二次函数整理复习1
- 格式:doc
- 大小:540.69 KB
- 文档页数:12
最新浙教版初中九年级《数学》上册全册期末总复习知识点考点整理复习汇总完整完美精品打印版最新浙教版初中九年级《数学》上册全册期末总复知识点考点重难点要点整理复汇总,是一份完整、完美、必备的复资料。
1.二次函数1.1 二次函数二次函数是形如y=ax²+bx+c (其中a,b,c是常数,a≠0)的函数。
a为二次项系数,b为一次项系数,c为常数项。
1.2 二次函数的图像二次函数y=ax²(a≠0)的图像是一条抛物线,关于y轴对称,顶点在坐标原点。
当a>0时,抛物线开口向上,顶点为最低点;当a0时)或向左(当m0时)或向下(当k<0时)平移|k|个单位得到,顶点为(m,k),对称轴为直线x=m。
1.3 二次函数的性质二次函数y=ax² (a≠0)的图像具有如下性质:1)对称轴为x=-b/2a;2)最值点为顶点,最大值为k (当a0时);3)图像开口方向由a的符号确定。
1.4 二次函数的应用运用二次函数求实际问题中的最大值或最小值,首先应当求出函数表达式和自变量的取值范围,然后通过配方变形,或利用公式求它的最大值或最小值。
注意:由此求得的最大值或最小值对应的自变量必须在自变量的取值范围内。
2.简单事件的概率2.1 事件的可能性根据事件是否发生的可能性,可以将事件分为三类:必然事件、不可能事件、不确定事件或随机事件。
2.2 简单事件的概率将事件发生可能性的大小称为事件发生的概率,一般用P 表示。
事件A发生的概率记为P(A)。
必然事件发生的概率为100%,即P(必然事件)=1;不可能事件发生的概率为0,即P(不可能事件)=0;随机事件的概率介于0与1之间,即0<P(随机事件)<1.如果事件发生的各种结果的可能性相同且互相排斥,结果总数为n,事件A包含其中的结果数为m(m≤n),那么事件A发生的概率为:P(A)=m/n。
使用公式P(A)=m/n来计算简单事件发生的概率,需要先确定所有结果的可能性相等,然后确定所有可能的结果总数n和事件A包含的结果数m。
二次函数期末复习题(基础-中等)知识导图考点精练考点一:二次函数的定义、解析式、图象及性质1.(金华)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①a>0;②c>0;③b2﹣4ac>0,其中正确的个数是()A.0个B.1个C.2个D.3个第1题第2题2.(凉山州)已知二次函数y=ax2+bx+1的大致图象如图所示,那么函数y=ax+b的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限3.若二次函数y=(m+1)x2+m2﹣2m﹣3的图象经过原点,则m的值必为()A.﹣1或3B.﹣1C.3D.无法确定4.(陕西)对于抛物线y=ax2+(2a﹣1)x+a﹣3,当x=1时,y>0,则这条抛物线的顶点一定在()A.第一象限B.第二象限C.第三象限D.第四象限5.抛物线y=3(x+2)2﹣2的顶点坐标是.6.若抛物线y=﹣x2+bx+c经过点(﹣2,3),则2c﹣4b﹣9=.7.(辽阳)如图,抛物线y=x2﹣2x﹣3与y轴交于点C,点D的坐标为(0,﹣1),在第四象限抛物线上有一点P,若△PCD是以CD为底边的等腰三角形,则点P的横坐标为.考点二:二次函数的图象变换1.把抛物线y=﹣2x2向上平移1个单位,再向右平移1个单位,得到的抛物线是()A.y=﹣2(x+1)2+1B.y=﹣2(x﹣1)2+1C.y=﹣2(x﹣1)2﹣1D.y=﹣2(x+1)2﹣12.(山西)将抛物线y=x2﹣4x﹣4向左平移3个单位,再向上平移5个单位,得到抛物线的函数表达式为()A.y=(x+1)2﹣13B.y=(x﹣5)2﹣3C.y=(x﹣5)2﹣13D.y=(x+1)2﹣33.(山西)抛物线y=﹣2x2﹣4x﹣5经过平移得到y=﹣2x2,平移方法是()A.向左平移1个单位,再向下平移3个单位B.向左平移1个单位,再向上平移3个单位C.向右平移1个单位,再向下平移3个单位D.向右平移1个单位,再向上平移3个单位4.如果将抛物线y=x2﹣2x﹣1向上平移,使它经过点A(0,3),那么所得新抛物线的表达式是.5.(宁波)如图抛物线y=ax2﹣5ax+4a与x轴相交于点A、B,且过点C(5,4).(1)求a的值和该抛物线顶点P的坐标.(2)请你设计一种平移的方法,使平移后抛物线的顶点落在第二象限,并写出平移后抛物线的解析式.考点三:用待定系数法求二次函数解析式1.(宁波)已知抛物线y=ax2+bx+c与x轴交于点A(1,0),B(3,0),且过点C(0,﹣3).(1)求抛物线的解析式和顶点坐标;(2)请你写出一种平移的方法,使平移后抛物线的顶点落在直线y=﹣x上,并写出平移后抛物线的解析式.2.(牡丹江)如图,抛物线y=﹣x2+bx+c交x轴于A,B两点,交y轴于点C,对称轴是直线x=﹣3,B(﹣1,0),F(0,1),请解答下列问题:(1)求抛物线的解析式;(2)写出抛物线顶点E的坐标,并判断AC与EF的位置关系.考点四:二次函数与一元二次方程、一元二次不等式的关系1.抛物线y=x2﹣2x﹣3与x轴的交点个数是()A.0个B.1个C.2个D.3个2.(随州)对于二次函数y=x2﹣2mx﹣3,下列结论错误的是()A.它的图象与x轴有两个交点B.方程x2﹣2mx=3的两根之积为﹣3C.它的图象的对称轴在y轴的右侧D.x<m时,y随x的增大而减小3.(2018•莱芜)函数y=ax2+2ax+m(a<0)的图象过点(2,0),则使函数值y<0成立的x的取值范围是()A.x<﹣4或x>2B.﹣4<x<2C.x<0或x>2D.0<x<24.如图,抛物线y=ax2+bx+c的顶点为B(﹣1,3),与x轴的交点A在点(﹣3,0)和(﹣2,0)之间,以下结论:①b2﹣4ac=0;②a+b+c>0;③2a﹣b=0;④c﹣a=3;⑤(a+c)2>b2 。
2021年九年级数学中考复习专题:二次函数综合(考察动点坐标、长度、面积等)(一)1.如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与A重合),过点P作PD∥y轴交直线AC于点D.(1)求抛物线的解析式;(2)求点P在运动的过程中线段PD长度的最大值;(3)△APD能否构成直角三角形?若能,请直接写出所有符合条件的点P坐标;若不能,请说明理由.2.如图1,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,已知点B坐标为(3,0),点C坐标为(0,3).(1)求抛物线的表达式;(2)点P为直线BC上方抛物线上的一个动点,当△PBC的面积最大时,求点P的坐标;(3)如图2,点M为该抛物线的顶点,直线MD⊥x轴于点D,在直线MD上是否存在点N,使点N到直线MC的距离等于点N到点A的距离?若存在,求出点N的坐标;若不存在,请说明理由.3.如图,抛物线y=ax2+bx+2交x轴于点A(﹣3,0)和点B(1,0),交y轴于点C.已知点D的坐标为(﹣1,0),点P为第二象限内抛物线上的一个动点,连接AP、PC、CD.(1)求这个抛物线的表达式.(2)当四边形ADCP面积等于4时,求点P的坐标.(3)①点M在平面内,当△CDM是以CM为斜边的等腰直角三角形时,直接写出满足条件的所有点M的坐标;②在①的条件下,点N在抛物线对称轴上,当∠MNC=45°时,直接写出满足条件的所有点N的坐标.4.如图,抛物线y=x2+bx+c与x轴交于A,B两点,点A,B分别位于原点的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为C,D,BC=CD.(1)求b,c的值;(2)求直线BD的函数解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ相似时,请直接写出所有满足条件的点Q的坐标.5.如图,抛物线y=﹣x2+bx+c与x轴相交于A,B两点(点A位于点B的左侧),与y轴相交于点C,M是抛物线的顶点,直线x=1是抛物线的对称轴,且点C的坐标为(0,3).(1)求抛物线的解析式;(2)已知P为线段MB上一个动点,过点P作PD⊥x轴于点D.若PD=m,△PCD的面积为S.①求S与m之间的函数关系式,并写出自变量m的取值范围;②当S取得最值时,求点P的坐标.(3)在(2)的条件下,在线段MB上是否存在点P,使△PCD为等腰三角形?如果存在,请求出点P的坐标;如果不存在,请说明理由.6.如图,抛物线y=ax2+bx+c与x轴交于A(1,0)、B(3,0)两点,与y轴交于点C(0,3),抛物线的对称轴与直线BC交于点D.(1)求抛物线的表达式;(2)在抛物线的对称轴上找一点M,使|BM﹣CM|的值最大,求出点M的坐标;(3)点E为直线BC上一动点,过点E作y轴的平行线EF,与抛物线交于点F问是否存在点E,使得以D、E、F为顶点的三角形与△BCO相似?若存在,直接写出点E的坐标.7.如图1,抛物线y=x2+bx+c交x轴于A,B两点,其中点A的坐标为(1,0),与y轴交于点C(0,﹣3).(1)求抛物线的函数解析式;(2)点D为y轴上一点,如果直线BD与直线BC的夹角为15°,求线段CD的长度;(3)如图2,连接AC,点P在抛物线上,且满足∠PAB=2∠ACO,求点P的坐标.8.已知二次函数图象过点A(﹣2,0),B(4,0),C(0,4).(1)求二次函数的解析式.(2)如图,当点P为AC的中点时,在线段PB上是否存在点M,使得∠BMC=90°?若存在,求出点M的坐标;若不存在,请说明理由.(3)点K在抛物线上,点D为AB的中点,直线KD与直线BC的夹角为锐角θ,且tanθ=,求点K的坐标.9.如图,在平面直角坐标系中,抛物线y=x2+bx+c与y轴交于点A(0,2),与x轴交于B(﹣3,0)、C两点(点B在点C的左侧),抛物线的顶点为D.(1)求抛物线的表达式;(2)用配方法求点D的坐标;(3)点P是线段OB上的动点.①过点P作x轴的垂线交抛物线于点E,若PE=PC,求点E的坐标;②在①的条件下,点F是坐标轴上的点,且点F到EA和ED的距离相等,请直接写出线段EF的长;③若点Q是射线OA上的动点,且始终满足OQ=OP,连接AP,DQ,请直接写出AP+DQ的最小值.10.如图1,已知:抛物线y=a(x+1)(x﹣3)交x轴于A,C两点,交y轴于点B,且OB =2CO.(1)求二次函数解析式;(2)在二次函数图象(如图2)位于x轴上方部分有两个动点M、N,且点N在点M的左侧,过M、N作x轴的垂线交x轴于点G、H两点,当四边形MNHG为矩形时,求该矩形周长的最大值;(3)抛物线对称轴上是否存在点P,使得△ABP为直角三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.参考答案1.解:(1)∵抛物线y=x2+bx+c过点A(3,0),B(1,0),∴,解得,∴抛物线解析式为y=x2﹣4x+3;(2)令x=0,则y=3,∴点C(0,3),则直线AC的解析式为y=﹣x+3,设点P(x,x2﹣4x+3),∵PD∥y轴,∴点D(x,﹣x+3),∴PD=(﹣x+3)﹣(x2﹣4x+3)=﹣x2+3x=﹣(x﹣)2+,∵a=﹣1<0,∴当x=时,线段PD的长度有最大值;(3)①∠APD是直角时,点P与点B重合,此时,点P(1,0),②∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的顶点坐标为(2,﹣1),∵A(3,0),∴点P为在抛物线顶点时,∠PAD=45°+45°=90°,此时,点P(2,﹣1),综上所述,点P(1,0)或(2,﹣1)时,△APD能构成直角三角形.2.解:(1)∵点B(3,0),点C(0,3)在抛物线y=﹣x2+bx+c图象上,∴,解得:,∴抛物线解析式为:y=﹣x2+2x+3;(2)∵点B(3,0),点C(0,3),∴直线BC解析式为:y=﹣x+3,如图,过点P作PH⊥x轴于H,交BC于点G,设点P(m,﹣m2+2m+3),则点G(m,﹣m+3),∴PG=(﹣m2+2m+3)﹣(﹣m+3)=﹣m2+3m,=×PG×OB=×3×(﹣m2+3m)=﹣(m﹣)2+,∵S△PBC有最大值,∴当m=时,S△PBC∴点P(,);(3)存在N满足条件,理由如下:∵抛物线y=﹣x2+2x+3与x轴交于A、B两点,∴点A(﹣1,0),∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点M为(1,4),∵点M为(1,4),点C(0,3),∴直线MC的解析式为:y=x+3,如图,设直线MC与x轴交于点E,过点N作NQ⊥MC于Q,∴DE=4=MD,∴∠NMQ=45°,∵NQ⊥MC,∴∠NMQ=∠MNQ=45°,∴MQ=NQ,∴MQ=NQ=MN,设点N(1,n),∵点N到直线MC的距离等于点N到点A的距离,∴NQ=AN,∴NQ2=AN2,∴(MN)2=AN2,∴(|4﹣n|)2=4+n2,∴n2+8n﹣8=0,∴n=﹣4±2,∴存在点N满足要求,点N坐标为(1,﹣4+2)或(1,﹣4﹣2).3.解:(1)∵抛物线y=ax2+bx+2交x轴于点A(﹣3,0)和点B(1,0),∴抛物线的表达式为:y=a(x+3)(x﹣1)=a(x2+2x﹣3)=ax2+2ax﹣3a,即﹣3a=2,解得:a=﹣,故抛物线的表达式为:y=﹣x2﹣x+2;(2)连接OP,设点P(x,﹣x2﹣x+2),∵抛物线y=﹣x2﹣x+2交y轴于点C,∵S =S 四边形ADCP =S △APO +S △CPO ﹣S △ODC =×AO ×y P +×OC ×|x P |﹣×CO ×OD =4,∴×3×(﹣x 2﹣x +2)+×2×(﹣x )﹣×1×2=4,∴x 1=﹣1,x 2=﹣2, ∴点P (﹣1,)或(﹣2,2);(3)①如图2,若点M 在CD 左侧,连接AM ,∵∠MDC =90°,∴∠MDA +∠CDO =90°,且∠CDO +∠DCO =90°, ∴∠MDA =∠DCO ,且AD =CO =2,MD =CD , ∴△MAD ≌△DOC (SAS )∴AM =DO ,∠MAD =∠DOC =90°, ∴点M 坐标(﹣3,1),若点M 在CD 右侧,同理可求点M '(1,﹣1); ②如图3,∵抛物线的表达式为:y =﹣x 2﹣x +2=﹣(x +1)2+;∴对称轴为:直线x =﹣1,∴点D在对称轴上,∵MD=CD=M'D,∠MDC=∠M'DC=90°,∴点D是MM'的中点,∵∠MCD=∠M'CD=45°,∴∠MCM'=90°,∴点M,点C,点M'在以MM'为直径的圆上,当点N在以MM'为直径的圆上时,∠M'NC=∠M'MC=45°,符合题意,∵点C(0,2),点D(﹣1,0)∴DC=,∴DN=DN'=,且点N在抛物线对称轴上,∴点N(﹣1,),点N'(﹣1,﹣)延长M'C交对称轴与N'',∵点M'(1,﹣1),点C(0,2),∴直线M'C解析式为:y=﹣3x+2,∴当x=﹣1时,y=5,∴点N''的坐标(﹣1,5),∵点N''的坐标(﹣1,5),点M'(1,﹣1),点C(0,2),∴N''C==M'C,且∠MCM'=90°,∴MM'=MN'',∴∠MM'C=∠MN''C=45°∴点N''(﹣1,5)符合题意,综上所述:点N的坐标为:(﹣1,)或(﹣1,﹣)或(﹣1,5).4.解:(1)∵BO=3AO=3,∴点B(3,0),点A(﹣1,0),∴抛物线解析式为:y=(x+1)(x﹣3)=x2﹣x﹣,∴b=﹣,c=﹣;(2)如图1,过点D作DE⊥AB于E,∴CO∥DE,∴,∵BC=CD,BO=3,∴=,∴OE=,∴点D横坐标为﹣,∴点D坐标为(﹣,+1),设直线BD的函数解析式为:y=kx+b,由题意可得:,解得:,∴直线BD的函数解析式为y=﹣x+;(3)∵点B(3,0),点A(﹣1,0),点D(﹣,+1),∴AB=4,AD=2,BD=2+2,对称轴为直线x=1,∵直线BD:y=﹣x+与y轴交于点C,∴点C(0,),∴OC=,∵tan∠CBO==,∴∠CBO=30°,如图2,过点A作AK⊥BD于K,∴AK=AB=2,∴DK===2,∴DK=AK,∴∠ADB=45°,如图,设对称轴与x轴的交点为N,即点N(1,0),若∠CBO=∠PBO=30°,∴BN=PN=2,BP=2PN,∴PN=,BP=,当△BAD∽△BPQ,∴,∴BQ==2+,∴点Q(1﹣,0);当△BAD∽△BQP,∴,∴BQ==4﹣,∴点Q(﹣1+,0);若∠PBO=∠ADB=45°,∴BN=PN=2,BP=BN=2,当△DAB∽△BPQ,∴,∴,∴BQ=2+2∴点Q(1﹣2,0);当△BAD∽△PQB,∴,∴BQ==2﹣2,∴点Q(5﹣2,0);综上所述:满足条件的点Q的坐标为(1﹣,0)或(﹣1+,0)或(1﹣2,0)或(5﹣2,0).5.解:(1)∵直线x=1是抛物线的对称轴,且点C的坐标为(0,3),∴c=3,﹣=1,∴b=2,∴抛物线的解析式为:y=﹣x2+2x+3;(2)①∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴点M(1,4),∵抛物线的解析式为:y=﹣x2+2x+3与x轴相交于A,B两点(点A位于点B的左侧),∴0=﹣x2+2x+3∴x1=3,x2=﹣1,∴点A(﹣1,0),点B(3,0),∵点M(1,4),点B(3,0)∴直线BM解析式为y=﹣2x+6,∵点P在直线BM上,且PD⊥x轴于点D,PD=m,∴点P(3﹣,m),∴S△PCD=×PD×OD=m×(3﹣)=﹣m2+m,∵点P在线段BM上,且点M(1,4),点B(3,0),∴0<m≤4∴S与m之间的函数关系式为S=﹣m2+m(0<m≤4)②∵S=﹣m2+m=﹣(m﹣3)2+,∴当m=3时,S有最大值为,∴点P(,3)∵0<m≤4时,S没有最小值,综上所述:当m=3时,S有最大值为,此时点P(,3);(3)存在,若PC=PD=m时,∵PD=m,点P(3﹣,m),点C(0,3),∴(3﹣﹣0)2+(m﹣3)2=m2,∴m1=18+6(舍去),m2=18﹣6,∴点P(﹣6+3,18﹣6);若DC=PD=m时,∴(3﹣﹣0)2+(﹣3)2=m2,∴m3=﹣2﹣2(舍去),m4=﹣2+2,∴点P(4﹣,﹣2+2);若DC=PC时,∴(3﹣﹣0)2+(m﹣3)2=(3﹣﹣0)2+(﹣3)2,∴m5=0(舍去),m6=6(舍去)综上所述:当点P的坐标为:(﹣6+3,18﹣6)或(4﹣,﹣2+2)时,使△PCD为等腰三角形.6.解:(1)∵抛物线y=ax2+bx+c经过点A(1,0)、B(3,0)、C(0,3),∴,解得,∴抛物线的表达式为y=x2﹣4x+3;(2)∵抛物线对称轴是线段AB的垂直平分线,∴AM=BM,由三角形的三边关系,|BM﹣CM|=|AM﹣CM|<AC,∴点A、C、M三点共线时,|BM﹣CM|最大,设直线AC的解析式为y=mx+n,则,解得,∴直线AC的解析式为y=﹣3x+3,又∵抛物线对称轴为直线x=﹣=2,∴x=2时,y=﹣3×2+3=﹣3,故,点M的坐标为(2,﹣3);(3))∵OB=OC=3,OB⊥OC,∴△BOC是等腰直角三角形,∵EF∥y轴,直线BC的解析式为y=﹣x+3,∴△DEF只要是直角三角形即可与△BOC相似,∵D(2,1),A(1,0),B(3,0),∴点D垂直平分AB且到点AB的距离等于AB,∴△ABD是等腰直角三角形,∴∠ADB =90°,如图,①点F 是直角顶点时,点F 的纵坐标与点D 的纵坐标相同,是1,∴x 2﹣4x +3=1,整理得x 2﹣4x +2=0,解得x =2±, 当x =2﹣时,y =﹣(2﹣)+3=1+, 当x =2+时,y =﹣(2+)+3=1﹣, ∴点E 1(2﹣,1+)E 2(2+,1﹣), ②点D 是直角顶点时,易求直线AD 的解析式为y =x ﹣1,联立,解得,,当x =1时,y =﹣1+3=2,当x =4时,y =﹣4+3=﹣1,∴点E 3(1,2),E 4(4,﹣1),综上所述,存在点E 1(2﹣,1+)或E 2(2+,1﹣)或E 3(1,2)或E 4(4,﹣1),使以D 、E 、F 为顶点的三角形与△BCO 相似.7.解:(1)∵抛物线y =x 2+bx +c 交x 轴于点A (1,0),与y 轴交于点C (0,﹣3),∴,解得:,∴抛物线解析式为:y=x2+2x﹣3;(2)∵抛物线y=x2+2x﹣3与x轴于A,B两点,∴点B(﹣3,0),∵点B(﹣3,0),点C(0,﹣3),∴OB=OC=3,∴∠OBC=∠OCB=45°,如图1,当点D在点C上方时,∵∠DBC=15°,∴∠OBD=30°,∴tan∠DBO==,∴OD=×3=,∴CD=3﹣;若点D在点C下方时,∵∠DBC=15°,∴∠OBD=60°,∴tan∠DBO==,∴OD=3,∴DC=3﹣3,综上所述:线段CD的长度为3﹣或3﹣3;(3)如图2,在BO上截取OE=OA,连接CE,过点E作EF⊥AC,∵点A(1,0),点C(0,﹣3),∴OA=1,OC=3,∴AC===,∵OE=OA,∠COE=∠COA=90°,OC=OC,∴△OCE≌△OCA(SAS),∴∠ACO=∠ECO,CE=AC=,∴∠ECA=2∠ACO,∵∠PAB=2∠ACO,∴∠PAB=∠ECA,=AE×OC=AC×EF,∵S△AEC∴EF==,∴CF===,∴tan∠ECA==,如图2,当点P在AB的下方时,设AP与y轴交于点N,∵∠PAB=∠ECA,∴tan∠ECA=tan∠PAB==,∴ON=,∴点N(0,﹣),又∵点A(1,0),∴直线AP解析式为:y=x﹣,联立方程组得:,解得:或,∴点P坐标为:(﹣,﹣),当点P在AB的上方时,同理可求直线AP解析式为:y=﹣x+,联立方程组得:,解得:或,∴点P坐标为:(﹣,),综上所述:点P的坐标为(﹣,),(﹣,﹣).8.解:(1)∵二次函数图象过点B(4,0),点A(﹣2,0),∴设二次函数的解析式为y=a(x+2)(x﹣4),∵二次函数图象过点C(0,4),∴4=a(0+2)(0﹣4),∴a=﹣,∴二次函数的解析式为y=﹣(x+2)(x﹣4)=﹣x2+x+4;(2)存在,理由如下:如图1,取BC中点Q,连接MQ,∵点A(﹣2,0),B(4,0),C(0,4),点P是AC中点,点Q是BC中点,∴P(﹣1,2),点Q(2,2),BC==4,设直线BP解析式为:y=kx+b,由题意可得:,解得:∴直线BP的解析式为:y=﹣x+,∵∠BMC=90°∴点M在以BC为直径的圆上,∴设点M(c,﹣c+),∵点Q是Rt△BCM的中点,∴MQ=BC=2,∴MQ2=8,∴(c﹣2)2+(﹣c+﹣2)2=8,∴c=4或﹣,当c=4时,点B,点M重合,即c=4,不合题意舍去,∴c=﹣,则点M坐标(﹣,),故线段PB上存在点M(﹣,),使得∠BMC=90°;(3)如图2,过点D作DE⊥BC于点E,设直线DK与BC交于点N,∵点A(﹣2,0),B(4,0),C(0,4),点D是AB中点,∴点D(1,0),OB=OC=4,AB=6,BD=3,∴∠OBC=45°,∵DE⊥BC,∴∠EDB=∠EBD=45°,∴DE=BE==,∵点B(4,0),C(0,4),∴直线BC解析式为:y=﹣x+4,设点E(n,﹣n+4),∴﹣n+4=,∴n=,∴点E(,),在Rt△DNE中,NE===,①若DK与射线EC交于点N(m,4﹣m),∵NE=BN﹣BE,∴=(4﹣m)﹣,∴m=,∴点N(,),∴直线DK解析式为:y=4x﹣4,联立方程组可得:,解得:或,∴点K坐标为(2,4)或(﹣8,﹣36);②若DK与射线EB交于N(m,4﹣m),∵NE=BE﹣BN,∴=﹣(4﹣m),∴m=,∴点N(,),∴直线DK解析式为:y=x﹣,联立方程组可得:,解得:或,∴点K坐标为(,)或(,),综上所述:点K的坐标为(2,4)或(﹣8,﹣36)或(,)或(,).9.解:(1)∵抛物线y=x2+bx+c与y轴交于点A(0,2),与x轴交于B(﹣3,0),∴∴∴抛物线解析式为:y=x2﹣x+2;(2)∵y=x2﹣x+2=﹣(x+1)2+,∴顶点D坐标(﹣1,);(3)①∵抛物线y=x2﹣x+2与x轴交于B(﹣3,0)、C两点,∴点C(1,0)设点E(m,m2﹣m+2),则点P(m,0),∵PE=PC,∴m2﹣m+2=1﹣m,∴m=1(舍去),m=﹣,∴点E(﹣,)②如图,连接AE交对称轴于点N,连接DE,作EH⊥DN于H,交y轴于点F,∵点A(0,2),点E(﹣,),∴直线AE解析式为y=﹣x+2,∴点N坐标(﹣1,)∴DH==,HN==,∴DH=NH,且EH⊥DN,∴∠DEH=∠NEH,∴点F到AE,DE的距离相等,∴DN∥y轴,EH⊥DN,∴EH⊥y轴,∴EF=;③在x轴正半轴取点H,使OH=OA=2,∵OH=OA,∠AOP=∠QOH=90°,OP=OQ,∴△AOP≌△HOQ(SAS)∴AP=QH,∴AP+DQ=DQ+QH≥DH,∴点Q在DH上时,DQ+AP有最小值,最小值为DH的长,∴AP+DQ的最小值==.10.解:(1)对于抛物线y=a(x+1)(x﹣3),令y=0,得到a(x+1)(x﹣3)=0,解得x=﹣1或3,∴C(﹣1,0),A(3,0),∴OC=1,∵OB=2OC=2,∴B(0,2),把B(0,2)代入y=a(x+1)(x﹣3)中得:2=﹣3a,a=﹣∴二次函数解析式为=;(2)设点M的坐标为(m,),则点N的坐标为(2﹣m,),MN=m﹣2+m=2m﹣2,GM=矩形MNHG的周长C=2MN+2GM=2(2m﹣2)+2()==∴当时,C有最大值,最大值为;(3)∵A(3,0),B(0,2),∴OA=3,OB=2,由对称得:抛物线的对称轴是:x=1,∴AE=3﹣1=2,设抛物线的对称轴与x轴相交于点E,当△ABP为直角三角形时,存在以下三种情况:①如图1,当∠BAP=90°时,点P在AB的下方,∵∠PAE+∠BAO=∠BAO+∠ABO=90°,∴∠PAE=∠ABO,∵∠AOB=∠AEP,∴△ABO∽△PAE,∴,即,∴PE=3,∴P(1,﹣3);②如图2,当∠PBA=90°时,点P在AB的上方,过P作PF⊥y轴于F,同理得:△PFB∽△BOA,∴,即,∴BF=,∴OF=2+=,∴P(1,);③如图3,以AB为直径作圆与对称轴交于P1、P2,则∠AP1B=∠AP2B=90°,设P1(1,y),∵AB2=22+32=13,由勾股定理得:AB2=P1B2+P1A2,∴12+(y﹣2)2+(3﹣1)2+y2=13,解得:y=1±,∴P(1,1+)或(1,1﹣),综上所述,点P的坐标为(1,﹣3)或(1,)或(1,1+)或(1,1﹣)。
二次函数基础回顾 第1部 二次函数的概念一、学习准备1.函数的定义:在某个变化过程中,有两个变量x 和y ,如果给定一个x 值,相应地就确定了一个y 值,那么我们称 是 的函数,其中 是自变量, 是因变量。
2.一次函数的关系式为y= (其中k 、b 是常数,且k≠0);正比例函数的关系式为y = (其中k 是 的常数);反比例函数的关系式为y= (k 是 的常数)。
二、解读教材——数学知识源于生活3.某果园有100棵橙子树,每一棵树平均结600个橙子。
现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少。
根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子。
假设果园增种x 棵橙子树,那么果园共有 棵橙子树,这时平均每棵树结 个橙子,如果果园橙子的总产量为y 个,那么y= 。
4.如果你到银行存款100元,设人民币一年定期储蓄的年利率是x ,一年到期后,银行将本金和利息自动按一年定期储蓄转存。
那么你能写出两年后的本息和y(元)的表达式(不考虑利息税)吗? 。
5.能否根据刚才推导出的式子y=-5x 2+100x+60000和y=100x 2+200x+100猜想出二次函数的定义及一般形式吗?一般地,形如y =ax 2+bx+c(a ,b ,c 是常数,a≠0)的函数叫做x 的二次函数。
它就是二次函数的一般形式,理解并熟记几遍。
例1 下列函数中,哪些是二次函数?(1)2321xy +−= (2)112+=x y(3)x y 222+= (4)251t t s++= (5)22)3(x x y −+= (6)210r s π=即时练习:下列函数中,哪些是二次函数? (1)2x y = (2)252132+−=x x y(3))1(+=x x y (4)1132−−=)(x y(5)c ax y −=2 (6)12+=x s三、挖掘教材6.对二次函数定义的深刻理解及运用 例2 若函数1232++=+−kx x y k k 是二次函数,求k 的值。
九年级人教版《二次函数复习》教学设计一、教材分析二次函数是中考的重点内容之一,二次函数的应用是培养学生数学建模和数学思想的重要素材,是每年必考的压轴题。
本部分包括了初中代数的所有数学思想和方法,复习时必须高度重视。
二次函数在学习函数内容上起着承上启下的作用,与前面学习的二次三项式、一元二次方程有着密切联系,为今后学习高中的函数和不等式打下基础,积累经验,提供可以借鉴的方法。
通过对二次函数的复习,加深学生对函数知识的理解和应用。
二、复习目标:知识与技能:1、理解二次函数的意义,会画二次函数的图象,会求二次函数的解析式。
2、会用配方法把二次函数的表达式化为顶点式,并能利用性质解决简单的实际问题,体会模型思想。
3、会利用二次函数的图象求一元二次方程的近似解。
过程与方法:1、通过观察、猜想、验证、推理、交流等数学活动进一步发展学生的演绎推理能力和发散思维能力。
2、学生亲自经历巩固二次函数相关知识点的过程,体会利用数形结合线索解决问题策略的多样性。
情感、态度与价值观:经历探索二次函数相关题目的过程,体会数形结合思想、化归思想在数学中的广泛应用,同时感受数学知识来源于实际生活,反之,又服务于实际生活.复习重点:二次函数的图象、性质和应用。
复习难点:二次函数的应用和图象法解一元二次方程。
二、教材处理针对初四复习时间紧、任务重的实际情况,我决定利用以题代纲的复习方法,以问题组的形式展开复习,每一道题让学生说出知识点和考点及其解题的思路,每一部分在整个知识体系中的位置等等,刚开始学生说不全,其他同学再补充,时间长了,学生就能掌握。
在复习时将二次函数部分分为四个模块,(一)二次函数的图象和性质(二)二次函数的平移(三)二次函数解析式的求法(四)二次函数的应用。
对学生容易出错的知识点,可进行形式多样的变式练习,以提高学生运用知识分析问题、解决实际问题的能力。
三、教法分析以题代纲,梳理知识;查漏补缺,讲练结合;归纳总结,提升能力。
二次函数专题复习专题一:二次函数的图象与性质本专题涉及二次函数概念,二次函数的图象性质,抛物线平移后的表达式等.试题多以填空题、选择题为主,也有少量的解答题出现.考点1.二次函数图象的对称轴和顶点坐标二次函数的图象是一条抛物线,它的对称轴是直线x=-2b a,顶点坐标是(-2b a,244ac b a-).例 1 已知,在同一直角坐标系中,反比例函数5y x=与二次函数22y x x c =-++的图像交于点(1)A m -,.(1)求m 、c 的值;(2)求二次函数图像的对称轴和顶点坐标.分析:要求m 的值只要将点A (-1,m )的坐标代入y=5x即可.要求c 的值,则只要把点A 的坐标代入y=-x 2+2x+c 即可.求二次函数图象的对称轴和顶点坐标,可以直接代入计算公式,也可以利用配方法进行计算.解答:(1)把x=1,y=m 代入y=5x,得m=-5,所以点A 的坐标为(-1,-5).把x=-1,y=-5代入y=-x 2+2x+c ,得c=-2.(2)因为y=-x 2+2x-2=-(x-1)2-1,所以二次函数的对称轴是直线x=1,顶点坐标是(1,-1). 点评:本题主要涉及二次函数图象的对称轴和顶点坐标的计算,解决问题的方法有两种,可根据表达式的特点灵活选择计算方法.考点2.抛物线与a 、b 、c 的关系抛物线y=ax 2+bx+c 中,当a>0时,开口向上,在对称轴x=-2b a的左侧y 随x 的增大而减小,在对称轴的右侧,y 随x 的增大而增大;当a<0时,开口向下,在对称轴的右侧,y 随x 的增大而增大,在对称轴的右侧,y 随x 的增大而减小.例2 已知2y ax bx =+的图象如图1所示,则y ax b =-的图象一定过( ) A .第一、二、三象限 B .第一、二、四象限 C .第二、三、四象限D .第一、三、四象限分析:通过观察图象可以知道a 喝b 的符号,从而可以判断出y=ax-b 的图象一定过的象限.图1解:由图,可知a<0,又由对称轴,可知-2b a>0,∴b>0.∴y=ax-b 的图象一定经过第二、三、四象限. ∴应选C.点评:求解本题时,一定要认真分析题目提供的图象,从图像中捕捉对求解有用的信息. 考点3.二次函数的平移当k>0(k<0)时,抛物线y=ax 2+k (a ≠0)的图象可由抛物线y=ax 2向上(或向下)平移|k|个单位得到;当h>0(h<0)时,抛物线y=a (x-h )2(a ≠0)的图象可由抛物线y=ax 2向右(或向左)平移|h|个单位得到.例3 把抛物线y=3x 2向上平移2个单位,得到的抛物线是( ) A.y=3(x+2)2 B.y=3(x-2)2 C.y=3x 2+2 D.y=3x 2-2 分析:因为将抛物线向上平移,表明抛物线沿y 轴向上. 解:把抛物线y=3x 2向上平移2个单位, ∴平移后的抛物线的表达式应为y=3x 2+2. ∴应选C.点评:抛物线在左边平面内实施平移变换,其位置发生了改变,但其形状和开口不变,即a 不变. 专题练习一 1.对于抛物线y=13-x 2+103x 163-,下列说法正确的是( )A.开口向下,顶点坐标为(5,3)B.开口向上,顶点坐标为(5,3)C.开口向下,顶点坐标为(-5,3)D.开口向上,顶点坐标为(-5,3) 2.若抛物线y=x 2-2x+c 与y 轴的交点为(0,-3),则下列说法不正确的是( ) A.抛物线开口向上 B.抛物线的对称轴是x=1 C.当x=1时,y 的最大值为-4D.抛物线与x 轴交点为(-1,0),(3,0)3.将二次函数y=x 2的图象向左平移1个单位长度,再向下平移2个单位长度后,所得图象的函数表达式是________.4.小明从图2所示的二次函数2y ax bx c =++的图象中,观察得出了下面五条信息:①0c <;②0abc >;③0a b c -+>;④230a b -=;⑤40c b ->,你认为其中正确信息的个数有图2_______.(填序号)专题复习二:二次函数表达式的确定本专题主要涉及二次函数的三种表示方法以及根据题目的特点灵活选用方法确定二次函数的表达式.题型多以解答题为主.考点1.根据实际问题模型确定二次函数表达式例1 如图1,用一段长为30米的篱笆围成一个一边靠墙(墙的长度不限)的矩形菜园A B C D ,设A B 边长为x 米,则菜园的面积y (单位:米2)与x (单位:米)的函数关系式为 (不要求写出自变量x 的取值范围).分析:依题意利用图形的面积公式求解. 解:依题意AD=12(30-x ),所以由长方形的面积公式得y=x ×12(30-x )=-12x 2+15x.点评:本题主要考查从实际问题中建立函数模型求二次函数表达式,这里应注意30米的篱笆只需围三个面,另一面靠墙,不需要篱笆.考点2.根据抛物线上点的坐标确定二次函数表达式1.若已知抛物线上三点的坐标,则可用一般式:y=ax 2+bx+c (a ≠0);2.若已知抛物线的顶点坐标或最大(小)值及抛物线上另一个点的坐标,则可用顶点式:y=a (x-h )2+k (a ≠0);3.若已知抛物线与x 轴的两个交点坐标及另一个点,则可用交点式:y=a (x-x 1)(x-x 2)(a ≠0). 例2 已知抛物线的图象以A (-1,4)为顶点,且过点B (2,-5),求该抛物线的表达式. 分析:可用顶点式求解.解:设抛物线的表达式为y=a (x+1)2+4,因为抛物线经过B (2,-5),所以-5=a (2+1)2+4,即a=-1.所以抛物线的表达式为y=-(x+1)2+4=-x 2-2x+3.点评:求抛物线的表达式的常用方法是待定系数法.给定的条件不同,所设的表达式的形式也不一样. 例3 已知一抛物线与x 轴的交点是A (-2,0)、B (1,0),且经过点C (2,8). (1)求该抛物线的解析式; (2)求该抛物线的顶点坐标.分析:由于该抛物线经过三点,故可用一般式求解,又该抛物线与x 轴的两个交点已知,所以也可以用交点式求解.解:(1)设这个抛物线的解析式为y=ax 2+bx+c (a ≠0). 由题意,得ABC D图1菜园墙⎪⎩⎪⎨⎧=++=++=+-,824,0,024c b a c b a c b a 解得⎪⎩⎪⎨⎧-===.4,2,2c b a所以抛物线的解析式为.4222-+=x x y (2)因为4222-+=x x y =229)21(2-+x ,所以抛物线的顶点坐标为).29,21(--点评:用“待定系数法”求抛物线的表达式是最基本、最重要的方法之一,同学们一定要牢固掌握,同时,要灵活运用二次函数的三种表达式,如本题选用交点式)(1x x a y -=)(2x x -也较方便.专项练习二1.由于世界金融危机的不断蔓延,世界经济受到严重冲击.为了盘活资金,减少损失,某电器商场决定对某种电视机连续进行两次降价.若设平均每次降价的百分率是x ,降价后的价格为y 元,原价为a 元,则y 与x 之间的函数表达式为( )A.y=2a (x-1)B.y=2a (1-x )C.y=a (1-x 2) D.y=a (1-x )22.如图2,在平而直角坐标系xOy 中,抛物线y=x 2+bx+c 与x 轴交于A 、B 两点,点A 在x 轴负半轴,点B 在x 轴正半轴,与y 轴交于点C ,且tan ∠ACO=12,CO=BO ,AB=3,则这条抛物线的函数解析式是 .3.对称轴平行于y 轴的抛物线与y 轴交于点(0,-2),且x=1时,y=3;x=-1时y=1, 求此抛物线的关系式.4.推理运算:二次函数的图象经过点(03)A -,,(23)B -,,(10)C -,. (1)求此二次函数的关系式; (2)求此二次函数图象的顶点坐标;(3)填空:把二次函数的图象沿坐标轴方向最.少.平移 个单位,使得该图象的顶点在原点. 专题三:二次函数与一元二次方程的关系本专题主要涉及根据二次函数的图象求一元二次方程的近似根,由图象判断一元二次方程根的情况,由一元二次方程根的情况判断抛物线与x 轴的交点个数等,题型主要填空题、选择题和解答题.考点1.根据二次函数的自变量与函数值的对应值,确定方程根的范围一元二次方程ax 2+bx+c=0就是二次函数y=ax 2+bx+c 当函数y 的值为0时的情况.例1 根据下列表格中二次函数y=ax 2+bx+c 的自变量x 与函数值y 的对应值,判断方程ax 2+bx+c=0(a ≠0,a,b,c,为常数)的一个解x 的范围是( )图2A.6 6.17x << B.6.17 6.18x << C.6.18 6.19x <<D.6.19 6.20x <<分析:本题用表格的形式提供了部分信息,对函数、方程之间的关系进行针对性的考查,即方程ax 2+bx+c=0(a ≠0,a,b,c,为常数)的解就是函数y=ax 2+bx+c 值为零时对应的自变量x 的取值.解:由于x 轴上表示实数的点是连续的,因此,可以估计方程的解必然在某负数函数值与某正数函数值之间,故由表格提供的数据可选择C.点评:本题主要考查二次函数与一元二次方程的关系,解决问题的思路是通过表格观察函数值在什么范围内由负数变为正数,这个服务就是对应的方程的根的范围.考点2.根据二次函数的图象确定所对应的一元二次方程的根.二次函数y=ax 2+bx+c 的图象与x 轴的交点有三种情况:有两个交点、一个交点、没有交点;当二次函数y=ax 2+bx+c 的图象与x 轴有交点时,交点的横坐标就是当y=0时自变量x 的值,即一元二次方程ax 2+bx+c=0的根.例2 已知二次函数y=-x 2+3x+m 的部分图象如图1所示,则关于x 的一元二次方程-x 2+3x+m=0的解为________.分析:二次函数y=-x 2+3x+m 的图象与x 轴的角度的横坐标即为方程-x 2+3x+m=0的根.观察图象,可知图象与x 轴的一个交点为(4,0),且对称轴为x=32,根据图象与x 轴两个交点关于对称轴x=32对称,所以另一个交点的坐标为(-1,0),由此可得到方程的两个根.解:因为y=-x 2+3x+m 与x 轴的一个交点为(4,0),且图象的对称轴为x=32,所以图象与x 轴的另一个交点为(-1,0).所以方程-x 2+3x+m=0的两根为x 1=-1,x 2=32.点评:本题已知图象的一部分,求相应方程的根,解决问题的关键是根据图象与x 轴两个交点关于对称轴对称,求到图象与x 轴交点的坐标.考点3.抛物线的交点个数与一元二次方程的根的情况当二次函数y=ax 2+bx+c 的图象与x 轴有两个交点时,则一元二次方程ax 2+bx+c=0有两个不相等的实数根;当二次函数y=ax 2+bx+c 的图象与x 轴有一个交点时,则一元二次方程ax 2+bx+c=0有两个相等的实数根;当二次函数y=ax 2+bx+c 的图象与x 轴没有交点时,则一元二次方程ax 2+bx+c=0没有实数根.反之亦然.例3 在平面直角坐标系中,抛物线21y x =-与x 轴的交点的个数是( )图1A.3B.2C.1D.0分析:要求与x 轴的交点个数,可转化为一元二次方程根的情况来解决. 解:由题意得当y=0时,即为x 2-1=0,∵b 2-4ac=4>0,∴x 2-1=0有两个不相等的实数根, ∴抛物线与x 轴有两个交点. 故选B.点评:二次函数中,当涉及到图象与坐标轴的交点时,注意要考虑与一元二次方程的联系.专项练习三1.抛物线y=kx 2-7x-7的图象和x 轴有交点,则k 的取值范围是________.2.已知二次函数22y x x m =-++的部分图象如图2所示,则关于x 的一元二次方程220x x m -++=的解为 .3.已知函数2y a x b x c =++的图象如图3所示,那么关于x 的方程220ax bx c +++= 的根的情况是( )A.无实数根B.有两个相等实数根C.有两个异号实数根D.有两个同号不等实数根4. 二次函数2(0)y ax bx c a =++≠的图象如图4所示,根据图象解答下列问题:(1)写出方程20ax bx c ++=的两个根. (2)写出不等式20ax bx c ++>的解集.(3)写出y 随x 的增大而减小的自变量x 的取值范围.(4)若方程2ax bx c k ++=有两个不相等的实数根,求k 的取值范围. 专题四:利用二次函数解决实际问题本专题主要涉及从实际问题中建立二次函数模型,根据二次函数的最值解决实际问题,能根据图象学习建立二次函数模型解决实际问题.解决实际问题的基本思路:(1)理解问题;(2)分析问题中的变量和常量;(3)用函数表达式表示出它们之间的关系;(4)利用二次函数的有关性质进行求解;(5)检验结果的合理性,对问题加以拓展等.例 某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”图2政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x 元,商场每天销售这种冰箱的利润是y 元,请写出y 与x 之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?分析:首先利用利润=(销售单价-成本)×销售量这个公式算术y 与x 的关系;再解一元二次方程;最后利用二次函数的性质求出最大值即可.解:(1)根据题意,得(24002000)8450x y x ⎛⎫=--+⨯⎪⎝⎭, 即2224320025y x x =-++.(2)由题意,得22243200480025x x -++=.整理,得2300200000x x -+=. 解这个方程,得12100200x x ==,.要使百姓得到实惠,取200x =.所以,每台冰箱应降价200元. (3)对于2224320025y x x =-++,当241502225x =-=⎛⎫⨯- ⎪⎝⎭时,150(24002000150)8425020500050y ⎛⎫=--+⨯=⨯= ⎪⎝⎭最大值.所以,每台冰箱的售价降价150元时,商场的利润最大,最大利润是5000元.点评:本题是一道构建二次函数解决实际问题的决策题,是中考的重要考点.对于第(3)小题的最大利润问题,除了用顶点公式来确定答案外,也可以利用配方法将二次函数的表达式化成顶点式.专题训练四1.小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S (单位:平方米)随矩形一边长x (单位:米)的变化而变化.(1)求S 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)当x 是多少时,矩形场地面积S 最大?最大面积是多少?2.某旅行社有客房120间,每间客房的日租金为50元,每天都客满.旅社装修后要提高租金,经市场调查发现,如果每间客房的日租金每增加5元时,则客房每天出租数就会减少6间,不考虑其他因素,旅社将每间客房的日租金提高到多少元时,客房日租金的总收入最高?3.一座拱桥的轮廓是抛物线型(如图1所示),拱高6m ,跨度20m ,相邻两支柱间的距离均为5m . (1)将抛物线放在所给的直角坐标系中(如图2所示),求抛物线的解析式; (2)求支柱E F 的长度;(3)拱桥下地平面是双向行车道(正中间是一条宽2m 的隔离带),其中的一条行车道能否并排行驶宽2m 、高3m 的三辆汽车(汽车间的间隔忽略不计)?请说明你的理由.参考答案 专题练习一 1.A 解析:由y=13-x 2+103x 163-=13-(x-5)2+3,∵13-<0,∴开口向下,顶点坐标为(5,3)2.C 解析:因为a=1>0,所以开口向上,A 正确;把(0,-3)代入y=x 2-2x+c 中,解得c=-3,所以抛物线为y=x 2-2x-3=(x-1)2-4,所以抛物线的对称轴是直线x=1,B 正确;因为a=1>0,所以抛物线有最小值,且当x=1时,最小值为-4,故C 错误;由x 2-2x-3=0得x=1,x=3,所以抛物线与x 轴交点为(-1,0),(3,0),D 正确.3.y=(x+1)2-2 解析:二次函数y=x 2的图象向左平移1个单位长度所得图象的表达式为y=(x+1)2,再向下平移2个单位长度后,所得图象的表达式为y=(x+1)2-2.4.①②③⑤ 解析:因为抛物线开口向上,可知a>0.再由对称轴x=2b a-,所以b<0.又2b a-=3,得3b=-2a ,所以2a+3b=0,所以④错误;由抛物线与y 轴交于负半轴,可知c<0,所以abc>0,所以①、②均正确;观察图形可知x=-1时,y>0,即a-b+c>0,所以③正确;因为x=2时,y>0,即4a+2b+c>0,将3b=-2a 代入4a+2b+c>0,得-4b+c>0,即c-4b>0,所以⑤正确,所以①、②、③、⑤正确.专题练习二1.D 解析:第一次降价后的价格为a (1-x ),第二次降价后的价格为a (1-x )(1-x )=a (1-x )2,所以x图1y=a (1-x )2.2.y=x 2-2x-2 解析:依题意,结合图象,当x=0时,y=c<0,即OC=|c|,又tan ∠ACO=12,CO=BO ,所以OB=OC=|c|,OA=12|c|,而AB=3,所以12|c|+|c|=3,所以c=-2,所以点A 的坐标为(-1,0),所以b=-1.使用这条抛物线的函数表达式为y=x 2-x-2.3.解析:设该抛物线表达式为y=ax 2+bx+c.把(0,-2)、(1,3),(-1,1)分别代入上式,并解得a=4,b=1,c=-2.所以该抛物线的表达式为y=4x 2+x-2.4.解析:(1)设23y ax bx =+-, 把点(23)-,,(10)-,代入得423330.a b a b +-=-⎧⎨--=⎩,解方程组得12.a b =⎧⎨=-⎩, 223y x x ∴=--;(2)2223(1)4y x x x =--=--.∴函数的顶点坐标为(14)-,.(3)要由(1,-4)变为(0,0),则应左移1个单位后,再上移4个单位,故应最少平移5个单位,才能使得该图象的顶点在原点.专项练习三 1.k ≥74-且k ≠0 解析:抛物线与x 轴有交点,即kx 2-7x-7=0有实数根,所以(-7)2-4×(-7)×k≥0,解得k ≥74-且k ≠0.2.x 1=-1,x 2=3 解析:同例3.3.D 解析:因为抛物线y=ax 2+bx+c+2是由抛物线y=ax 2+bx+c 向上平移2个单位所得的图象,而抛物线y=ax 2+bx+c 的最低点的纵坐标为-3,所以抛物线y=ax 2+bx+c+2的最低点的纵坐标为-1,故抛物线y=ax 2+bx+c+2与x 轴有两个交点,且都在y 轴的右侧,所以方程ax 2+bx+c+2=0有两个同号不等实数根.4.解析:(1)因为二次函数y=ax 2+bx+c 的图象与x 轴的两个交点坐标是(1,0),(3,0),所以方程ax 2+bx+c=0的两个根为x 1=1,x 2=3;(2)因为抛物线的开口向下,所以x 轴的上方都满足ax 2+bx+c>0,即表达式ax 2+bx+c>0的解为1<x<3; (3)因为抛物线的对称轴方程是x=2,且a<0,所以当x>2时,y 随x 的增大而减小;(4)因为抛物线的顶点的纵坐标是2,所以要使方程ax 2+bx+c=k 有两个不相等的实数根,只要k<2. 专题训练四1.解析:(1)根据题意,得S=x x⋅-2260=-x 2+30x ,自变量x 的取值范围是0<x<30. (2)∵a=-1<0,∴S 有最大值. 301522(1)b x a∴=-=-=⨯-2243022544(1)ac b S a--===⨯-最大∴当x=15时,S最大=225.答:当x 为15米时,才能使矩形场地面积最大,最大面积是225平方米.2.解析:设每间客房的日租金提高x 个5元(即5x 元),则每天客房出租数会减少6x 间,客房日租金总收入为y=(50+5x)(120-6x)=-30(x-5)2+6750.当x=5时,y 有最大值6750,这时每间客房的日租金为50+5×5=75(元),客房日租金总收入最高为6750元.3.解析:(1)根据题目条件,A B C ,,的坐标分别是(100)(100)(06)-,,,,,. 设抛物线的解析式为2y ax c =+,将B C ,的坐标代入2y ax c =+,得60100c a c =⎧⎨=+⎩,解得3650a c =-=,.所以抛物线的表达式是23650y x =-+.(2)可设(5)F F y ,,于是2356 4.550F y =-⨯+=从而支柱M N 的长度是10 4.5 5.5-=米.(3)设D N 是隔离带的宽,N G 是三辆车的宽度和, 则G 点坐标是(70),.过G 点作G H 垂直A B 交抛物线于H ,则2376 3.06350H y =-⨯+>≈.根据抛物线的特点,可知一条行车道能并排行驶这样的三辆汽车.x。
二次函数的复习知识点1二次函数的定义1、一般地,如果=a 2bc (a ,b ,c 是常数且a ≠0),那么叫做的二次函数,它是关于自变量的 次式,二次项系数必须是非零实数时才是二次函数,这也是判断函数是不是二次函数的重要依据. 2、当b=c=0时,二次函数=a 2是最简单的二次函数. 练习1)下列函数中,二次函数的是( )A .=a 2bcB 2)1()2)(2(---+=x x x y C xx y 12+= =—1 练习2)如果函数1)3(232++-=+-mx x m y m m是二次函数,那么m 的值为知识点2二次函数的图像及性质1、已知一个二次函数,确定它的图象名称、开口方向、对称轴、顶点坐标、增减范围、极值。
已知条件中含二次函数开口方向或对称轴、顶点坐标、增减范围、极值,求解析中待定系数的取值。
(1)二次函数 c bx ax y ++=2的图像是对称轴平行于包括重合y 轴的抛物线 (2)二次函数 c bx ax y ++=2,当0>a 时⇔抛物线开口向上⇔顶点为其最低点;当0<a 时⇔抛物线开口向下⇔顶点为其最高点(3)对于=a 2bc 而言,其顶点坐标为( ,).对于=a (-h )2而言其顶点坐标为( , )。
二次函数c bx ax y ++=2用配方法或公式法(求h 时可用代入法)可化成:k h x a y +-=2)(的形式,其中h= ,=练习3)抛物线1822-+-=x x y 的图象的开口方向是_____, 顶点坐标是_ ___ 练习4)若抛物线232)1(2-++-=m mx x m y 的最低点在x 轴上,则m 的值为 (4)二次函数 c bx ax y ++=2的对称轴为直线=-2ba运用抛物线的对称性求对称轴,若抛物线上有两点 A (m,n )、B2pm +A B 243y x x =-+A B c bx ax y ++=20>a 0<a 2y ax bx c =++a 1x =()()212y y -1,,,1y 2y 1y 2y 542+-=mx x y 2-<x y x 2->x y x 2-=x y 22-41有最小值-3,则m 等于B-1 C±1 D±12练习9)已知二次函数的图象0≤≤3如图所示.关于该函数在所给自变量取值范围内,下列说法正确的是 A .有最小值0,有最大值3 B .有最小值-1,有最大值0 C .有最小值-1,有最大值3 D .有最小值-1,无最大值练习10)填表: 开口方向 对称轴顶点坐标最值增减性2)3(2+-=x y 412322--=x x y特性函数 特别注意顶点横坐标是否在自变量的取值范围内练习11)若二次函数2()1y x m =--.当x ≤时,y 随x 的增大而减小,则m 的取值范围是( ) A .m = B .m > C .m ≥ D .m ≤练习12)若二次函数=a 2bc 的与的部分对应值如下表:X -7 -6 -5 -4 -3 -2-27-13-3353则当=1时,的值为 (可用多种解法) 2、画二次函数的图象:首先将一般式化为顶点式①画对称轴②确定顶点③确定与轴交点关于对称轴对称的点 ④确定与轴的交点或另选一组较简的对称点⑤连线 练习13)已知二次函数215222y x x =+-画出它的图象3、抛物线的平移、对称、旋转:首先化二次函数的解析式为顶点式,抓住关键点顶点的变化,顶点决定抛物线的位置 ① 抛物线=a 2bc 关于X 轴对称的抛物线解析式是(方法是将原解析式中的 不变,把 转换为 ,再整理) ② 抛物线=a 2bc 关于Y 轴对称的抛物线解析式是(方法是将原解析式中的 不变,把 转换为 ,再整理)练习14)将抛物线23x y =绕原点按顺时针方向旋转180°后,再分别向下、向右平移1个单位,此时该抛物线的解析式为( )A 1)1(32---=x y B 1)1(32-+-=x y C 1)1(32+--=x y D 1)1(32++-=x y 15)二次函数c bx x y ++=2的图像向右平移3个单位,再向下平移2个单位,得到函数图像的解析式为122+-=x x y ,则b 与c 分别等于( )、4 B -8、14 、6 D -8、-14 4、抛物线=a 2bc 的位置与参数a 、b 、c 及相关特殊代数式的符号的关系: ①a 的符号判别---开口向上 a 0;开口向下 a 0; ②c 的符号判别---由抛物线的与Y 轴的交点来确定: 若交点在轴的正半轴;若交点在轴的负半轴;若交点在原点c 0;③b 的符号由对称轴来确定:对称轴在Y轴的左侧、b同号;对称轴在Y 轴的右侧、b 异号。
专题12 二次函数1.二次函数的概念:一般地,自变量x 和因变量y 之间存在如下关系: y=ax 2+bx+c(a≠0,a 、b 、c 为常数),则称y 为x 的二次函数。
抛物线)0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。
2.二次函数y=ax 2+bx+c(a ≠0)的图像与性质(1)对称轴:2b x a=-(2)顶点坐标:24(,)24b ac b a a-- (3)与y 轴交点坐标(0,c ) (4)增减性:当a>0时,对称轴左边,y 随x 增大而减小;对称轴右边,y 随x 增大而增大; 当a<0时,对称轴左边,y 随x 增大而增大;对称轴右边,y 随x 增大而减小。
3.二次函数的解析式三种形式。
(1)一般式 y=ax 2+bx+c(a ≠0).已知图像上三点或三对x 、y 的值,通常选择一般式. (2)顶点式 2()y a x h k =-+224()24b ac b y a x a a-=-+ 已知图像的顶点或对称轴,通常选择顶点式。
(3)交点式 12()()y a x x x x =--专题知识回顾已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式。
4.根据图像判断a,b,c 的符号(1)a 确定开口方向 :当a>0时,抛物线的开口向上;当a<0时,抛物线的开口向下。
(2)b ——对称轴与a 左同右异。
(3)抛物线与y 轴交点坐标(0,c ) 5.二次函数与一元二次方程的关系抛物线y=ax 2+bx+c 与x 轴交点的横坐标x 1, x 2 是一元二次方程ax 2+bx+c=0(a ≠0)的根。
抛物线y=ax 2+bx+c ,当y=0时,抛物线便转化为一元二次方程ax 2+bx+c=024b ac ->0时,一元二次方程有两个不相等的实根,二次函数图像与x 轴有两个交点; 24b ac -=0时,一元二次方程有两个相等的实根,二次函数图像与x 轴有一个交点; 24b ac -<0时,一元二次方程有不等的实根,二次函数图像与x 轴没有交点。
第1-3讲 二次函数全章综合提高【知识清单】 ※一、网络框架※二、清单梳理1、一般的,形如2(0,,,)y ax bx c a a b c =++≠是常数的函数叫二次函数。
例如222212,26,4,5963y x y x y x x y x x =-=+=--=-+-等都是二次函数。
注意:系数a不能为零,,b c 可以为零。
2(0)0=00=0000000y ax a y a y a y a x y x x y x a x y x x y x ⎧=≠⎧⎪⎪⎪><⎨⎪><>⎧⎪⎨⎪<<>⎩⎩最小值最大值概念:形如的函数简单二次函数图像:是过(0,0)的一条抛物线对称轴:轴性质最值:当时,;当时,当时,在对称轴左边(即),随的增大而减小。
在对称轴右边(即),随的增大而增大。
增减性当时,在对称轴左边(即),随的增大而增大。
在对称轴右边(即),随的增大而减小。
二次函数2222(0)004242440=0=440y ax bx c a a a b ac b a a b x a ac b ac b a y a y a a a ⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩=++≠⎧><⎪⎪-⎪⎨⎪⎪=⎪⎩--><>最小值最大值概念:形如的函数,注意还有顶点式、交点式以及它们之间的转换。
开口方向:,开口向上;,开口向下。
图像:是一条抛物线顶点坐标:(-,)对称轴:-最值:当时,,当时,一般二次函数性质:当时,在对称轴左增减性:22022b b x y x x y x a a b b a x y x x y x a a ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎨⎪⎪⎪⎧⎪<>⎨⎪⎪⎪⎪⎪⎨⎪⎪⎪<<>⎪⎪⎪⎩⎩⎪⎧⎪⎪⎪⎨⎪⎪⎪⎩⎩边(即-),随的增大而减小。
在对称轴右边(即-),随的增大而增大。
当时,在对称轴左边(即-),随的增大而增大。
第二讲二次函数㈠承上启下 知识回顾问题1、现有一根12m 长的绳子,用它围成一个矩形,如何围法,才使举行的面积最大?问题2、很多同学都喜欢打篮球,你知道吗:投篮时,篮球运动的路线是什么曲线?怎样计算篮球达到最高点时的高度?这些问题都可以通过学习二次函数的数学模型来解决,今天我们学习“二次函数”㈡紧扣考点 专题讲解请用适当的函数解析式表示下列问题中情景中的两个变量y 与x 之间的关系:(1) 面积y (cm 2)与圆的半径 x ( cm )(2)王先生存人银行2万元,先存一个一年定期,一年后银行将本息自动转存为又一个一年定期,设一年定期的年存款利率为文 x 两年后王先生共得本息y 元;(1)y =πx 2(2)y = 2000(1+x)2 = 20000x 2+40000x+20000 上述三个函数解析式具有哪些共同特征?归纳总结:上述三个函数解析式经化简后都具y=ax ²+bx+c (a,b,c 是常数, a ≠0)的形式.我们把形如y=ax ²+bx+c(其中a,b,C 是常数,a ≠0)的函数叫做二次函数(quadratic funcion) 称a 为二次项系数, b 为一次项系数,c 为常数项,1、下列函数中,哪些是二次函数? (1)2x y = (2) 21xy -= (3) 122--=x x y(4) )1(x x y -= (5))1)(1()1(2-+--=x x x y答:1.3.4.2、分别说出下列二次函数的二次项系数、一次项系数和常数项:(1)12+=x y (2)12732-+=x x y (3))1(2x x y -= 二次函数1 二次函数3 二次函数 -2 一次项系数0 一次项系数7 一次项系数 2 常数项1 常数项 -12 常数项03、若函数mm x m y --=2)1(2为二次函数,则m 的值为 2 。
例1、已知二次函数 q px x y ++=2当x=1时,函数值是4;当x=2时,函数值是-5。
中考数学专题复习二次函数【基础知识回顾】一、 二次函数与一元二次方程:二次函数y = ax 2+bx+c 的同象与x 轴的交点的横坐标对应着一元二次方程ax 2+bx+c=0的实数根,它们都由根的判别式 决定抛物线x 轴有 个交点 <=b 2-4ac>0=>一元二次方程有 实数根 抛物线x 轴有 个交点 <=b 2-4ac=0=>一元二次方程有 实数根 抛物线x 轴有 个交点 <=b 2-4ac<0=>一元二次方程有 实数根 【名师提醒:若抛物线与x 轴有两交点为A (x1,0)B(x2,0)则抛物线对称轴式x= 两交点间距离AB 】 二、二次函数的解析式:(1)二次函数解析式的表示方法一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠); 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标,对称轴为221x x h +=). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化. (2) 用待定系数法求二次函数的解析式 1、设顶点式,即:设当知道抛物线的顶点坐标或对称轴方程与函数最值时,除代入这一点外,再知道一个点的坐标即可求函数解析式。
2、设一般式,即:设知道一般的三个点坐标或自变量与函数的三组对应数值可设为一般式,从而列三元一次方程组求的函数解析式。
3、设两点式,即:设当知道抛物线与坐标轴交点的横坐标时,除代入这两横坐标外,再知道一个点的坐标即可求函数解析式。
名师提醒:求二次函数解析式,根据具体同象特征灵活设不同的关系或除上述常用方法以外,还有:如抛物线顶点在原点可设 ;以y 轴为对称轴,可设 ;顶点在x 轴上,可设 ;抛物线过原点可设 等四、抛物线2y ax bx c =++的三要素:开口方向、对称轴、顶点. 对称轴:平行于y 轴(或重合)的直线记作2bx a =-.特别地,y 轴记作直线0=x .顶点坐标:),(a b ac a b 4422--顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.求抛物线的顶点、对称轴的方法(1)公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线a b x 2-=. (2)配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是直线h x =.(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.三、二次函数图象的平移平移步骤:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:向右(h >0)【或左(h <0)】平移 |k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向右(h >0)【或左(h <0)】平移|k|个单位向右(h >0)【或左(h <0)】平移|k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向上(k >0)【或向下(k <0)】平移|k |个单位y=a (x-h )2+ky=a (x-h )2y=ax 2+ky=ax 2平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.四、二次函数2y ax bx c =++图象的画法(1)五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).(2)画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.五、抛物线c bx ax y ++=2中,c b a ,,与函数图像的关系二次项系数a二次函数2y ax bx c =++中,a 为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 越大,开口越小,反之a 的值越小,开口越大;⑵ 当0a <时,抛物线开口向下,a 越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小.一次项系数b : a ,b 的符号共同决定了对称轴的位置当b=0时,对称轴x=0,即对称轴为y 轴,当a ,b 同号时,对称轴x=-2ba <0,即对称轴在y 轴左侧,当a ,b 异号时,对称轴x=-2ba >0,即对称轴在y 轴右侧,(左同右异y 轴为0)。
二次函数复习课(一)
一、教学目标:
1.梳理二次函数知识,加深对二次函数概念和二次函数图像及其性质的理解;
2.能从二次函数图像上获取正确、有用的信息,并能用合理的方法求函数解析式,提高观察、分析、归纳和概括的能力.
3.在综合运用二次函数知识的过程中领会图形运动、数形结合以及分类、化归等数学思想方法.
二、教学重点与难点:
重点:二次函数概念和从二次函数图像上获取正确有用的信息.
难点:二次函数知识综合运用中的分类讨论.
-43
2
问:从图像上得到什么信息?你如何求?。
第二十二章二次函数章末复习测试题(一)一.选择题1.抛物线y=x2﹣6x+4的顶点坐标是()A.(3,5)B.(﹣3,5)C.(3,﹣5)D.(﹣3,﹣5)2.二次函数y=ax2+bx+c的图象开口向上,对称轴为直线x=﹣2,并且过点(1,0),则下列结论中,正确的一项是()A.c>0 B.9a+c>3b C.5a>b D.4ac﹣b2>0 3.二次函数y=ax2+4ax+1﹣a的图象只过三个象限,则a的取值范围为()A.<a≤1 B.0<a<C.﹣1<a<0 D.a<﹣14.若关于x的二次函数y=﹣x2+2ax+3的图象与端点为(﹣3,6)和(6,3)的线段只有一个交点,则a的值可以是()A.﹣B.﹣2 C.1 D.35.已知二次函数y=ax2+2ax+3a﹣2(a是常数,且a≠0)的图象过点M(x1,﹣1),N(x2,﹣1),若MN的长不小于2,则a的取值范围是()A.a≥B.0<a≤C.﹣≤a<0 D.a≤﹣6.二次函数y=ax2+bx+c的图象如图所示,则下列结论正确的是()A.abc>0 B.a+b+c=0 C.4a﹣2b+c<0 D.b2﹣4ac<0 7.二次函数y=x2+px+q,当0≤x≤1时,此函数最大值与最小值的差()A.与p、q的值都有关B.与p无关,但与q有关C.与p、q的值都无关D.与p有关,但与q无关8.在二次函数y=﹣x2+bx+c中,函数y与自变量x的部分对应值如表:x﹣3 ﹣2 ﹣1 1 2 3 4 5y﹣14 ﹣7 ﹣2 2 m n﹣7 ﹣14则m、n的大小关系为()A.m>n B.m<n C.m=n D.无法确定9.“闻起来臭,吃起来香”的臭豆腐是长沙特色小吃,臭豆腐虽小,但制作流程却比较复杂,其中在进行加工煎炸臭豆腐时,我们把“焦脆而不糊”的豆腐块数的百分比称为“可食用率”.在特定条件下,“可食用率”P与加工煎炸时间t(单位:分钟)近似满足的函数关系为:P=at2+bt+c(a≠0,a,b,c是常数),如图记录了三次实验的数据.根据上述函数关系和实验数据,可以得到加工煎炸臭豆腐的最佳时间为()A.3.50分钟B.4.05分钟C.3.75分钟D.4.25分钟10.如图,抛物线y=ax2+bx+c与x轴正半轴交于A,B两点,与y轴负半轴交于点C.若点B(4,0),则下列结论中,正确的个数是()①abc>0;②4a+b>0;③M(x1,y1)与N(x2,y2)是抛物线上两点,若0<x1<x2,则y1>y2;④若抛物线的对称轴是直线x=3,m为任意实数,则a(m﹣3)(m+3)≤b(3﹣m);⑤若AB≥3,则4b+3c>0.A.5 B.4 C.3 D.211.已知x2﹣3x+y﹣5=0,则y﹣x的最大值为.12.当二次函数y=﹣x2+4x﹣6有最大值时,x=.13.已知二次函数y=ax2+(2a+1)x+a+1与x轴交于A、B两点,(A点在B点左侧)C为二次函数上一点且横坐标为1,已知△ABC的面积为,则a的值为.14.若将抛物线y=﹣3x2先向左平移2个单位长度,再向下平移3个单位长度,则所得到抛物线的顶点坐标是.15.如图,在平面直角坐标系中,正比例函数y=kx的图象与二次函数y=﹣x2﹣x+4的图象交于P点(P在第二象限),经过P点与x轴垂直的直线l与一次函数y=x+4的图象交于Q点,当PQ=时,则k的值为.16.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A(﹣1,0),对称轴为直线x=1,与y轴的交点B在(0,2)和(0,3)之间(不包括这两个点),下列结论:①当﹣1<x<3时,y>0;②﹣1<a<﹣.③当m≠1时,a+b>m(am+b);④b2﹣4ac=15a2.其中正确的结论的序号.17.已知y是x的二次函数,该函数的图象经过点A(0,5)、B(1,2)、C(3,2).(1)求该二次函数的表达式,画出它的大致图象并标注顶点及其坐标;(2)结合图象,回答下列问题:①当1≤x≤4时,y的取值范围是;②当m≤x≤m+3时,求y的最大值(用含m的代数式表示);③是否存在实数m、n(m≠n),使得当m≤x≤n时,m≤y≤n?若存在,请求出m、n;若不存在,请说明理由.18.如图,是400米跑道示意图,中间的足球场ABCD是矩形,两边是半圆,直道AB的长是多少?你一定知道是100米!可你也许不知道,这不仅仅为了比赛的需要,还有另外一个原因,等你做完本题就明白了.设AB=x米.(1)请用含x的代数式表示BC.(2)设矩形ABCD的面积为S.①求出S关于x的函数表达式.②当直道AB为多少米时,矩形ABCD的面积最大?19.如图,已知抛物线y=x2﹣2x﹣1与y轴相交于点A,其对称轴与抛物线相交于点B,与x轴相交于点C.(1)求AB的长;(2)平移该抛物线得到一条新抛物线,设新抛物线的顶点为P.若新抛物线经过原点O,且∠POA=∠ABC,求新抛物线对应的函数表达式.20.已知二次函数y=x2﹣2mx+2m2﹣1(m为常数).(1)若该函数图象与x轴只有一个公共点,求m的值.(2)将该函数图象沿过其顶点且平行于x轴的直线翻折,得到新函数图象.①则新函数的表达式为,并证明新函数图象始终经过一个定点;②已知点A(﹣2,﹣1)、B(2,﹣1),若新函数图象与线段AB只有一个公共点,请直接写出m的取值范围.21.如图,抛物线y=ax2+bx﹣2与x轴交于A,B两点,与y轴交于点C,已知A(﹣1,0),直线BC的解析式为y=x﹣2,过点A作AD∥BC交抛物线于点D,点E为直线BC下方抛物线上一点,连接CD,DB,BE,CE.(1)求抛物线的解析式;(2)求四边形DBEC面积的最大值,以及此时点E的坐标;(3)点M为直线CD上一点,点N为抛物线上一点,若以B,C,M,N为顶点,以线段BC为边的四边形是平行四边形,求点M的坐标.参考答案一.选择题1.解:y=x2﹣6x+4=(x﹣3)2﹣5,故抛物线y=x2﹣6x+4的顶点坐标是:(3,﹣5).故选:C.2.解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴为直线x=﹣=﹣2,∴b=4a>0,∵抛物线经过(1,0),即x=1,y=0,∴a+b+c=0,∴c=﹣b﹣a=﹣4a﹣a=﹣5a<0,所以A选项错误;∵抛物线的对称轴为直线x=﹣2,抛物线与x轴的一个交点为(1,0),∴抛物线与x轴的一个交点为(﹣5,0),∴当x=﹣3时,y<0,即9a﹣3b+c<0,∴9a+c<3b,所以B选项错误;∵5a﹣b=5a﹣4a=a>0,∴C选项正确;∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,所以D选项错误.故选:C.3.解:∵抛物线的对称轴为直线x=﹣=﹣2,抛物线图象只过三个象限,∴当a>0,抛物线经过第一、二、三象限,当a<0,抛物线经过第二、三、四象限∴当a>0时,,解得<a≤1;当a<0时,,无解,所以a的范围为<a≤1;故选:A.4.解:当a=﹣时,二次函数y1=﹣x2﹣5x+3,端点为(﹣3,6)和(6,3)的线段表达式为:y2=﹣x+5(﹣3≤x≤6),当x=0时,y1<y2;当x=﹣3时,y1=9,y2=6,y1>y2,根据函数图象可知:此时二次函数y=﹣x2+2ax+3的图象与端点为(﹣3,6)和(6,3)的线段只有一个交点,符合题意.故选:A.5.解:令y=﹣1,得y=ax2+2ax+3a﹣2=﹣1,化简得,ax2+2ax+3a﹣1=0,∵二次函数y=ax2+2ax+3a﹣2(a是常数,且a≠0)的图象过点M(x1,﹣1),N (x2,﹣1),∴△=4a2﹣12a2+4a=﹣8a2+4a>0,∴0<a<,∵ax2+2ax+3a﹣1=0,∴x1+x2=﹣2,,∴,即MN=,∵MN的长不小于2,∴≥2,∴a≤,∵0<a<,∴0<a≤,故选:B.6.解:由图象可得,a>0,b<0,c<0,∴abc>0,故选项A正确;当x=1时,y=a+b+c<0,故选项B错误;当x=﹣2时,y=4a﹣2b+c>0,故选项C错误;该函数图象与x轴两个交点,则b2﹣4ac>0,故选项D错误;故选:A.7.解:∵二次函数y=x2+px+q=(x+)2+,∴该抛物线的对称轴为x=﹣,且a=1>0,当x=﹣<0,∴当x=0时,二次函数有最小值为:q,∴当x=1时,二次函数有最大值为:1+p+q,∴函数最大值与最小值的差为1+p;当x=﹣>1,∴当x=0时,二次函数有最大值为:q,∴当x=1时,二次函数有最小值为:1+p+q,∴函数最大值与最小值的差为﹣1﹣p;当0≤x=﹣,此时当x=1时,函数有最大值1+p+q,当x=﹣时,函数有最小值q﹣,差为1+p+,<x=﹣≤1,当x=0时,函数有最大值q,当x=﹣时,函数有最小值q﹣,差为,x=﹣=,当x=0或1时.函数有最大值q,当x=﹣时,函数有最小值q﹣,差为,综上所述,此函数最大值与最小值的差与p有关,但与q无关,故选:D.8.解:把x=1,y=2和x=﹣1,y=﹣2都代入y=﹣x2+bx+c中,得解得,,∴二次函数的解析式为:y=﹣x2+2x+1,把x=2,y=m和x=3,y=n代入y=﹣x2+2x+1得,m=﹣4+4+1=1,n=﹣9+6+1=﹣2,∴m>n,故选:A.9.解:将图象中的三个点(3,0.8)、(4,0.9)、(5,0.6)代入函数关系P=at2+bt+c 中,,解得,所以函数关系式为:P=﹣0.2t2+1.5t﹣1.9,由题意可知:加工煎炸臭豆腐的最佳时间为抛物线顶点的横坐标:t=﹣=﹣=3.75,则当t=3.75分钟时,可以得到最佳时间.故选:C.10.解:如图,抛物线开口向下,与y轴交于负半轴,对称轴在y轴右侧,∴a<0,c<0,,∴b>0,∴abc>0,故①正确;如图,∵抛物线过点B(4,0),点A在x轴正半轴,∴对称轴在直线x=2右侧,即,∴,又a<0,∴4a+b>0,故②正确;∵M(x1,y1)与N(x2,y2)是抛物线上两点,0<x1<x2,可得:抛物线y=ax2+bx+c在上,y随x的增大而增大,在上,y随x的增大而减小,∴y1>y2不一定成立,故③错误;若抛物线对称轴为直线x=3,则,即b=﹣6a,则a(m﹣3)(m+3)﹣b(3﹣m)=a(m﹣3)2≤0,∴a(m﹣3)(m+3)≤b(3﹣m),故④正确;∵AB≥3,则点A的横坐标大于0或小于等于1,当x=1时,代入,y=a+b+c≥0,当x=4时,16a+4b+c=0,∴a=,则,整理得:4b+5c≥0,则4b+3c≥﹣2c,又c<0,﹣2c>0,∴4b+3c>0,故⑤正确,故正确的有4个.故选:B.二.填空题(共6小题)11.解:∵x2﹣3x+y﹣5=0,∴y=﹣x2+3x+5,∴y﹣x=﹣x2+2x+5=﹣(x﹣1)2+6,∴y﹣x的最大值为6,故答案为6.12.解:∵y=﹣x2+4x﹣6,=﹣(x2﹣4x+4)+4﹣6,=﹣(x﹣2)2﹣2,∴当x=2时,二次函数取得最大值.故答案为:2.13.解:∵y=ax2+(2a+1)x+a+1=(ax+a+1)(x+1),∴当y=0时,x1=﹣,x2=﹣1,∵二次函数y=ax2+(2a+1)x+a+1与x轴交于A、B两点(A点在B点左侧),∴当a>0时,点A(﹣,0)、点B(﹣1,0);当a<0时,点A(﹣1,0),点B(﹣,0);∵C为二次函数上一点且横坐标为1,∴点C的纵坐标为y=a+2a+1+a+1=4a+2,∵△ABC的面积为,∴当a>0时,×(4a+2)=,得a=,当a<0时,×|4a+2|=,得a1=(舍去),a2=﹣,由上可得,a的值是或﹣,故答案为:或﹣.14.解:将抛物线y=﹣3x2先向左平移2个单位长度,再向下平移3个单位长度,则所得到抛物线为:y=﹣3(x+2)2﹣3.则平移后的抛物线的顶点坐标为:(﹣2,﹣3).故答案为(﹣2,﹣3).15.解:设P(m,﹣m2﹣m+4),则Q(m,m+4),由题意:﹣m2﹣m+4﹣m﹣4=,解得m=﹣1或﹣3,∴P(﹣1,)或(﹣3,),∵点P在直线y=kx上,∴k=﹣或﹣,故答案为﹣或﹣.16.解:∵抛物线与x轴交于A(﹣1,0),对称轴为直线x=1,∴抛物线与x轴的另一个交点坐标为(3,0),∵抛物线开口向下,∴当﹣1<x<3,y>0,所以①正确;∵抛物线与x轴交于A(﹣1,0),对称轴为直线x=1,∴a﹣b+c=0,﹣=1,∴b=﹣2a,c=﹣3a,∵抛物线与y轴的交点坐标为(0,c),而抛物线与y轴的交点B在(0,2)和(0,3)之间(不包括这两个点),∴2<c<3,∴2<﹣3a<3,∴﹣1<a<﹣,所以②正确;∵抛物线的对称轴为直线x=1,∴二次函数的最大值为a+b+c,∴a+b+c>mx2+bm+c(m≠1)∴a+b>m(am+b)(m≠1),所以③正确;∵b=﹣2a,c=﹣3a,∴b2﹣4ac=4a2﹣4a•(﹣3a)=16a2,所以④错误.故答案为①②③.三.解答题(共5小题)17.解:(1)设二次函数的解析式为:y=ax2+bx+c(a≠0),则,解得,,∴二次函数的解析式为:y=x2﹣4x+5,列表如下:x…0 1 2 3 4 …y… 5 2 1 2 5 …描点、连线,(2)①由函数图象可知,当1≤x≤4时,1≤y≤5,故答案为:1≤y≤5;②∵二次函数的解析式为:y=x2﹣4x+5,∴对称轴为x=2,当2﹣m≤m+3﹣2,即m≥时,则在m≤x≤m+3内,当x=m+3时,y有最大值为y=x2﹣4x+5=(m+3)2﹣4(m+3)+5=m2+2m+2;当2﹣m>m+3﹣2,即m<时,则在m≤x≤m+3内,当x=m时,y有最大值为y =x2﹣4x+5=m2﹣4m+5;③分三种情况:i若n≤2,有:m2﹣4m+5=n①,n2﹣4n+5=m②,m<n③①﹣②得:(n﹣m)(4﹣m﹣n)=n﹣m,n﹣m>0,∴m+n=3,代入①解得:m=1,n=2;ii若m≥2,有:m2﹣4m+5=m①,n2﹣4n+5=n②,m<n③,①﹣②得:(n﹣m)(4﹣m﹣n)=n﹣m,n﹣m>0,∴m+n=3,在范围内无解;iii若m<2,n>2,∵此时y min=1,∴必有m=1,当m=1时,若x=1,则y=y=x2﹣4x+5=2,又若x=3,则y=x2﹣4x+5=2,∵n>2,y max=n>2,∴n>3,且n2﹣4n+5=n,解得,n=,综上所述:m=1,n=2或m=1,n=.18.解:(1)由题意可得:π•BC=,∴BC=;(2)①∵四边形ABCD是矩形,∴S=×x=﹣(x﹣100)2+;②当x=100时,S最大,∴当AB=100米时,S最大.19.解:(1)令x=0,则y=﹣1,∴A(0,﹣1),∵y=x2﹣2x﹣1=(x﹣1)﹣2,∴B(1,﹣2),∴AB==;(2)∵A(0,﹣1),∴抛物线向上平移1个单位经过原点,此时四边形ABPO是平行四边形,∴∠POA=∠ABC,此时新抛物线对应的函数表达式为y=x2﹣2x,抛物线y=x2﹣2x,关于y轴对称的抛物线为:y=x2+2x,图象经过原点,且∠POA=∠ABC,∴新抛物线对应的函数表达式为y=x2﹣2x或y=x2+2x.20.解:(1)∵△=(﹣2m)2﹣4(2m2﹣1)=0,∴m=±1,即函数图象与x轴只有一个公共点时,m的值为±1;(2)①∵y=x2﹣2mx+2m2﹣1=(x﹣m)2+m2﹣1,顶点坐标为(m,m2﹣1),∴翻折后抛物线的表达式为:y=﹣(x﹣m)2+m2﹣1=﹣x2+2mx﹣1,故答案为:y=﹣x2+2mx﹣1;当x=0时,y=﹣1,故新函数过定点(0,﹣1);②设定点为C(0,﹣1),而点A(﹣2,﹣1)、B(2,﹣1),即点A、B、C在同一直线上,新抛物线的对称轴为x=m,当m>0时,如上图实线部分,新函数图象与线段AB只有一个公共点,则函数不过点B,即m>1,当m<0时,同理可得:m<﹣1,从图象看,当m=0时,也符合题意,故m的取值范围为:m>1或m<﹣1或m=0.21.解:(1)y=x﹣2,令x=0,则y=﹣2,令y=0,则x=4,故点B、C的坐标分别为:(4,0)、(0,﹣2),将点A、B、C的坐标代入抛物线表达式得,解得,故抛物线的表达式为:y=x2﹣x﹣2①;(2)∵AD∥BC,∴设直线AD的表达式为:y=x+t,将点A的坐标代入上式并解得:t=,故直线AD的表达式为:y=x+②,联立①②并解得:x=5,故点D(5,3),由点C、D的坐标得,直线CD的表达式为:y=x﹣2,过点B作y轴的平行线交CD于点N(4,2),过点E作y轴的平行线交BC于点M,设点E(m,m2﹣m﹣2),则点M(m,m﹣2),∵四边形DBEC面积S=S△BCE+S△CBD=S△MEC+S△MEB+S△BNC+S△NBD=ME(x B﹣x C)+NB(x D﹣x C)=(m﹣2﹣m2+m+2)×4+×2×5=﹣m2+4m+5,∵﹣1<0,故S有最大值,当m=2时,S的最大值为9,此时点E(2,﹣3);(3)设点M(m,m﹣2),点N(n,s),s=n2﹣n﹣2,∵点C向右平移4个单位向上平移2个单位得到B,同样点M(N)向右平移4个单位向上平移2个单位得到N(M),故m+4=n,m﹣2+2=s或m﹣4=n,m﹣2﹣2=s且s=n2﹣n﹣2,解得:n=1或4(舍去)或;m=﹣3或,故点M的坐标为:(﹣3,﹣5)或(,)或(,).。
二次函数综合复习模块一、二次函数的定义一般地,形如2y ax bx c =++(a b c ,,为常数,0a ≠)的函数称为x 的二次函数,其中x 为自变量,y 为因变量,a 、b 、c 分别为二次函数的二次项、一次项和常数项系数.注意:和一元二次方程类似,二次项系数0a ≠,而b 、c 可以为零.二次函数的自变量的取值范围是全体实数.【例1】 若函数232(1)(1)y m x m x =-++的图象是抛物线,则_____m =【例2】 在一幅长80厘米、宽50厘米的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂画,设整个挂画总面积为y ,金色纸边的宽为x ,则y 与x 的关系式是_____________模块二、二次函数的图象及性质二次函数2y ax bx c =++0a ≠()或2()y a x h k =-+(0a ≠)的性质⑴开口方向:00a a >⇔⎧⎨<⇔⎩向上向下⑵对称轴:2bx a=-(或x h =) ⑶顶点坐标:24(,)24b ac b a a--(或(,)h k )⑷最值:0a >时有最小值244ac b a -(或k )(如图1); 0a <时有最大值244ac b a-(或k )(如图2);⑸单调性:二次函数2y ax bx c =++(0a ≠)的变化情况(增减性) ①如图1所示,当0a >时,对称轴左侧2bx a<-,y 随着x 的增大而减小,在对称轴的右侧2bx a<-,y 随x 的增大而增大; ②如图2所示,当0a >时,对称轴左侧2bx a<-, y 随着x 的增大而增大,在对称轴的右侧2bx a<-,y 随x 的增大而减小; ⑹与坐标轴的交点:①与y 轴的交点:(0,C );②与x 轴的交点:使方程20ax bx c ++=(或2()0a x h k -+=)成立的x 值.【例3】 函数22y x =,232y x =-,221y x =+的______相同A.形状B.顶点C.最小值D.增减性【例4】 函数2y ax =与y ax b =-+在同一坐标系的图象可能是( )B【例5】 二次函数2y ax bx c =++的图象如下左图所示,判断a ,b ,c ,24b ac -,2a b +,a b c ++,a b c -+的符号【例6】 关于二次函数2y ax bx c =++的图象有下列命题:①当0c =时,函数图象过原点②当0c >且函数的图象开口向下时,方程20ax bx c ++=必有两个不等实根;③函数图象最高点的纵坐标是244ac b a-;④当0b =时,函数的图象关于y 轴对称 其中正确的命题的个数是( ) A.1个B.2个C.3个D.4个模块三 二次函数的解析式以及平移☞二次函数解析式的确定1、如果已知二次函数的图象上的三点坐标,可用一般式2y ax bx c =++()0a ≠求解二次函数解析式;2、已知二次函数的顶点和图象上的任意一点,都可以用顶点式()2y a x h k =-+()0a ≠来确定解析式;3、已知二次函数与x 轴的交点坐标,和图象上任意一点时,可用交点式()()12y a x x x x =-- ()0a ≠,(其中12,x x 为二次函数图象与x 轴的交点的两个横坐标)求解二次函数解析式; 4、对称式:12()()(0)y a x x x x k a =--+≠。
九年级数学二次函数知识点数学想要得高分,就要把大部分的精力放在基础学问和解题的基本技能上面,因为在数学的考试中,基础题占了试卷的大部分,所以基础学问肯定要记坚固。
下面是我整理的九年级数学二次函数学问点,仅供参考盼望能够关心到大家。
九年级数学二次函数学问点1什么是二次函数二次函数的基本表示形式为y=ax²+bx+c(a≠0)二次函数最高次必需为二次,二次函数的图像是一条对称轴与y轴平行或重合于y轴的抛物线。
它的定义是一个二次多项式(或单项式)。
假如令y值等于零,则可得一个二次方程。
该方程的解称为方程的根或函数的零点。
2二次函数的表达式一般式:y=ax²+bx+c (a≠0)顶点式:y=a(x-h)²+k 顶点坐标为(h,k)交点式:y=a(x-x₁)(x-x₂) 函数与图像交于(x₁,0)和(x₂,0) 3二次函数顶点式及推导过程二次函数的一般形式:y=ax^2+bx+c(a,b,c为常数,a≠0)二次函数的顶点式:y=a(x-h)^2+k k(a≠0,a、h、k为常数),顶点坐标为(h,k) 推导过程:y=ax^2+bx+cy=a(x^2+bx/a+c/a)y=a(x^2+bx/a+b^2/4a^2+c/a-b^2/4a^2)y=a(x+b/2a)^2+c-b^2/4ay=a(x+b/2a)^2+(4ac-b^2)/4a对称轴x=-b/2a顶点坐标(-b/2a,(4ac-b^2)/4a)4二次函数的图像1.二次函数图像是轴对称图形,对称轴与二次函数图像唯一的交点为二次函数图象的顶点P。
a,b同号,对称轴在y轴左侧; a,b异号,对称轴在y轴右侧。
2.二次函数图像有一个顶点P,坐标为P(h,k)。
3.二次项系数a确定二次函数图像的开口方向和大小。
当a0时,二次函数图象向上开口;当a0时,抛物线向下开口。
|a|越大,则二次函数图像的开口越小。
4.二次函数图像与y轴交于(0,C)点留意:顶点坐标为(h,k),与y轴交于(0,C)。
高考数学复习初等函数知识点:二次函数二次函数的基本表示形式为y=ax2+bx+c(a≠0)。
,下面是高考数学复习初等函数知识点:二次函数,希望对考生有帮助。
1、二次函数的定义一般地,形如y=ax2+bx+c(a,b,c为常数,a≠0)的函数叫做x的二次函数.如y=3x2,y=3x2-2,y=2x2+x-1等都是二次函数.注意:(1)二次函数是关于自变量的二次式,二次项系数a必须是非零实数,即a≠0,而b,c是任意实数,二次函数的表达式是一个整式;(2)二次函数y=ax2+bx+c(a,b,c是常数,a≠0),自变量x的取值范围是全体实数;(3)当b=c=0时,二次函数y=ax2是最简单的二次函数;(4)一个函数是否是二次函数,要化简整理后,对照定义才能下结论,例如y=x2-x(x-1)化简后变为y=x,故它不是二次函数.2、二次函数y=ax2的图象和性质(1)函数y=ax2的图象是一条关于y轴对称的曲线,这条曲线叫抛物线.实际上所有二次函数的图象都是抛物线.单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。
让学生把一周看到或听到的新鲜事记下来,摒弃那些假话套话空话,写出自己的真情实感,篇幅可长可短,并要求运用积累的成语、名言警句等,定期检查点评,选择优秀篇目在班里朗读或展出。
这样,即巩固了所学的材料,又锻炼了学生的写作能力,同时还培养了学生的观察能力、思维能力等等,达到“一石多鸟”的效果。
二次函数y=ax2的图象是一条抛物线,它关于y 轴对称,它的顶点坐标是(0,0).①当a>0时,抛物线y=ax2的开口向上,在对称轴的左边,曲线自左向右下降;在对称轴的右边,曲线自左向右上升,顶点是抛物线上位置最低的点,也就是说,当a>0时,函数y=ax2具有这样的性质:当x0时,函数y随x的增大而增大;当x=0时,函数y=ax2取最小值,最小值y=0;高考数学复习初等函数知识点:二次函数就为大家分享到这里,更多精彩内容请关注高考数学知识点栏目。
考点:二次函数的一般形式是c bx ax y ++=2(a ≠0),还可以用配方法化为k h x a y +-=2)(的形式,它可直接看出其顶点坐标为(k h ,),故把k h x a y +-=2)(叫做二次函数的顶点式. 性质:1.二次函数与一元二次方程的关系对于二次函数c bx ax y ++=2(a ≠0),当y =0时,就变成了一元二次方程02=++c bx ax .二次函数c bx ax y ++=2(a ≠0)的图象与x 轴的交点有三种情况:2.抛物线c bx ax y ++=中,c b a ,,与函数图像的关系二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠. ⑴ 当0a >时,抛物线开口向上,a 越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小.一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba -<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba -=,即抛物线的对称轴就是y 轴;当0b <时,02ba->,即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下,结论刚好与上述相反,即当0b >时,02ba ->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba -=,即抛物线的对称轴就是y 轴;当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧.总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.总结:常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正;⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0;⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负.总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的. 一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组 2y kx ny ax bx c =+⎧⎨=++⎩的解的数目来确定: ①方程组有两组不同的解时⇔l 与G 有两个交点; ②方程组只有一组解时⇔l 与G 只有一个交点; ③方程组无解时⇔l 与G 没有交点. 抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,由于1x 、2x 是方程02=++c bx ax 的两个根,故acx x a b x x =⋅-=+2121,()()a a ac b a ca b x x x x x x x x AB ∆=-=-⎪⎭⎫ ⎝⎛-=--=-=-=4442221221221213.二次函数图象的对称:二次函数图象的对称一般有五种情况,可用一般式或顶点式表达关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++; 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-;关于顶点对称2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.关于点()m n ,对称 ()2y a x h k=-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-总结:根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.三点式。
1,已知抛物线y=ax 2+bx+c 经过A (3,0),B (32,0),C (0,-3)三点,求抛物线的解析式。
2,已知抛物线y=a(x-1)2+4 , 经过点A (2,3),求抛物线的解析式。
顶点式。
1,已知抛物线y=x 2-2ax+a 2+b 顶点为A (2,1),求抛物线的解析式。
2,已知抛物线 y=4(x+a)2-2a 的顶点为(3,1),求抛物线的解析式。
交点式。
1,已知抛物线与 x 轴两个交点分别为(3,0),(5,0),求抛物线y=(x-a)(x-b)的解析式。
2,已知抛物线线与 x 轴两个交点(4,0),(1,0)求抛物线y=21a(x-2a)(x-b)的解析式。
定点式。
1,在直角坐标系中,不论a 取何值,抛物线2225212-+-+-=a x ax y 经过x 轴上一定点Q ,直线2)2(+-=x a y 经过点Q,求抛物线的解析式。
2,抛物线y= x 2 +(2m-1)x-2m 与x 轴的一定交点经过直线y=mx+m+4,求抛物线的解析式。
3,抛物线y=ax 2+ax-2过直线y=mx-2m+2上的定点A ,求抛物线的解析式。
平移式。
1,把抛物线y= -2x 2 向左平移2个单位长度,再向下平移1个单位长度,得到抛物线y=a( x-h)2 +k,求此抛物线解析式。
2,抛物线32-+-=x x y 向上平移,使抛物线经过点C(0,2),求抛物线的解析式.距离式。
1,抛物线y=ax 2+4ax+1(a ﹥0)与x 轴的两个交点间的距离为2,求抛物线的解析式。
2,已知抛物线y=m x 2+3mx-4m(m ﹥0)与 x 轴交于A 、B 两点,与 轴交于C 点,且AB=BC,求此抛物线的解析式。
对称轴式。
1、抛物线y=x 2-2x+(m 2-4m+4)与x 轴有两个交点,这两点间的距离等于抛物线顶点到y 轴距离的2倍,求抛物线的解析式。
2、已知抛物线y=-x 2+ax+4, 交x 轴于A,B (点A 在点B 左边)两点,交 y 轴于点C,且OB-OA=43OC ,求此抛物线的解析式。
对称式。
1,平行四边形ABCD 对角线AC 在x 轴上,且A (-10,0),AC=16,D (2,6)。
AD 交y 轴于E ,将三角形ABC 沿x 轴折叠,点B 到B 1的位置,求经过A,B,E 三点的抛物线的解析式。
2,求与抛物线y=x 2+4x+3关于y 轴(或x 轴)对称的抛物线的解析式。
切点式。
1,已知直线y=ax-a 2(a ≠0) 与抛物线y=mx 2 有唯一公共点,求抛物线的解析式。
2, 直线y=x+a 与抛物线y=ax 2 +k 的唯一公共点A (2,1),求抛物线的解析式。
判别式式。
1、已知关于X 的一元二次方程(m+1)x 2+2(m+1)x+2=0有两个相等的实数根,求抛物线y=-x 2+(m+1)x+3解析式。
2、已知抛物线y=(a+2)x 2-(a+1)x+2a 的顶点在x 轴上,求抛物线的解析式。
3、已知抛物线y=(m+1)x 2+(m+2)x+1与x 轴有唯一公共点,求抛物线的解析式。
注意点:1.设两条直线分别为,1l :11y k x b =+ 2l :22y k x b =+ 若12//l l ,则有1212//l l k k ⇔=且12b b ≠。
若12121l l k k ⊥⇔⋅=-点P (x 0,y 0)到直线y=kx+b(即:kx-y+b=0) 的距离: 2.抛物线c bx ax y ++=21)a 决定开口方向及开口大小,这与2ax y =中的a 完全一样.2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2的对称轴是直线abx 2-= ①0=b 时,对称轴为y 轴;②0>ab(即a 、b 同号)时,对称轴在y 轴左侧;③0<ab(即a 、b 异号)时,对称轴在y 轴右侧. 1)1(2002200++-=-++-=k by kx k b y kx d练习:1.已知二次函数的图象过(1,0),(2,0)和(0,2)三点,则该函数的解析式是( )A .y =2x 2+x +2B .y =x 2+3x +2C .y =x 2-2x +3 D .y =x 2-3x +22.若二次函数的图象的顶点坐标为(2,-1),且抛物线过(0,3),则二次函数的解析式是( )A .y =-(x -2)2-1B .y =-12(x -2)2-1C .y =(x -2)2-1D .y =12(x -2)2-13.抛物线y =2x 2+4x -3的顶点坐标是( ) A.(1,-5) B.(-1,-5) C.(-1,-4)D.(-2,-7)4.二次函数2y ax bx c =++(0a ≠)的图象如图所示,下列结论:(1)c <0 (2)0b >(3)420a b c ++> (4)()a c b +<22其中正确的有( ) A. 1个B. 2个C. 3个D. 4个5.如图,已知二次函数2y x bx c =++的图象与y 轴交于点A, 与x 轴正半轴交于B,C 两点,且BC =2,ABC S ∆ =3,则b 的值为( ) (A )-5 (B)4或-4 (C) 4 (D)-46.若抛物线y =ax 2+bx +c(a ≠0)的图象与抛物线y =x 2-4x +3的图象关于y轴对称,则抛物线y =ax 2+bx +c 所对应的函数关系式为______________.7.开口向下的抛物线y=a (x+1)(x-4)与x 轴交于A 、B 两点,与y•轴交于点C .•若∠ACB=90°,则a 的值为________.8.二次函数的图象经过三个定点(2,0),(3,0),(•0,-•1),则它的解析式为________,该图象的顶点坐标为__________.9.二次函数y =x 2-6x +c 图象的顶点与原点的距离为5,则c =______. 10.下列函数(其中n 为常数,且n >1) ①y=(x >0);②y=(n ﹣1)x ;③y=(x >0);④y=(1﹣n )x+1;⑤y=﹣x 2+2nx (x <0)中,y 的值随x 的值增大而增大的函数有 个.11.已知点A (4,y 1),B (,y 2),C (﹣2,y 3)都在二次函数y=(x ﹣2)2﹣1的图象上,则y 1、y 2、y 3的大小关系是 .12.抛物线y=2x 2﹣4x+3绕坐标原点旋转180°所得的抛物线的解析式是 .13.如图,已知直线y=﹣x+3分别交x 轴、y 轴于点A 、B ,P 是抛物线y=﹣x 2+2x+5的一个动点,其横坐标为a ,过点P 且平行于y 轴的直线交直线y=﹣x+3于点Q ,则当PQ=BQ 时,a 的值是 .14.已知二次函数的图象过点A(1,0)和B(2,1),且与y 轴交点纵坐标为m 。