( ) A . B . C . D . 【答案】A 【解析】由,可知,解得,故选A.【变式二】已知向量=(2,2),=(cosα,﹣sinα),则向量的模的最小值是( ) A .3 B .3 C . D .2 【答案】C 【解析】考点4 平面向量共线的应用【4-1】设,,,,为坐标原点,若、、三点共线,则的最小值是( ) A .2 B .4 C .6 D .8 【答案】D 【解析】,,若、、三点共线,,由向量共线定理得,,故()12124244248b a a b a b a b a b⎛⎫+=++=++≥+= ⎪⎝⎭. 【4-2】如图,在△中, ,是上的一点,若,则实数的值为( )A .B .C .D . 【答案】C【课本回眸】向量共线的充要条件有两种: (1)⇔. (2)若,则⇔. 【领悟技法】当涉及到向量或点的坐标问题时,应用向量共线的充要条件(2)解题较为方便. 【触类旁通】【变式一】设两个向量()222,cos ,,sin 2μλλθμθ⎛⎫=+-=+ ⎪⎝⎭a b ,其中.若,则的最小值为______. 【答案】 【解析】值为值为.【变式二】【xx 山西大学附中二模】在直角梯形,,DC//AB,AD DC 1,AB 2,E,F ABCD AB AD ⊥===分别为的中点,点在以为圆心,为半径的圆弧上变动(如图所示).若,其中, 则的取值范围是___________.【答案】2sin cos 2sin 4πλμθθθ⎛⎫-=-=- ⎪⎝⎭,,.【易错试题常警惕】易错典例:如图,在正方形ABCD 中,E 为AB 的中点,P 为以A 为圆心,AB 为半径的圆弧上的任意一点,设向量的最小值为则μλμλ++=,AP DE AC .易错分析:不能结合图形特征,灵活建立直角坐标系,将向量用坐标表示,将问题转化成三角问题求解.正确解析:以为原点,以所在直线为轴,建立平面直角坐标系. 设正方形的边长为,则1E 0C 11D 01A 002(,),(,),(,),(,).设 P cos sin (1,1)AC θθ∴=(,),.又向量由题意得 00cos 10sin 12πθθθ≤≤∴≤≤≤≤,,,∴当时,同时,时,取最小值为.温馨提醒:涉及几何图形问题,要注意分析图形特征,利用已有的垂直关系,建立平面直角坐标系,将向量用坐标表示,利用向量共线的充要条件,应用函数方程思想解题.【学科素养提升之思想方法篇】数形结合百般好,隔裂分家万事休——数形结合思想我国著名数学家华罗庚曾说过:"数形结合百般好,隔裂分家万事休。
知识点考纲下载平面向量的几何意义及基本概念理解平面向量及几何意义,理解零向量、向量的模、单位向量、向量相等、平行向量、向量夹角的概念.向量的线性运算掌握平面向量加法、减法、数乘的概念,并理解其几何意义.平面向量的基本定理及坐标表示理解平面向量的基本定理及其意义,会用平面向量基本定理解决简单问题.掌握平面向量的正交分解及其坐标表示.掌握平面向量的加法、减法与数乘的坐标运算.平面向量的数量积及向量的应用理解平面向量数量积的概念及其几何意义.掌握平面向量数量积的坐标运算,掌握数量积与两个向量的夹角之间的关系.会用坐标表示平面向量的平行与垂直.会用向量方法解决某些简单的平面几何问题.复数了解复数的定义、复数的模和复数相等的概念.了解复数的加、减运算的几何意义.理解复数代数形式的四则运算.第1讲平面向量的概念及线性运算1.向量的有关概念(1)向量:既有大小又有方向的量叫做向量,向量的大小叫做向量的模.(2)零向量:长度为0的向量,其方向是任意的.(3)单位向量:长度等于1个单位的向量.(4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量共线.(5)相等向量:长度相等且方向相同的向量.(6)相反向量:长度相等且方向相反的向量.向量运算定义法则(或几何意义)运算律加法求两个向量和的运算交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)减法求a与b的相反向量-b的和的运算a-b=a+(-b)数乘求实数λ与向量a的积的运算|λ a|=|λ||a|,当λ>0时,λa与a的方向相同;当λ<0时,λa与a的方向相反;当λ=0时,λ a=0λ(μ a)=(λμ)a;(λ+μ)a=λa+μ__a;λ(a+b)=λa+λb3.两个向量共线定理向量b与非零向量a共线的充要条件是有且只有一个实数λ,使得b=λa.[说明]三点共线的等价关系A,P,B三点共线⇔AP→=λAB→(λ≠0)⇔OP→=(1-t)·OA→+tOB→(O为平面内异于A,P,B 的任一点,t∈R)⇔OP→=xOA→+yOB→(O为平面内异于A,P,B的任一点,x∈R,y∈R,x+y=1).判断正误(正确的打“√”,错误的打“×”)(1)向量与有向线段是一样的,因此可以用有向线段表示向量.()(2)AB→+BC→+CD→=AD→.()(3)若两个向量共线,则其方向必定相同或相反.()(4)若向量AB→与向量CD→是共线向量,则A,B,C,D四点在一条直线上.()(5)若a∥b,b∥c,则a∥c.()(6)当两个非零向量a,b共线时,一定有b=λa,反之成立.()答案:(1)×(2)√(3)×(4)×(5)×(6)√如图所示,D是△ABC的边AB的中点,则向量CD→=()A.-BC→+12BA→B.-BC→+12AB→C.BC→-12BA→D .BC →+12BA →解析:选A.因为CD →=CB →+BD →,CB →=-BC →, BD →=12BA →,所以CD →=-BC →+12BA →.(2019·瑞安模拟)在四边形ABCD 中,若AC →=AB →+AD →,则四边形ABCD 一定是( ) A .矩形 B .菱形C .正方形D .平行四边形解析:选D.依题意得AB →+BC →=AB →+AD →,则BC →=AD →,因此BC ∥AD ,且BC =AD ,所以四边形ABCD 是平行四边形,故选D.给出下列命题:①零向量的长度为零,方向是任意的; ②若a ,b 都是单位向量,则a =b ; ③向量AB →与BA →相等.则所有正确命题的序号是________.解析:根据零向量的定义可知①正确;根据单位向量的定义可知,单位向量的模相等,但方向不一定相同,故两个单位向量不一定相等,故②错误;向量AB →与BA →互为相反向量,故③错误.答案:①已知平面内四点A ,B ,C ,D ,若AD →=2DB →,CD →=13CA →+λCB →,则λ的值为________.解析:依题意知点A ,B ,D 三点共线,于是有13+λ=1,λ=23.答案:23平面向量的有关概念给出下列命题:①若两个向量相等,则它们的起点相同,终点相同; ②若|a |=|b |,则a =b 或a =-b ;③若A ,B ,C ,D 是不共线的四点,且AB →=DC →,则ABCD 为平行四边形; ④a =b 的充要条件是|a |=|b |且a ∥b ;其中真命题的序号是________.【解析】①是错误的,两个向量起点相同,终点相同,则两个向量相等;但两个向量相等,不一定有相同的起点和终点.②是错误的,|a|=|b|,但a,b方向不确定,所以a,b不一定相等或相反.③是正确的,因为AB→=DC→,所以|AB→|=|DC→|且AB→∥DC→;又A,B,C,D是不共线的四点,所以四边形ABCD为平行四边形.④是错误的,当a∥b且方向相反时,即使|a|=|b|,也不能得到a=b,所以“|a|=|b|且a∥b”不是“a=b”的充要条件,而是必要不充分条件.【答案】③平面向量有关概念的四个关注点(1)相等向量具有传递性,非零向量的平行也具有传递性.(2)共线向量即为平行向量,它们均与起点无关.(3)向量可以平移,平移后的向量与原向量是相等向量,解题时,不要把它与函数图象的移动混淆.(4)非零向量a与a|a|的关系:a|a|是与a同方向的单位向量.给出下列命题:①两个具有公共终点的向量一定是共线向量;②两个向量不能比较大小,但它们的模能比较大小;③若λa=0(λ为实数),则λ必为零;④已知λ,μ为实数,若λa=μb,则a与b共线.其中正确命题的个数为()A.1 B.2C.3 D.4解析:选A.①错误.两向量共线要看其方向而不是看起点与终点.②正确.因为向量既有大小,又有方向,故它们不能比较大小,但它们的模均为实数,故可以比较大小.③错误.当a=0时,无论λ为何值,λa=0.④错误.当λ=μ=0时,λa=μb,此时,a与b可以是任意向量.平面向量的线性运算(高频考点)平面向量的线性运算包括向量的加、减及数乘运算,是高考考查向量的热点.常以选择题、填空题的形式出现.主要命题角度有:(1)用已知向量表示未知向量; (2)求参数的值.角度一 用已知向量表示未知向量如图,正方形ABCD 中,点E 是DC 的中点,点F 是BC 的一个靠近B 点的三等分点,那么EF →等于( )A .12AB →-13AD →B .14AB →+12AD →C .13AB →+12DA →D .12AB →-23AD →【解析】 在△CEF 中,有EF →=EC →+CF →. 因为点E 为DC 的中点,所以EC →=12DC →.因为点F 为BC 的一个靠近B 点的三等分点, 所以CF →=23CB →.所以EF →=12DC →+23CB →=12AB →+23DA →=12AB →-23AD →,故选D. 【答案】 D角度二 求参数的值如图,在△ABC 中,AB =2,BC =3,∠ABC =60°,AH ⊥BC 于点H ,M 为AH的中点.若AM →=λAB →+μBC →,则λ+μ=________.【解析】 因为AB =2,∠ABC =60°,AH ⊥BC ,所以BH =1. 因为点M 为AH 的中点, 所以AM →=12AH →=12(AB →+BH →)=12⎝⎛⎭⎫AB →+13BC →=12AB →+16BC →, 又AM →=λAB →+μBC →, 所以λ=12,μ=16,所以λ+μ=23.【答案】 23向量线性运算的解题策略(1)向量的加减常用的法则是平行四边形法则和三角形法则,一般共起点的向量求和用平行四边形法则,求差用三角形法则,求首尾相连向量的和用三角形法则.(2)找出图形中的相等向量、共线向量,将所求向量与已知向量转化到同一个平行四边形或三角形中求解.1.(2019·嘉兴质检)已知平行四边形ABCD ,点M 1,M 2,M 3,…,M n -1和N 1,N 2,N 3,…,N n -1分别将线段BC 和DC 进行n 等分(n ∈N *,n ≥2),如图,若AM 1→+AM 2→+…+AM n -1+AN 1→+AN 2→+…+AN n -1=45AC →,则n =( )A .29B .30C .31D .32解析:选C.由题图知,因为AM 1→=AB →+1n BC →,AM 2→=AB →+2n BC →,…,AM n -1=AB →+n -1nBC →,AN 1→=AD →+1n DC →,AN 2→=AD →+2n DC →,…,AN n -1=AD →+n -1n DC →.AB →=DC →,AD →=BC →.所以AM 1→+AM 2→+…+AM n -1+AN 1→+AN 2→+…+AN n -1=⎝ ⎛⎭⎪⎫n -1+1n +2n +…+n -1n ·(AD →+AB →)=3(n -1)2AC →,所以3(n -1)2=45,解得n =31.故选C.2.已知D 为三角形ABC 的边BC 的中点,点P 满足P A →+BP →+CP →=0,AP →=λPD →,则实数λ的值为________.解析:因为D 为边BC 的中点, 所以PB →+PC →=2PD →, 又P A →+BP →+CP →=0, 所以P A →=PB →+PC →=2PD →, 所以AP →=-2PD →,与AP →=λPD →比较,得λ=-2. 答案:-2平面向量共线定理的应用设两个非零向量a 与b 不共线.(1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ),求证:A ,B ,D 三点共线; (2)试确定实数k ,使k a +b 和a +k b 共线.【解】 (1)证明:因为AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ),所以BD →=BC →+CD →=2a +8b +3(a -b )=5(a +b )=5AB →,所以AB →,BD →共线, 又它们有公共点B ,所以A ,B ,D 三点共线. (2)因为k a +b 与a +k b 共线, 所以存在实数λ,使k a +b =λ(a +k b ), 即(k -λ)a =(λk -1)b .又a ,b 是两个不共线的非零向量,所以k -λ=λk -1=0.所以k 2-1=0.所以k =±1.1.设e 1,e 2是两个不共线的向量,则向量a =2e 1-e 2与向量b =e 1+λe 2(λ∈R )共线的充要条件是( )A .λ=0B .λ=-1C .λ=-2D .λ=-12解析:选D.因为a =2e 1-e 2,b =e 1+λe 2,e 1,e 2不共线, 因为a ,b 共线⇔b =12a ⇔b =e 1-12e 2⇔λ=-12.2.如图,在△ABC 中,D 为BC 的四等分点,且靠近点B ,E ,F 分别为AC ,AD 的三等分点,且分别靠近A ,D 两点,设AB →=a ,AC →=b .(1)试用a ,b 表示BC →,AD →,BE →; (2)证明:B ,E ,F 三点共线. 解:(1)△ABC 中,AB →=a ,AC →=b , 所以BC →=AC →-AB →=b -a ,AD →=AB →+BD →=AB →+14BC →=a +14(b -a )=34a +14b ,BE →=BA →+AE →=-AB →+13AC →=-a +13b .(2)证明:BE →=-a +13b ,BF →=BA →+AF →=-AB →+23AD →=-a +23⎝⎛⎭⎫34a +14b =-12a +16b =12⎝⎛⎭⎫-a +13b , 所以BF →=12BE →,所以BF →与BE →共线,且有公共点B , 所以B ,E ,F 三点共线.求解向量共线问题的五个策略(1)向量共线的充要条件中,当两向量共线时,通常只有非零向量才能表示与之共线的其他向量,注意待定系数法和方程思想的运用.(2)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得到三点共线.(3)若a 与b 不共线且λa =μb ,则λ=μ=0.(4)直线的向量式参数方程:A ,P ,B 三点共线⇔OP →= (1-t )·OA →+tOB →(O 为平面内任一点,t ∈R ).(5)OA →=λOB →+μOC →(λ,μ为实数),若A ,B ,C 三点共线,则λ+μ=1.易错防范(1)作两个向量的差时,首先将两向量的起点平移到同一点,要注意差向量的方向是由减向量的终点指向被减向量的终点.(2)在向量共线的重要条件中易忽视“a ≠0”,否则λ可能不存在,也可能有无数个.[基础达标]1.下列各式中不能化简为PQ →的是( ) A .AB →+(P A →+BQ →)B .(AB →+PC →)+(BA →-QC →)C .QC →-QP →+CQ →D .P A →+AB →-BQ →解析:选D.AB →+(P A →+BQ →)=AB →+BQ →+P A →=P A →+AQ →=PQ →;(AB →+PC →)+(BA →-QC →)=(AB →+BA →)+(PC →-QC →)=PC →+CQ →=PQ →;QC →-QP →+CQ →=PC →+CQ →=PQ →;P A →+AB →-BQ →=PB →-BQ →, 显然由PB →-BQ →得不出PQ →, 所以不能化简为PQ →的式子是D.2.设a 是非零向量,λ是非零实数,下列结论中正确的是( ) A .a 与λa 的方向相反 B .a 与λ2a 的方向相同 C .|-λa |≥|a | D .|-λa |≥|λ|a 解析:选B.对于A ,当λ>0时,a 与λa 的方向相同,当λ<0时,a 与λa 的方向相反;B 正确;对于C ,|-λa |=|-λ||a |,由于|-λ|的大小不确定,故|-λa |与|a |的大小关系不确定;对于D ,|λ|a 是向量,而|-λa |表示长度,两者不能比较大小.3.(2019·浙江省新高考学科基础测试)设点M 是线段AB 的中点,点C 在直线AB 外,|AB →|=6,|CA →+CB →|=|CA →-CB →|,则|CM →|=( )A .12B .6C .3D .32解析:选C.因为|CA →+CB →|=2|CM →|,|CA →-CB →|=|BA →|,所以2|CM →|=|BA →|=6, 所以|CM →|=3,故选C.4.已知a ,b 是任意的两个向量,则下列关系式中不恒成立的是( ) A .|a |+|b |≥|a -b | B .|a ·b |≤|a |·|b |C .(a -b )2=a 2-2a ·b +b 2D .(a -b )3=a 3-3a 2·b +3a ·b 2-b 3解析:选D.由三角形的三边关系和向量的几何意义,得|a |+|b |≥|a -b |,所以A 正确; 因为|a ·b |=|a ||b ||cosa ,b|,又|cosa ,b|≤1,所以|a ·b |≤|a ||b |恒成立,B 正确;由向量数量积的运算,得(a -b )2=a 2-2a ·b +b 2,C 正确;根据排除法,故选D. 5.已知a ,b 是非零向量,命题p :a =b ,命题q :|a +b |=|a |+|b |,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件解析:选A.若a =b ,则|a +b |=|2a |=2|a |,|a |+|b |=|a |+|a |=2|a |,即p ⇒q , 若|a +b |=|a |+|b |,由加法的运算知a 与b 同向共线, 即a =λb ,且λ>0,故qp .所以p 是q 的充分不必要条件,故选A.6.(2019·温州市普通高中模考)已知A ,B ,C 是圆O 上不同的三点,线段CO 与线段AB 交于点D ,若OC →=λOA →+μOB →(λ>0,μ>0),则λ+μ的取值范围是( )A .(0,1)B .(1,+∞)C .(1, 2 ]D .(0, 2 )解析:选B.由题意可得OD →=kOC →=kλOA →+kμOB →(0<k <1),又A ,D ,B 三点共线,所以kλ+kμ=1,则λ+μ=1k>1,即λ+μ的取值范围是(1,+∞),选项B 正确.7.已知▱ABCD 的对角线AC 和BD 相交于O ,且OA →=a ,OB →=b ,则DC →=________,BC →=________(用a ,b 表示). 解析:如图,DC →=AB →=OB →-OA →=b -a ,BC →=OC →-OB →=-OA →-OB →=-a -b . 答案:b -a -a -b8.若|AB →|=8,|AC →|=5,则|BC →|的取值范围是________.解析:BC →=AC →-AB →,当AB →,AC →同向时,|BC →|=8-5=3;当AB →,AC →反向时,|BC →|=8+5=13;当AB →,AC →不共线时,3<|BC →|<13.综上可知3≤|BC →|≤13.答案:[3,13]9.(2019·温州质检)如图所示,在△ABC 中,BO 为边AC 上的中线,BG →=2GO →,设CD →∥AG →,若AD →=15AB →+λAC →(λ∈R ),则λ的值为 ________.解析:因为BG →=2GO →,所以AG →=13AB →+23AO →=13AB →+13AC →,又CD →∥AG →,可设CD →=mAG →,从而AD →=AC →+CD →=AC →+m 3AB →+m 3AC →=⎝⎛⎭⎫1+m 3AC →+m 3AB →.因为AD →=15AB →+λAC →,所以m 3=15,λ=1+m 3=65.答案:6510.(2019·杭州中学高三月考)已知P 为△ABC 内一点,且5AP →-2AB →-AC →=0,则△P AC的面积与△ABC 的面积之比等于________.解析:因为5AP →-2AB →-AC →=0, 所以AP →=25AB →+15AC →,延长AP 交BC 于D ,则53AP →=23AB →+13AC →=AD →,从而可以得到D 是BC 边的三等分点,且CD =23CB ,设点B 到边AC 的距离为d ,则点P 到边AC 的距离为23×35d =25d ,所以△P AC 的面积与△ABC 的面积之比为25.答案:2511.经过△OAB 重心G 的直线与OA ,OB 分别交于点P ,Q ,设OP →=mOA →,OQ →=nOB →,m ,n ∈R ,求1n +1m的值.解:设OA →=a ,OB →=b ,则OG →=13(a +b ),PQ →=OQ →-OP →=n b -m a ,PG →=OG →-OP →=13(a+b )-m a =⎝⎛⎭⎫13-m a +13b . 由P ,G ,Q 共线得,存在实数λ使得PQ →=λPG →, 即n b -m a =λ⎝⎛⎭⎫13-m a +13λb , 从而⎩⎨⎧-m =λ⎝⎛⎭⎫13-m ,n =13λ,消去λ,得1n +1m=3.12.在△ABC 中,D 、E 分别为BC 、AC 边上的中点,G 为BE 上一点,且GB =2GE ,设AB →=a ,AC →=b ,试用a ,b 表示AD →,AG →.解:AD →=12(AB →+AC →)=12a +12b .AG →=AB →+BG →=AB →+23BE →=AB →+13(BA →+BC →)=23AB →+13(AC →-AB →)=13AB →+13AC →=13a +13b . [能力提升]1.设P 是△ABC 所在平面内的一点,且CP →=2P A →,则△P AB 与△PBC 的面积的比值是( )A .13B .12C .23D .34解析:选B.因为CP →=2P A →,所以|CP →||P A →|=21,又△P AB 在边P A 上的高与△PBC 在边PC 上的高相等,所以S △P ABS △PBC =|P A →||CP →|=12.2.(2019·福建省普通高中质量检查)已知D ,E 是△ABC 边BC 的三等分点,点P 在线段DE 上,若AP →=xAB →+yAC →,则xy 的取值范围是( )A .⎣⎡⎦⎤19,49B .⎣⎡⎦⎤19,14 C .⎣⎡⎦⎤29,12D .⎣⎡⎦⎤29,14解析:选D.由题意,知P ,B ,C 三点共线,则存在实数λ使PB →=λBC →⎝⎛⎭⎫-23≤λ≤-13,所以AB →-AP →=λ(AC →-AB →),所以AP →=-λAC →+(λ+1)AB →,则⎩⎪⎨⎪⎧y =-λx =λ+1,所以x +y =1且13≤x ≤23,于是xy =x (1-x )=-⎝⎛⎭⎫x -122+14,所以当x =12时,xy 取得最大值14;当x =13或x =23时,xy 取得最小值29,所以xy 的取值范围为⎣⎡⎦⎤29,14,故选D. 3.(2019·浙江名校协作体高三联考)如图,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB 的延长线,AC 于不同的两点M ,N ,若AB →=mAM →,AC →=nAN →,则m +n =________.解析:作BG ∥AC ,则BG ∥NC ,|BG ||AN |=|BM ||AM |.因为O 是BC 的中点,所以△NOC ≌△GOB , 所以|BG |=|NC |,又因为|AC |=n |AN |, 所以|NC |=(n -1)|AN |,所以|BG ||AN |=n -1. 因为|AB |=m |AM |,所以|BM |=(1-m )|AM |, 所以|BM ||AM |=1-m ,所以n -1=1-m ,m +n =2.答案:2 4. (2019·温州市四校高三调研)如图,矩形ABCD 中,AB =3,AD =4,M ,N 分别为线段BC ,CD 上的点,且满足1CM 2+1CN2=1,若AC →=xAM →+yAN →,则x +y 的最小值为________.解析:连接MN 交AC 于点G ,由勾股定理,知MN 2=CM 2+CN 2,所以1=1CM 2+1CN2=MN 2CM 2·CN 2, 即MN =CM ·CN ,所以C 到直线MN 的距离为定值1,此时MN 是以C 为圆心,1为半径的圆的一条切线.因为AC →=xAM →+yAN →=(x +y )·⎝ ⎛⎭⎪⎫x x +y AM →+y x +y AN →,所以由共线定理知,AC →=(x +y )AG →, 所以x +y =|AC →||AG →|=5|AG →|,又因为|AG →|max =5-1=4, 所以x +y 的最小值为54.答案:545.如图,EF 是等腰梯形ABCD 的中位线,M ,N 是EF 上的两个三等分点,若AB →=a ,BC →=b ,AB →=2DC →.(1)用a ,b 表示AM →; (2)证明A ,M ,C 三点共线.解:(1)AD →=AB →+BC →+CD →=a +b +⎝⎛⎭⎫-12a =12a +b , 又E 为AD 中点, 所以AE →=12AD →=14a +12b ,因为EF 是梯形的中位线,且AB →=2DC →, 所以EF →=12(AB →+DC →)=12⎝⎛⎭⎫a +12a =34a , 又M ,N 是EF 的三等分点,所以EM →=13EF →=14a ,所以AM →=AE →+EM →=14a +12b +14a =12a +12b .(2)证明:由(1)知MF →=23EF →=12a ,所以MC →=MF →+FC →=12a +12b =AM →,又MC →与AM →有公共点M ,所以A ,M ,C 三点共线.6.已知O ,A ,B 是不共线的三点,且OP →=mOA →+nOB →(m ,n ∈R ).求证:A ,P ,B 三点共线的充要条件是m +n =1.证明:充分性:若m +n =1,则OP →=mOA →+(1-m )OB →=OB →+m (OA →-OB →), 所以OP →-OB →=m (OA →-OB →), 即BP →=mBA →, 所以BP →与BA →共线.又因为BP →与BA →有公共点B ,则A ,P ,B 三点共线. 必要性:若A ,P ,B 三点共线,则存在实数λ,使BP →=λBA →, 所以OP →-OB →=λ(OA →-OB →). 又OP →=mOA →+nOB →.故有mOA →+(n -1)OB →=λOA →-λOB →, 即(m -λ)OA →+(n +λ-1)OB →=0.因为O ,A ,B 不共线,所以OA →,OB →不共线,所以⎩⎪⎨⎪⎧m -λ=0,n +λ-1=0.所以m +n =1.所以A ,P ,B 三点共线的充要条件是m +n =1.。
高考数学一轮总复习 52平面向量基本定理及向量的坐标表示课后强化作业 新人教B 版基础巩固强化一、选择题1.(文)已知向量a =(1,k ),b =(2,2),且a +b 与a 共线,那么a ·b 的值为( ) A .1 B .2 C .3 D .4 [答案] D[解析] ∵a =(1,k ),b =(2,2), ∴a +b =(3,k +2), ∵(a +b )∥a ,∴1·(k +2)=3k ,∴k =1,∴a =(1,1), ∴a ·b =2+2=4.(理)(2013·荆州质检)已知向量a =(2,3),b =(-1,2),若m a +n b 与a -2b 共线,则m n =( )A .-2B .2C .-12D.12[答案] C[解析] 由向量a =(2,3),b =(-1,2)得m a +n b =(2m -n,3m +2n ),a -2b =(4,-1),因为m a +n b 与a -2b 共线,所以(2m -n )×(-1)-(3m +2n )×4=0,整理得m n =-12.2.(文)已知点A (-1,0),B (1,3),向量a =(2k -1,2),若AB →⊥a ,则实数k 的值为( ) A .-2 B .-1 C .1 D .2 [答案] B[解析] AB →=(2,3),∵AB →⊥a ,∴2(2k -1)+3×2=0,∴k =-1,∴选B.(理)(2013·广州综合测试二)已知向量OA →=(3,-4),OB →=(6,-3),OC →=(m ,m +1),若AB →∥OC →,则实数m 的值为( )A .-32B .-14C.12D.32[答案] A[解析] 依题意得,AB →=(3,1),由AB →∥OC →得3(m +1)-m =0,m =-32,选A.3.在四边形ABCD 中,AB →=a +2b ,BC →=-4a -b ,CD →=-5a -3b ,其中a ,b 不共线,则四边形ABCD 为( )A .平行四边形B .矩形C .梯形D .菱形[答案] C[解析] ∵AD →=AB →+BC →+CD →=-8a -2b =2BC →, ∴四边形ABCD 为梯形.4.(文)(2012·天津文,8)在△ABC 中,∠A =90°,AB =1,AC =2,设点P ,Q 满足AP →=λAB →,AQ →=(1-λ)AC →,λ∈R ,若BQ →·CP →=-2,则λ=( )A.13B.23C.43 D .2 [答案] B[解析] 由题意,BQ →=AQ →-AB →=(1-λ)AC →-AB →,CP →=CA →+AP →=-AC →+λAB →,BQ →·CP →=(λ-1)AC →2-λAB →2=3λ-4=-2,∴λ=23.用模与夹角都已知的AC →,AB →来表示BQ →,CP →是解题关键,(AC →,AB →看作一组基底).另外本题可以将向量坐标化去解答.(理)在△ABC 中,M 为边BC 上任意一点,N 为AM 的中点,AN →=λAB →+μAC →,则λ+μ的值为( )A.12B.13C.14 D .1[答案] A[解析] 本题考查向量的线性运算.据已知N 为AM 的中点,可得AN →=12AM →=λAB →+μAC →,整理得AM →=2λAB →+2μAC →,由于点M 在直线BC 上,故有2λ+2μ=1,即λ+μ=12.5.已知平行四边形ABCD ,点P 为四边形内部或者边界上任意一点,向量AP →=xAB →+yAD →,则“0≤x ≤12,0≤y ≤23”的概率是( )A.13 B.23 C.14 D.12[答案] A [解析]根据平面向量基本定理,点P 只要在如图所示的区域AB 1C 1D 1内即可,这个区域的面积是整个四边形面积的12×23=13,故所求的概率是13.6.(文)(2013·安庆二模)已知a ,b 是不共线的两个向量,AB →=x a +b ,AC →=a +y b (x ,y∈R ),若A ,B ,C 三点共线,则点P (x ,y )的轨迹是( )A .直线B .双曲线C .圆D .椭圆[答案] B[解析] ∵A ,B ,C 三点共线,∴存在实数λ,使AB →=λAC →.则x a +b =λ(a +y b )⇒⎩⎪⎨⎪⎧x =λ,1=λy⇒xy =1,故选B.(理)如图,△ABC 中,AD =DB ,AE =EC ,CD 与BE 交于F ,设AB →=a ,AC →=b ,AF →=x a +y b ,则(x ,y )为( )A.⎝⎛⎭⎫12,12 B.⎝⎛⎭⎫23,23 C.⎝⎛⎭⎫13,13 D.⎝⎛⎭⎫23,12[答案] C[解析] 设CF →=λCD →,∵E 、D 分别为AC 、AB 的中点, ∴BE →=BA →+AE →=-a +12b ,BF →=BC →+CF →=(b -a )+λ(12a -b )=⎝⎛⎭⎫12λ-1a +(1-λ)b , ∵BE →与BF →共线,∴12λ-1-1=1-λ12,∴λ=23,∴AF →=AC →+CF →=b +23CD →=b +23⎝⎛⎭⎫12a -b =13a +13b ,故x =13,y =13. 二、填空题7.(文)(2014·金山中学月考)已知向量a =(sin x,1),b =(cos x ,-3),且a ∥b ,则tan x =________.[答案] -13[解析] ∵a ∥b ,∴sin x cos x =1-3,∴tan x =-13.(理)已知a =(2,-3),b =(sin α,cos 2α),α∈⎝⎛⎭⎫-π2,π2,若a ∥b ,则tan α=________. [答案] -33[解析] ∵a ∥b ,∴sin α2=cos 2α-3,∴2cos 2α=-3sin α,∴2sin 2α-3sin α-2=0, ∵|sin α|≤1,∴sin α=-12,∵α∈⎝⎛⎭⎫-π2,π2,∴cos α=32,∴tan α=-33. 8.已知G 是△ABC 的重心,直线EF 过点G 且与边AB 、AC 分别交于点E 、F ,AE →=αAB →,AF →=βAC →,则1α+1β=________.[答案] 3[解析] 连结AG 并延长交BC 于D ,∵G 是△ABC 的重心,∴AG →=23AD →=13(AB →+AC →),设EG →=λGF →,∴AG →-AE →=λ(AF →-AG →),∴AG →=11+λAE →+λ1+λAF →,∴13AB →+13AC →=α1+λAB →+λβ1+λAC →, ∴⎩⎪⎨⎪⎧ α1+λ=13,λβ1+λ=13,∴⎩⎪⎨⎪⎧1α=31+λ,1β=3λ1+λ,∴1α+1β=3. 9.(文)(2013·烟台调研)在等腰直角三角形ABC 中,D 是斜边BC 的中点,如果AB 的长为2,则(AB →+AC →)·AD →的值为________.[答案] 4[解析] 由题意可知,AD =12BC =222=2,(AB →+AC →)·AD →=2AD →·AD →=2|AD →|2=4.(理)在△ABC 中,过中线AD 的中点E 任作一条直线分别交AB 、AC 于M 、N 两点,若AM →=xAB →,AN →=yAC →,则4x +y 的最小值为________.[答案] 94[解析]如图所示,由题意知AD →=12(AB →+AC →),AE →=12AD →,又M ,E ,N 三点共线,所以AE →=λAM →+(1-λ)AN →(其中0<λ<1), 又AM →=xAB →,AN →=yAC →,所以14(AB →+AC →)=λx AB →+(1-λ)yAC →,因此有⎩⎪⎨⎪⎧4λx =1,4(1-λ)y =1,解得x =14λ,y =14(1-λ),令1λ=t ,∴t >1, 则4x +y =1λ+14(1-λ)=t +t4(t -1)=(t -1)+14(t -1)+54≥94,当且仅当t =32,即λ=23时取得等号.三、解答题10.(文)已知O (0,0)、A (2,-1)、B (1,3)、OP →=OA →+tOB →,求 (1)t 为何值时,点P 在x 轴上?点P 在y 轴上?点P 在第四象限? (2)四点O 、A 、B 、P 能否成为平行四边形的四个顶点,说明你的理由.[解析] (1)OP →=OA →+tOB →=(t +2,3t -1). 若点P 在x 轴上,则3t -1=0,∴t =13;若点P 在y 轴上,则t +2=0,∴t =-2;若点P 在第四象限,则⎩⎪⎨⎪⎧t +2>03t -1<0,∴-2<t <13.(2)OA →=(2,-1),PB →=(-t -1,-3t +4).若四边形OABP 为平行四边形,则OA →=PB →.∴⎩⎪⎨⎪⎧-t -1=2-3t +4=-1无解. ∴ 四边形OABP 不可能为平行四边形.同理可知,当t =1时,四边形OAPB 为平行四边形,当t =-1时,四边形OP AB 为平行四边形.(理)已知向量a =(1,2),b =(cos α,sin α),设m =a +t b (t 为实数). (1)若α=π4,求当|m |取最小值时实数t 的值;(2)若a ⊥b ,问:是否存在实数t ,使得向量a -b 和向量m 的夹角为π4,若存在,请求出t ;若不存在,请说明理由.[解析] (1)∵α=π4,∴b =(22,22),a ·b =322,∴|m |=(a +t b )2=5+t 2+2t a ·b =t 2+32t +5=(t +322)2+12, ∴当t =-322时,|m |取到最小值,最小值为22.(2)由条件得cos π4=(a -b )·(a +t b )|a -b ||a +t b |,∵|a -b |=(a -b )2=6,|a +t b |=(a +t b )2=5+t 2,(a -b )·(a +t b )=5-t ,∴5-t 65+t 2=22,且t <5, ∴t 2+5t -5=0,∴存在t =-5±352满足条件.能力拓展提升一、选择题11.平面上有四个互异的点A 、B 、C 、D ,满足(AB →-BC →)·(AD →-CD →)=0,则三角形ABC是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形[答案] B[解析] (AB →-BC →)·(AD →-CD →) =(AB →-BC →)·(AD →+DC →) =(AB →-BC →)·AC →=(AB →-BC →)·(AB →+BC →) =|AB →|2-|BC →|2=0, 故|AB →|=|BC →|,即△ABC 是等腰三角形.12.如图,在四边形ABCD 中,AB =BC =CD =1,且∠B =90°,∠BCD =135°,记向量AB →=a ,AC →=b ,则AD →=( )A.2a -(1+22)b B .-2a +(1+22)b C .-2a +(1-22)b D.2a +(1-22)b [答案] B [解析]根据题意可得△ABC 为等腰直角三角形,由∠BCD =135°,得∠ACD =135°-45°=90°,以B 为原点,AB 所在直线为x 轴,BC 所在直线为y 轴建立如图所示的直角坐标系,并作DE ⊥y 轴于点E ,则△CDE 也为等腰直角三角形,由CD =1,得CE =ED =22,则A (1,0),B (0,0),C (0,1),D (22,1+22),∴AB →=(-1,0),AC →=(-1,1),AD →=(22-1,1+22),令AD →=λAB →+μAC →,则有⎩⎨⎧-λ-μ=22-1,μ=1+22,得⎩⎪⎨⎪⎧λ=-2,μ=1+22.∴AD →=-2a +(1+22)b . 13.(2013·济宁模拟)给定两个长度为1的平面向量OA →和OB →,它们的夹角为90°,如图所示,点C 在以O 为圆心的圆弧AB 上运动,若OC →=xOA →+yOB →,其中x ,y ∈R ,则x +y 的最大值是( )A .1B. 2C. 3 D .2[答案] B[解析] 方法一:以O 为原点,向量OA →,OB →所在直线分别为x 轴,y 轴建立直角坐标系,设〈OA →,OC →〉=θ,θ∈[0,π2],则OA →=(1,0),OB →=(0,1),OC →=(cos θ,sin θ).∵OC →=xOA →+yOB →,∴⎩⎪⎨⎪⎧x =cos θ,y =sin θ.∴x +y =cos θ+sin θ=2sin(θ+π4),又θ+π4∈[π4,3π4],∴x +y 的最大值为 2.方法二:因为点C 在以O 为圆心的圆弧AB 上,所以|OC →|2=|xOA →+yOB →|2=x 2+y 2+2xyOA →·OB →=x 2+y 2=1≥(x +y )22.所以x +y ≤2,当且仅当x =y =22时等号成立. 二、填空题14.(2013·广东江门质检)设a ,b 是两个不共线向量,AB →=2a +p b ,BC →=a +b ,CD →=a-2b ,若A 、B 、D 三点共线,则实数p 的值是________.[答案] -1[解析] ∵A 、B 、D 三点共线,∴AB →与BD →共线, ∵AB →=2a +p b ,BD →=BC →+CD →=2a -b , ∴存在实数λ,使2a +p b =λ(2a -b ), ∵a 与b 不共线,∴λ=1,p =-1. 三、解答题 15.(2013·天津一模)如图所示,P 是△ABC 内一点,且满足P A →+2PB →+3PC →=0,设Q 为CP 延长线与AB 的交点.令CP →=p ,试用p 表示PQ →.[解析] 设P A →=a ,PB →=b ,由已知条件得3CP →=P A →+2PB →,即3p =a +2b , 设PQ →=λCP →(λ为实数),则PQ →=λ3(a +2b ).设AQ →=μAB →(μ为实数), 又PQ →=P A →+AQ →=P A →+μAB →=P A →+μ(PB →-P A →) =(1-μ)a +μb ,由平面向量基本定理知⎩⎨⎧λ3=1-μ,2λ3=μ.解得λ=1,因此PQ →=λCP →=p .16.(文)设△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知c =2b ,向量m =⎝⎛⎭⎫sin A ,32,n =(1,sin A +3cos A ),且m 与n 共线.(1)求角A 的大小; (2)求ac的值.[解析] (1)∵m ∥n ,∴sin A (sin A +3cos A )-32=0,即sin ⎝⎛⎭⎫2A -π6=1.∵A ∈(0,π),∴2A -π6∈⎝⎛⎭⎫-π6,11π6. ∴2A -π6=π2.∴A =π3.(2)由余弦定理及c =2b 、A =π3得,a 2=⎝⎛⎭⎫c 22+c 2-2·c 2·c cos π3, a 2=34c 2,∴a c =32.(理)设a 、b 是不共线的两个非零向量,(1)若OA →=2a -b ,OB →=3a +b ,OC →=a -3b ,求证:A 、B 、C 三点共线; (2)若8a +k b 与k a +2b 共线,求实数k 的值;(3)设OM →=m a ,ON →=n b ,OP →=αa +βb ,其中m 、n 、α、β均为实数,m ≠0,n ≠0,若M 、P 、N 三点共线,求证:αm +βn=1.[解析] (1)∵AB →=(3a +b )-(2a -b )=a +2b . 而BC →=(a -3b )-(3a +b )=-2a -4b =-2AB →,∴AB →与BC →共线,且有公共端点B ,∴A 、B 、C 三点共线. (2)∵8a +k b 与k a +2b 共线,∴存在实数λ使得 (8a +k b )=λ(k a +2b )⇒(8-λk )a +(k -2λ)b =0,∵a 与b 不共线,∴⎩⎪⎨⎪⎧8-λk =0,k -2λ=0.⇒8=2λ2⇒λ=±2,∴k =2λ=±4.(3)证法1:∵M 、P 、N 三点共线,∴存在实数λ,使得MP →=λPN →,∴OP →=OM →+λON →1+λ=m1+λa +λn1+λb , ∵a 、b 不共线,∴⎩⎪⎨⎪⎧α=m1+λ,β=λn1+λ∴αm +βn =11+λ+λ1+λ=1. 证法2:∵M 、P 、N 三点共线,∴OP →=xOM →+yON →且x +y =1, 由已知可得:xm a +yn b =αa +βb , ∴x =αm ,y =βn ,∴αm +βn=1.考纲要求了解平面向量的基本定理及其意义.掌握平面向量的正交分解及其坐标表示.会用坐标表示平面向量的加法、减法与数乘运算.理解用坐标表示的平面向量共线的条件.补充材料1.证明共线(或平行)问题的主要依据:(1)对于向量a ,b ,若存在实数λ,使得b =λa ,则向量a 与b 共线(平行). (2)a =(x 1,y 1),b =(x 2,y 2),若x 1y 2-x 2y 1=0,则向量a ∥b . (3)对于向量a ,b ,若|a ·b |=|a |·|b |,则a 与b 共线. 要注意向量平行与直线平行是有区别的.2.用已知向量来表示另外一些向量是用向量解题的基本功.在进行向量运算时,要尽可能将它们转化到平行四边形或三角形中,以便使用向量的运算法则进行求解.充分利用平面几何的性质,可把未知向量用已知向量表示出来.3.平面向量基本定理的本质是运用向量加法的平行四边形法则,将向量进行分解. 备选习题1.已知两不共线向量a =(cos α,sin α),b =(cos β,sin β),则下列说法不正确的是( ) A .(a +b )⊥(a -b ) B .a 与b 的夹角等于α-β C .|a +b |+|a -b |>2D .a 与b 在a +b 方向上的射影相等 [答案] B[解析] 注意到|a |=|b |=1,因此(a +b )·(a -b )=a 2-b 2=0,所以(a +b )⊥(a -b );注意到α-β未必属于(0,π),因此a ,b 的夹角未必等于α-β;由三角形法则可知,|a +b |+|a -b |2>1,于是有|a +b |+|a -b |>2;结合三角形法则及一个向量在另一个向量上的射影的意义可知,a ,b 在a +b 方向上的射影相等.综上所述,其中不正确的说法是B ,选B.2.在平面直角坐标系中,O 为原点,设向量OA →=a ,OB →=b ,其中a =(3,1),b =(1,3).若OC →=λa +μb ,且0≤λ≤μ≤1,C 点的所有可能位置区域用阴影表示正确的是( )[答案] A[解析] OC →=λa +μb =(3λ+μ,λ+3μ), 令OC →=(x ,y ),则x -y =(3λ+μ)-(λ+3μ) =2(λ-μ)≤0,∴点C 对应区域在直线y =x 的上方,故选A.3.(2013·福建)在四边形ABCD 中,AC →=(1,2),BD →=(-4,2),则该四边形的面积为( ) A. 5 B .2 5 C .5 D .10[答案] C[解析] ∵AC →·BD →=(1,2)·(-4,2)=0,∴AC ⊥BD , 又|AC →|=5,|BD →|=25, ∴S =12×5×25=5.4.(2013·哈尔滨质检)已知平面向量a =(2m +1,3),b =(2,m ),且a 与b 反向,则|b |等于( )A.1027B .2 2 C.52 D.52或2 2 [答案] B[解析] 据题意a ∥b 则m (2m +1)-3×2=0,解得m =-2或m =32,当m =32时a =(4,3),b =(2,32),则a =2b ,此时两向量同向,与已知不符,故m =-2,此时b =(2,-2),故|b |=2 2.5.(2013·铜陵一模)如图,菱形ABCD 的边长为2,∠A =60°,M 为DC 的中点,若N 为菱形内任意一点(含边界),则AM →·AN →的最大值为( )A .3B .2 3C .6D .9[答案] D[解析] 以A 为坐标原点,AB 所在直线为x 轴建立直角坐标系,如图所示,因为∠A =60°,菱形的边长为2,所以D (1,3),B (2,0),C (3,3).因为M 为DC 的中点,所以M (2,3),设N (x ,y ),则N 点的活动区域为四边形ABCD 内(含边界),则AM →·AN →=(2,3)·(x ,y )=2x +3y ,令z =2x +3y ,得y =-23x +z3,由线性规划知识可知,当直线经过点C 时,直线y =-23x +z3的截距最大,此时z 最大,所以最大值为z =2x +3y =2×3+3×3=6+3=9.故选D.6.已知向量OA →=(1,-3),OB →=(2,-1),OC →=(k +1,k -1),若A 、B 、C 三点不能构成三角形,则实数k 应满足的条件是( )A .k =-2B .k =12C .k =1D .k =2[答案] D[解析] ∵A 、B 、C 三点构不成三角形, ∴A 、B 、C 三点在同一条直线上,∴存在实数λ,使OC →=λOA →+(1-λ)OB →, ∴(k +1,k -1)=(2-λ,-2λ-1),∴⎩⎪⎨⎪⎧k +1=2-λ,k -1=-2λ-1,解之得k =2. [点评] 由于三点A 、B 、C 构不成三角形,∴A 、B 、C 共线,∴AB →与AC →共线,∴存在λ,使AC →=λAB →,解λ、k 的方程可得k 值.。
第2讲 平面向量基本定理及坐标表示[基础题组练]1.在平面直角坐标系中,已知向量a =(1,2),a -12b =(3,1),c =(x ,3),若(2a +b )∥c ,则x =( )A .-2B .-4C .-3D .-1解析:选D.因为a -12b =(3,1),所以a -(3,1)=12b ,则b =(-4,2).所以2a +b=(-2,6).又(2a +b )∥c ,所以-6=6x ,x =-1.故选D.2.(2020·安徽合肥第一次质检)设向量a =(-3,4),向量b 与向量a 方向相反,且|b |=10,则向量b 的坐标为( )A.⎝ ⎛⎭⎪⎫-65,85B .(-6,8) C.⎝ ⎛⎭⎪⎫65,-85D .(6,-8)解析:选D.因为向量b 与向量a 方向相反,所以可设b =λa =(-3λ,4λ),λ<0,则|b |=9λ2+16λ2=25λ2=5|λ|=-5λ=10,所以λ=-2,所以b =(6,-8).故选D.3.已知向量AC →,AD →和AB →在边长为1的正方形网格中的位置如图所示,若AC →=λAB →+μAD →,则λ+μ等于( )A .2B .-2C .3D .-3解析:选A.如图所示,建立平面直角坐标系,则AD →=(1,0),AC →=(2,-2),AB →=(1,2).因为AC →=λAB →+μAD →,所以(2,-2)=λ(1,2)+μ(1,0)=(λ+μ,2λ),所以⎩⎪⎨⎪⎧2=λ+μ,-2=2λ,解得⎩⎪⎨⎪⎧λ=-1,μ=3.所以λ+μ=2.故选A. 4.已知平面直角坐标系内的两个向量a =(m ,3m -4),b =(1,2),且平面内的任一向量c 都可以唯一地表示成c =λa +μb (λ,μ为实数),则m 的取值范围是( )A .(-∞,4)B .(4,+∞)C .(-∞,4)∪(4,+∞)D .(-∞,+∞)解析:选C.平面内的任意向量c 都可以唯一地表示成c =λa +μb ,由平面向量基本定理可知,向量a ,b 可作为该平面所有向量的一组基底,即向量a ,b 是不共线向量.又因为a =(m ,3m -4),b =(1,2),则m ×2-(3m -4)×1≠0,即m ≠4,所以m 的取值范围为(-∞,4)∪(4,+∞).5.在平面直角坐标系xOy 中,已知A (1,0),B (0,1),C 为坐标平面内第一象限内的点,且∠AOC =π4,|OC |=2,若OC →=λOA →+μOB →,则λ+μ=( )A .2 2B . 2C .2D .4 2解析:选A.因为|OC |=2,∠AOC =π4,所以C (2,2),又因为OC →=λOA →+μOB →,所以(2,2)=λ(1,0)+μ(0,1)=(λ,μ),所以λ=μ=2,λ+μ=2 2.6.(2020·湖北荆门阶段检测)在△AOB 中,AC →=15AB →,D 为OB 的中点,若DC →=λOA →+μOB →,则λμ的值为________.解析:因为AC →=15AB →,所以AC →=15(OB →-OA →),因为D 为OB 的中点,所以OD →=12OB →,所以DC →=DO →+OC →=-12OB →+(OA →+AC →)=-12OB →+OA →+15(OB →-OA →)=45OA →-310OB →,所以λ=45,μ=-310,则λμ的值为-625.答案:-6257.已知O 为坐标原点,向量OA →=(1,2),OB →=(-2,-1),若2AP →=AB →,则|OP →|=________. 解析:设P 点坐标为(x ,y ),AB →=OB →-OA →=(-2,-1)-(1,2)=(-3,-3),AP →=(x-1,y -2),由2AP →=AB →得,2(x -1,y -2)=(-3,-3),所以⎩⎪⎨⎪⎧2x -2=-3,2y -4=-3,解得⎩⎪⎨⎪⎧x =-12,y =12.故|OP →|=14+14=22. 答案:228.已知A (-3,0),B (0,3),O 为坐标原点,C 在第二象限,且∠AOC =30°,OC →=λOA →+OB →,则实数λ的值为________.解析:由题意知OA →=(-3,0),OB →=(0,3), 则OC →=(-3λ,3),由∠AOC =30°知,以x 轴的非负半轴为始边,OC 为终边的一个角为150°,所以tan 150°=3-3λ, 即-33=-33λ,所以λ=1. 答案:19.已知A (-2,4),B (3,-1),C (-3,-4).设AB →=a ,BC →=b ,CA →=c ,且CM →=3c ,CN →=-2b .(1)求3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n ; (3)求M ,N 的坐标及向量MN →的坐标.解:由已知得a =(5,-5),b =(-6,-3),c =(1,8). (1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8) =(15-6-3,-15-3-24)=(6,-42). (2)因为m b +n c =(-6m +n ,-3m +8n ),所以⎩⎪⎨⎪⎧-6m +n =5,-3m +8n =-5,解得⎩⎪⎨⎪⎧m =-1,n =-1.(3)设O 为坐标原点,因为CM →=OM →-OC →=3c , 所以OM →=3c +OC →=(3,24)+(-3,-4)=(0,20). 所以M (0,20).又因为CN →=ON →-OC →=-2b ,所以ON →=-2b +OC →=(12,6)+(-3,-4)=(9,2), 所以N (9,2).所以MN →=(9,-18). 10.如图,AB 是圆O 的直径,C ,D 是圆O 上的点,∠CBA =60°,∠ABD =45°,CD →=xOA →+yBC →,求x +y 的值.解:不妨设⊙O 的半径为1,以圆心O 为坐标原点,以OB ,OD 为x ,y 轴的正方向,建立如图所示的直角坐标系,则A (-1,0),B (1,0),D (0,1),C ⎝ ⎛⎭⎪⎫12,-32.所以CD →=⎝ ⎛⎭⎪⎫-12,1+32,BC →=⎝ ⎛⎭⎪⎫-12,-32.又CD →=xOA →+yBC →, 所以⎝ ⎛⎭⎪⎫-12,1+32=x (-1,0)+y ⎝ ⎛⎭⎪⎫-12,-32.所以⎩⎪⎨⎪⎧-12=-x -12y ,1+32=-32y ,解得⎩⎪⎨⎪⎧x =3+33,y =-3+233.所以x +y =3+33-3+233=-33.[综合题组练]1.已知P ={}a |a =(1,0)+m (0,1),m ∈R ,Q ={b |b =(1,1)+n (-1,1),n∈R }是两个向量集合,则P ∩Q 等于( )A.{}(1,1) B .{}(-1,1) C.{}(1,0)D .{}(0,1)解析:选A.设a =(x ,y ),则所以集合P 是直线x =1上的点的集合.同理,集合Q 是直线x +y =2上的点的集合,即P ={}(x ,y )|x =1,y ∈R ,Q ={}(x ,y )|x +y -2=0,所以P ∩Q ={}(1,1).故选A.2.(2020·包河区校级月考)古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:将一线段AB 分为两线段AC ,CB ,合得其中较长的一段AC 是全长与另一段CB 的比例中项,即满足AC AB =BC AC =5-12,后人把这个数称为黄金分割数,把点C 称为线段AB 的黄金分割点,在△ABC 中,若点P ,Q 为线段BC 的两个黄金分割点,设AP →x 1AB→+y 1AC →,AQ →=x 2AB →+y 2AC →,则x 1x 2+y 1y 2=( )A.5+12B .2 C. 5D .5+1解析:选C.由题意, AP →=AB →+BP →=AB →+⎝ ⎛⎭⎪⎫1-5-12BC →=AB →+3-52(AC →-AB →) =⎝⎛⎭⎪⎫1-3-52AB →+3-52AC →=5-12AB →+3-52AC →,同理,AQ →=AB →+BQ →=AB →+5-12BC →=AB →+5-12(AC →-AB →)=3-52AB →+5-12AC →. 所以x 1=y 2=5-12,x 2=y 1=3-52. 所以x 1x 2+y 1y 2=5-13-5+3-55-1= 5.3.(创新型)若α,β是一组基底,向量γ=x α+y β(x ,y ∈R ),则称(x ,y )为向量γ在基底α,β下的坐标,现已知向量a 在基底p =(1,-1),q =(2,1)下的坐标为(-2,2),则a 在另一组基底m =(-1,1),n =(1,2)下的坐标为________.解析:因为a 在基底p ,q 下的坐标为(-2,2), 即a =-2p +2q =(2,4), 令a =x m +y n =(-x +y ,x +2y ),所以⎩⎪⎨⎪⎧-x +y =2,x +2y =4,即⎩⎪⎨⎪⎧x =0,y =2. 所以a 在基底m ,n 下的坐标为(0,2). 答案:(0,2)4.已知非零不共线向量OA →,OB →,若2OP →=xOA →+yOB →,且PA →=λAB →(λ∈R ),则点P (x ,y )的轨迹方程是________.解析:由PA →=λAB →,得OA →-OP →=λ(OB →-OA →), 即OP →=(1+λ)OA →-λOB →. 又2OP →=xOA →+yOB →,所以⎩⎪⎨⎪⎧x =2+2λ,y =-2λ,消去λ得x +y -2=0.答案:x +y -2=0 5.(一题多解)如图,在同一个平面内,向量OA →,OB →,OC →的模分别为1,1,2,OA →与OC →的夹角为α,且tan α=7,OB →与OC →的夹角为45°.若OC →=mOA →+nOB →(m ,n ∈R ),求m +n 的值.解:法一:以O 为坐标原点,OA 所在直线为x 轴建立平面直角坐标系,则A (1,0),由tan α=7,α∈⎝ ⎛⎭⎪⎫0,π2,得sin α=752,cos α=152,设C (x C ,y C ),B (x B ,y B ),则x C =|OC →|cos α=2×152=15,y C =|OC →|sin α=2×752=75,即C ⎝⎛⎭⎪⎫15,75.又cos(α+45°)=152×12-752×12=-35,sin (α+45°)=752×12+152×12=45,则x B =|OB→|cos(α+45°)=-35,y B =|OB →|sin (α+45°)=45,即B ⎝ ⎛⎭⎪⎫-35,45,由OC →=m OA →+n OB →,可得⎩⎪⎨⎪⎧15=m -35n ,75=45n ,解得⎩⎪⎨⎪⎧m =54,n =74,所以m +n =54+74=3. 法二:由tan α=7,α∈⎝ ⎛⎭⎪⎫0,π2,得sin α=752,cos α=152,则cos(α+45°)=152×12-752×12=-35,OB →·OC →=1×2×22=1,OA →·OC →=1×2×152=15,OA →·OB→=1×1×⎝ ⎛⎭⎪⎫-35=-35,由OC →=m OA →+n OB →,得OC →·OA →=m OA →2+n OB →·OA →,即15=m -35n ①,同理可得OC →·OB →=m OA →·OB →+n OB →2,即1=-35m +n ②,联立①②,解得⎩⎪⎨⎪⎧m =54,n =74.所以m+n =54+74=3.6.已知△ABC 中,AB =2,AC =1,∠BAC =120°,AD 为角平分线. (1)求AD 的长度;(2)过点D 作直线交AB ,AC 的延长线于不同两点E ,F ,且满足AE →=xAB →,AF →=yAC →,求1x+2y的值,并说明理由.解:(1)根据角平分线定理:DB DC =AB AC =2,所以BD BC =23, 所以AD →=AB →+BD →=AB →+23BC →=AB →+23(AC →-AB →)=13AB →+23AC →,所以AD →2=19AB →2+49AB →·AC →+49AC →2=49-49+49=49,所以AD =23.(2)因为AE →=xAB →,AF →=yAC →,所以AD →=13AB →+23AC →=13x AE →+23y AF →,因为E ,D ,F 三点共线,所以13x +23y =1,所以1x +2y =3.。
高三数学一轮总结复习目录理科数学 -模拟试题分类目录1第一章会合与常用逻辑用语1.1 会合的观点与运算专题 1 会合的含义与表示、会合间的基本关系专题 2 会合的基本运算专题 3 与会合有关的新观点问题1.2 命题及其关系、充要条件专题 1 四种命题及其关系、命题真假的判断专题 2 充足条件和必需条件专题 3 充足、必需条件的应用与研究(利用关系或条件求解参数范围问题)1.3 简单的逻辑联络词、全称量词与存在量词专题 1 含有简单逻辑联络词的命题的真假专题 2 全称命题、特称命题的真假判断专题 3 含有一个量词的命题的否认专题 4 利用逻辑联络词求参数范围第二章函数2.1 函数及其表示专题 1 函数的定义域专题 2 函数的值域专题 3 函数的分析式专题 4 分段函数2.2 函数的单一性与最值专题 1 确立函数的单一性(或单一区间)专题 2 函数的最值专题 3 单一性的应用2.3 函数的奇偶性与周期性专题 1 奇偶性的判断专题 2 奇偶性的应用专题 3 周期性及其应用2.4 指数与指数函数专题 1 指数幂的运算专题 2 指数函数的图象及应用专题 3 指数函数的性质及应用2.5 对数与对数函数专题 1 对数的运算专题 2 对数函数的图象及应用专题 3 对数函数的性质及应用2.6 幂函数与二次函数专题 1 幂函数的图象与性质专题 2 二次函数的图象与性质2.7 函数的图像专题 1 函数图象的辨别专题 2 函数图象的变换专题 3 函数图象的应用2.8 函数与方程专题 1 函数零点所在区间的判断专题 2 函数零点、方程根的个数专题 3 函数零点的综合应用2.9 函数的应用专题 1 一次函数与二次函数模型专题 2 分段函数模型2专题 3 指数型、对数型函数模型第三章导数及其应用3.1 导数的观点及运算专题 1 导数的观点与几何意义专题 2 导数的运算3.2 导数与函数的单一性、极值、最值专题 1 导数与函数的单一性专题 2 导数与函数的极值专题 3 导数与函数的最值3.3 导数的综合应用专题 1 利用导数解决生活中的优化问题专题 2 利用导数研究函数的零点或方程的根专题 3 利用导数解决不等式的有关问题3.4 定积分与微积分基本定理专题 1 定积分的计算专题 2 利用定积分求平面图形的面积专题 4 定积分在物理中的应用第四章三角函数、解三角形4.1 三角函数的观点、同角三角函数的基本关系及引诱公式专题 1 三角函数的观点专题 2 同角三角函数的基本关系专题 3 引诱公式4.2 三角函数的图像与性质专题 1 三角函数的定义域、值域、最值专题 2 三角函数的单一性专题 3 三角函数的奇偶性、周期性和对称性4.3 函数 y = A sin(wx +j ) 的图像及应用专题 1 三角函数的图象与变换专题 2 函数 y=Asin( ωx+φ ) 图象及性质的应用4.4 两角和与差的正弦、余弦与正切公式专题 1 非特别角的三角函数式的化简、求值专题 2 含条件的求值、求角问题专题 3 两角和与差公式的应用4.5 三角恒等变换专题 1 三角函数式的化简、求值专题 2 给角求值与给值求角专题 3 三角变换的综合问题4.6 解三角形专题 1 利用正弦定理、余弦定理解三角形专题 2 判断三角形的形状专题 3 丈量距离、高度及角度问题专题 4 与平面向量、不等式等综合的三角形问题第五章平面向量5.1 平面向量的观点及线性运算专题 1 平面向量的线性运算及几何意义专题 2 向量共线定理及应用专题 3 平面向量基本定理的应用5.2 平面向量基本定理及向量的坐标表示专题 1 平面向量基本定理的应用3专题 2 平面向量的坐标运算专题 3 平面向量共线的坐标表示5.3 平面向量的数目积专题 1 平面向量数目积的运算专题 2 平面向量数目积的性质专题 3 平面向量数目积的应用5.4 平面向量的应用专题 1 平面向量在几何中的应用专题 2 平面向量在物理中的应用专题 3 平面向量在三角函数中的应用专题 4 平面向量在分析几何中的应用第六章数列6.1 数列的观点与表示专题 1 数列的观点专题 2 数列的通项公式6.2 等差数列及其前 n 项和专题 1 等差数列的观点与运算专题 2 等差数列的性质专题 3 等差数列前 n 项和公式与最值6.3 等比数列及其前 n 项和专题 1 等比数列的观点与运算专题 2 等比数列的性质专题 3 等比数列前 n 项和公式6.4 数列乞降专题 1 分组乞降与并项乞降专题 2 错位相减乞降专题 3 裂项相消乞降6.5 数列的综合应用专题 1 数列与不等式相联合问题专题 2 数列与函数相联合问题专题 3 数列中的研究性问题第七章不等式推理与证明7.1 不等关系与一元二次不等式专题 1 不等式的性质及应用专题 2 一元二次不等式的解法专题 3 一元二次不等式恒建立问题7.2 二元一次不等式(组)与简单的线性规划问题专题 1 二元一次不等式(组)表示的平面地区问题专题 2 与目标函数有关的最值问题专题 3 线性规划的实质应用7.3 基本不等式及其应用专题 1 利用基本不等式求最值专题 2 利用基本不等式证明不等式专题 3 基本不等式的实质应用7.4 合情推理与演绎推理专题 1 概括推理专题 2 类比推理专题 3 演绎推理7.5 直接证明与间接证明专题 1 综合法4专题 2 剖析法专题 3 反证法7.6 数学概括法专题 1 用数学概括法证明等式专题 2 用数学概括法证明不等式专题 3 概括-猜想-证明第八章立体几何8.1 空间几何体的构造及其三视图和直观图专题 1 空间几何体的构造专题 2 三视图与直观图8.2 空间几何体的表面积与体积专题 1 空间几何体的表面积专题 2 空间几何体的体积专题 3 组合体的“接”“切”综合问题8.3 空间点、直线、平面之间的地点关系专题 1 平面的基天性质及应用专题 2 空间两条直线的地点关系专题 3 异面直线所成的角8.4 直线、平面平行的判断与性质专题 1 线面平行、面面平行基本问题专题 2 直线与平面平行的判断与性质专题 3 平面与平面平行的判断与性质8.5 直线、平面垂直的判断与性质专题 1 垂直关系的基本问题专题 2 直线与平面垂直的判断与性质专题 3 平面与平面垂直的判断与性质专题 4 空间中的距离问题专题 5 平行与垂直的综合问题(折叠、研究类)8.6 空间向量及其运算专题 1 空间向量的线性运算专题 2 共线定理、共面定理的应用专题 3 空间向量的数目积及其应用8.7 空间几何中的向量方法专题 1 利用空间向量证明平行、垂直专题 2 利用空间向量解决研究性问题专题 3 利用空间向量求空间角第九章分析几何9.1 直线的倾斜角、斜率与直线的方程专题 1 直线的倾斜角与斜率专题 2 直线的方程9.2 点与直线、两条直线的地点关系专题 1 两条直线的平行与垂直专题 2 直线的交点问题专题 3 距离公式专题 4 对称问题9.3 圆的方程专题 1 求圆的方程专题 2 与圆有关的轨迹问题专题 3 与圆有关的最值问题59.4 直线与圆、圆与圆的地点关系专题 1 直线与圆的地点关系专题 2 圆与圆的地点关系专题 3 圆的切线与弦长问题专题 4 空间直角坐标系9.5 椭圆专题 1 椭圆的定义及标准方程专题 2 椭圆的几何性质专题 3 直线与椭圆的地点关系9.6 双曲线专题 1 双曲线的定义与标准方程专题 2 双曲线的几何性质9.7 抛物线专题 1 抛物线的定义与标准方程专题 2 抛物线的几何性质专题 3 直线与抛物线的地点关系9.8 直线与圆锥曲线专题 1 轨迹与轨迹方程专题 2 圆锥曲线中的范围、最值问题专题 3 圆锥曲线中的定值、定点问题专题 4 圆锥曲线中的存在、研究性问题第十章统计与统计事例10.1 随机抽样专题 1 简单随机抽样专题 2 系统抽样专题 3 分层抽样10.2 用样本预计整体专题 1 频次散布直方图专题 2 茎叶图专题 3 样本的数字特点专题 4 用样本预计整体10.3 变量间的有关关系、统计事例专题 1 有关关系的判断专题 2 回归方程的求法及回归剖析专题 3 独立性查验第十一章计数原理11.1 分类加法计数原理与分步乘法计数原理专题 1 分类加法计数原理专题 2 分步乘法计数原理专题 3 两个计数原理的综合应用11.2 摆列与组合专题 1 摆列问题专题 2 组合问题专题 3 摆列、组合的综合应用11.3 二项式定理专题 1 通项及其应用专题 2 二项式系数的性质与各项系数和专题 3 二项式定理的应用第十二章概率与统计612.1 随机事件的概率专题 1 事件的关系专题 2 随机事件的频次与概率专题 3 互斥事件、对峙事件12.2 古典概型与几何概型专题 1 古典概型的概率专题 2 古典概型与其余知识的交汇(平面向量、直线、圆、函数等)专题 3 几何概型在不一样测度中的概率专题 4 生活中的几何概型问题12.3 失散型随机变量及其散布列专题 1 失散型随机变量的散布列的性质专题 2 求失散型随机变量的散布列专题 3 超几何散布12.4 失散型随机变量的均值与方差专题 1 简单的均值、方差问题专题 2 失散型随机变量的均值与方差专题 3 均值与方差在决议中的应用12.5 二项散布与正态散布专题 1 条件概率专题 2 互相独立事件同时发生的概率专题 3 独立重复试验与二项散布专题 4 正态散布下的概率第十三章算法初步、复数13.1 算法与程序框图专题 1 次序构造专题 2 条件构造专题 3 循环构造13.2 基本算法语句专题 1 输入、输出和赋值语句专题 2 条件语句专题 3 循环语句13.3 复数专题 1 复数的有关观点专题 2 复数的几何意义专题 3 复数的代数运算第十四章选修模块14.1 几何证明选讲专题 1 平行线分线段成比率定理专题 2 相像三角形的判断与性质专题 3 直角三角形的射影定理专题 4 圆周角、弦切角及圆的切线专题 5 圆内接四边形的判断及性质专题 6 圆的切线的性质与判断专题 7 与圆有关的比率线段14.2 坐标系与参数方程专题 1 极坐标与直角坐标的互化专题 2 直角坐标方程与极坐标方程的互化专题 3 曲线的极坐标方程的求解专题 4 曲线的参数方程的求解专题 5 参数方程与一般方程的互化7专题 6 极坐标方程与参数方程的应用14.3 不等式选讲专题 1 含绝对值不等式的解法专题 2 绝对值三角不等式的应用专题 3 含绝对值不等式的问题专题 4 不等式的证明8。
5.2 平面向量的基本定理及坐标表示1.平面向量基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使_______________________________.我们把不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组__________.2.向量的夹角(1)已知两个________向量a 和b ,作OA →=a , OB →=b ,则∠AOB =θ叫做向量a 与b 的夹角(如图).(2)向量夹角θ的范围是_______________.a 与b 同向时,夹角θ=________;a 与b 反向时,夹角θ=____________.(3)如果向量a 与b 的夹角是____________,我们就说a 与b 垂直,记作____________.3.平面向量的正交分解及坐标表示 (1)平面向量的正交分解把一个向量分解为两个____________的向量,叫做向量的正交分解.(2)在平面直角坐标系内,分别取与x 轴、y 轴方向相同的两个单位向量i ,j 作为基底.任作一个向量a ,由平面向量基本定理知,有且只有一对实数x ,y ,使得a =x i +y j .则实数对__________叫做向量a 的(直角)坐标,记作a =__________,其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标,该式叫做向量的坐标表示.与a 相等的向量的坐标也为________.显然,i =__________, j =__________,0=__________.4.平面向量的坐标运算(1)已知a =(x 1,y 1),b =(x 2,y 2),则a ±b =___________________________________________.(2)如果A (x 1,y 1),B (x 2,y 2),则AB →=___________________________________________.(3)若a =(x ,y ),则λa =____________.(4)如果a =(x 1,y 1),b =(x 2,y 2)(b ≠0),则a ∥b的充要条件是____________________.自查自纠: 1.a =λ1e 1+λ2e 2 基底2.(1)非零 (2)0°≤θ≤180° 0° 180° (3)90° a ⊥b3.(1)互相垂直 (2)(x ,y ) (x ,y ) (x ,y ) (1,0) (0,1) (0,0)4.(1)(x 1±x 2,y 1±y 2) (2)(x 2-x 1,y 2-y 1) (3)(λx ,λy ) (4)x 1y 2-x 2y 1=0在△ABC 中,已知A (2,1),B (0,2),BC →=(1,-2),则向量AC →= ( )A .(0,0)B .(2,2)C .(-1,-1)D .(-3,-3) 解:因为A (2,1),B (0,2),所以AB →=(-2,1).又因为BC →=(1,-2),所以AC →=AB →+BC →=(-2,1)+(1,-2)=(-1,-1).故选C .(2017·杭州模拟)已知e 1,e 2是表示平面内所有向量的一组基底,则下列四组向量中,不能作为一组基底的是 ( )A .e 1+e 2和e 1-e 2B .3e 1-2e 2和4e 2-6e 1C .e 1+2e 2和e 2+2e 1D .e 2和e 1+e 2解:因为4e 2-6e 1=-2(3e 1-2e 2),所以3e 1-2e 2与4e 2-6e 1共线,又作为一组基底的两个向量一定不共线,所以它们不能作为一组基底.故选B .(2018·北京朝阳高三一模)已知平面向量 a =(x ,1),b =(2,x -1)且a ∥b ,则实数x 的值是( )A .-1B .1C .2D .-1或2 解:由a =(x ,1),b =(2,x -1)且a ∥b ,可以得到x (x -1)=2,即(x -2)(x +1)=0,所以x =-1或x =2.故选D .(2017·全国卷Ⅲ)已知向量a =(-2,3), b =(3,m ),且a ⊥b ,则m =________.解:由题意可得,-2×3+3m =0,所以m =2.故填2.在正方形ABCD 中,M ,N 分别是BC ,CD的中点,若AC →=λAM →+μBN →,则实数λ+μ=________.解法一:因为AC →=AB →+BC →,AM →=AB →+BM →=AB →+12BC →,BN →=BC →+CN →=BC →-12AB →,所以由AC →=λAM →+μBN →有⎩⎨⎧1=λ-12μ,1=12λ+μ,解得⎩⎨⎧λ=65,μ=25,所以λ+μ=85. 解法二:不妨设正方形边长为2,以A 为坐标原点,AB →方向为x 轴正方向,AD →方向为y 轴正方向建立平面直角坐标系,则AC →=(2,2),AM →=(2,1),BN →=(-1,2).由AC →=λAM →+μBN →有⎩⎪⎨⎪⎧2λ-μ=2,λ+2μ=2,解得λ=65,μ=25,λ+μ=85.故填85.类型一 向量共线充要条件的坐标表示(1)(2018·全国卷Ⅲ)已知向量a =(1,2),b =(2,-2),c =(1,λ),若c ∥(2a +b ),则λ=________.解:由题可得2a +b =(4,2),因为c ∥(2a +b ),c =(1,λ),所以4λ-2=0,即λ=12.故填12.(2)已知平面向量a =(2m +1,3),b =(2,m ),且a 与b 反向,则|b |等于( )A .1027B .2 2C .52D .52或2 2解:根据题意a ∥b 知m (2m +1)-3×2=0,解得m =-2或m =32.当m =32时,a =(4,3),b =⎝⎛⎭⎫2,32,则a =2b ,此时两向量同向,与已知不符,故m =-2,此时b =(2,-2),故|b |=22.故选B .点 拨:两平面向量共线的充要条件有两种形式:①若a =(x 1,y 1),b =(x 2,y 2),则a ∥b (b ≠0)的充要条件是x 1y 2-x 2y 1=0;②a ∥b (a ≠0),当且仅当唯一一个实数λ,使b =λa .向量共线的坐标表示既可以判定两向量平行,也可以由平行求参数.当两向量的坐标均非零时,也可以利用坐标对应成比例来求解.(1) (2017·郑州月考)已知向量a = (1-sin θ,1),b =⎝⎛⎭⎫12,1+sin θ,若a ∥b ,则锐角 θ=________.解:由a ∥b ,得(1-sin θ)(1+sin θ)=12,所以cos 2θ=12,所以cos θ=22或cos θ=-22,又θ为锐角,所以θ=45°.故填45°.(2)已知向量OA →=(1,-3),OB →=(2,-1), OC →=(k +1,k -2),若A ,B ,C 三点能构成三角形,则实数k 的取值范围是________.解:若点A ,B ,C 能构成三角形,则向量AB →,AC →不共线.因为AB →=OB →-OA →=(2,-1)-(1,-3)=(1,2),AC →=OC →-OA →=(k +1,k -2)-(1,-3)=(k ,k +1),所以1×(k +1)-2k ≠0,解得k ≠1. 故填{k |k ∈R ,且k ≠1}.类型二 平面向量基本定理及其应用(1)如图,已知平面内有三个向量OA →,OB →,OC →,其中OA →与OB →的夹角为120°,OA →与OC →的夹角为30°,且|OA →|=|OB →|=1,|OC →|=23,若 OC →=λOA →+μOB →(λ,μ∈R ),则λ+μ的值为________.解法一:以λOA →和μOB →为邻边作平行四边形OB 1CA 1,如图,则OC →=OB 1→+OA 1→.因为OA →与OB →的夹角为120°, OA →与OC →的夹角为30°,所以∠B 1OC =90°,在Rt △OB 1C 中,|OC →|=23,所以|OB 1→|=2,|B 1C →|=4,所以|OA 1→|=|B 1C →|=4, 所以OC →=4OA →+2OB →,即λ+μ=6. 解法二:以O 为原点,建立如图所示的平面直角坐标系,则A (1,0),C (23cos30°,23sin30°),B (cos120°,sin120°).即A (1,0),C (3,3),B ⎝⎛⎭⎫-12,32.由OC →=λOA →+μOB →=λ(1,0)+μ⎝⎛⎭⎫-12,32=⎝⎛⎭⎫λ-12μ,32μ,即⎝⎛⎭⎫λ-12μ,32μ=(3,3),得⎩⎨⎧λ-12μ=3,32μ=3,所以⎩⎪⎨⎪⎧μ=2,λ=4, 即λ+μ=6.故填6.(2)已知向量AC →,AD →和AB →在正方形网格中的位置如图所示,若AC →=λAB →+μAD →,则λμ=________.解:建立如图所示的平面直角坐标系xAy ,则 AC →=(2,-2),AB →=(1,2),AD →=(1,0).由题意可知(2,-2)=λ(1,2)+μ(1,0),即⎩⎪⎨⎪⎧2=λ+μ,-2=2λ, 解得⎩⎪⎨⎪⎧λ=-1,μ=3,所以λμ=-3.故填 -3.点 拨:应用平面向量基本定理应注意:①平面向量基本定理中的基底必须是两个不共线的向量;②选定基底后,通过向量的加、减、数乘以及向量平行的充要条件,把相关向量用这一组基底表示出来;③强调几何性质在向量运算中的作用,用基底表示未知向量,常借助图形的几何性质,如平行、相似等;④在基底未给出的情况下,合理地选取基底会给解题带来方便.(1)设向量a ,b 不平行,向量λa +b与a +2b 平行,则实数λ=________.解:由于λa +b 与a +2b 平行,且a +2b ≠0,所以存在唯一的实数μ∈R ,使得λa +b =μ(a +2b ),即(λ-μ)a +(1-2μ)b =0.因为a ,b 不平行,所以⎩⎪⎨⎪⎧λ-μ=0,1-2μ=0, 解得λ=μ=12.故填12.(2)向量a ,b ,c 在正方形网格中的位置如图所示.若c =λa +μb (λ,μ∈R ),则λμ=________.解:设i ,j 分别为水平向右和竖直向上的单位向量,则a =-i +j ,b =6i +2j ,c =-i -3j ,所以-i -3j =λ(-i +j )+μ(6i +2j ),即-i -3j =(-λ+6μ)i +(λ+2μ)j ,根据平面向量基本定理得⎩⎪⎨⎪⎧-1=-λ+6μ,-3=λ+2μ, 解得⎩⎪⎨⎪⎧λ=-2,μ=-12.所以λμ=4.故填4.类型三 求向量的坐标已知梯形ABCD ,其中AB ∥CD ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为________.解:因为在梯形ABCD 中,DC =2AB ,AB ∥CD ,所以DC →=2AB →.设点D 的坐标为(x ,y ),则DC →=(4,2)-(x ,y )=(4-x ,2-y ), AB →=(2,1)-(1,2)=(1,-1),所以(4-x ,2-y )=2(1,-1),即(4-x ,2-y )=(2,-2),所以⎩⎪⎨⎪⎧4-x =2,2-y =-2, 解得⎩⎪⎨⎪⎧x =2,y =4,故点D 的坐标为(2,4).故填(2,4).点 拨:平面向量坐标运算的技巧:①向量的坐标运算常建立在向量的线性运算的基础之上,若已知有向线段两端点的坐标,则应考虑坐标运算;②解题过程中,常利用“向量相等,则其坐标相同”这一原则,通过列方程(组)进行求解.已知三点A (a ,0),B (0,b ),C (2,2),其中a >0,b >0.(1)若O 是坐标原点,且四边形OACB 是平行四边形,试求a ,b 的值;(2)若A ,B ,C 三点共线,试求1a +1b 的值.解:(1)因为四边形OACB 是平行四边形,所以OA →=BC →,即(a ,0)=(2,2-b ),⎩⎪⎨⎪⎧a =2,2-b =0, 解得⎩⎪⎨⎪⎧a =2,b =2. 故a =2,b =2.(2)因为AB →=(-a ,b ),BC →=(2,2-b ), 由A ,B ,C 三点共线,得AB →∥BC →, 所以-a (2-b )-2b =0,即2(a +b )=ab , 因为a >0,b >0, 所以1a +1b =12.类型四 向量坐标的应用(2018·天津)如图,在平面四边形ABCD 中,AB ⊥BC ,AD ⊥CD ,∠BAD =120°,AB =AD =1.若点E 为边CD 上的动点,则AE →·BE →的最小值为 ( )A .2116B .32C .2516D .3解法一:以点A 为原点,以AB 所在的直线为x 轴,建立如图(1)所示的平面直角坐标系,依题意得,A (0,0),B (1,0).因为AD =1,∠BAD =120°,所以D ⎝⎛⎭⎫-12,32,且直线CD 的倾斜角为30°,所以直线CD 的方程为y -32=33⎝⎛⎭⎫x +12,即y =33(x +2).由⎩⎪⎨⎪⎧y =33(x +2),x =1,得⎩⎨⎧x =1,y =3,所以点C 的坐标为(1,3).因为点E 为边CD 上的动点,故可设E ⎝⎛⎭⎫t ,33(t +2),-12≤t ≤1,所以AE →=⎝⎛⎭⎫t ,33(t +2),BE →=⎝⎛⎭⎫t -1,33(t +2),所以AE →·BE →=t (t -1)+⎣⎡⎦⎤33(t +2)2=43⎝⎛⎭⎫t +182+2116,所以当t =-18时,AE →·BE →取最小值,为2116.图(1) 图(2)解法二:易知DC =3,∠CAD =60°,设DE =x (0≤x ≤3),则AE →·BE →=(AD →+DE →)·(BA →+AD →+DE →)=1×1×cos60°+12+0+x ×1×cos150°+0+x 2=⎝⎛⎭⎫x -342+2116≥2116.解法三:如图(2),取AB 的中点F ,连接EF ,则AE →·BE →=EA →·EB →=(EF →+F A →)·(EF →-F A →)=EF →2- F A →2=EF →2-14.可知当且仅当|EF →|最小时AE →·BE →取最小值,分别过F ,B 作CD 的垂线,垂足分别为H ,G ,当点E 与H 重合时,EF 取到最小值,易知EF 为梯形DABG 的中位线,由已知得|BG |=32,|AD |=1,则|HF |=|EF |=12(|BG |+|AD |)=54.故AE →·BE →的最小值为2116.故选A .点 拨:向量的坐标运算,往往能降低推理的难度,与向量相关的最值、范围问题,可优先考虑坐标运算.用向量法解决平面几何相关问题的步骤是:①建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;②通过向量运算,研究几何元素之间的关系,如长度、距离、夹角等问题;③把运算结果“翻译”成几何关系,从而解决问题.(2017·安徽联考)在边长为1的正△ABC 中,D ,E 是边BC 的两个三等分点(D 靠近点B ),则AD →·AE →等于 ( )A .16B .29C .1318D .13解法一:建立如图所示的直角坐标系,则A ⎝⎛⎭⎫0,32,D ⎝⎛⎭⎫-16,0,E ⎝⎛⎭⎫16,0,所以AD →=⎝⎛⎭⎫-16,-32,AE →=⎝⎛⎭⎫16,-32,AD →·AE →=-16×16+⎝⎛⎭⎫-32×⎝⎛⎭⎫-32=1318.解法二:取BC 中点O ,则AD →·AE →=(AO →+OD →)·(AO →+OE →)=AO →2-OE →2=34-136=1318.解法三:如图,|AB →|=|AC →|=1,〈AB →,AC →〉=60°.因为D ,E 是边BC 的两个三等分点,所以AD →·AE →=⎝⎛⎭⎫AB →+13BC →·⎝⎛⎭⎫AC →+13CB →=AB →·AC →-13AB →·BC →+13BC →·AC →-19BC →2=1×1×cos60°-13×1×1×cos120°+13×1×1×cos60°-19=12+16+16-19=1318.故选C .1.对平面向量基本定理的理解(1)平面向量基本定理实际上是向量的分解定理,并且是平面向量正交分解的理论依据,也是向量坐标表示的基础.(2)平面向量的一组基底是两个不共线向量,平面向量基底可以有无穷多组.(3)用平面向量基本定理可将平面中任一向量分解成形如a =λ1e 1+λ2e 2(λ1,λ2∈R ,e 1,e 2为同一平面内不共线的两个向量)的形式,它是向量线性运算知识的延伸.(4)如果e 1,e 2是同一平面内的一组基底,且λ1e 1+λ2e 2=0(λ1,λ2∈R ),那么λ1=λ2=0.2.对两向量夹角的理解两向量的夹角是指当两向量的起点相同时,表示两向量的有向线段所形成的角.若起点不同,则应通过平移,使其起点相同.3.向量的坐标表示向量用坐标表示后,向量的计算和证明都归结为数的运算,这使问题大大简化.一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标,当且仅当向量的起点为原点时,向量的坐标才等于其终点的坐标.两个向量相等,当且仅当其坐标相同.4.向量坐标的应用向量具有代数和几何的双重特征,如向量运算的平行四边形法则、三角形法则、平面向量基本定理等都可以认为是从几何的角度来研究向量的特征;而引入坐标后,就可以通过代数运算来研究向量,凸显出了向量的代数特征,为用代数的方法研究向量问题奠定了基础.在处理很多与向量有关的问题时,坐标化是一种常见的思路,利用坐标可以使许多问题的解决变得更加简捷.1.下列向量组中,能作为表示它们所在平面内所有向量的一组基底的是 ( )A .a =(1,2),b =(0,0)B .a =(1,-2),b =(3,5)C .a =(3,2),b =(9,6)D .a =⎝⎛⎭⎫-34,12, b =(3,-2) 解:在平面内,根据向量基底的定义知,两个向量不共线即可作为基底.故选B .2.设向量a =(2,4)与向量b =(x ,6)共线,则实数x = ( )A .2B .3C .4D .6 解:因为a ∥b ,所以2×6-4x =0,解得x =3.故选B .3.(2017·抚州模拟)若向量a =(1,1),b =(-1,1),c =(4,2),则c = ( )A .3a +bB .3a -bC .-a +3bD .a +3b解法一:设c =m a +n b ,则(4,2)=(m -n ,m +n ),所以⎩⎪⎨⎪⎧m -n =4,m +n =2, 所以⎩⎪⎨⎪⎧m =3,n =-1, 所以c =3a -b .解法二:代入验证法.对于A ,3a +b =3(1,1)+(-1,1)=(2,4)≠c ,故A 不正确;同理选项C 、D 也不正确;对于B ,3a -b =(4,2)=c ,故B 正确.故选B .4.已知M (3,-2),N (-5,-1),且MP →=12MN →,则P 点的坐标为 ( )A .(-8,1)B .⎝⎛⎭⎫-1,-32 C .⎝⎛⎭⎫1,32 D .(8,-1) 解:设P (x ,y ),则MP →=(x -3,y +2), 而12MN →=12(-8,1)=⎝⎛⎭⎫-4,12, 所以⎩⎪⎨⎪⎧x -3=-4,y +2=12, 解得⎩⎪⎨⎪⎧x =-1,y =-32.所以P 点坐标为⎝⎛⎭⎫-1,-32.故选B . 5.如图,e 1,e 2为互相垂直的单位向量,向量a ,b 如图,则向量a -b 可表示为 ( )A .3e 2-e 1B .-2e 1-4e 2C .e 1-3e 2D .3e 1-e 2解:由图易知a -b =-3e 2+e 1=e 1-3e 2.故选C .6.(2018·浙江)已知a ,b ,e 是平面向量,e 是单位向量,若非零向量a 与e 的夹角为π3,向量b满足b 2-4e ·b +3=0,则|a -b |的最小值是( )A .3-1B .3+1C .2D .2- 3解:不妨设e =(1,0),b =(x ,y ),则由b 2-4e ·b +3=0⇒(x -2)2+y 2=1,再由a 与e 的夹角为π3可知,所求为如图两条射线上的点到圆上的点距离的最小值,即为2sin60°-1=3-1.故选A . 7.已知向量e 1,e 2是两个不共线的向量,若a =2e 1-e 2与b =e 1+λe 2共线,则λ=________. 解:若a =2e 1-e 2与b =e 1+λe 2共线,则 2e 1-e 2=k (e 1+λe 2)=k e 1+λk e 2,得⎩⎪⎨⎪⎧k =2,λk =-1, 解得λ=-12.故填-12.8.(2018·山东菏泽高三一模)已知在△ABC 中,D 为边BC 上的点,且BD =3DC ,点E 为AD 的中点,BE →=mAB →+nAC →,则m +n =________.解:BE →=BD →+DE →=BD →-12AD →=BD →-12(AB →+BD →)=12BD →-12AB →=12×34BC →-12AB →=38BC →-12AB →=38(AC →-AB →)-12AB →=-78AB →+38AC →.又BE →=mAB →+nAC →,所以mAB →+nAC →=-78AB→+38AC →.又因为AB →与AC →不共线,所以m =-78,n =38,所以m +n =-12.故填-12. 9.已知a =(1,0),b =(2,1).求:(1)|a +3b |;(2)当k 为何实数时,k a -b 与a +3b 平行,平行时它们是同向还是反向?解:(1)因为a =(1,0),b =(2,1), 所以a +3b =(7,3),故|a +3b |=72+32=58.(2)k a -b =(k -2,-1),a +3b =(7,3), 因为k a -b 与a +3b 平行, 所以3(k -2)+7=0,即k =-13.此时k a -b =(k -2,-1)=⎝⎛⎭⎫-73,-1, a +3b =(7,3),则a +3b =-3(k a -b ),即此时向量a +3b 与k a -b 方向相反.10.已知点O (0,0),A (1,2),B (4,5)及OP →=OA →+tAB →,试问: (1)当t 为何值时,P 在x 轴上?P 在y 轴上?P在第三象限内?(2)四边形OABP 能否成为平行四边形?若能,求出t 的值;若不能,请说明理由. 解:(1)依题意,得AB →=(3,3),所以OP →=OA →+tAB →=(1+3t ,2+3t ),即P (1+3t ,2+3t ).若P 在x 轴上,则2+3t =0,所以t =-23;若P 在y 轴上,则1+3t =0,所以t =-13;若P 在第三象限内,则⎩⎪⎨⎪⎧1+3t <0,2+3t <0, 所以t <-23. (2)因为OA →=(1,2),PB →=(3-3t ,3-3t ),若OABP 是平行四边形,则OA →=PB →,所以⎩⎪⎨⎪⎧3-3t =1,3-3t =2. 此方程无解.故四边形OABP 不可能成为平行四边形. 11.已知平行四边形三个顶点的坐标分别为(-1,0),(3,0),(1,-5),求第四个顶点的坐标.解:如图所示,令A (-1,0),B (3,0),C (1,-5),D (x ,y ).(1)若四边形ABCD 1为平行四边形, 则AD 1→=BC →,且AD 1→=(x +1,y ),BC →=(-2,-5).所以⎩⎪⎨⎪⎧x +1=-2,y =-5,解得⎩⎪⎨⎪⎧x =-3,y =-5. 所以D 1(-3,-5).(2)若四边形ACD 2B 为平行四边形,则AB →=CD 2→,且AB →=(4,0),CD 2→=(x -1,y +5).所以⎩⎪⎨⎪⎧x -1=4,y +5=0, 解得⎩⎪⎨⎪⎧x =5,y =-5. 所以D 2(5,-5).(3)若四边形ACBD 3为平行四边形,则AD 3→=CB →,且AD 3→=(x +1,y ),CB →=(2,5),所以⎩⎪⎨⎪⎧x +1=2,y =5, 解得⎩⎪⎨⎪⎧x =1,y =5. 所以D 3(1,5).综上所述,平行四边形第四个顶点的坐标为(-3,-5)或(5,-5)或(1,5).如图所示,在△ABC 中,点M 是AB的中点,且AN →=12NC →,BN 与CM 相交于点E ,设AB →=a ,AC →=b ,用基底a ,b 表示向量AE →=________.解:易得AN →=13AC →=13b ,AM →=12AB →=12a ,由N ,E ,B 三点共线知,存在实数m ,满足AE →=mAN →+ (1-m )AB →=13m b +(1-m )a .由C ,E ,M 三点共线知存在实数n ,满足AE →=nAM →+(1-n )AC →=12n a +(1-n )b .所以13m b +(1-m )a =12n a +(1-n )b .由于a ,b为基底,所以⎩⎨⎧1-m =12n ,13m =1-n ,解得⎩⎨⎧m =35,n =45. 所以AE →=25a +15b .故填25a +15b .5.2 平面向量的基本定理及坐标表示1.平面向量基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使_______________________________.我们把不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组__________.2.向量的夹角(1)已知两个________向量a 和b ,作OA →=a , OB →=b ,则∠AOB =θ叫做向量a 与b 的夹角(如图).(2)向量夹角θ的范围是_______________.a 与b 同向时,夹角θ=________;a 与b 反向时,夹角θ=____________.(3)如果向量a 与b 的夹角是____________,我们就说a 与b 垂直,记作____________.3.平面向量的正交分解及坐标表示 (1)平面向量的正交分解把一个向量分解为两个____________的向量,叫做向量的正交分解.(2)在平面直角坐标系内,分别取与x 轴、y 轴方向相同的两个单位向量i ,j 作为基底.任作一个向量a ,由平面向量基本定理知,有且只有一对实数x ,y ,使得a =x i +y j .则实数对__________叫做向量a 的(直角)坐标,记作a =__________,其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标,该式叫做向量的坐标表示.与a 相等的向量的坐标也为________.显然,i =__________, j =__________,0=__________.4.平面向量的坐标运算(1)已知a =(x 1,y 1),b =(x 2,y 2),则a ±b =___________________________________________.(2)如果A (x 1,y 1),B (x 2,y 2),则AB →=___________________________________________.(3)若a =(x ,y ),则λa =____________.(4)如果a =(x 1,y 1),b =(x 2,y 2)(b ≠0),则a ∥b 的充要条件是____________________.自查自纠: 1.a =λ1e 1+λ2e 2 基底2.(1)非零 (2)0°≤θ≤180° 0° 180° (3)90° a ⊥b3.(1)互相垂直 (2)(x ,y ) (x ,y ) (x ,y ) (1,0) (0,1) (0,0)4.(1)(x 1±x 2,y 1±y 2) (2)(x 2-x 1,y 2-y 1) (3)(λx ,λy ) (4)x 1y 2-x 2y 1=0在△ABC 中,已知A (2,1),B (0,2),BC →=(1,-2),则向量AC →= ( )A .(0,0)B .(2,2)C .(-1,-1)D .(-3,-3) 解:因为A (2,1),B (0,2),所以AB →=(-2,1).又因为BC →=(1,-2),所以AC →=AB →+BC →=(-2,1)+(1,-2)=(-1,-1).故选C .(2017·杭州模拟)已知e 1,e 2是表示平面内所有向量的一组基底,则下列四组向量中,不能作为一组基底的是 ( )A .e 1+e 2和e 1-e 2B .3e 1-2e 2和4e 2-6e 1C .e 1+2e 2和e 2+2e 1D .e 2和e 1+e 2解:因为4e 2-6e 1=-2(3e 1-2e 2),所以3e 1-2e 2与4e 2-6e 1共线,又作为一组基底的两个向量一定不共线,所以它们不能作为一组基底.故选B .(2018·北京朝阳高三一模)已知平面向量 a =(x ,1),b =(2,x -1)且a ∥b ,则实数x 的值是( )A .-1B .1C .2D .-1或2 解:由a =(x ,1),b =(2,x -1)且a ∥b ,可以得到x (x -1)=2,即(x -2)(x +1)=0,所以x =-1或x =2.故选D .(2017·全国卷Ⅲ)已知向量a =(-2,3),b =(3,m ),且a ⊥b ,则m =________.解:由题意可得,-2×3+3m =0,所以m =2.故填2.在正方形ABCD 中,M ,N 分别是BC ,CD的中点,若AC →=λAM →+μBN →,则实数λ+μ=________.解法一:因为AC →=AB →+BC →,AM →=AB →+BM →=AB →+12BC →,BN →=BC →+CN →=BC →-12AB →,所以由AC →=λAM →+μBN →有⎩⎨⎧1=λ-12μ,1=12λ+μ,解得⎩⎨⎧λ=65,μ=25,所以λ+μ=85. 解法二:不妨设正方形边长为2,以A 为坐标原点,AB →方向为x 轴正方向,AD →方向为y 轴正方向建立平面直角坐标系,则AC →=(2,2),AM →=(2,1),BN →=(-1,2).由AC →=λAM →+μBN →有⎩⎪⎨⎪⎧2λ-μ=2,λ+2μ=2,解得λ=65,μ=25,λ+μ=85.故填85.类型一 向量共线充要条件的坐标表示(1)(2018·全国卷Ⅲ)已知向量a =(1,2),b =(2,-2),c =(1,λ),若c ∥(2a +b ),则λ=________.解:由题可得2a +b =(4,2),因为c ∥(2a +b ),c =(1,λ),所以4λ-2=0,即λ=12.故填12.(2)已知平面向量a =(2m +1,3),b =(2,m ),且a 与b 反向,则|b |等于( )A .1027B .2 2C .52D .52或2 2解:根据题意a ∥b 知m (2m +1)-3×2=0,解得m =-2或m =32.当m =32时,a =(4,3),b =⎝⎛⎭⎫2,32,则a =2b ,此时两向量同向,与已知不符,故m =-2,此时b =(2,-2),故|b |=22.故选B .点 拨:两平面向量共线的充要条件有两种形式:①若a =(x 1,y 1),b =(x 2,y 2),则a ∥b (b ≠0)的充要条件是x 1y 2-x 2y 1=0;②a ∥b (a ≠0),当且仅当唯一一个实数λ,使b =λa .向量共线的坐标表示既可以判定两向量平行,也可以由平行求参数.当两向量的坐标均非零时,也可以利用坐标对应成比例来求解.(1) (2017·郑州月考)已知向量a = (1-sin θ,1),b =⎝⎛⎭⎫12,1+sin θ,若a ∥b ,则锐角 θ=________.解:由a ∥b ,得(1-sin θ)(1+sin θ)=12,所以cos 2θ=12,所以cos θ=22或cos θ=-22,又θ为锐角,所以θ=45°.故填45°.(2)已知向量OA →=(1,-3),OB →=(2,-1), OC →=(k +1,k -2),若A ,B ,C 三点能构成三角形,则实数k 的取值范围是________.解:若点A ,B ,C 能构成三角形,则向量AB →,AC →不共线.因为AB →=OB →-OA →=(2,-1)-(1,-3)=(1,2),AC →=OC →-OA →=(k +1,k -2)-(1,-3)=(k ,k +1),所以1×(k +1)-2k ≠0,解得k ≠1. 故填{k |k ∈R ,且k ≠1}.类型二 平面向量基本定理及其应用(1)如图,已知平面内有三个向量OA →,OB →,OC →,其中OA →与OB →的夹角为120°,OA →与OC →的夹角为30°,且|OA →|=|OB →|=1,|OC →|=23,若 OC →=λOA →+μOB →(λ,μ∈R ),则λ+μ的值为________.解法一:以λOA →和μOB →为邻边作平行四边形OB 1CA 1,如图,则OC →=OB 1→+OA 1→.因为OA →与OB →的夹角为120°, OA →与OC →的夹角为30°,所以∠B 1OC =90°,在Rt △OB 1C 中,|OC →|=23,所以|OB 1→|=2,|B 1C →|=4,所以|OA 1→|=|B 1C →|=4, 所以OC →=4OA →+2OB →,即λ+μ=6. 解法二:以O 为原点,建立如图所示的平面直角坐标系,则A (1,0),C (23cos30°,23sin30°),B (cos120°,sin120°).即A (1,0),C (3,3),B ⎝⎛⎭⎫-12,32.由OC →=λOA →+μOB →=λ(1,0)+μ⎝⎛⎭⎫-12,32=⎝⎛⎭⎫λ-12μ,32μ,即⎝⎛⎭⎫λ-12μ,32μ=(3,3),得⎩⎨⎧λ-12μ=3,32μ=3,所以⎩⎪⎨⎪⎧μ=2,λ=4, 即λ+μ=6.故填6.(2)已知向量AC →,AD →和AB →在正方形网格中的位置如图所示,若AC →=λAB →+μAD →,则λμ=________.解:建立如图所示的平面直角坐标系xAy ,则 AC →=(2,-2),AB →=(1,2),AD →=(1,0).由题意可知(2,-2)=λ(1,2)+μ(1,0),即⎩⎪⎨⎪⎧2=λ+μ,-2=2λ, 解得⎩⎪⎨⎪⎧λ=-1,μ=3,所以λμ=-3.故填 -3.点 拨:应用平面向量基本定理应注意:①平面向量基本定理中的基底必须是两个不共线的向量;②选定基底后,通过向量的加、减、数乘以及向量平行的充要条件,把相关向量用这一组基底表示出来;③强调几何性质在向量运算中的作用,用基底表示未知向量,常借助图形的几何性质,如平行、相似等;④在基底未给出的情况下,合理地选取基底会给解题带来方便.(1)设向量a ,b 不平行,向量λa +b与a +2b 平行,则实数λ=________.解:由于λa +b 与a +2b 平行,且a +2b ≠0,所以存在唯一的实数μ∈R ,使得λa +b =μ(a +2b ),即(λ-μ)a +(1-2μ)b =0.因为a ,b 不平行,所以⎩⎪⎨⎪⎧λ-μ=0,1-2μ=0, 解得λ=μ=12.故填12.(2)向量a ,b ,c 在正方形网格中的位置如图所示.若c =λa +μb (λ,μ∈R ),则λμ=________.解:设i ,j 分别为水平向右和竖直向上的单位向量,则a =-i +j ,b =6i +2j ,c =-i -3j ,所以-i -3j =λ(-i +j )+μ(6i +2j ),即-i -3j =(-λ+6μ)i +(λ+2μ)j ,根据平面向量基本定理得⎩⎪⎨⎪⎧-1=-λ+6μ,-3=λ+2μ, 解得⎩⎪⎨⎪⎧λ=-2,μ=-12.所以λμ=4.故填4.类型三 求向量的坐标已知梯形ABCD ,其中AB ∥CD ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为________.解:因为在梯形ABCD 中,DC =2AB ,AB ∥CD ,所以DC →=2AB →.设点D 的坐标为(x ,y ),则DC →=(4,2)-(x ,y )=(4-x ,2-y ), AB →=(2,1)-(1,2)=(1,-1),所以(4-x ,2-y )=2(1,-1),即(4-x ,2-y )=(2,-2),所以⎩⎪⎨⎪⎧4-x =2,2-y =-2, 解得⎩⎪⎨⎪⎧x =2,y =4,故点D 的坐标为(2,4).故填(2,4).点 拨:平面向量坐标运算的技巧:①向量的坐标运算常建立在向量的线性运算的基础之上,若已知有向线段两端点的坐标,则应考虑坐标运算;②解题过程中,常利用“向量相等,则其坐标相同”这一原则,通过列方程(组)进行求解.已知三点A (a ,0),B (0,b ),C (2,2),其中a >0,b >0.(1)若O 是坐标原点,且四边形OACB 是平行四边形,试求a ,b 的值;(2)若A ,B ,C 三点共线,试求1a +1b 的值.解:(1)因为四边形OACB 是平行四边形,所以OA →=BC →,即(a ,0)=(2,2-b ),⎩⎪⎨⎪⎧a =2,2-b =0, 解得⎩⎪⎨⎪⎧a =2,b =2. 故a =2,b =2.(2)因为AB →=(-a ,b ),BC →=(2,2-b ), 由A ,B ,C 三点共线,得AB →∥BC →, 所以-a (2-b )-2b =0,即2(a +b )=ab , 因为a >0,b >0, 所以1a +1b =12.类型四 向量坐标的应用(2018·天津)如图,在平面四边形ABCD 中,AB ⊥BC ,AD ⊥CD ,∠BAD =120°,AB =AD =1.若点E 为边CD 上的动点,则AE →·BE →的最小值为 ( )A .2116B .32C .2516D .3解法一:以点A 为原点,以AB 所在的直线为x 轴,建立如图(1)所示的平面直角坐标系,依题意得,A (0,0),B (1,0).因为AD =1,∠BAD =120°,所以D ⎝⎛⎭⎫-12,32,且直线CD 的倾斜角为30°,所以直线CD 的方程为y -32=33⎝⎛⎭⎫x +12,即y =33(x +2).由⎩⎪⎨⎪⎧y =33(x +2),x =1,得⎩⎨⎧x =1,y =3,所以点C 的坐标为(1,3).因为点E 为边CD 上的动点,故可设E ⎝⎛⎭⎫t ,33(t +2),-12≤t ≤1,所以AE →=⎝⎛⎭⎫t ,33(t +2),BE →=⎝⎛⎭⎫t -1,33(t +2),所以AE →·BE →=t (t -1)+⎣⎡⎦⎤33(t +2)2=43⎝⎛⎭⎫t +182+2116,所以当t =-18时,AE →·BE →取最小值,为2116.图(1) 图(2)解法二:易知DC =3,∠CAD =60°,设DE =x (0≤x ≤3),则AE →·BE →=(AD →+DE →)·(BA →+AD →+DE →)=1×1×cos60°+12+0+x ×1×cos150°+0+x 2=⎝⎛⎭⎫x -342+2116≥2116.解法三:如图(2),取AB 的中点F ,连接EF ,则AE →·BE →=EA →·EB →=(EF →+F A →)·(EF →-F A →)=EF →2- F A →2=EF →2-14.可知当且仅当|EF →|最小时AE →·BE →取最小值,分别过F ,B 作CD 的垂线,垂足分别为H ,G ,当点E 与H 重合时,EF 取到最小值,易知EF 为梯形DABG 的中位线,由已知得|BG |=32,|AD |=1,则|HF |=|EF |=12(|BG |+|AD |)=54.故AE →·BE →的最小值为2116.故选A .点 拨:向量的坐标运算,往往能降低推理的难度,与向量相关的最值、范围问题,可优先考虑坐标运算.用向量法解决平面几何相关问题的步骤是:①建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;②通过向量运算,研究几何元素之间的关系,如长度、距离、夹角等问题;③把运算结果“翻译”成几何关系,从而解决问题.(2017·安徽联考)在边长为1的正△ABC 中,D ,E 是边BC 的两个三等分点(D 靠近点B ),则AD →·AE →等于 ( )A .16B .29C .1318D .13解法一:建立如图所示的直角坐标系,则A ⎝⎛⎭⎫0,32,D ⎝⎛⎭⎫-16,0,E ⎝⎛⎭⎫16,0,所以AD →=⎝⎛⎭⎫-16,-32,AE →=⎝⎛⎭⎫16,-32,AD →·AE →=-16×16+⎝⎛⎭⎫-32×⎝⎛⎭⎫-32=1318.解法二:取BC 中点O ,则AD →·AE →=(AO →+OD →)·(AO →+OE →)=AO →2-OE →2=34-136=1318.解法三:如图,|AB →|=|AC →|=1,〈AB →,AC →〉=60°.因为D ,E 是边BC 的两个三等分点,所以AD →·AE →=⎝⎛⎭⎫AB →+13BC →·⎝⎛⎭⎫AC →+13CB →=AB →·AC →-13AB →·BC →+13BC →·AC →-19BC →2=1×1×cos60°-13×1×1×cos120°+13×1×1×cos60°-19=12+16+16-19=1318.故选C .1.对平面向量基本定理的理解(1)平面向量基本定理实际上是向量的分解定理,并且是平面向量正交分解的理论依据,也是向量坐标表示的基础.(2)平面向量的一组基底是两个不共线向量,平面向量基底可以有无穷多组.(3)用平面向量基本定理可将平面中任一向量分解成形如a =λ1e 1+λ2e 2(λ1,λ2∈R ,e 1,e 2为同一平面内不共线的两个向量)的形式,它是向量线性运算知识的延伸.(4)如果e 1,e 2是同一平面内的一组基底,且λ1e 1+λ2e 2=0(λ1,λ2∈R ),那么λ1=λ2=0.2.对两向量夹角的理解两向量的夹角是指当两向量的起点相同时,表示两向量的有向线段所形成的角.若起点不同,则应通过平移,使其起点相同.3.向量的坐标表示向量用坐标表示后,向量的计算和证明都归结为数的运算,这使问题大大简化.一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标,当且仅当向量的起点为原点时,向量的坐标才等于其终点的坐标.两个向量相等,当且仅当其坐标相同.4.向量坐标的应用向量具有代数和几何的双重特征,如向量运算的平行四边形法则、三角形法则、平面向量基本定理等都可以认为是从几何的角度来研究向量的特征;而引入坐标后,就可以通过代数运算来研究向量,凸显出了向量的代数特征,为用代数的方法研究向量问题奠定了基础.在处理很多与向量有关的问题时,坐标化是一种常见的思路,利用坐标可以使许多问题的解决变得更加简捷.1.下列向量组中,能作为表示它们所在平面内所有向量的一组基底的是 ( )A .a =(1,2),b =(0,0)B .a =(1,-2),b =(3,5)C .a =(3,2),b =(9,6)D .a =⎝⎛⎭⎫-34,12, b =(3,-2) 解:在平面内,根据向量基底的定义知,两个向量不共线即可作为基底.故选B .2.设向量a =(2,4)与向量b =(x ,6)共线,则实数x = ( )A .2B .3C .4D .6 解:因为a ∥b ,所以2×6-4x =0,解得x =3.故选B .3.(2017·抚州模拟)若向量a =(1,1),b =(-1,1),c =(4,2),则c = ( )A .3a +bB .3a -bC .-a +3bD .a +3b解法一:设c =m a +n b ,则(4,2)=(m -n ,m +n ),所以⎩⎪⎨⎪⎧m -n =4,m +n =2, 所以⎩⎪⎨⎪⎧m =3,n =-1, 所以c =3a -b .解法二:代入验证法.对于A ,3a +b =3(1,1)+(-1,1)=(2,4)≠c ,故A 不正确;同理选项C 、D 也不正确;对于B ,3a -b =(4,2)=c ,故B 正确.故选B .4.已知M (3,-2),N (-5,-1),且MP →=12MN →,则P 点的坐标为 ( )A .(-8,1)B .⎝⎛⎭⎫-1,-32 C .⎝⎛⎭⎫1,32 D .(8,-1) 解:设P (x ,y ),则MP →=(x -3,y +2), 而12MN →=12(-8,1)=⎝⎛⎭⎫-4,12, 所以⎩⎪⎨⎪⎧x -3=-4,y +2=12, 解得⎩⎪⎨⎪⎧x =-1,y =-32.所以P 点坐标为⎝⎛⎭⎫-1,-32.故选B . 5.如图,e 1,e 2为互相垂直的单位向量,向量a ,b 如图,则向量a -b 可表示为 ( )A .3e 2-e 1B .-2e 1-4e 2C .e 1-3e 2D .3e 1-e 2解:由图易知a -b =-3e 2+e 1=e 1-3e 2.故选C .6.(2018·浙江)已知a ,b ,e 是平面向量,e 是单位向量,若非零向量a 与e 的夹角为π3,向量b满足b 2-4e ·b +3=0,则|a -b |的最小值是( )A .3-1B .3+1C .2D .2- 3解:不妨设e =(1,0),b =(x ,y ),则由b 2-4e ·b +3=0⇒(x -2)2+y 2=1,再由a 与e 的夹角为π3可知,所求为如图两条射线上的点到圆上的点距离的最小值,即为2sin60°-1=3-1.故选A . 7.已知向量e 1,e 2是两个不共线的向量,若a =2e 1-e 2与b =e 1+λe 2共线,则λ=________. 解:若a =2e 1-e 2与b =e 1+λe 2共线,则 2e 1-e 2=k (e 1+λe 2)=k e 1+λk e 2,得⎩⎪⎨⎪⎧k =2,λk =-1, 解得λ=-12.故填-12.8.(2018·山东菏泽高三一模)已知在△ABC 中,D 为边BC 上的点,且BD =3DC ,点E 为AD 的中点,BE →=mAB →+nAC →,则m +n =________.解:BE →=BD →+DE →=BD →-12AD →=BD →-12(AB →+BD →)=12BD →-12AB →=12×34BC →-12AB →=38BC →-12AB →=38(AC →-AB →)-12AB →=-78AB →+38AC →.又BE →=mAB →+nAC →,所以mAB →+nAC →=-78AB→+38AC →.又因为AB →与AC →不共线,所以m =-78,n =38,所以m +n =-12.故填-12. 9.已知a =(1,0),b =(2,1).求:(1)|a +3b |;(2)当k 为何实数时,k a -b 与a +3b 平行,平行时它们是同向还是反向?解:(1)因为a =(1,0),b =(2,1), 所以a +3b =(7,3),故|a +3b |=72+32=58.(2)k a -b =(k -2,-1),a +3b =(7,3), 因为k a -b 与a +3b 平行, 所以3(k -2)+7=0,即k =-13.此时k a -b =(k -2,-1)=⎝⎛⎭⎫-73,-1, a +3b =(7,3),则a +3b =-3(k a -b ),即此时向量a +3b 与k a -b 方向相反.10.已知点O (0,0),A (1,2),B (4,5)及OP →=OA →+tAB →,试问: (1)当t 为何值时,P 在x 轴上?P 在y 轴上?P在第三象限内?(2)四边形OABP 能否成为平行四边形?若能,求出t 的值;若不能,请说明理由. 解:(1)依题意,得AB →=(3,3),所以OP →=OA →+tAB →=(1+3t ,2+3t ),即P (1+3t ,2+3t ).若P 在x 轴上,则2+3t =0,所以t =-23;若P 在y 轴上,则1+3t =0,所以t =-13;若P 在第三象限内,则⎩⎪⎨⎪⎧1+3t <0,2+3t <0, 所以t <-23. (2)因为OA →=(1,2),PB →=(3-3t ,3-3t ),若OABP 是平行四边形,则OA →=PB →,所以⎩⎪⎨⎪⎧3-3t =1,3-3t =2. 此方程无解.故四边形OABP 不可能成为平行四边形. 11.已知平行四边形三个顶点的坐标分别为(-1,0),(3,0),(1,-5),求第四个顶点的坐标.解:如图所示,令A (-1,0),B (3,0),C (1,-5),D (x ,y ).(1)若四边形ABCD 1为平行四边形, 则AD 1→=BC →,且AD 1→=(x +1,y ),BC →=(-2,-5).所以⎩⎪⎨⎪⎧x +1=-2,y =-5,解得⎩⎪⎨⎪⎧x =-3,y =-5. 所以D 1(-3,-5).(2)若四边形ACD 2B 为平行四边形,则AB →=CD 2→,且AB →=(4,0),CD 2→=(x -1,y +5).所以⎩⎪⎨⎪⎧x -1=4,y +5=0, 解得⎩⎪⎨⎪⎧x =5,y =-5. 所以D 2(5,-5).(3)若四边形ACBD 3为平行四边形,则AD 3→=CB →,且AD 3→=(x +1,y ),CB →=(2,5),所以⎩⎪⎨⎪⎧x +1=2,y =5, 解得⎩⎪⎨⎪⎧x =1,y =5. 所以D 3(1,5).综上所述,平行四边形第四个顶点的坐标为(-3,-5)或(5,-5)或(1,5).如图所示,在△ABC 中,点M 是AB的中点,且AN →=12NC →,BN 与CM 相交于点E ,设AB →=a ,AC →=b ,用基底a ,b 表示向量AE →=________.解:易得AN →=13AC →=13b ,AM →=12AB →=12a ,由N ,E ,B 三点共线知,存在实数m ,满足AE →=mAN →+ (1-m )AB →=13m b +(1-m )a .由C ,E ,M 三点共线知存在实数n ,满足AE →=nAM →+(1-n )AC →=12n a +(1-n )b .所以13m b +(1-m )a =12n a +(1-n )b .由于a ,b为基底,所以⎩⎨⎧1-m =12n ,13m =1-n ,解得⎩⎨⎧m =35,n =45. 所以AE →=25a +15b .故填25a +15b .。
§5.2 平面向量基本定理及坐标表示考试要求 1.了解平面向量基本定理及其意义.2.掌握平面向量的正交分解及其坐标表示.3.会用坐标表示平面向量的加法、减法与数乘运算.4.理解用坐标表示的平面向量共线的条件.知识梳理1.平面向量基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.若e 1,e 2不共线,我们把{e 1,e 2}叫做表示这一平面内所有向量的一个基底.2.平面向量的正交分解把一个向量分解为两个互相垂直的向量,叫做把向量作正交分解.3.平面向量的坐标运算(1)向量加法、减法、数乘运算及向量的模设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21.(2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A (x 1,y 1),B (x 2,y 2),则AB → =(x 2-x 1,y 2-y 1),|AB →|=(x 2-x 1)2+(y 2-y 1)2.4.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0,则a ∥b ⇔x 1y 2-x 2y 1=0.常用结论已知P 为线段AB 的中点,若A (x 1,y 1),B (x 2,y 2),则点P 的坐标为(x 1+x 22,y 1+y 22);已知△ABC 的顶点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),则△ABC 的重心G 的坐标为(x 1+x 2+x 33,y 1+y 2+y 33).思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)平面内的任意两个向量都可以作为一个基底.( × )(2)设{a ,b }是平面内的一个基底,若实数λ1,μ1,λ2,μ2满足λ1a +μ1b =λ2a +μ2b ,则λ1=λ2,μ1=μ2.( √ )(3)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件可以表示成x 1x 2=y 1y 2.( × )(4)平面向量不论经过怎样的平移变换之后其坐标不变.( √ )教材改编题1.(多选)下列各组向量中,可以作为基底的是( )A .e 1=(0,0),e 2=(1,-2)B .e 1=(-1,2),e 2=(5,7)C .e 1=(3,5),e 2=(6,10)D .e 1=(2,3),e 2=(12,-34)答案 BD2.若P 1(1,3),P 2(4,0),且P 是线段P 1P 2的一个三等分点(靠近点P 1),则点P 的坐标为( )A .(2,2)B .(3,-1)C .(2,2)或(3,-1)D .(2,2)或(3,1)答案 A解析 设P (x ,y ),由题意知P 1P —→ =13P 1P 2—→,∴(x -1,y -3)=13(4-1,0-3)=(1,-1),即Error!∴Error!3.已知向量a =(x ,1),b =(2,x -1),若(2a -b )∥a ,则x 为________.答案 2或-1解析 2a -b =(2x -2,3-x ),∵(2a -b )∥a ,∴2x -2=x (3-x ),即x 2-x -2=0,解得x =2或x =-1.题型一 平面向量基本定理的应用例1 (1)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB →等于( )A.34AB → -14AC →B.14AB → -34AC →C.34AB → +14AC →D.14AB → +34AC →答案 A(2)如图,已知平面内有三个向量OA → ,OB → ,OC → ,其中OA → 与OB → 的夹角为120°,OA → 与OC →的夹角为30°,且|OA → |=|OB → |=1,|OC → |=23.若OC → =λOA → +μOB →(λ,μ∈R ),则λ+μ=______.答案 6解析 方法一 如图,作平行四边形OB 1CA 1,则OC → =OB 1—→ +OA 1—→,因为OA → 与OB → 的夹角为120°,OA → 与OC →的夹角为30°,所以∠B 1OC =90°.在Rt △OB 1C 中,∠OCB 1=30°,|OC →|=23,所以|OB 1—→ |=2,|B 1C —→|=4,所以|OA 1—→ |=|B 1C —→|=4,所以OC → =4OA → +2OB → ,所以λ=4,μ=2,所以λ+μ=6.方法二 以O 为原点,建立如图所示的平面直角坐标系,则A (1,0),B (-12,32),C (3,3).由OC → =λOA → +μOB → ,得Error!解得Error!所以λ+μ=6.教师备选1.(2022·山东省实验中学等四校联考)如图,在Rt △ABC 中,∠ABC =π2,AC =2AB ,∠BAC的平分线交△ABC 的外接圆于点D ,设AB → =a ,AC → =b ,则向量AD →等于( )A .a +b B.12a +b C .a +12bD .a +23b答案 C解析 设圆的半径为r ,在Rt △ABC 中,∠ABC =π2,AC =2AB ,所以∠BAC =π3,∠ACB =π6,又∠BAC 的平分线交△ABC 的外接圆于点D ,所以∠ACB =∠BAD =∠CAD =π6,则根据圆的性质得BD =AB ,又因为在Rt △ABC 中,AB =12AC =r =OD ,所以四边形ABDO 为菱形,所以AD → =AB → +AO →=a +12b .2.(2022·苏州质检)如图,在平行四边形ABCD 中,E ,F 分别为边AB ,BC 的中点,连接CE ,DF ,交于点G .若CG → =λCD → +μCB →(λ,μ∈R ),则λμ=________.答案 12解析 由题图可设CG → =xCE →(0<x <1),则CG → =x (CB → +BE → )=x (CB → +12CD →)=x 2CD →+xCB → .因为CG → =λCD → +μCB → ,CD → 与CB →不共线,所以λ=x 2,μ=x ,所以λμ=12.思维升华 (1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用平面向量基本定理解决问题的一般思路是:先选择一个基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.跟踪训练1 (1)如图,矩形ABCD 的对角线相交于点O ,E 为AO 的中点,若DE → =λAB →+μAD →(λ,μ为实数),则λ2+μ2等于( )A.58B.14C .1 D.516答案 A解析 DE → =12DA → +12DO→=12DA → +14DB →=12DA → +14(DA → +AB → )=14AB → -34AD →,所以λ=14,μ=-34,故λ2+μ2=58.(2)如图,以向量OA → =a ,OB → =b 为邻边作平行四边形OADB ,BM → =13BC → ,CN → =13CD → ,则MN →=________.(用a ,b 表示)答案 12a -16b解析 ∵BA → =OA → -OB →=a -b ,BM → =16BA → =16a -16b ,∴OM → =OB → +BM →=b +(16a -16b )=16a +56b .∵OD →=a +b ,∴ON → =OC → +13CD → =12OD → +16OD → =23OD → =23a +23b .∴MN → =ON → -OM → =23a +23b -16a -56b =12a -16b .题型二 平面向量的坐标运算例2 (1)已知a =(5,-2),b =(-4,-3),若a -2b +3c =0,则c 等于( )A.(133,83) B.(-133,-83)C.(133,43)D.(-133,-43)答案 D解析 ∵a -2b +3c =0,∴c =-13(a -2b ).∵a -2b =(5,-2)-(-8,-6)=(13,4),∴c =-13(a -2b )=(-133,-43).(2)如图,在直角梯形ABCD 中,AB ∥DC ,AD ⊥DC ,AD =DC =2AB ,E 为AD 的中点,若CA→=λCE → +μDB →(λ,μ∈R ),则λ+μ的值为( )A.65B.85 C .2 D.83答案 B解析 建立如图所示的平面直角坐标系,则D (0,0).不妨设AB =1,则CD =AD =2,∴C (2,0),A (0,2),B (1,2),E (0,1),∴CA → =(-2,2),CE → =(-2,1),DB →=(1,2),∵CA → =λCE → +μDB → ,∴(-2,2)=λ(-2,1)+μ(1,2),∴Error!解得Error!故λ+μ=85.教师备选已知四边形ABCD 的三个顶点A (0,2),B (-1,-2),C (3,1),且BC → =2AD →,则顶点D 的坐标为( )A.(2,72)B.(2,-12)C .(3,2)D .(1,3)答案 A解析 设D (x ,y ),则AD → =(x ,y -2),BC →=(4,3),又BC → =2AD →,所以Error!解得Error!所以顶点D 的坐标为(2,72).思维升华 向量的坐标表示把点与数联系起来,引入平面向量的坐标可以使向量运算代数化,成为数与形结合的载体.跟踪训练2 (1)向量a ,b ,c 在正方形网格中的位置如图所示,若c =λa +μb (λ,μ∈R ),则λμ等于( )A .1B .2C .3D .4答案 D解析 以向量a 和b 的交点O 为原点建立如图所示的平面直角坐标系(设每个小正方形边长为1),则A (1,-1),B (6,2),C (5,-1),∴a =AO → =(-1,1),b =OB →=(6,2),c =BC →=(-1,-3),∵c =λa +μb ,∴(-1,-3)=λ(-1,1)+μ(6,2),则Error!解得Error!∴λμ=-2-12=4.(2)在△ABC 中,点P 在BC 上,且BP → =2PC → ,点Q 是AC 的中点,若PA → =(4,3),PQ →=(1,5),则AQ → =________,BC →=________.答案 (-3,2) (-6,21)解析 AQ → =PQ → -PA →=(1,5)-(4,3)=(-3,2),PC → =PA → +AC → =PA → +2AQ →=(4,3)+2(-3,2)=(-2,7),BC → =3PC →=3(-2,7)=(-6,21).题型三 向量共线的坐标表示例3 (1)已知a =(1,2+sin x ),b =(2,cos x ),c =(-1,2),若(a -b )∥c ,则锐角x 等于( )A .15° B .30°C .45° D .60°答案 C(2)已知在平面直角坐标系Oxy 中,P 1(3,1),P 2(-1,3),P 1,P 2,P 3三点共线且向量OP 3—→与向量a =(1,-1)共线,若OP 3—→ =λOP 1—→ +(1-λ)OP 2—→,则λ等于( )A .-3B .3C .1D .-1答案 D解析 设OP 3—→=(x ,y ),则由OP 3—→∥a 知x +y =0,所以OP 3—→=(x ,-x ).若OP 3—→ =λOP 1—→ +(1-λ)OP 2—→,则(x ,-x )=λ(3,1)+(1-λ)·(-1,3)=(4λ-1,3-2λ),即Error!所以4λ-1+3-2λ=0,解得λ=-1.教师备选1.已知向量a =(1,2),b =(2,-2),c =(1,λ).若c ∥(2a +b ),则λ=________.答案 12解析 由题意得2a +b =(4,2),因为c =(1,λ),c ∥(2a +b ),所以4λ-2=0,解得λ=12.2.已知O 为坐标原点,点A (6,3),若点P 在直线OA 上,且|OP → |=12|PA →|,P 是OB 的中点,则点B 的坐标为________________________.答案 (4,2)或(-12,-6)解析 ∵点P 在直线OA 上,∴OP → ∥PA →,又∵|OP → |=12|PA → |,∴OP →=±12PA → ,设点P (m ,n ),则OP → =(m ,n ),PA →=(6-m ,3-n ).①若OP → =12PA →,则(m ,n )=12(6-m ,3-n ),∴Error!解得Error!∴P (2,1),∵P 是OB 的中点,∴B (4,2).②若OP →=-12PA →,则(m ,n )=-12(6-m ,3-n ),∴Error!解得Error!∴P (-6,-3),∵P 是OB 的中点,∴B (-12,-6).综上所述,点B 的坐标为(4,2)或(-12,-6).思维升华 平面向量共线的坐标表示问题的解题策略(1)若a =(x 1,y 1),b =(x 2,y 2),其中b ≠0,则a ∥b 的充要条件是x 1y 2=x 2y 1.(2)在求与一个已知向量a 共线的向量时,可设所求向量为λa (λ∈R ).跟踪训练3 平面内给定三个向量a =(3,2),b =(-1,2),c =(4,1).(1)若(a +k c )∥(2b -a ),求实数k ;(2)若d 满足(d -c )∥(a +b ),且|d -c |=5,求d 的坐标.解 (1)a +k c =(3+4k ,2+k ),2b -a =(-5,2),由题意得2×(3+4k )-(-5)×(2+k )=0,解得k =-1613.(2)设d =(x ,y ),则d -c =(x -4,y -1),又a +b =(2,4),|d -c|=5,∴Error!解得Error!或Error!∴d 的坐标为(3,-1)或(5,3).课时精练1.(2022·泉州模拟)若向量AB → =(2,3),AC → =(4,7),则BC →等于( )A .(-2,-4)B .(2,4)C .(6,10)D .(-6,-10)答案 B2.(2022·TOP300尖子生联考)已知A (-1,2),B (2,-1),若点C 满足AC → +AB →=0,则点C 的坐标为( )A.(12,12) B .(-3,3)C .(3,-3)D .(-4,5)答案 D3.下列向量组中,能表示它们所在平面内所有向量的一个基底是( )A .a =(1,2),b =(0,0)B .a =(1,-2),b =(3,5)C .a =(3,2),b =(9,6)D .a =(-34,12),b =(3,-2)答案 B4.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,m =(a ,b ),n =(cos B ,cos A ),则“m ∥n ”是“△ABC 是等腰三角形”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 D解析 由m ∥n ,得b cos B -a cos A =0,即sin B cos B =sin A cos A ,所以sin 2B =sin 2A ,所以2A =2B 或2A +2B =π,即A =B 或A +B =π2,所以△ABC 为等腰三角形或直角三角形;反之,△ABC 是等腰三角形,若a =c ≠b ,则不能得到m ∥n ,所以“m ∥n ”是“△ABC 是等腰三角形”的既不充分也不必要条件.5.(多选)(2022·聊城一中模拟)在梯形ABCD 中,AB ∥CD ,AB =2CD ,E ,F 分别是AB ,CD的中点,AC 与BD 交于点M ,设AB → =a ,AD →=b ,则下列结论正确的是( )A.AC → =12a +b B.BC → =-12a +b C.BM → =-13a +23b D.EF → =-14a +b 答案 ABD解析 AC → =AD → +DC → =AD → +12AB → =12a +b ,故A 正确;BC → =BA → +AD → +DC → =-AB → +AD → +12AB →=-12a +b ,故B 正确;BM → =BA → +AM → =-AB → +23AC → =-23a +23b ,故C 错误;EF → =EA → +AD → +DF → =-12AB → +AD → +14AB → =-14a +b ,故D 正确.6.(多选)已知向量OA → =(1,-3),OB → =(2,-1),OC →=(m +1,m -2),若点A ,B ,C 能构成三角形,则实数m 可以是( )A .-2 B.12C .1D .-1答案 ABD解析 各选项代入验证,若A ,B ,C 三点不共线即可构成三角形.因为AB → =OB → -OA →=(2,-1)-(1,-3)=(1,2),AC → =OC → -OA →=(m +1,m -2)-(1,-3)=(m ,m +1).假设A ,B ,C 三点共线,则1×(m +1)-2m =0,即m =1.所以只要m ≠1,A ,B ,C 三点就可构成三角形.7.在梯形ABCD 中,AB ∥CD ,且DC =2AB ,若点A (1,2),B (2,1),C (4,2),则点D 的坐标为________.答案 (2,4)解析 ∵在梯形ABCD 中,DC =2AB ,AB ∥CD ,∴DC → =2AB →,设点D 的坐标为(x ,y ),则DC → =(4-x ,2-y ),又AB →=(1,-1),∴(4-x ,2-y )=2(1,-1),即Error!∴Error!∴点D 的坐标为(2,4).8.(2022·开封模拟)已知向量m =(λ+1,1),n =(λ+2,2).若(2m +n )∥(m -2n ),则λ=________.答案 0解析 由题意得,2m +n =(3λ+4,4),m -2n =(-λ-3,-3),∵(2m +n )∥(m -2n ),∴-3(3λ+4)-4(-λ-3)=0,解得λ=0.9.已知A (-2,4),B (3,-1),C (-3,-4).设AB → =a ,BC → =b ,CA → =c ,且CM → =3c ,CN →=-2b .(1)求3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n ;(3)求M ,N 的坐标及向量MN →的坐标.解 由已知得a =(5,-5),b =(-6,-3),c =(1,8).(1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8)=(15-6-3,-15-3-24)=(6,-42).(2)方法一 ∵m b +n c =(-6m +n ,-3m +8n ),∴Error!解得Error!方法二 ∵a +b +c =0,∴a =-b -c ,又a =m b +n c ,∴m b +n c =-b -c ,∴Error!(3)设O 为坐标原点,∵CM → =OM → -OC →=3c ,∴OM → =3c +OC →=(3,24)+(-3,-4)=(0,20).∴M (0,20).又∵CN → =ON → -OC →=-2b ,∴ON → =-2b +OC →=(12,6)+(-3,-4)=(9,2),∴N (9,2),∴MN →=(9,-18).10.已知a =(1,0),b =(2,1).(1)当k 为何值时,k a -b 与a +2b 共线;(2)若AB → =2a +3b ,BC →=a +m b 且A ,B ,C 三点共线,求m 的值.解 (1)k a -b =k (1,0)-(2,1)=(k -2,-1),a +2b =(1,0)+2(2,1)=(5,2).∵k a -b 与a +2b 共线,∴2(k -2)-(-1)×5=0,即2k -4+5=0,解得k =-12.(2)方法一 ∵A ,B ,C 三点共线,∴AB → =λBC →,即2a +3b =λ(a +m b ),∴Error!解得m =32.方法二 AB →=2a +3b =2(1,0)+3(2,1)=(8,3),BC →=a +m b =(1,0)+m (2,1)=(2m +1,m ),∵A ,B ,C 三点共线,∴AB → ∥BC →,∴8m -3(2m +1)=0,即2m -3=0,∴m =32.11.(2022·金华模拟)已知△ABC 的三边分别是a ,b ,c ,设向量m =(sin B -sin A ,3a +c ),n =(sin C ,a +b ),且m ∥n ,则B 的大小是( )A.π6B.5π6C.π3D.2π3答案 B解析 因为m ∥n ,所以(a +b )(sin B -sin A )=sin C (3a +c ).由正弦定理得(a +b )(b -a )=c (3a +c ),整理得a 2+c 2-b 2=-3ac ,由余弦定理得cos B =a 2+c 2-b 22ac =-3ac 2ac =-32.又0<B <π,所以B =5π6.12.(多选)如图,B 是AC 的中点,BE → =2OB → ,P 是平行四边形BCDE 内(含边界)的一点,且OP →=xOA → +yOB → (x ,y ∈R ),则下列结论中正确的是( )A .当x =0时,y ∈[2,3]B .当P 是线段CE 的中点时,x =-12,y =52C .若x +y 为定值1,则在平面直角坐标系中,点P 的轨迹是一条线段D .当P 在C 点时,x =1,y =2答案 BC解析 当OP → =y OB →时,点P 在线段BE 上,故1≤y ≤3,故A 中结论错误;当P 是线段CE 的中点时,OP → =OE → +EP → =3OB → +12(EB →+BC → )=3OB → +12(-2OB → +AB → )=3OB → +12(-2OB → +OB → -OA → )=-12OA → +52OB →,故B 中结论正确;当x +y 为定值1时,A ,B ,P 三点共线,又P 是平行四边形BCDE 内(含边界)的一点,故P 的轨迹是一条线段,故C 中结论正确;因为OB → =12(OC →+OA → ),所以OC → =2OB → -OA →,则OP → =-OA → +2OB →,所以x =-1,y =2,D 错误.13.已知|OA → |=1,|OB → |=3,OA → ·OB → =0,点C 在∠AOB 内,且OC → 与OA → 的夹角为30°,设OC →=mOA → +nOB → (m ,n ∈R ),则m n的值为______.答案 3解析 ∵OA → ·OB →=0,∴OA → ⊥OB →,以O 为原点,OA 所在直线为x 轴,OB 所在直线为y 轴建立平面直角坐标系(图略),则OA → =(1,0),OB →=(0,3),OC →=mOA → +nOB → =(m ,3n ).∵tan 30°=3nm =33,∴m =3n ,即m n=3.14.若点M 是△ABC 所在平面内一点,且满足AM → =34AB → +14AC →.则△ABM 与△ABC 的面积之比为________;若N 为AB 的中点,AM 与CN 交于点O ,设BO → =xBM → +yBN →,则x +y =________.答案 1∶4 107解析 由AM → =34AB → +14AC →,可知点M ,B ,C 三点共线,令BM → =λBC →(λ∈R ),则AM → =AB → +BM → =AB → +λBC → =AB → +λ(AC → -AB → )=(1-λ)AB → +λAC →,所以λ=14,即点M 在边BC 上,如图所示,所以S△ABM S △ABC =BM BC =14.由BO → =xBM → +yBN →,得BO → =xBM → +y 2BA →,BO → =x 4BC →+yBN → ,由O ,M ,A 三点共线及O ,N ,C 三点共线得Error!解得Error!所以x +y =107.15.若{α,β}是一个基底,向量γ=x α+y β(x ,y ∈R ),则称(x ,y )为向量γ在基底{α,β}下的坐标,现已知向量a 在基底{p =(1,-1),q =(2,1)}下的坐标为(-2,2),则a 在基底{m =(-1,1),n =(1,2)}下的坐标为______.答案 (0,2)解析 因为a 在基底{p ,q }下的坐标为(-2,2),所以a =-2p +2q =(2,4),令a =x m +y n =(-x +y ,x +2y ),所以Error!即Error!所以a 在基底{m ,n }下的坐标为(0,2).16.如图,G 是△OAB 的重心,P ,Q 分别是边OA ,OB 上的动点,且P ,G ,Q 三点共线.(1)设PG → =λPQ → ,将OG → 用λ,OP → ,OQ →表示;(2)设OP → =xOA → ,OQ → =yOB → ,求证:1x +1y是定值.(1)解 OG → =OP → +PG →=OP → +λPQ →=OP → +λ(OQ → -OP →)=(1-λ)OP → +λOQ →.(2)证明 由(1)得OG → =(1-λ)OP → +λOQ →=(1-λ)xOA → +λy OB →,因为G 是△OAB 的重心,所以OG → =23OM → =23×12(OA →+OB → )=13OA → +13OB → .又OA → ,OB →不共线,所以Error!解得Error!所以1x +1y =3,即1x +1y 为定值.。